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ABSTRACT
We study the possibility that the Galactic warp is caused by the tides of the Magellanic clouds.
Using a specialized N-body particle+ring code we investigate the role of extra torques on the
disc induced by gravitational wakes in the dark halo created by the Large Magellanic Cloud. We
find that neither the amplitude nor the orientation of the resulting warp agrees with observations.

Key words: Galaxy: structure – galaxies: kinematics and dynamics – Magellanic Clouds.

1 I N T RO D U C T I O N

In many spiral galaxies the outer regions of the disc warp away from
the symmetry plane of the inner disc, often resembling an integral
sign. Early studies on warps showed that this is a very common
phenomenon (Sancisi 1976), and later this was confirmed in big-
ger samples (Sánchez-Saavedra, Battaner & Florido 1990; Bosma
1991). From the beginning this presented dynamicists with a diffi-
cult puzzle. The presence of warps in most of the galaxies suggests
that either warps are continuously being excited, or they have sur-
vived for a long time since they were generated. The first scenario
needs a perturbing agent to warp the disc more or less continuously,
while the second needs a way of maintaining a coherent pattern
against the destructive effects of differential precession.

Sparke & Casertano (1988) studied long-lived warping normal
modes inside an oblate halo potential, where no winding occurs.
They calculated long-lived modes but failed to consider the halo as
a responding potential that would react to the disc. When Dubin-
ski & Kuijken (1995) and Nelson & Tremaine (1995), following a
comment by Toomre (1983), considered the response of the halo to
the gravity of the disc, and analysed how this affected the disc, they
discovered that those modes damped too quickly.

Most recent work has focused on one of the following possibil-
ities: (i) warps are caused by infalling clumps of dark matter that
re-orient the haloes, as a result of which a disc warp is induced
(Ostriker & Binney 1989; Ing-Guey & Binney 1999); (ii) an angu-
lar momentum misalignment between the halo and the disc excites
a warp (Debattista & Sellwood 1999); (iii) satellites orbiting the
warped galaxy cause a warp by tidal interaction with its disc.

This paper is concerned with the satellite-forcing scenario. The
crucial issue is how to enhance the tides directly exerted by the satel-
lites on to the galaxy disc into a perturbation sufficiently strong to
generate the observed warps. Usually the satellite galaxies that are
found orbiting warped galaxies are not massive enough to account
for the warp amplitudes observed. For example, the Galactic warp
could not be generated by the direct tidal forcing of the Large Mag-

�E-mail: kuijken@strw.leidenuniv.nl

ellanic Cloud (LMC) at its present distance, because its influence is
too weak (Burke 1957; Kerr 1957; Hunter & Toomre 1969).

Weinberg (1998) describes a calculation in which a disc galaxy
surrounded by a dark halo is perturbed by a massive satellite, similar
to the LMC. By means of a linear perturbation analysis, he follows
the perturbation (wake) created by the satellite in the halo, including
its self-gravity. He finds that the torque exerted by this wake on the
disc is several times larger than that due directly to the satellite. The
latter is amplified because: (i) the satellite-induced wake in the halo
itself exerts a torque, roughly in phase with that from the satellite and
(ii) the wake itself further perturbs the halo, resulting in a torque that
is larger again. As Weinberg shows, the details of the disc model (and
hence its vertical oscillation mode spectrum) sensitively determine
the degree of warping in response to the satellite and halo wake
perturbations. The amplification of the satellite tidal effect on the
disc by a wake was originally addressed in a calculation by Lynden-
Bell (1985) of a similar scenario, as well as in a simple model
described by Kuijken (1997).

Weinberg’s calculation, while impressive, relies on a number of
simplifying assumptions, as follows.

(i) The halo model is taken to be a King model, i.e. to be spherical
and radially scale-free over a substantial radial range. The symmetry
reduces the dimensionality of phase space, making the calculation of
the response of the halo more tractable. However, real galaxies will
have haloes that are somewhat flattened by their discs, and which
are not scale-free.

(ii) The response of the disc is calculated after that of the halo
is established, i.e. the backreaction of the disc on the halo is ig-
nored. However, as shown by Dubinski & Kuijken (1995) and
Nelson & Tremaine (1995) disc damping against the halo is an
important effect.

(iii) The satellite orbit is taken to be quasi-periodic, as is appro-
priate for a non-decaying orbit. However, a satellite massive enough
to warp the disc will be affected by dynamical friction, and hence
will have a decaying orbit.

(iv) Only the steady-state forced response is calculated, not the
transient responses. Since satellite orbital frequencies are rather low
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460 I. Garcı́a-Ruiz, K. Kuijken and J. Dubinski

(the orbital period of the LMC is about 1.5 Gyr) the transients may
be important.

In this paper we investigate these questions by means of N-body
simulations. Section 2 contains a description of the N-body code
used and Section 3 contains the results of our simulations: there we
show that the amplification by the halo wake in our model is modest.
In Section 4 we present a simple model that predicts the orientation
of the line of nodes of the warp for a polar satellite. In Section 5 we
give our conclusions.

2 S I M U L AT I O N D E TA I L S

2.1 N-body ring code

The N-body code used to evolve the system uses a hybrid approach.
The halo is modelled using particles while the disc is modelled using
a system of concentric, spinning rings. The gravitational potential
of the halo is computed using a self-consistent field (SCF) code
(Hernquist & Ostriker 1992), expanding the potential in terms of
radial (quantum number n) and spherical harmonic (numbers l, m)
basis functions. Basis functions up to n = 6, l = 4 were used in this
paper. We have made several checks to make sure that we have used
high enough harmonics in our expansion. We have compared the
particle density directly determined from the particle halo (Fig. 4 in
Section 3.4) with the truncated expansion used by the SCF code for
the same halo (Fig. 5 in Section 3.4). The match shows us that an
expansion up to n = 6, l = 4 is able to resolve the wakes generated
by the satellites in the halo with sufficient accuracy (the imaging of
the wake is explained in detail in Section 3.4). As a double check,
we also run some simulations with higher harmonics (n = 6, l = 8),
and no significant variation in either the warp nor in the wake was
detected.

The disc is treated as a system of spinning rings centred on the
halo. The rings are spaced uniformly but have varying mass to rep-
resent the disc density profile. Each ring is realized as 36 equal-mass
particles that are azimuthally equally spaced. The gravitational po-
tential generated by the ring particles are calculated using a tree code
(Barnes & Hut 1986) since the SCF method cannot determine the
potential accurately for highly flattened systems. The gravitational
forces on these individual ‘ring particles’ are then used to calculate
the torque on each ring, which were used in the solution of Euler’s
equations.

Finally, we treated satellites as single particles with a Plummer-
law potential. The force exerted by a satellite on the simula-
tion particles was evaluated directly using the Plummer potential
while the satellite moved under the influence of the halo and disc
potentials.

We simultaneously integrate the equations of motion for the halo
particles and the system of Euler’s equations for the rigid-ring sys-
tem describing the disc. The total energy and angular momentum of
the combined particle and ring system were found to well conserved

Figure 1. Mass profile and rotation curve: disc (dotted), halo (dashed) and total (solid). Simulation units are described in Section 2.2.

with typical errors less than 1 per cent in these quantities by the end
of a typical simulation.

2.2 Initial conditions

To simulate the tidal amplification of a satellite by a halo we have
chosen a set of initial conditions following Weinberg (1998). We
have adopted as a halo the one that generated the greatest warp in
his calculations, as well as an exponential disc with a scalelength of
4.5 kpc. The disc is exponential except by 5 scalelengths, and then
it is tapered smoothly to zero over the last scalelength as described
in Kuijken & Dubinski (1995).

The units of the model translate to the Galaxy (disc scalelength
of 4.5 kpc and a rotation velocity at 8.5 kpc of 220 km s−1) as
follows: length unit = 4.5 kpc, velocity unit = 315 km s−1, time
unit = 1.40 × 107 yr, mass unit = 1.03 × 1011 M�. With these
numbers, the disc mass of our model is 5.24 × 1010 M�, and the
satellite (LMC) has a mass of 1.5 × 1010 M�, the (highest current
mass estimate for the Clouds; see Schommer et al. 1992). In the
coordinate system of the simulations, z = 0 is the disc plane, and
the orbit of the satellite lies in the x = 0 plane.

We have used two different types of simulations: semilive and
live. In the ‘semilive’ simulations, the effect of the disc on the halo
is suppressed. The halo model used for these simulations is a King
model with �0/σ

2
0 = − 6, a tidal radius of 44 and a mass of 10 disc

masses (see Fig. 1 for the mass profile and the rotation curve). We
use this halo for the simulations in which the effect of the disc on
the halo is suppressed.

In the ‘live’ simulations the halo is allowed to feel the effects of
the disc. Here the initial conditions need to be different, as our King
model halo and the exponential disc are obviously not in equilibrium.
Hence for these runs we have allowed our halo to relax prior to the
run. For this purpose we evolved the King halo with a disc, forcing
the disc to remain flat in the initial configuration until the system
does not evolve any further. Once the halo and disc have relaxed,
we introduce the satellite and allow the disc to depart from the disc
plane. Letting the halo relax in the presence of the disc causes the
density to increase in the internal parts of the halo, which makes
the contribution of the halo to the rotation curve higher in the inner
parts. It peaks higher (by �20 per cent) and at a smaller radius
(25 per cent) than before.

For each model we used Nh = 500 000 particles for the halo and
600 rings for the disc. Each ring contained 36 particles. Various runs
where made with more rings and more particles per ring, without
significant changes in the results described below. We also made a
simulation with 5 000 000 particles for the halo (simulation no 4,
described in Section 3.3) and obtained the same results.

We use two Plummer-law satellites, symmetrically placed with
respect to the centre of the halo–disc system to nullify the dipole
term of the tidal field. In this way, we avoid relative movements of
the galaxy with respect to the satellites and focus on the quadrupole
(l = 2) terms that dominate in generating the warp.
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The warp of the Galaxy and the LMC 461

Table 1. Summary of all the simulations used in this article (the standard simulation is in bold). (1) See Section 2.2, (2) Assuming
MLMC = 1.5 × 1010 M�, (3) number of halo particles, (4) sense of rotation of the orbit, (5) the satellite orbit allowed to decay under
dynamical friction? (6) the halo allowed to respond to the satellite (form a wake)? (7) the halo allowed to respond to the disc?

No Halo model (1) Msat/MLMC(2) Nhalo (3) Lxsat (4) Dyn. Fr. (5) Sat → Halo (6) Disc → Halo (7)

1 King 0 500 000 − – – No
2 King 1 500 000 − No No No
3 King 1 500000 − No Yes No
4 King 10 5 000 000 − No Yes –
5 King 10 500 000 − No No No
6 King 10 500 000 − No Yes No
7 King 10 500 000 + No Yes No
8 King relaxed 0 500 000 − – – Yes
9 King relaxed 10 500 000 − Yes Yes Yes

The simulations begin with the satellite at its apocentre where
the density of the halo is lowest, to minimize disturbance to the
equilibrium halo–disc model and give enough time for the halo to
develop a gravitational wake caused by the satellite, before it gets
to its pericentre.

The satellites are placed in a polar orbit with pericentre at 50 kpc
and apocentre at 100 kpc, consistent with a recent determination of
the orbit of the Clouds (Lin, Jones & Klemola 1995). In the first
simulations dynamical friction is suppressed but incorporated later
when the response of the halo to the disc is computed (Section 3.6).
The orbit of the satellite in the case where dynamical friction is
neglected is shown in Fig. 2.

Our standard model consists of the exponential disc, the King
model halo, and the satellite orbiting in the 50–100 kpc non-
decaying orbit recently described. All simulations were run for 320
time units (which corresponds to 4.5 Gyr).

Figure 2. Orbit of one of the pair of satellites (the other one orbits symmet-
rically) used in simulations nos 2–6 (without dynamical friction). We have
plotted the trajectory in the plane of the orbit and indicated the apogalacticon
and perigalacticon with empty and filled circles, respectively. The period of
the satellite is 88.6 time units.

3 R E S U LT S

We have performed a number of simulations to look for the effect
described in Weinberg (1998). We first simulate a system resembling
the Galaxy and LMC and later increase the mass of the satellite to
observe the warp above our particle noise level. For a summary of
all the simulations performed, see Table 1

3.1 Control simulation

We first simulated our standard model parameters for the disc and
the halo but without satellites (simulation no 1) to determine any
disc warping from particle noise. We find that the particle noise
caused by the halo had excited a warp in the disc with an amplitude
of 3.5◦ at r = 6.

3.2 Semilive halo

In this section, we calculate the bending of the disc caused by or-
biting satellites by switching off the effect of the disc on the halo
(and hence its backreaction on the disc), in an effort to reproduce
Weinberg’s calculations.

First, we switch off the effect of the satellite on the halo as well
(simulation no 2), to quantify the warp amplitude in the case of only
direct tidal forcing by the satellite. This simulation shows warp
amplitudes that are indistinguishable from the control simulation,
indicating that the raw tidal field of the satellite is much too weak
to affect the disc.

The standard model (resembling the LMC–Galaxy, simulation
no 3), including the effect of the satellite on the halo develops a
warp no bigger than 0.5◦ above the control simulation.

The wake that is created in our halo as a result of the perturbed
satellite peaks inside the orbit of the satellite, but not as deeply as half
the distance (2 : 1 resonance mentioned in Weinberg 1998). Since
tides depend strongly on distance, this more distant wake results in
insufficient amplification of the tidal effect on the disc.

3.3 High-resolution halo simulation and massive satellites

We tried to detect the wake in the halo by comparing simulations 2
and 3 but particle noise is too high to detect the small wake in our
halo. We address this problem of resolution using two approaches.
First, we performed a higher-resolution simulation with 5 × 106 par-
ticles in the halo (an order of magnitude higher than our standard
simulations) of a satellite orbiting a halo (simulation no 4) using
a parallel tree code (Dubinski 1996). We do not include a disc in
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this simulation, which otherwise had the same initial conditions as
simulation no 3.

We have also run simulations with the same initial conditions
as in simulations 2 and 3 but with a satellite that is an order of
magnitude more massive (1.5 × 1011 M�). We again performed a
simulation including only the direct tidal forcing of the satellite on
the disc (simulation no 5) and another one including the influence
of the satellite on the halo (simulation no 6).

We keep the satellite in the same orbit as in simulations 2 and 3
but allow the halo to respond to the more massive satellite to induce
a stronger wake in the halo. We do not let the satellite orbit evolve
self-consistently since otherwise the satellite would spiral into the
galaxy in a time-scale shorter than the Hubble time.

If the wake in the halo is still in the linear perturbation regime,
we would expect the wake (and therefore the torque on the disc) of
the high-resolution simulation to be an order of magnitude smaller
than that of simulation no 6 (because the wake scales linearly with
the mass of the satellite).

We compared simulations 4 and 6 by computing the torque that
the halo (with the wake created by the satellite) would create on
a flat disc. We then compared it with the direct torque that the
disc feels from the satellite. Fig. 3 shows these torques for both
simulations. The first conclusion we derive from this figure is that
both simulations agree at an excellent level in the contribution of
the wake to the total torque, which is not larger than 25 per cent.
The fact that the wakes in the 5 × 106 particle halo are producing
the same amount of torque on a disc suggests that we are converging
to the correct dynamical behaviour.

Thus, even if the halo does contribute to the torque that a disc
experiences from a satellite, this extra contribution is quite modest.
Note as well that the torque generated by the wake on the halo is not
exactly in phase with the torque arising directly from the satellite.

Figure 3. Torques on a flat disc caused by the satellite (dashed line), the halo
(dotted line) and the total torque (solid line). The upper plot shows torques
calculated from the high-resolution simulation (simulation no 4), while the
plot at the bottom shows the SCF simulation results (simulation no 6, with a
satellite 10 times more massive and a factor of 10 fewer halo particles than
simulation no 4).

The wake is slightly behind the satellite, which causes the torque
from the wake to peak some time after the torque from the satellite.
This will make the combined torque from both wake and satellite
smaller than the sum of both, so we expect the warp amplitudes not
to be increased by more than 25 per cent when the wake is taken
into account.

The comparison between the high-resolution simulation and sim-
ulation no 6 also indicates that the SCF simulations accurately rep-
resent the satellite–halo interaction, and that we can use them to
explore the properties of warps in halo–satellite–disc systems.

3.4 The wake and the satellite

We have compared simulations 5 (no wake) and 6 (wake) to estimate
the contribution of the wake to the warping of the disc.

The difference in the warping of the disc between simulations
nos 5 and 6 is the warping induced by the wake in the halo on
the disc. If this effect is very important we would expect larger
warps in simulation no 6. In agreement with the lower-mass satellite
simulations (nos 2 and 3) and torque calculations in Fig. 3, the disc
warp obtained is less than 20 per cent larger in simulation no 6
than in no 5, indicating that the wake in the halo contributes only a
fraction of the torque exerted by the satellite itself.

We then attempted to image the wake in the halo by subtracting
the estimated halo density from the particle distribution simulation
no 5 (no wake) from that of simulation no 6 (wake included). Con-
tour plots of the halo density in the orbital plane are shown in Fig. 4.
We have also calculated the wake in density comparing the SCF ex-
pansions for both simulations (Fig. 5). The wake follows the satellite
from behind clearly along the simulation, having its maxima at a
smaller radius than where the satellite is. Even if we lack resolution
to tell exactly where the maxima of the wake are (these maps are
smoothed), it is further out than half the orbital radius of the satel-
lite. This smoothing has to be taken into account when comparing
Figs 4 and 5. If we smoothed the density plots of Fig. 5, the peak of
the wake would shift outwards in radius.

3.5 Halo particle noise

As a check on the influence of particle noise on our results, we
performed another simulation (simulations no 7) with the same pa-
rameters as no 6 but with the orbit of the satellites having opposite
angular momentum (zsim6 = − zsim7). In the absence of halo particle
noise, we would obtain the same warp amplitude in both simula-
tions, with a difference in the position angle of the line of nodes of
180◦. On the other hand, if we see that the line of nodes of simula-
tion no 7 is close to that of no 6, this means that the noise from halo
discreteness is dominating the warp.

The warps of both simulations are shown in Figs 6 and 7, where
we have plotted tip-LON diagrams (Briggs 1990) at different time-
steps for these two simulations. We have computed the line of nodes
averaging the disc every 50 rings (0.5 scalelengths). In these plots we
can see that up to t = 160 the effect from the wake and the satellite
is dominant, but after this the halo particle noise grows, dominating
the shape (and orientation) of the warp.

At the end of the simulation (t = 320), the maximum amplitude
of the warp at 6 scalelengths is smaller than 6◦. This poses an upper
limit to the warp generated by the satellite and the halo wake, since
the noise-excited warp is the main driver of the warp we see. If the
warp excited by the satellite–halo system were as important as the
noise-excited one we would detect differences in the final warp of
simulations nos 5 and 6, which we do not. If we find a maximum warp
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The warp of the Galaxy and the LMC 463

Figure 4. Wake in the halo, calculated directly from the particle density in the halo at different time-steps. For this plot only the particles in a slice of 1 disc
scalelength centred on the satellite plane were considered. The contours are overdensities and underdensities with respect to the unperturbed halo model. To
suppress particle noise, we smoothed these maps to a resolution of 6 scalelengths. The positions of the satellites are given by the crosses. See Section 3.4 for
details on the imaging of the wake.

of 6◦ with a satellite of 1.5 × 1011 M�, the amplitude of the warp
that a LMC-like satellite (1.5 × 1011 M�) is going to generate on the
Galaxy is not going to be greater than 0.6◦. This is a conservative
upper limit, taken into account that we know that the halo noise
generates a considerable percentage of this quantity.

3.6 Full simulation

In this section we take into account the effect that the gravity of the
disc has on the halo, and the backreaction of the halo on the disc.
We also consider the effect of the halo on the satellite, causing its
orbit to spiral inwards by dynamical friction. The satellite we use
in this simulation is as massive as that in simulation no 5, but its
decaying orbit has been calculated with a satellite with the mass of
the LMC, to avoid rapid decay of the orbit in an unrealistically short
period of time. For the halo, we have used the relaxed King model
halo described in Section 2.2.

We have carried out two simulations with these settings. The first
of them (simulation no 8) is a control simulation with no satellite to
determine the effect of halo particle noise in our disc. The disc in
this simulation does not develop a more or less coherent warp as in
simulation 1 (control simulation without backreaction). Instead, the
inclination of the rings fluctuates fast and the line of nodes changes
drastically with radius. At the end of the simulation (t = 320) the
outer rings are inclined by 2.◦5 (but showing no coherent warp).

Now we introduce the satellites (simulation no 9) to see how
the influence of the disc on the halo will influence the warp. The
first difference we observe in the evolution of the disc is that in
this simulation the inclination of the inner parts is smaller than in
previous simulations. This is caused by the fact that the halo is
now flattened in the vicinity of the disc owing to the potential of
the disc, and this creates a preferred plane (Dubinski & Kuijken
1995). In previous simulations a slight asymmetry in the initial halo
can cause the inner disc to tilt with respect to the z = 0 plane. The
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Figure 5. Wake in the halo, as calculated from the SCF code with terms up to n = 6, l = 4. The contours are overdensities and underdensities with respect to
the unperturbed halo model, and have been calculated in the orbital plane of the satellite. See Section 3.4 for details on the imaging of the wake.

flattening of the halo now exerts a torque on the disc in the direction
of the line of nodes of the warp, besides the torque caused by the
wake created by the satellite. A flattened halo would have the same
consequences in the previous simulations.

We also note that the warp has lost most of its coherence. The line
of nodes is tightly wound up, smearing out the growing warp pattern,
consistent with the simulations in Binney et al. (1998). A warp like
this would be much more difficult to detect observationally than the
warps we were getting without considering the backreaction of the
halo on the disc. The amplitude of the warp is somewhat higher than
in simulations nos 6 and 7, owing to the fact that the satellites are
now affected by dynamical friction and this carries them closer to
the disc, increasing their tidal force on it.

3.7 Summary of results

We have simulated the effect that a satellite has on a halo (wake),
and the torque that this wake exerts on a disc. The wake amplifies

the direct tidal field arising from the satellite, making larger warps
than when this contribution is ignored. Our simulations show that
this amplification is not larger than 25 per cent. Weinberg (1998)
used the matrix method to follow the evolution of the satellite and
the halo and obtained amplifications up to 500 per cent depending
on the halo density profile. We have made extensive tests to check
that our code can describe the wake in the halo accurately and we
are unable to obtain such high amplifications. When we follow the
evolution of a disc under the influence of the satellite and the halo
we obtain warps that are not larger than 0.6◦ for the Galaxy–LMC
system (using the maximum mass estimate for the LMC), while the
observed Galactic warp is of the order of 4◦.

4 O R I E N TAT I O N O F T H E L I N E O F N O D E S
O F T H E WA R P

In addition to the simulations, it is possible to describe by means of
a simple analytical model the global response of a disc–halo system
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The warp of the Galaxy and the LMC 465

Figure 6. tip-LON diagrams at different time-steps for the simulation no 6. We have binned the disc every 0.5 scalelengths in radius. There is a dotted circle
every degree.

Figure 7. tip-LON diagrams at different time-steps for the simulation that has the same parameters as that in Fig. 6 except that the satellite is orbiting in the
opposite sense (simulation no 7). We have binned the disc every 0.5 scalelengths in radius. There is a dotted circle every degree.

to a satellite. Though very simplified, such models can provide a
useful indication of the amplitude and orientation of the warps that
may be expected. As we show below, the orientation of the line of
nodes can, in particular, already place useful constraints on the orbit
a satellite would need to have to cause the warp.

In this section we consider such a simple analytic model, and
use it to determine the orientation of the line of nodes of a warp
generated by an orbiting satellite in a nearly polar orbit. We then
use our code to test those predictions. In this whole section the effect
that the bending of the disc on the halo, and its feedback on to the
disc, are neglected. Later we will discuss the implications of this
important assumption.

4.1 Analytic results with a simplified model

Consider a rigid disc, embedded in a rigid halo potential, and sub-
jected to the potential of an orbiting satellite. The evolution of the
disc is governed by the combined torque from the halo and the satel-
lite. A stellar or gaseous disc is floppy, and so will warp when tilted,
since it is not able to generate the stresses that would be required
to keep it flat; however, the overall re-alignment of the disc angu-
lar momentum should be comparable between the rigid and floppy
cases.

Fig. 8 illustrates the angles related to the satellite, and the defini-
tion of our coordinate system. The tilting of the disc (θ ) is measured

by the angle between the z-axis and the angular momentum of the
disc.

The Lagrangian for a rigidly spinning, axisymmetric object is

L= 1

2
I1(θ̇2 + φ̇2 sin2 θ ) + 1

2
I3(φ̇ cos θ + ψ̇)2 − V (θ, φ), (1)

where (θ, φ, ψ) are the Euler angles, and I3 and I1 are the moments
of inertia of the object about its axis of symmetry and about orthog-
onal directions. V is the potential energy of the body in the halo plus
satellite potential. The ψ-equation of motion leads to the conserved
quantity S = I3(φ̇ cos θ + ψ̇), the spin. And for small deviations
from the equator (θ = 0), we can expand the other two equations in
terms of ξ = sin θ cos φ � θ cos φ, η = sin θ sin φ � θ sin φ (see
Appendix A). The variables ξ and η are the x and y components of
the normal vector of the disc.

If we consider a satellite in a polar circular orbit in the x = 0
plane, θS = St, φS = 90◦, the solution to the equations of motion
is (see Appendix A)

ξ = 2S S

�
VS cos 2St ; η = 4I1

2
S − VH

�
VS sin 2St (2)

plus free precession and nutation terms, where � = (VH−4I1
2
S)2−

42
S S2. (A more general quasiperiodic satellite orbit yields a solu-

tion that can be written as a sum of such terms.) Note that the

C© 2002 RAS, MNRAS 337, 459–469

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/337/2/459/1024017 by U
niversity G

roningen user on 17 D
ecem

ber 2018



466 I. Garcı́a-Ruiz, K. Kuijken and J. Dubinski

y

l=180

z

l=270

l=90

x

l=0

NGP

SGP

LMC

sθ

φs

Figure 8. Definition of the coordinate system, satellite angles and orientation
of the disc of the Galaxy. The disc lies on the z = 0 plane. The Sun is on
the left, and the galactic plane is viewed from the South Galactic Pole so
that the disc rotates counterclockwise (indicated by an arrow). The angular
momentum of the satellite points in the opposite direction to the x-axis.

satellite provokes an elliptical precession about the halo axis of
symmetry, with axis ratio dependent on the halo flattening and on
the satellite orbit frequency. For example, for an exponential disc
of mass M, scalelength h and with a flat rotation curve of amplitude
v, I3 = 2I1 = 6Mh2 and S = 2hvM . For such a disc in a spherical
(or absent) halo (VH = 0), a satellite orbiting at radius rS has fre-
quency S = v/rS, and hence the axis ratio of the forced precession
is (ξ : η) = rS/3h. Hence the response of the disc to a distant satellite
is mainly to nod perpendicular to the satellite orbit plane. This result
can be understood as the classic orthogonal response of a gyroscope
to an external torque: a distant satellite has a sufficiently low orbital
frequency that the disc responds as if the torque were static.

For a slightly flattened potential of the form 1
2 v2 ln{R2 + [z/(1 −

ε)]2}, VH = Mv2ε (see Appendix C). With non-zero ε, the axis ratio
of the precession cone becomes [(4h/rS)/(ε − 12h2/r 2

S)]: again the
oscillation in ξ is larger than that in η except for very flattened
haloes.

The amplitudes generated by tidal perturbation from a satellite
such as the LMC are small (less than a degree). The largest amplitude
of oscillation is in the ξ -direction. The potential energy of the disc
caused by the tidal field of the satellite can be shown to be (see
Appendix B)

VS = 3G MS I1

2r 3
S

. (3)

Hence equation (2) yields, to leading order in h/rS, an ξ -amplitude
of
9

8

G MS

v2rS

h

rS
� 0.15◦ (4)

for the LMC (orbital radius of about 50 kpc and rS/h � 11). This
number increases only slightly (a factor of 2) for halo flattenings up
to 0.2 (see Fig. 9).

It is clear from this calculation that simple tidal tilting of a disc
by an LMC-like satellite does not provide a good model for the

Figure 9. The oscillation of the axis of a rigid exponential disc subjected to
the tidal field of an orbiting satellite. The amplitude is calculated assuming
a satellite of mass 1.5 × 1010 M�, orbiting at radius 50 kpc in the z = 0
plane. The direction of the tilt of the Galactic disc with respect to the orbital
plane of the Magellanic Clouds is indicated by the arrow. The dots mark the
expected position of the disc axis given the current phase of the LMC orbit
for (bottom to top) halo potential ellipticities ε = 0 (solid symbol), 0.05, 0.1,
0.15 and 0.2 (open circles).

warping in the Galaxy, because the orientation of the warp is not
perpendicular to the orbital plane of the LMC. This constraint is
independent of the strength of the perturbation VS.

The amplitudes are also much too small, but we have only con-
sidered the tilting of a rigid disc, and the situation can change when
the floppiness of the disc is considered.

4.2 Simulation details

To test this scenario, and in particular to get beyond the rigid tilting
considered above, we have performed some N-body simulations.
We take the halo to be a background potential that does not respond
to the disc or the satellite. It has been extensively shown (Nelson
& Tremaine 1995; Dubinski & Kuijken 1995; Binney et al. 1998;
Weinberg 1998) that the halo responds to changes in the potential
caused by a warping disc or an orbiting satellite. In the case of the
wake created by the warping disc the main effect is to damp the warp.
This damping, though fast, happens on a time-scale that is slower
than the precession frequency S/I3, and so does not generate a phase
shift in the disc tilt. In the case of the satellite, the wake created on
the halo is roughly in phase with the satellite, so here too, we expect
the orientation of the total tidal field felt by the disc to remain very
similar.

We have performed simulations with two types of discs: a rigid
disc and an exponential disc. The rigid disc run tells us how good
the analytic predictions are, and the exponential disc is used later
for a more realistic approach. The halo, disc and satellite models
used are described in Section 2.2, and the code in Section 2.1. The
mass of the satellite is Msat/MLMC = 1

The first run was made with a satellite in a circular orbit, to try
to reproduce the predictions in Section 4.1. Later the non-circular
orbit described in Section 2.2 is used for the satellite, to analyse the
consequences of the non-circularity of the orbit of a satellite.
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Figure 10. Precession path followed by the rigid disc: ξ = θ cos φ,

η = θ sin φ (in degrees). The dots indicate the state of the disc when the
satellite has the same orbital phase as the LMC.

4.3 Rigid disc

As a first approach, we have evolved a rigid disc and analysed its
evolution under the influence of an orbiting satellite. The result of
our simulation is in good agreement with the analytic predictions.
The disc wobbles under the influence of the satellite, describing an
ellipse elongated in the direction perpendicular to the orbital plane
of the satellite. The path followed by the disc is plotted in Fig. 10,
where it can be seen that most of the time the maximum of the warp
is located in the direction perpendicular to the orbital plane of the
satellite. The ellipse is not as regular as in Fig. 9 for two reasons: the
assumption that the disc is much smaller than the orbital radius of
the satellite is not completely fulfilled; and there are some transient
terms present because of the initial conditions of the simulation.
This is also the cause for the precession ellipse of the disc not being
centred on the origin.

The position of the warp when the satellite is at the location of the
LMC is indicated by the dots in Fig. 10, and their location resembles
the predicted one in Fig. 9 (for εhalo = 0) remarkably well.

4.4 Exponential self-gravitating disc

We now consider a more realistic disc: an exponential disc model,
in which we have also considered the self-gravity of the disc. The
first thing that draws our attention in this simulation is a peak we see
in the inclination at around 6.5 scalelengths. Simulations performed
with a different rotation curve showed that this peak occurs at the
locations on the disc that satisfys/wz = 2, 3, . . . ,which are caused
by resonances with the orbital frequency of the satellite.

This is not the kind of warp we are looking for, owing to the fact
that it is the result of a satellite with a single frequency, and in the
real case the eccentric orbit of the satellite will wash out this peak.
Looking at the evolution of the disc it is clear that the warp loses
its coherence at a radius of about 4.5 scalelengths (at a larger radius
the line of nodes winds up), so we will measure the warp properties
considering that the disc finishes there.

In the case of a floppy disc it is not straightforward to define
a single inclination and position angle. We have separated the disc
into two components: the inner disc and the outer (warped) disc. The
inner disc consists on the first 2 scalelengths, and remains practically
flat during the simulation. The warping angle is then calculated as
the angle between the inner and outer disc vectors. We have chosen
to use the disc vectors and not the angular momentum, for example,
not to penalize the outer less massive rings. The results presented
here do not change significantly when the definition of the inner
disc is altered.

Figure 11. Warp orientation followed by the exponential disc: ξ = θ cos φ,

η = θ sin φ (in degrees). The dots indicate the state of the disc when the
satellite has the same orbital phase as the LMC.

It has to be borne in mind that the warping angles quoted here are
different from the maximum amplitude of the warp, which is larger
by a factor never greater than 5.

Using this method we obtain a plot similar to Fig. 10 for the
exponential disc, which is shown in Fig. 11. Only the path after
t = 160 is shown, which is the moment when the disc behaviour
reaches an equilibrium.

Note that the predictions for the Galactic warp orientation do not
change much when the floppiness of the disc is taken into account:
it is clearly close to the direction perpendicular to the orbit of the
satellite, as Section 4.1 predicted, and not aligned with it, as we
observe in the Galaxy.

4.5 Non-circular orbit and flattened haloes

We also considered non-circular orbits, to allow for the fact that
the orbit derived for the Clouds has a pericentre of 50 kpc and an
apocentre of 100 kpc (Lin et al. 1995). The changing radius of the
satellite causes a fluctuating tidal field amplitude, which could be
important for the dynamics of the disc. Here we show that, in fact,
the effect does not change our conclusions materially.

First, to gain an idea of what to expect, we integrated the analytic
equations of Section 4.1 with a satellite in this kind of orbit. The
result was, as before, that the precession path of the disc was con-
tained within an ellipse, elongated along the direction perpendicular
to the plane of the satellite. This causes the warp maxima to be close
to the direction perpendicular to the orbit of the satellite most of the
time.

We then performed simulations with this type of orbit. The first
thing we observe in these simulations is that the resonance peak
we found in the circular orbit simulation has disappeared. Now
the satellite does not have a single frequency, so the result is not
surprising. The energy of the resonance now gets distributed along
different parts of the disc, and no coherent pattern can be maintained
across the disc, winding up the outer parts of the disc. When we
look at the inner 4.5 scalelengths as before, the precession pattern
remains similar to the simulation with the circular orbit, so does the
prediction of the longitude of the warp at the actual orbital phase of
the LMC. So our conclusions are not modified by the non-circularity
of the orbit.

The haloes considered in all of these simulations are spherical,
which means that they do not contribute to the generation of torques
on the disc. Galactic haloes are not spherical, which creates a pre-
ferred plane in which the disc settles. Ellipticities of the order of
0.05 in the potential make the precession paths described before yet
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more elongated, which would make the chances of finding the warp
maxima in the direction of the satellites even more unlikely.

4.6 Backreaction from the halo

The strongest assumption in this work is the assumption that the
halo does not react to the warping of the disc, which will have a
further influence on the warping disc. However, there are scenarios
where this effect is not very important: in the case of galaxies with
a minimal halo. In these systems, the line of nodes of the warp
generated by a satellite in a polar orbit would be aligned with the
orbit, and not at 90◦ to it. In the case of the Milky Way–LMC system
this would mean that the line of nodes of the warp would be along
l � 0◦–180◦. The observed line of nodes for the galactic warp is
approximately perpendicular to this direction. A similar prediction
holds for MOND (Milgrom 1983).

5 C O N C L U S I O N S

We have been unable to reproduce Weinberg’s prediction Weinberg
(1998) of strong tidal amplification of a disc warp by the gravita-
tional wake of a satellite. In the case of the Milky Way–LMC system
this factor has to be at least a factor of 5, and we find amplifications
no higher than 25 per cent in the total torques and smaller than 20 per
cent in warp amplitude. This amplification is achieved for the halo
profile and satellite parameters that had a maximum amplification
in the calculations by Weinberg (1998). It is possible that some halo
profiles, together with specific satellite orbits may increase this am-
plification somewhat, but we have found no evidence that the tidal
field from a satellite can be amplified as much as 500 per cent by
means of the halo. We have tried several different simulation tech-
niques, with large and varying number of particles, and consistently
find evidence for only weak tidal field amplifications.

The reason for the difference with Weinberg (1998) is not clear
to us. There are detailed differences between the models we used
(in the exact bulge–halo mass profile, and in the shape of the disc
mass distribution). Perhaps these differences are sufficient to affect
the degree of warping by a factor of 5, but in any event our results
indicate that this mechanism for warping relies on a rather delicate
resonance, rather than being the result of a generic large amplifica-
tion of satellite-induced halo wakes. As an explanation for warps as
a universal phenomenon, therefore, this scenario still has problems.

We conclude from our simulations that the amplitude of the warps
generated with LMC-like satellites is likely to be much lower than
what is observed in the Galaxy. Assuming a high mass for the LMC,
the typical inclination angles from the plane defined by the inner part
of the disc are of the order of 0.6◦ (or less), which is a factor of 5 less
then in the Galaxy. Furthermore, the line of nodes of the resulting
warp is tightly wound. If smaller mass estimates for the Clouds are
used (Meatheringham, Dopita & Ford Webster 1988), the results are
even more discouraging. So, although periodic forcing of disc warps
by tidal fields of orbiting satellites would appear to circumvent many
of the persistence problems of other tidal field models for warps, we
conclude that in the case of the Galaxy this does not appear to be
a feasible model. Calculations using MOND would predict a larger
warp amplitude for the Galaxy, but the predicted orientation of the
warp (perpendicular to the observed one) would still hold.

Even if a halo is able to amplify the satellite tidal field (though
the extent to which this happens may depend quite subtly on the
halo structure), it will also strongly perturb the disc precession that
accompanies the warping. Dubinski & Kuijken (1995) and Nelson &
Tremaine (1995) showed that most realistic halo mass distributions

damp the precession strongly, while Binney et al. (1998) showed
that in the process the line of nodes of the warp winds up very fast,
effectively destroying the forming integral-sign warp. Obtaining the
amplification of the tidal field without the accompanying damping
of the disc precession would seem to require haloes that are present
at large radii, but not near the gyration radius of the disc, otherwise
the disc would be too tightly coupled to the inner halo.

Our results thus suggest that the explanation for warps should be
sought elsewhere. Either there is a frequently occurring, and pre-
sumably quite gentle, dynamical instability of disc–halo systems
that has been overlooked so far, or an entirely different mecha-
nism needs to be considered. Possibilities include late cosmic infall
that continuously realigns the angular momentum vector of galaxies
(Ostriker & Binney 1989), or a generic misalignment between
disc and halo angular momentum vectors that may excite warps
(Debattista & Sellwood 1999).
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A P P E N D I X A : M OT I O N O F A R I G I D D I S C
E M B E D D E D I N A H A L O U N D E R T H E
I N F L U E N C E O F A S AT E L L I T E

The Lagrangian for a rigidly spinning, axisymmetric object is

L= 1

2
I1(θ̇ 2 + φ̇2 sin2 θ ) + 1

2
I3(φ̇ cos θ + ψ̇)2 − V (θ, φ), (A1)

where (θ, φ, ψ) are the Euler angles, and I3 and I1 are the mo-
ments of inertia of the object about its axis of symmetry and about

C© 2002 RAS, MNRAS 337, 459–469

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/337/2/459/1024017 by U
niversity G

roningen user on 17 D
ecem

ber 2018



The warp of the Galaxy and the LMC 469

orthogonal directions. V is the potential energy of the body in the
halo plus satellite potential. The ψ-equation of motion leads to the
conserved quantity S = I3(φ̇ cos θ + ψ̇), the spin, and the other two
equations of motion then become

I1θ̈ − I1φ̇
2 sin θ cos θ + Sφ̇ sin θ + ∂V

∂θ
= 0 (A2)

and

I1
d

dt
(φ̇ sin2 θ ) + ∂V

∂φ
= 0. (A3)

For small deviations from the equator (θ = 0), we can expand these
equations in terms of ξ = sin θ cos φ � θ cos φ, η = sin θ sin φ �
θ sin φ. In these terms the equations of motion become

I1ξ̈ + Sη̇ + ∂V

∂ξ
= 0, (A4)

I1η̈ − Sξ̇ + ∂V

∂η
= 0. (A5)

For small ξ, η, the potential energy of the disc owing to the
flattened halo will have the form 1

2 VH(ξ 2 + η2), and that ow-
ing to the satellite at position θS, φS will be −VS(sin2 θS − ξ

sin 2θS cos φS − η sin 2θS sin φS), where VH and VS are constants rep-
resenting the strengths of the halo torque and of the quadrupole of
the tidal field from the satellite, respectively (see Appendices B and
C). Hence we find

I1ξ̈ + Sη̇ + VHξ + VS sin 2θS cos φS = 0, (A6)

I1η̈ − Sξ̇ + VHη + VS sin 2θS sin φS = 0. (A7)

If furthermore the satellite orbit is circular and polar in the x = 0
plane, θS = St, φS = 90◦, and the solution to the equations of mo-
tion is

ξ = 2S S

�
VS cos 2St ; η = 4I1

2
S − VH

�
VS sin 2St (A8)

plus free precession and nutation terms, where � = (VH−4I1
2
S)2−

42
S S2.

A P P E N D I X B : P OT E N T I A L O F
A X I S Y M M E T R I C D I S C OW I N G
TO A S AT E L L I T E

The potential energy of a disc of surface density �(r ) and in the
gravitational field owing to a satellite at position rS is given by

V = −
∫

d2rG�(r )
MS

|r − rS| . (B1)

Choosing spherical coordinates for the position of the satellite (see
Fig. 8), and Cartesian coordinates in the disc plane so that the satellite
has x = 0, we have

V = − G MS

∫
� dx dy

(
r 2

S − 2yrS sin θS + x2 + y2
)−1/2

. (B2)

Assuming that the disc is small compared with rS, we can expand
the integrand in x and y. For an axisymmetric disc the second-order
terms are the first ones that generate a potential gradient: they are

V = − G MS

r 3
S

∫
� dx dy

[
−1

2

(
1 − 3 sin2 θS

)
y2 − 1

2
x2

]
(B3)

which results in

V = − 3G MS I1

2r 3
S

sin2 θS + constant. (B4)

Now, the angle θS is defined as the scalar product of the po-
sition vector of the satellite with the vector normal to the disc
(cos θS = rSnd). If we express the normal vector of the disc as
nd = (ξ, η, 1 −

√
ξ 2 + η2), then we obtain that for small inclina-

tions the potential of a tilted disc owing to an orbiting satellite is

V = −3G MS I1
2r3

S

(
sin2 θS − ξ sin 2θS cos φS − η sin 2θS sin φS

)
+ constant. (B5)

A P P E N D I X C : P OT E N T I A L O F A N
A X I S Y M M E T R I C D I S C OW I N G TO A H A L O

The potential energy V of a disc with surface density �(r ) and total
mass M, inclined at an angle θ with respect to the equatorial plane
z = 0 of an axisymmetric halo with potential Vhalo(R, z) is

V =
∫ ∞

r = 0

r�(r ) dr

∫ 2π

φ = 0

Vhalo

[
(r 2 − r 2 sin2 θ sin2 φ)1/2,

× r sin θ sin φ
]

dφ. (C1)

For a flattened logarithmic potential of the form Vhalo =
− 1

2 v2 ln{R2 + [z/(1 − ε)]2}, and assuming that the flattening of
the halo and the departure of the disc from the z = 0 plane are small
(ε, θ � 1) we obtain that

V = 1

2
Mv2ε sin2 θ. (C2)

In terms of ξ = sin θ cos φ, η = sin θ sin φ this becomes

V = 1

2
VH(ξ 2 + η2), (C3)

where VH = Mv2ε.
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