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 The A7nnals of Applied Probability
 2000, Vol. 10, No. 3, 1025-1064

 THE SUPREMUM OF A NEGATIVE DRIFT RANDOM

 WALK WITH DEPENDENT HEAVY-TAILED STEPS

 BY THOMAS MIKOSCH1 AND GENNADY SAMORODNITSKY1' 2

 University of Groningen and Cornell University

 Many important probabilistic models in queuing theory, insurance

 and finance deal with partial sums of a negative mean stationary process

 (a negative drift random walk), and the law of the supremum of such a

 process is used to calculate, depending on the context, the ruin probability,

 the steady state distribution of the number of customers in the system or

 the value at risk. When the stationary process is heavy-tailed, the corre-

 sponding ruin probabilities are high and the stationary distributions are

 heavy-tailed as well. If the steps of the random walk are independent,

 then the exact asymptotic behavior of such probability tails was described

 by Embrechts and Veraverbeke. We show that this asymptotic behavior

 may be different if the steps of the random walk are not independent, and

 the dependence affects the joint probability tails of the stationary process.

 Such type of dependence can be modeled, for example, by a linear process.

 1. Introduction. In various applied fields, such as insurance mathemat-

 ics, queuing theory, finance and time series analysis among others, the model
 of a random walk with negative drift occurs in a natural way. For example,

 the probability of ruin in a homogeneous insurance portfolio can be written
 in terms of the distribution of the supremum of such a random walk; see

 Embrechts, Kliippelberg and Mikosch (1997) (Hereafter EKM), Chapter 1. The

 tail probability of solutions to stochastic recurrence equations, including the
 tails of ARCH and GARCH processes, can be obtained in a similar way; see
 EKM (1997), Section 8.4, and the references therein. The solution to the most

 important random recursion in queuing theory, the Lindley equation, is of the

 same form; see for instance Baccelli and Bremaud (1994). In the latter case
 the tail distribution of the stationary solution is often viewed as an overflow
 probability.

 There exists extensive literature on the asymptotic behavior of the ruin
 probability and the tails of the stationary solutions to random recursions.
 Both the cases of light-tailed step distributions and heavy-tailed step distri-
 butions have been considered. Most of this literature deals with the "usual"
 random walk, which means iid steps. We refer the reader to EKM [(1997),

 Chapter 1] for the most important results and additional references. The basic
 result for heavy-tailed random walks with iid steps is due to Embrechts and

 Received July 1998; revised August 1999.

 1Research supported by NATO Collaborative Research Grant CRG 971579.

 2Supported in part by NSF Grant DMS-97-04982 and NSA Grant MDA904-98-1-0041 at

 Cornell University.
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 FIG. 1. The dependent step random walk generated by teletraffic data; see Section 3 for a precise
 description of this set. These data are extremely heavy-tailed and dependent. The above computer

 graph shows the random walk (S7,) with mean -(1 + 0.05),un, where p. is the estimated value of
 the expectation of the (positive) teletraffic data. The unit on the y-axis is 10 millionts.

 Veraverbeke (1982); compare Theorem 1.3.6 in EKM. Let X,,, n C Z, be iid
 subexponential random variables [that is, P(X1 + X2 > A) - 2P(X1 > A) as
 A > oc; see Chistyakov (1964)]. They generate the random walk

 (I.1 So = 0, Sil = Xi + + xi,, n > 1.

 Let F denote the common law of the X11's, and -[ < 0 be the common negative
 mean. Then

 (1.2) P(supS,,> A) f(I - F(x)) dx as A -> oc.

 In most applications (except, perhaps, insurance) the assumption of inde-
 pendent step sizes is, clearly, unrealistic. For example, in the queuing context
 a typical model has steps distributed as the difference between service times

 and interarrival times of successive customers, and the independence assump-
 tion is universally believed not to hold. Rather, one hopes that the dependence
 existing in the data does not matter as far as quantities of interest, such as
 the ruin probability or the overflow probability, are concerned. Certain results
 available to date confirm this hope. For example, Asmussen, Schmidli and
 Schmidt (1999) show that the Embrechts and Veraverbeke result (1.2) remains
 valid (in the queuing context) under fairly general dependence structure of the
 interarrival times if the service times are still independent.

 An important type of dependence is that of clustering of exceedances of
 high thresholds. This is a well-known phenomenon in econometric modeling
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 THE SUPREMUM OF A RANDOM WALK 1027

 where ARCH and GARCH types of models are commonly used for precisely

 that feature: data exhibit periods of high activity and low activity. We will show

 in this paper that this kind of dependence can result in a situation where the

 tail equivalence (1.2) is no longer valid; see the statement of Theorem 2.1

 below and see relation (1.12).

 In this paper we choose to model the steps X, n E /, of the random walk
 as a two-sided linear process,

 00

 (1.3) x = -Pu + E Pn-_j ?j, fl E 7
 j=-00

 where ( is a sequence of zero mean iid random variables and y > 0 is

 a constant. Note that it is, actually, abuse of terminology to call the process

 (S,,),,>o in (1.1) a random walk if the step sizes are not iid. We choose, however,
 to use this name because of its clear intuitive meaning, and we believe that

 no confusion will result. Notice that ARMA and fractional ARIMA processes

 have representation as one-sided, that is, causal, linear processes (i.e., cpn = 0
 for n < 0); see for example Brockwell and Davis (1991).

 In this paper we assume that 8 = ?o satifies the following regular variation

 and tail balance conditions:

 P(81 > A) = L(A)A-,

 (1.4) P>lim ( > A) A) lim P(8 < -A) = q,

 as A -> oc, for some a > 1 and 0 < p < 1. Here L is a slowly varying (at

 infinity) function. The coefficients cpj, not all of which are equal to zero, are
 assumed to satisfy the following condition:

 00

 (1.5) E <pjl<oc.
 j=-00

 A few remarks are, obviously, in order.

 REMARK 1.1. Condition (1.5) excludes linear processes with long-range

 dependence which condition can be defined via ,j I(Pjl = oc. Such a condi-
 tion is fulfilled, for example for finite variance FARIMA(p, d, q) processes
 with d E (0, 0.5); see Brockwell and Davis [(1991), Section 13.2]. However,
 the weak dependence condition (1.5) is not uncommon in many results of

 time series analysis and trivially satisfied for causal invertible ARMA(p, q)

 processes [Brockwell and Davis (1991), Chapter 3]. If one departs from (1.5),

 proofs might become even more technical because (cpj) can be close to being not
 absolutely summable. See for example Kokoszka and Taqqu (1996) in order

 to get some flavor of the difficulties one has to face. Moreover, a condition
 of type (1.5) is needed for our main result. To be more specific, the formula-

 tion of our main result [see (1.12)] involves the infinite series Ej (pt which
 have to be finite. Thus Theorem 2.1 is not applicable to FARIMA(p, d, q) pro-

 cesses of order d E (0, 0.5). Whether the additional jl in (1.5) can be avoided,
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 1028 T. MIKOSCH AND G. SAMORODNITSKY

 and Theorem 2.1 be applied to, for example, FARIMA(p, d, q) processes with

 d E (-0.5, 0), is an open question. Finally, the reader will observe that, to
 the best of our knowledge, even results on the tail of a series with indepen-

 dent terms of the type presented in Lemma A.3 require, in general, conditions

 stronger than those needed for convergence of the series. By not striving to

 achieve the weakest possible conditions, one gains somewhat in the trans-

 parency of the results.

 REMARK 1.2. There is well-founded skepticism about using heavy-tailed
 linear processes for probabilistic modeling. Indeed, in classical time series

 analysis the main attraction of using linear processes is the fact that their

 correlations (or spectra) are flexible enough to approximate the correlations
 (or spectrum) of an arbitrary second-order stationary process. However, corre-

 lations and spectra, even when defined, are not natural to concentrate on in
 the heavy-tailed case. In fact, sample autocorrelations of heavy-tailed linear
 processes can behave very differently from those of other important classes of

 heavy-tailed processes, and the autocorrelations in available data often do not

 support the assumption of a linear model. See, for example, Resnick (1997)
 and Resnick, Samorodnitsky and Xue (1999). However, we are NOT inter-
 ested in correlations. Rather, we are interested in the tails, which is exactly

 the reason why heavy-tailed processes are important in the first place. Lin-
 ear processes are well suited to model a great variety of dependence in the
 tails of stationary heavy-tailed processes. This means that heavy-tailed linear
 processes can be used to model the clusters of high-threshold exceedances by

 a dependent stationary sequence in terms of limiting compound Poisson pro-
 cesses. The description of the clustering behavior of dependent sequences is
 one of the keys to the understanding of their extremal behavior and related
 topics. See the discussion and references in EKM (1997), Sections 5.5 and 8.1.

 REMARK 1.3. Random variables with regularly varying tails are also sub-
 exponential. We do not know if an appropriate analogue of our results holds

 when the 8 J'S have a subexponential distribution. The argument of Embrechts
 and Veraverbeke (1982) for the supremum tail (1.2) in the case of iid steps
 requires Wiener-Hopf factorization and Markov property. We conjecture that
 the result holds in some form in the subexponential case. The argument we

 use is relatively easy to extend to bigger subclasses of the subexponential class
 of distributions (e.g., the distributions with so called intermediate regularly
 varying tails).

 REMARK 1.4. Conditions (1.4), (1.5) and E8 = 0 imply that the infinite
 series in (1.3) converges absolutely with probability 1 and that X = X0 has

 expectation -[. Furthermore, by Lemma A.3 in the Appendix,

 (1.6) P(Xj> A) > EP ISy(PI{ o} + qI{foj<0}) =: llOfll' as A -> oc. P(_J> A) Y"ki'P
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 THE SUPREMUM OF A RANDOM WALK 1029

 Observe that the (dependent step) random walk (S,,),,,o has negative drift.
 Since (Xc) is mixing [see Rosenblatt (1962), page 112] this implies that

 Sn/n --> - a.s. In particular, sup1,1 S, < oc a.s., and we will concentrate on

 14(A) = P (sup S7Z > A)
 11>0

 as A -> oo. If (S7Z)7z>0 had iid steps with the same marginal distribution [or even
 only the same negative mean and the same tail behavior as X has in (1.6)],
 then the Embrechts and Veraverbeke result (1.2) and Karamata's theorem

 [see Theorem 1.5.11 in Bingham, Goldie and Teugels (1987)] would show that

 (1.7) ~indd(A) AP(X > A) a -AP(JEJ > A)
 ju(oa-1) a 4- ,u

 as A -> oc. (We use the notation @ind to remind us that we are dealing with
 iid steps.) We will see that in the case of dependent steps (1.7) is, in general,
 false.

 The following heuristics give us a taste of what the true behavior of the

 tail q14(A) may be. It also provides us with a road map of the proof in the next
 section. However, heuristics cannot replace the very technical proof; only its

 study will enable one to understand the complicated mechanism which causes
 the asymptotic behavior of the ruin probabilities to deviate from the iid case.

 Because of the heavy tails, we expect the event {sup,, S,, > A} for large A
 to occur because of a single very large positive or very small negative value of

 the noise En. The largest ever contribution of the "important" noise variables
 ?j to the state of the random walk can be seen from the expression

 7Z 00

 S11 = -n/? + E E ?k-j?j
 (1.8) k=1 j=-oc 00 fl-j

 =--n,L + L, ?- E Pk-
 j=-oo k=l-j

 Let us concentrate first on the large positive values of the noise. A potentially

 large positive contribution of 8+ to S7z is multiplied by Ek-j ( P. Here, as
 usual, for any real number x,

 x+ = max(O, x) and x - min(O, x).

 When j is a very small negative number, this factor is by (1.5) small, uniformly
 (in n). We do not expect each individual E1 to make a sizable contribution to

 J

 the tail of the process. Indeed, the tail P(E > A) of each individual Et is of a
 smaller order than that predicted either by the Embrechts and Veraverbeke
 result (1.7) or what we expect in (1.12) below. Furthermore, because of the
 negative drift, the contribution of each noise variable dissipates with time. It
 is now easy to convince ourselves that, if very small negative j's do not play
 an important role, and neither is this role played by any individual value of j,

 then the "important" noise variables ?j are those with high j's, in which case
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 1030 T. MIKOSCH AND G. SAMORODNITSKY

 the multiplicative factor of Yj+ becomes about .-jo (k' and the largest this
 factor can ever get over all possible n's (i.e., over all positions of the random

 walk) is

 7Z

 (1.9) M+ sup
 -Oc<n<?? k=-oo

 Clearly, the values of S7z in which 8j+ gets multiplied by this factor are those
 with n being about equal to j (simply because we choose n such that n - j lies
 in a particular region), and because of ergodicity of the step sizes the random

 walk is at that time at about the level -j4. If we apply the same reasoning

 to the small negative values of the noise variables 8j and use the notation
 fl

 (1.10) m= sup k)
 k=-oo

 we expect that the following asymptotic relation holds:

 00

 4(A) - E ( j > A + jpt) + P(mp?7 > A + ju))
 j=1

 (1.1 jP(m+?+ > A + yu) dy + P(m ? > A + y,u)dy

 rn~ _|~ P(8 > y)dy + -| P(E < -y)dy.
 lp A/77z+ j A/ ip

 Of course, the reason for adding up the probabilities above is that we do not
 expect more than one event in question to occur. Furthermore, because of

 our conclusion that individual values of the noise variables 6j do not play an
 important role in the asymptotic behavior of q (A), we can start the summation
 at any given place; indeed, it is simple to check that the asymptotic behavior
 derived above does not depend on the position of the first term in the sum.

 Applying once again Karamata's theorem, we expect then to have

 [p(m+)a + q(m-)a] 1
 q (A) 1O '--AP( > A)

 (1.12) [[p(m)a+ q(m)]j] ( 1)AP(X> A)

 as A -> oc. Here we interpret the right-hand side as o(AP(X > A)) if the
 bracket vanishes. Notice that the bracket equals one if (X77) is an iid sequence;
 compare (1.7). It is impossible to interpret the bracket in terms of known
 measures of dependence such as the autocorrelation function or the extremal
 index of linear processes; see, for example, EKM (1997), Sections 7.3 and 8.1.
 However, the bracket can be thought of as a means of describing the strength
 of the tail dependence in the random walk. Intuitively, the higher is, say,
 m+, the higher can be the contribution of a positive value of a given noise
 variable to the position of the random walk. Compare this to an example
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 THE SUPREMUM OF A RANDOM WALK 1031

 from a different universe: the variance of a sum of terms with equal variance

 each may be thought of as a measure of the dependence between the terms.

 Similarly, the higher m- is, the higher can be the contribution of a negative
 value of a given noise variable to the position of the random walk.

 The limiting relation (1.12) will be proved in the next section. It is important

 to note that in the case p = 1 and m+ = 0 the tail of qfr(A) is of a smaller
 order than that promised by (1.7). This will be the case, for example, when

 Spo = 1, SD-1 = -1 and Spj = 0 for j 0 -1, 0 (and p = 1). The true order of
 magnitude of the tail of qf(A) will depend, in that case, on the relationship
 between the left and the right tails of the noise variables (that is, one needs
 information more precise than just p = 1). This point, however, is not pursued

 in this paper. We note that in this example (with SPo = 1, SPD- = -1 and
 SDj = 0 for j 0 -1, 0) the tail of O(A) is still of the same order as in (1.7) if
 0 < p < 1. Intuitively, this happens because very small negative values of the

 noise variables Ej get a chance to affect the position of the random walk before
 they get cancelled on the next step. This is not possible if p = 1, because then
 the noise variables are not as likely to take very small negative values.

 On the other hand, in the case of a causal (i.e., one-sided) linear process for

 which SPj = 0 for j < 0 and SPo > 0 we have

 m+ > (Po > 0.

 This implies (for p > 0) that the order of magnitude of qfr(A) cannot be smaller
 than in the iid case.

 This paper is organized as follows. In the next section we prove (1.12),

 which is the main result of this paper. In Section 3 we perform an exploratory
 statistical analysis of a data set with file sizes requested via Internet. It is
 our intention to emphasize that this data set has heavy-tailed marginal dis-
 tributions and lacks independence. Finally, in the Appendix we collect and
 prove some related results, dealing with the tail behavior of an infinite linear
 combination of random variables with regularly varying tails, and with large

 deviations of the partial sums of the infinite moving average (1.3). Although
 not all of these results are needed for the proof of (1.12), they provide addi-

 tional information about sums and maxima of a linear process with regularly
 varying tails and might also be of independent interest.

 2. The asymptotics of the ruin probability. The following is the main
 result of this paper.

 THEOREM 2.1. Let (X,) be a linear process (1.3) with a negative mean--t
 and assume that the iid mean-zero noise sequence (E) satisfies the regular
 variation and tail balance conditions (1.4) for some a > 1. Moreover, suppose

 that the real coefficients 4O, satisfy (1.5). Then (1.12) holds.

 PROOF. Our argument frequently uses the notation

 77-j

 (2.1) 13nj = (pi)
 i=l-j
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 1032 T. MIKOSCH AND G. SAMORODNITSKY

 with which we can rewrite the representation (1.8) of the random walk in the
 form

 00

 (2.2) S72 =-n/f + E 6jf3iij, n > O.
 j=-00

 In what follows we prove several lemmas which involve any value of ft > 0,
 and some of the lemmas can be formulated even for ft = 0; but we omit
 further details. For the proof of the theorem, we will apply these lemmas not

 necessarily for the value /u in the formulation of the theorem; it will, however,
 become clear from the context which value of /u will be utilized in which lemma.

 The result is proved by a series of technical lemmas. Before we start with

 a detailed analysis we give a short outline of the main ideas of the proof.

 A. In Section 2.1 we start with proving Theorem 2.1 in the case p = 1,
 that is, when the right tail of the noise variables is fatter than the left tail.

 We further assume m+ > 0. Since we want to study the tail probability

 P(sup72,O S,, > A), we have to find out for which values of n the random
 walk S7, is closest to its supremum and which summands Ejp82j in (2.2) make
 a main contribution to S7.

 1. We show that the contributions of the following terms are asymptotically

 negligible as A -> oc when compared with f(A):

 (a) The values of -ny + z[ x ? /3j pk for all n and fixed k (Lemma 2.2).
 (b) The values of -nA + LY=J2+k , j/3nj for all n and large k (Lemma 2.3).

 2. Thus it suffices to study the asymptotic behavior of

 72.+k

 P(sup(-nft + E j/38 > A)
 2>0j

 for large A, large (but fixed) k and large (but fixed) k.
 3. We proceed by splitting the supremum into different parts.
 4. We show that the contribution of the following probabilities to q (A) is

 asymptotically negligible, first letting A -> o0, then M -> oc:

 I2.+k?

 P sup -nft + ELjI37j > A for fixed k, k (Lemma 2.4),
 72.<A/M j=k

 P (sup (-nf+EA j 7j) > A) for fixed k (Lemma 2.5).

 5. Thus it suffices to study the probability P(SUP?,>A/M(-n+Ej=([A/M] kj2 >
 A) for large A, M and large (but fixed) k.

 6. We show that the latter probability is of the same asymptotic order as

 (2.3) p( sup >nu+k J38 > A
 72>A/M j=[A/M]

This content downloaded from 129.125.148.19 on Thu, 20 Dec 2018 09:30:26 UTC
All use subject to https://about.jstor.org/terms



 THE SUPREMUM OF A RANDOM WALK 1033

 and that the latter probability is of the same order as

 (2.4) P(6J> i/ A for some j > I) ( <)AP(6> A).

 This goal is achieved by a series of lemmas.

 (a) Lemmas 2.6-2.8 are, essentially, large deviations results that establish
 that exactly one noise variable is responsible for the high value of the
 supremum of the random walk. They are used to derive the right upper
 bound in (2.4) for the probability (2.3) (Lemma 2.9).

 (b) We show that the probability (2.3) with f+3 replaced by -f3- does not
 contribute to the asymptotic order in (2.4) (Lemma 2.10).

 (c) We establish the matching lower bound in (2.4) by utilizing the same
 preliminary estimates (Lemma 2.12).

 This proves the theorem for p = 1 and m+ > 0.

 B. In Section 2.2 we proceed with the case p = 1 and m+ = 0.
 C. In Section 2.3 we treat the case 0 < p < 1.

 2.1. The case p = 1 and m+ > 0. We start by truncating the infinite series
 in (2.2) from below.

 LEMMA 2.2. For every k > -oo,

 P up71>1 (-n/1L + jk=_X00 ?j77lj) > A)

 (2.5) lim AP6 )0. A--~oo AP(E > A)

 PROOF. Obviously,

 Pk :=P sup -n1l + > j_ > A) < P <E l8jlIEI4 iI>
 7n>1 'j=_ j=-( i=l- j

 Write SD I =I j < oc. Since (1.5) holds, Lemma A3.7 applies. Therefore
 and since a > 1,

 k oo (x k ??

 lim sup_ Pk_ < Lt= EiZf[fl AlimUPp(6 > A) _-pi =f i/ ? , L hI4pIl/4

 The right-hand side is finite by virtue of (1.5). This proves the lemma. D

 The next step consists of truncating the infinite series (2.2) from above.

 LEMMA 2.3.

 P(sup7z,1 (-n/-t + ELy=7k ?f3z) > A) (2.6) lim lim Sup nP(>> A) 0.
 k ->oo 0 A , oO PE>A
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 1034 T. MIKOSCH AND G. SAMORODNITSKY

 PROOF. Notice that

 00 . A
 qk := P(sup (- n,u + E Ej8nE > A)

 n>j j=n-+k

 00 00 n-j

 < E P E I j E IJi > A+n,uL)
 n=1 j=(+k i=-00

 0 /o00 -j

 p E I il E I Dil > A+nbLt
 nz=1 j=k i=-00

 and by (1.5) there exists a constant c > 0 such that

 00 00 _j

 qk < ,p E[$j_-j-Ej_-j] , |~Pjl> A +n,u-c.
 nz=1\j=k i=-00

 An application of (1.5), Lemma A.3 and Karamata's theorem yield that

 lim sup < const -k (P
 A->oo AP(6 > A) j 00

 Now let k -> oc. This proves the lemma. D

 Next we consider the main part of the exceedance probability qf(A). For
 fixed k, k > 1 we study the behavior of

 (2.7) P (Su (n h A)

 as A -> oc. Later the integers k, k will be chosen sufficiently large. We split the
 supremum in (2.7) into separate parts. We start by showing that the values of

 n much smaller than A do not matter asymptotically; a large deviation result

 for sums of iid heavy-tailed random variables indicates why this is expected;
 see Lemma A.1.

 LEMMA 2.4. For every fixed k, k > 1,

 P( SUP,,<A/M ( -n/p + E nk j6 71j) > A)
 (2.8) lim lim Sup =0.

 M-o00 A->oo AP(? > A)

 PROOF. The following elementary inequality holds:

 P( sup - nu + E ? j > A
 (9) 72<A/M > )Aj=k

 (2.9) / n+k
 < p sup , Ej/8nJ > A < P MI ?j | > A ,

 nz<AIM j=k k< j<A/M+k
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 THE SUPREMUM OF A RANDOM WALK 1035

 where
 00

 (2.10) m1(p1 = E 'Pjl
 j=-oo

 For M > ml,,IEIEI, a large deviation result for sums of iid mean-zero random
 variables with regularly varying tails (see Lemma A. 1 in the Appendix) implies
 that the probability in (2.9) is asymptotically of the order

 AP(6 > A( - EI)) as A > oo.

 This and the fact that P(6 > A) is regularly varying with index a > 1 prove
 the lemma. It is the factor 1/M that yields the result in the limit. D

 In what follows, we assume for ease of representation that A/M is an integer.

 Our next step is to show that the noise variables Ej with j much smaller
 than A do not contribute to the order of magnitude of qfr(A).

 LEMMA 2.5. For every k > 1,

 P(SUPn>0( n + EJk ?jnj) > A)
 lim lim sup p +
 Moo0 A->oo AP(8 > A)

 PROOF. We have

 A/M A A/M A
 p tsu L-n/_+E-viJ83nj >A} <P Pm1,PE(J8jJ-EE|?) > A-m1s,,EJE l

 The right-hand side probability can be estimated in the same way as in the

 proof of Lemma 2.4. This proves the lemma. D

 The next few lemmas treat the supremum in the probability (2.7) for the

 values of n of the order A (or higher). Our task is to formalize the statement

 that the event {sup,, S,, > A} for large A occurs due to a single large jump
 in the noise. We show first that, asymptotically, we cannot have this event

 occurring without observing a value of Ej of the order A. To make it easier to

 see the effect of positive values of 8j's we look first at the positive parts '8+
 of the coefficients 83nj Notice that the statements of Lemmas 2.2, 2.3, 2.4 and
 2.5 remain valid if we similarly replace the 83,j's with their positive parts in
 the corresponding statements.

 LEMMA 2.6. For every M > 0, there exists a small 0 > 0 such that for all
 k >1,

 P(Un>A1MJ-n/A+ynA/f+k + 0>A,?<0(j+A) for j=A/M, ..., n+k})
 (2.11) A{O(+ fAP( > A)

 =0.
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 1036 T. MIKOSCH AND G. SAMORODNITSKY

 PROOF. Our first observation is that it is enough to prove the lemma in the

 case when the noise variables 8i have a continuous distribution. Indeed, let
 (U4)E7z be a sequence of iid random variables uniformly distributed in (-1, 1)
 and independent of the noise sequence (8 . Let ?82 = ?7 + U2, n E EZ.
 Observe that the sequence (E')n)E satisfies all the requirements we placed
 on the original sequence (8J)nE/. Moreover, it has a continuous distribution.
 Furthermore, for every M > 0, 0 > 0 and k > 1 we have, by symmetry, for all

 A > 2/0,

 p ( n(-L + E >A, < 2j (j+>A) for jA =AM, ..., n( +kf
 n>Al M1 Al=A/M

 / ~~~n+kl

 <2P/ U -nA + Y, ?1 1,+ l> A, ?/ < 0(j +A) for j= AIM,-., n +kt
 \n1>A/M I =A/MJ

 That is, once one proves the statement of the lemma for the sequence (8n)IzC
 and halves the value of 0, the statement of the lemma for the sequence (8n)neZ
 follows.

 We proceed, therefore, to prove the lemma under the assumption of conti-
 nuity of the distribution of the noise variables. Observe that for any 0 > 0,

 n-+k

 P U -n/ + 81/3nl > A, ?j < 0(j + A)
 n>kA/M I=A/M

 (2.12) for j = A/M,..., n + k})
 nz+k

 <~~~I Il E 18+1>nu j < Onk, i AIM,-. .,n + k,
 n>A/M I=A/M

 where

 Onk = 0(1 + M)(n + k).

 For any a > 0, since EEI(_,o a] < 0, it is possible to define

 (2.13) a* = inf{b > 0: E8I[-b,a](?) < 0}.

 Since E8 = 0 we have

 (2.14) EEI[-a*, a](8) = 0,
 because of the continuity of the distribution of 8.

 Furthermore, in view of condition (1.4) on the tails, together with the cur-
 rent assumption that p = 1, we also have

 (2.15) a* <a for all sufficiently large a.

 Indeed, by (2.14),

 -EEI(- ,,, -a*)(8) = EEI(a, o)( ?)
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 THE SUPREMUM OF A RANDOM WALK 1037

 and now (2.15) follows from

 -E8I(_ -a)(8) = a*aP( < -a*) +] P(8 < u) d<
 00

 E8I(a 48,)(8) = aP(E > a) + f P( > u) du.

 From now on for any 0 we consider A so large that (2.15) holds for a = Onk and
 all n > A/M.

 Let

 (2.16) ?j = Eji[-(O?zk)* 0,lk](6J)' j = 1, ... , n.

 Then E,; = 0 and 1j,j <Onk for all j, and we observe that

 /n+k \ /n+k

 I: 711 , f+ z nu,?<k, j=A/M, .................,n+k <P P1,8 >n/......j,3z =:p,,.
 \I=A/M / I=A/M

 Using Lemma A.2 in the Appendix, we conclude that

 p,<expt- n,L _arsinh 0,,knI-L1
 <ep - m20 2(n + k - A/M + 1)ml,,1 var(kl) f

 Here we make use of the fact that arsinh y > ln y for y > 1. Since a > 1,
 there are constants ,3 < 2 and c1 > 0 such that n var(e,) < clng for all n and
 hence, for some constant c2 = c2(k) > 0,

 (2.17) Pn~ < expj -nc nP
 (2.17)Pn_2(1 + M)m 00

 Now choose 0 so small that

 (2-)p. 1,a+1
 _ _ _ _ _ _ _ _- > a + 1

 2(1 + M)m1'P1 0

 We then have by (2.17) that for all n > A/M and A sufficiently large,

 pit < const n-(a+l),

 which, together with (2.17), implies that the right-hand side of (2.12) is
 bounded by const A-c. This concludes the proof of the lemma. w

 The following result tells us that it is very unlikely to have two different
 noise variables ?j that are large enough to contribute to very high values of
 SUp,1>0 S,1.

 LEMMA 2.7. For every M > 0 and 0 > 0,

 (2.18) lim P(Ej > Oj for at least two j > AIM) = 0.
 A--oo AP(? > A)
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 1038 T. MIKOSCH AND G. SAMORODNITSKY

 PROOF. Indeed, let

 N = inf{j> A/M: 8j> 0j}.

 Then

 P(Ej > 0j for at least two j > AIM)

 (2.19) = E P(N=1, ?j > Oj foratleastone j > 1)
 I>A/M

 < L P(N= 1)P(N < )=[P(N < )]2.
 I>A/M

 But for large A and a constant depending on M and 0, an application of
 Karamata's theorem yields

 P(N < oc) < E P(E > Oj) < constAP(8 > A).
 j>A/M

 The latter relation together with (2.19) proves (2.18). D

 The following lemma is the key to the upper bound on +fr(A). It is a refined

 version of Lemma 2.6. Not only the event {sup,, Sn > A} for large A requires
 a noise variable 8j not much smaller than j + A, but this large noise variable
 has to take us almost all the way across the level A.

 LEMMA 2.8. For every M > O, 8 E (O, 1) and k > 1,

 P(sup> A/M (-n/+yn+AM 81f38l) > A, 8 j<(1-5)(j/ j+A)/m+ all j>A/M) lim AP(P>AM8n>A)IM n
 A- oo AP(E > A)

 (2.20) =0.

 PROOF. Write for any 0 > 0,

 n+k

 +f1(A) := P sup - nlbL+ 3 8rf3.) > A, 8i < (1- )( jy + A)/m+
 nz>AIM r=A/M

 for all j > A/M, for exactly one 1 > A/M we have 81 > 0(1 + A)

 By Lemmas 2.7 and 2.6, there exists a 0 sufficiently small such that

 P (-niiL+ L 8If3n) >A, j <(1-3)(jA+A)/m+ for all j>A/M)
 n> A/M l =A/M

 =f1(A) +o(AP(8 > A)) as A-, oo.

 Let

 N1 = inf{ j > A/M: ?j > 0(j + A)}.
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 THE SUPREMUM OF A RANDOM WALK 1039

 Choose A so large that for j > A/M,

 1-j 58/2
 ;pi > 1 _

 i=-00

 Observe that with this choice of A,

 ii-j -i .8/2 _ 1-8/2
 Pnj=, (pi - , (Pi M+ m -1 / nm+p = - /M+p.

 i=-00 i=-00

 Then we have

 qf1(A) < E P(N1 = 1, A) + P2) (A)+ 3(A),
 I>A/M I>A/M

 where

 (1)f ll+k
 A ( = U i-n,a8+ ?>A, j< 0(j+A), jAIM, ... 1- i

 A/M<n<l-k i=A/M

 (2) n~~~~~~7+k
 A(2)- U -nA,/2 + E ?if3+z > 8A/2-kA(1 -8/2), ?j < 0(j+ A),

 n>l-k i=A/M,i#l

 j = A/M,..., n + k, j I#i

 By Lemma 2.6 we have that for 0 > 0 small enough,

 1f2(A) = o(AP(E > A)), A -- oc.

 Since EE = 0, P(E > 0) > 0. Let (^,,) be an independent copy of (E). Then

 l>A/M P(O < ?1 < 0(1 + A))

 nz+k

 xP(\U N1=1, -nAt5/2+^1,8+ E8+ L > 8A/2-k,t(1-3/2),
 11>1-k i=A/M,i#l

 Ej<O(j+A), j=A/M,...,n+k, j:A1, 0<8^1<0(1+A)|)

 Note that {N1 = 1} c { 1 > 0(1 + A)} which event is independent of (8j)j0l.
 Hence the probability P(81 > 0(1 + A)) can be factored out and, by observing
 that P(0 < ?1 < 0(1 + A)) > 0.5P(E > 0) for sufficiently large A, we have

 tfr(A) 2 PtO'l01 A)~
 p(E > ?) I>A/M

 7z+k

 x P U --nA58/2 + > ?f37+ > 5A/2-k,A(1 -8/2),
 n>l-k i=A/M

 ?j < 0(j+ A), j= A/M,...,n+khk
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 1040 T. MIKOSCH AND G. SAMORODNITSKY

 P(> ?)1 > 0( + A)

 11+k

 xP ( - n,A3/2 + i ? + > 8A/2 - k,u(l - 5/2),
 n] >(A/M)-k i=A/M

 ?j < 0(j + A), j = AIM,-** , n + kJ1

 By Lemma 2.6 the right-hand side of the latter relation is o(AP(E > A)) pro-
 vided 0 is chosen small enough in comparison with 8. This concludes the proof
 of (2.20). w1

 Now we are ready to derive an upper bound for qfr(A). Observe that we are
 still treating the case when p = 1 and m+ > 0. Let

 ~(A) = P(sup (-?n/ + L 1,8+ >A

 LEMMA 2.9. The following relation holds:

 (2.21) lim sup A P(A <- a-1 ,u A*oAP(8 >A)< a - 1 /L

 PROOF. A straightforward argument [similar to (2.25) below] in combina-
 tion with Lemmas 2.2-2.5 and 2.8 gives for any 8 E (0, 1),

 lims ~(A) P > ((1-5)/m+)(jLt+A) for some j> 1)
 lim up -< lim supAP>) Ao --- AP(E > A) A-*o AP( > A)

 However, by Karamata's theorem,

 pQ > 1 8(jlt + A) for some j>1

 00 /' 1 8 \ 5(M+)a 1
 M< , ( >16i A) (1- a)(1 - AP( A)

 Since we may choose 8 as close to zero as we wish, we conclude that (2.21)
 holds. D1

 What happens if one replaces the positive parts t+. of the coefficients I3,j
 with -,I-P? The following lemma provides the answer. Recall that we still
 consider the case p = 1.

 LEMMA 2.10. For any ,tu > 0,

 (2.22) (supn>i (-n.- L=1 ? > A)= 0.

 A--o00 AP(E > A)
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 THE SUPREMUM OF A RANDOM WALK 1041

 PROOF. Choose K so large that

 (2.23) rK := EEI(-o, K](8) > -A1(2mll),

 where mlpl is defined in (2.10). Write

 (4K) ,(K) P(K)
 ?U = EjI(-oc,K](8J)5 jK = -[g(j -rK], j=1,2.

 We have by (2.23),

 p:=P sup -n1t-Y,6j3j)>A <P sup -nL-t-L,i lj8

 (2.24) (7Z>l ( j=1 / ) l>1\ j=1

 <p (sup (-niut/2+L Ej ij ~>A

 (7ii1 ( j=1 /

 The random variables (j are iid, have mean zero and are bounded from

 below. In view of the tail balancing condition (1.4) and the current assumption

 p = 1, for any p > 0 we can find a sequence (-qj) of iid random variables such
 that:

 St ()St

 1. 71i ? ?(K), where > stands for stochastic domination, that is, P(71q > x) >
 p(8(K) > x) for all x.

 2. E71 = 0.

 3. ql is bounded from below.
 4. limAo P(q,>A) P.

 ACOP(8>A)

 Hence, the sequence (71j) satisfies all assumptions imposed on (?j), and so
 we may utilize all the results proved so far with (?j) replaced with (j). Recall

 (K)
 that stochastic domination of kf by -1j implies that the sequence (-qj) has a
 higher probability to belong to any measurable increasing set in R' than the

 sequence (8( K)) does [see, e.g., Strassen (1965)]. Therefore, (2.24), Lemma 2.9
 and stochastic domination imply that

 lim sup < lim sup (s > i ( 2+2=j) > A)
 A-*oo AP(? > A) A AooP( > A)

 < lim sup P(71l > A) P(SuPn>1 (-n i2? + lmIj) > A)
 A - oo P (8 > A) AP(71l > A)

 ma, 2
 < p m-.p

 a-i1

 Now let p -O 0. This establishes (2.22). D
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 1042 T. MIKOSCH AND G. SAMORODNITSKY

 We can now put the pieces together and bound the probability (f(A) from
 above. From its definition, for 8 E (0, 1),

 (2.25) qf(A)<P (sup(-n/n(1-8)+?LI3t8) +sup (-nK8 ' -8y) ' A).
 7z> 1 ~j=1 z j=1

 Combining (2.25) with Lemmas 2.9 and 2.10, we immediately conclude the
 lemma.

 LEMMA 2.11.

 lim sup AP((A) < (m 1-
 A -*oo AP( > A) a -i1/Lt

 This yields the upper bound in (1.12). It remains to show the lower bound.

 LEMMA 2.12.

 (2.26) lim inf ~/(A) (m) 1
 A-*oo AP(E >A) a - 1 i

 PROOF. Recall that by Lemma 2.2 for any K1 > -oo,

 (2.27) liminf >(A) lim (snf (-nIL? E52=K1?1 yu3nj)>A)
 A-o AP(E>A)< A-oo AP(> A)

 Fix 8 5 (0, 0.5) and choose K1 so large that

 E 1 < 8m+
 l=-oo

 for all j < -K1. Choose a fixed i = i(8) such that

 E 01 > (1 - 5)m+.
 l=-oo

 The above inequalities imply that for all n > K1,

 00

 jm+(1-25)En > (1+8)(nli+A),U-ii +8nI+ L j8n+i,j > - 8A
 j=Kl+l, jjn

 c (n +i)/-t+ E ?j,8,+i j >At
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 THE SUPREMUM OF A RANDOM WALK 1043

 and so

 > P sup --nn?+ E j,8nj > AA
 n>K,+i j=Ki+l

 >p P M+(l - 25)?,, > (1 + 5)(A + n)
 n>Kl

 00

 - i? + 8n,? + L Ej8n+i, i > -6AJ)
 j=Kl+l, jAn

 Furthermore, for a 0 > 0 the latter probability cannot be smaller than

 P( M+( -m (125)8, > (1 + )(A+ n/-)|

 00

 _ p U |-i/-+5n/-+ 8 j,8,1,+i,j<-5A5
 nz>K1 i=K1+1

 JjJ < 0(j+A)5 j=l, ... ,n-1|

 -P ( |MS+ ( 1-25)8,> ( 1+5)(A+ n/-),-i+n
 n> K1

 oo

 + L 8j,8,,+i j<-5A, J jJ>0(j+A) for some j=1,...,n-1).
 j=Kl+l

 For 0 small enough relative to 8, the first probability being subtracted above
 is of a smaller order than AP(E > A) as A -> oc by Lemma 2.6 (notice that the
 lemmas preceding Lemma 2.6 show that taking the supremum over a large set
 and different bounds of summation contribute only terms of a smaller order as

 well). Here (and in the sequel) "small enough relative to 8" means that 0/8 are
 small enough for the requirements of Lemma 2.6. Similarly, Lemma 2.7 and

 the remark just made show that for any 0 > 0 the second probability being
 subtracted above is of a smaller order than AP(E > A) as A -- oc. Therefore,
 we conclude that

 (Su (-nLt ? j j,+1 A) )
 71>1 I=))+l

 > p( U m+( 1- 25)8? > ( 1 + 5)(A + n/t) |- o(AP(E > A)).
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 1044 T. MIKOSCH AND G. SAMORODNITSKY

 Yet another application of Lemma 2.7 shows now that the right-hand side

 above is

 E P(m+(l - 25)8 > (1 + 8)(A + nIL)) - o(AP(E > A)).
 n=Kl

 Therefore,

 __A)_._. En=K, P(m+(1 - 25)8,, > (1 + 8)(A + nt)
 lrm inf (A) > lrm inf AP(l> A
 A-+oo AP(E > A) A-Aoo AP( > A)

 _ (~1-28)a (m+)a
 V1 + 5 a /-t1'

 Letting 8 -- 0, we finally arrive at the lower bound (2.26). This proves the
 lemma. D1

 That is, we have proved Theorem 2.1 in the case p = 1 and m+ > 0.

 2.2. The case p = 1 and m+ = 0. Pick a 0 > 0 and choose an i=i(O) that
 has the following property: if one defines

 (2.28) 'Pp 0 + if J - i,
 10+ if] = i

 then for the new set of coefficients one has
 n

 m+(0):= sup L
 -oo<n<oo k=-oo

 Clearly,

 (2.29) m+(O) < 0.

 For a fixed 0 < ( < min(,ut, 1) let

 00

 X10 = -(L-8)? L E n E Z,
 j=-00

 and consider the dependent step random walk (S(11)ii>O

 S0 = 0, S71() = X(0) +? + Xn n > 1.

 Since we have already proved the theorem in the case m+ > 0, it follows
 from (2.29) that

 P(supo,0 S (0) > A) [m+(O)]a 1 oa 1
 (2.30) lim AP ) -

 A--oo AP(E > A) ae-1 ,u-t o- a 1 ,u-5'

 Observe that
 71

 S7(Z) ?nL+0Ek+i?+n, n > 1.
 k=1
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 THE SUPREMUM OF A RANDOM WALK 1045

 Therefore,

 P sup S(1) > A(1- )) > P (sup S1 >A, inf k?i+ )n
 n1>0 / \ >0 ii> k=1

 >(n>sup S,>) - (nf (0 E 8k+i + (n) < -5A)

 Since we are still assuming that p = 1, it follows by the Embrechts and
 Veraverbeke result (1.2) that

 ( inf(0 Ek+i ? 8n = o(AP(E > A)) as A -oo.
 11>0 k= 1

 Therefore, it follows from (2.30) that

 li sup P(SuPn>o Sn > A) (1 - 5)1-ao 1
 A supoo AP( > A) a- 1 u-8

 Since 0 can be taken arbitrarily small, the statement of the theorem in the
 case p = 1 and m+ = 0 follows.

 2.3. The case 0 < p < 1. Denote

 ?J =Et - E?, j E Z.

 Observe that (?J )j,z and (?7j-)j,z are two (nonindependent) sequences of iid
 zero-mean random variables that satisfy the regular variation and tail balance
 conditions (1.4) (corresponding to the parameter p = 1). Let

 00

 Q7Z= L j n E
 j=1

 We will now study the contributions of {Q+} and {Q-} to the overall ruin
 probability. Lemma 2.2 allows us to disregard the influence of the noise vari-

 ables ?j with j < 0, which turns out to be useful in the sequel. We have

 (f(A = l> P (su ( +nt?E j,f3 ) > A)+o(AP( > A))
 00 ~ A

 P P (sup(-n/ + Q7+-Q7) > A) + o(AP(E > A))
 7P>0

 =:P(A) + o(AP(E > A)).
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 An application of Lemmas 2.6 and 2.7 shows that for any 0 > 0 small enough
 (compared to ,t),

 P(A) = P (A, I ?j I > 0(j + A) for exactly one j > ) + o(AP(E > A))

 = P(A, ?j <<-0(j?+ A) for exactly one j > 1, ?j < 0(j + A) for all j > 1)

 +P(A, ?j > 0( j+A) for exactly onej > 1,

 ?j>-0(j+A) for all j>1) +o(AP(8>A))

 =:P(A(')) + P(A(2)) + o(AP(E > A)).

 Hence

 (2.31) lim OA(A) =lim P(A)) + 1lm AP(A(2))
 A -*oo AP(E > A) A -*oo AP(E > A) A-*>oo AP(E > A)'

 We have for any 8 E (0, 1),

 P(A(1)) < P(sup(-nI(l - 8)- Q-) > A(1 - ))
 n>0

 + P (sup (-n8? + Qn) > A8, Ej < 0(j + A) for all j > 1)

 = P (A(1 1)) + P(A(12)).

 If 0 is small (compared to 8), we conclude by the same arguments as in
 Section 2.1 (where Lemmas 2.6 and 2.10 play a key role) that

 A -oo AP(>A) =0

 On the other hand, since the theorem has already been proved in the case
 p = 1, we immediately conclude that

 i P(A ) = lim P(A(1 1)) P(E > A) 1 (m))a 1

 Since 8 can be taken arbitrarily small, we have

 (2.32) lim sup P(A(1)) (m)a 1
 A-*oo AP( > A) a-1,
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 On the other hand, for any 8 > 0 one has by Lemmas 2.6 and 2.7,

 P(A(1)) > P sup (-nt(l + ? )Q7 ) > A(1 + 8))
 n>O

 - P (sup(n ? + Qn) < -AN, 8j < 0(j + A) for all j > I

 - o(AP(E > A))

 P(A(1' -1)) -P(A(1 -2)) - o(AP(8 > A)).

 The same argument as above shows that, if 0 is small (compared to 8), then

 A, AP(AM> A) = 0 and lrn (A ))_= 1 (m )a 1
 Aiio AP(A(1 >2)) A-*>oo AP(E > A) = (1 + 8)a a -i '

 Since 8 can be taken arbitrarily small, we have

 lmifP(A(1) (M-)a 1 lim inf - P(6> - o-
 A-->oo AP(E > A) a -i

 which together with (2.32) shows that

 (2.33) lim P(A()) (m) 1
 A-+>oo AP( > A) ai-7Z*t

 An identical argument shows that

 (2.34) lim P(A (2)) (m+)a 1
 A->oo AP( > A) a-L

 and combining (2.31), (2.33) and (2.34) we obtain the statement of the theorem
 in its full generality. This completes the proof of the theorem. Cl

 REMARK 2.13. A careful analysis of the proof shows that Theorem 2.1

 remains valid if the step sequence (X,,) of the random walk (Sn) is replaced
 with (X,, + Y11) where (Y11) is an iid sequence independent of (Xn) such that
 P(Y1 > x) = o(P(X1 > x)) as x -- oc and -oc < E(X1 + Y1) < 0. However,
 one has to replace ,tu in (1.12) with -E(X1 + Y1). A special case occurs when
 one considers the ruin probability

 t>O (n>1 i=1)

 where (Zi) is a sequence of iid nonnegative random variables with positive
 mean, independent of (Xi),

 N(t)= #fi: Z, + + Zj < t}, t > O

 is the corresponding renewal counting process and c > 0 is positive constant.

 In the latter case no assumptions on the distribution of the Zi's are necessary,
 apart from finiteness of the mean.
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 3. A teletraffic data set. Many important queuing systems of today are
 found in computer communication networks. A data set we consider is a part
 of a larger data set collected and reported by Cunha, Bestavaros and Crovella
 (1995). It consists of traces of WWW sessions run from 32 workstations in

 an undergraduate computer lab in Boston University from November 1994
 through February 1995. We use only the data for January 1995. The traces
 of the sessions come with the sizes of the files that a user requested and
 with the time stamp of the request. We have combined the file sizes for the
 month of January in a single time series ordered according to the time of
 the request. Those requests that could be filled using cached files did not
 require network transmission and, hence, were deleted from the time series.
 The remaining 17,675 requests must be fed to a communication link, and then

 they are responsible for the right tail of the steps in the Lindley equation

 that describes the behavior of that link. It is not our goal here to fit any
 particular model to this time series. Rather, we would like to show that this
 data set exhibits the characteristics that led us to the present study in the
 first place: it is heavy-tailed, and there is obvious dependence in the right tails

 of the observations. Figure 1 shows the graph of a negative drift random walk
 generated by this data.

 We start by estimating the thickness of the tail. An exploratory means is
 to consider the asymptotic behavior of the ratio

 (3.1) T(p) = maxi=1,...,
 Y,i=l i

 for some p > 0; see EKM (1997), Section 6.2.6. Indeed, for a stationary ergodic
 sequence, if EXP < oc, the ergodic theorem implies that T11(p) -> 0 a.s. as
 n -> oc. A glance at the left part of Figure 3 convinces one that this is hardly
 the case for p = 1.3 and so we may guess that the 1.3th moment is infinite.
 Further confirmation of this fact comes from considering the Hill estimator,

 H7(m) = (;- ln X(i) - In X(rn))

 where X(n) < ... < X(1) are the order statistics of the sample X1, ..., X1. The

 statistic H(nl) is a consistent estimator for the parameter a of the tail P(X >
 x) = L(x)x- for some a > 0 and a slowly varying function L, provided that

 (3.2) m = mrn -- oc and m/n -O 0.

 It is also asymptotically normal for a weakly dependent sequence and under
 further conditions on L. For an extensive discussion of the Hill and related
 tail parameter estimators, see EKM [(1997), Section 6.4]. The right part of
 Figure 3 shows a Hill-plot,

 (3.3) ( H,H )
 with asymptotic confidence bands corresponding to an iid sequence (Xi) with
 tail P(X > x) - const x-a. We may conclude that the Hill-plot gives an
 estimate of the value 1.3 in the m-region (50, 400), say.
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 THE SUPREMUM OF A RANDOM WALK 1051

 We now look at the dependence in the time series (Xi). To this end we use
 various tools. The most common one is the sample autocorrelation function.
 It is given in the left part of Figure 4 for the first 1500 lags. We omitted the
 asymptotic ?1.96/nl/2 confidence bands which correspond to an iid Gaussian
 sequence. In view of the extremely heavy tails of X (the second moment does
 not exist) it is not clear what the sample autocorrelation function actually

 represents. Work by Davis and Resnick (1985, 1986) [see also Section 13.3

 in Brockwell and Davis (1991)], shows that the sample autocorrelation at lag

 h estimates the quantity EjL jP'Pj+h/ >ji3Pj which can be interpreted as the
 autocorrelation at lag h of a linear process (1.3) with an iid standard Gaussian

 sequence (?j). However, recent work by Davis and Resnick (1996), Resnick,
 Samorodnitsky and Xue (1999) and Davis and Mikosch (1998) shows that the
 sample autocorrelations of nonlinear stationary sequences can be extremely
 unreliable in the sense that the convergence rate can be very slow or that the
 sample autocorrelations can have nondegenerate weak limits. Therefore, we
 prefer here to consider some alternative methods to detect dependence in a
 time series.

 Consider a random walk Sn = Y1 +- +Y,, for a stationary sequence (Y ) of
 random variables assuming values 0 and 1, where P(Y1 = 1) = p E (0, 1). We

 may assume that the sequence (Yi) is generated from a stationary sequence
 (Xi) as follows:

 Yi = I(U, oc)(xi ), i = 1, 2, ... ..

 for some given threshold u > 0. If the sequence (Xi) is iid, a well-established
 theory exists for the longest run of l's. A run of length j in Y1, ..., Y71 is
 defined as a subsequence (Yi+j? ..., Yi+j) of (Y1, ..., Yn) such that

 Yi = ,0 Yi+, = = i+j = 1, Yi+1+l = 0,

 where we formally set Y0 = Yn+, = 0. Some theory about the asymptotic
 behavior of the longest run Zn of l's in an iid sequence X1, ..., X,, is provided
 in EKM (1997), Section 8.5. Corollary 8.5.10 in the latter reference states that

 the longest run Z, with probability 1, falls for large n in the interval [ar, f3z],
 where

 wheln(nq)-ln3(nq) - 0.001]
 -lnp

 and
 [ln(nq) + In2(nq) + 1.001 ln3(nq)1

 [ l~-np

 where [x] denotes the integer part of x, q = 1 - p, 1n2 x = lnlnx and

 1n3 x = ln ln ln x. The right part of Figure 4 shows the graphs of a17, v3, together
 with the longest run of l's for an iid sequence (I(U ,)(Xi)) with the property
 that P(X > u) = 0.1 for an appropriately chosen threshold u (this curve lies

 nicely between a,, and flu) and for the teletraffic data (X1,). In this case it is
 obvious that the longest runs of l's of the indicators (I(U, ,)(Xi)) are signifi-
 cantly longer than for an iid sequence. This implies that there is dependence
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 THE SUPREMUM OF A RANDOM WALK 1053

 in the teletraffic sequence (X,,) and that exceedances of the high threshold u
 occur in clusters.

 Another tool for detecting dependence and clusters in data is the extremal

 index 0. For a stationary sequence (X,,) the quantity 0 E [0, 1] satisfies the
 relation

 lim P( max Xi < u = e-To
 nfl* oo i=1, . 1.., /

 for (ut,) with lim,1O, nP(X > U7z) = T > 0. See EKM (1997), Section 8.1,
 for the definition, interpretation and statistical estimation of 0. It has been
 mentioned, for example in Hsing, Huisler and Leadbetter (1988), that 0 can be

 interpreted as the reciprocal of the mean cluster size Egi of the weak limit of
 the point processes of exceedances

 12 00

 E n-i i (u,l, oc) ( Xi ) = ib
 i=l i=l

 where 5x is the Dirac measure at x, Fi are the points of a homogeneous
 unit rate Poisson process and (g) is the iid sequence of the cluster sizes,

 independent of (Fi). Clearly, for iid data, 0 = 1.
 Natural estimators of 0 are

 (3.4) 0(1) k ln(1 - K/k) and 0(2) K
 n n ln(1- N/n) n N

 where N is the number of exceedances of ui by X1, ..., Xn, K is the number
 of blocks of length r:

 xl7r+1, ..., X(1+1)7, I1 = 0,..., k -1,
 in which at least one of the observations exceeds Ut, Further, k = [n/r],
 r = r -> oX, r/n -> 0, and the threshold sequence (U7z) is such that

 lim nP(X > Ut) = T for some T > 0.
 nl-*00

 For obvious reasons, this method of estimation is called the blocks method. In

 Figure 5 the behavior of 0 (")and On2) is illustrated as a function of the threshold
 u = Ui1. Both estimator indicate that 0 is about 0.9. This makes it clear that
 the observations (Xi) exhibit significant dependence in the tails.

 APPENDIX

 In this section we collect several results, some of which are needed for the proof
 of the main result of the paper in Section 2. Further results here describe addi-
 tional extremal features of the dependent step random walk with steps (1.3).

 In what follows, (Y,2) is a sequence of mean-zero random variables and

 Sit = Y1?+ + Y7z n=1,2.
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 FIG. 5. ThOsiatr ,)(sldln) n 2 of the extremal index 6 as a function of the

 71 2 34

 threshold u; see (3.4). The unit on the u-axis is one million. Above the threshold u = 3 millions

 only seven values were observed; therefore the estimate of 1 for 0 is not meaningful.

 Large deviations for sums of iid random variables with regularly varying
 tails. The following large deviation result for sums of iid random variables
 with regularly varying tails can be found in Nagaev (1969a, b) in the case
 a > 2 and for a > 1 in Cline and Hsing (1991).

 LEMMA A.1. Let (Y,7) be an iid sequence such that P(Y1 > A) = L(A)A-
 for some a > 1 and a regularly varying function L. Then for every 8 > 0,

 P(S1 > A) -1 0 n
 sup ._1 --.0 -) o
 A>8n nP(Yl > A)

 Tail estimate for sums of independent random variables. The following
 inequality is due to Prokhorov (1959); compare Petrov (1995), 2.6.1 on page 77.

 LEMMA A.2. Let (Y7z) be such that I Y,[I < c for some c > 0. Then

 P(Sn > A) < exp{ - arsinh vr )l A > 0.
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 THE SUPREMUM OF A RANDOM WALK 1055

 The tail of an infinite series of independent random variables. In this sub-
 section we consider the right tail of an infinite series

 00

 (A.1) X= E2 pjcuj
 j=-oo

 Here (8,J)nZe is a sequence of iid random variables satisfying the regular vari-
 ation and tail balance conditions (1.4) with any a > 0 (and not only a > 1 as in

 the first part of this paper), and the coefficients Spj are such that the infinite
 series (A.1) converges. It is a part of the folklore that under some conditions
 one has

 (A.2) ~P(X> x) 00+ (A.2) I(, > ) >, Ispjl [PIfPj>0} +qIfj<O}]=

 We are aware of a large number of publications where such results are proved
 or referred to (and, undoubtedly, there are many publications that we are
 not aware of that deal with such results). However, these results are usually

 proved for particular cases, under generally more stringent conditions on (9p)
 than necessary, and are sometimes misquoted. We prove here (A.2) in all cases

 and under conditions that are close to being necessary. Observe that the very

 statement of (A.2) requires the condition llpl a, < oo which, in general, is not
 sufficient for a.s. convergence in (A.1). [This is just the three-series theorem;
 see, for example, Petrov (1995), Theorem 6.1 on page 205; it is easy to con-

 struct an example with a E (0,2] in which IjIjI la < oo but the series does
 not converge.] We introduce the following conditions on (9p,) which are more

 restrictive than I I c, < ??:

 E j < oc, fora >2,
 (A.3) J

 J 1jla- E < 0X, for some 8>0 for a <2.
 j=-oo

 LEMMA A.3. Let the iid sequence (8n),7e satisfy the regular variation and
 tail balance conditions (1.4) with an a > 0. If a > 1, assume that Es = 0. If

 the coefficients 4O, satisfy condition (A.3), then the infinite series (A. 1) converges
 a.s. and (A.2) holds.

 The statement of Lemma A.3 coincides with the one of Lemma 4.24 in

 Resnick (1987) [attributed to Cline (1983a, b)] if a < 1, and with the one
 of Theorem 2.2 in Kokoszka and Taqqu (1996) if a E (1, 2). For a > 2 the

 conditions in (A.3) are the weakest possible since they are necessary for a.s.
 convergence of the series (A.1). For 0 < a < 2 we will show in the sequel that

 the a - E power in (A.3) can be replaced by a under certain conditions on the
 slowly varying function L in (1.4).

 PROOF. Convergence with probability 1 of the infinite series (A.1) follows
 from the three-series theorem [see, e.g., Petrov (1995), Theorem 6.1 on page

 205], so we concentrate on the tails. For simplicity of representation we only
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 consider one-sided processes X = YI%0 9 j8j; the two-sided case is completely
 analogous. Write X = X(K) + y(K), where

 K

 X(K) = EL4j8j, K=O, 1,.
 j=O

 Then for ( c (0, 1),

 P(X(K) > A(1?+()) _ p(y (K) < _-&) < P(X (K) > (1 + 8), y(K) >_8A)

 (A.4) < P(X > A)

 < P(X(K) > A(l 5))+P(Y((K) >&k)

 Using standard results for convolutions of distributions with regularly varying
 tails [e.g., EKM (1997), Lemmas A3.26 or 1.3.1], it is not difficult to see that

 P(X(K) > A) K A
 P(JEJ > A) j- 1E lil PI{@j>o1 + qIf@j<o1 A

 From this relation and (A.4) it follows that it suffices to prove that

 (A.5) lim lim sup p( y(K)l> A) =0.
 K-(xoo A?OO P(ej8 > A)

 We will show (A.5) with P(|y(K)| > A) replaced by p(y(K) > A); the case of

 p(y(K) < -_A) is analogous.
 It follows from Lemma 4.24 in Resnick (1987) that (A.5) holds for a < 1.

 Now assume that a c (1, 2]. Without loss of generality we may assume that

 the random variables 8,, are symmetric: indeed, since the sequence (Y(K))K>1
 is tight, we may choose an M = Mf independently of K so large that P(y(K) <

 M) > 0.5 for all K > 1. Then for an independent copy y(K) of y(K),

 p(y(K) - y(K) > A - M) > p(y(K) > A, y(K) < M) > l p(y(K) > A),

 and so if (A.5) is established for the sequence of symmetric sums (Y(K)-
 y(K))K>l, then it will follow for the original sequence (Y(K)))K>l as well.

 Let (N7z) be a sequence of iid standard normal random variables, inde-
 pendent of (8). Then, using a strong domination inequality [see, e.g.,
 Theorem 3.2.1 in Kwapieni and Woyczyn'ski (1992)],

 p(y(K) > A) < c1P(E4OjNj8j > c2A)

 (A.6) = K c+l)

 for positive constants cl and c2. Applying the result for the case a < 1 it
 follows that the tail of EJ +l1 (p2 82 is regularly varying with index -a/2 E
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 [-1, 0). Since N1 is independent of (8), we conclude that the right-hand side
 expression in (A.6) is asymptotically of the order

 00

 C3 E PJIsjaP(E > A) asA -> o,
 j=K+l

 for some constant C3 > 0 independent of K. This proves the lemma for

 a E (1, 2].
 In the general case a E (2k-1, 2k] for some integer k> 1 one can follow the

 steps of the proof above: first symmetrize y(K), then replace the Rademacher
 sequence by a Gaussian sequence and reduce the problem of bounding the tail

 to a corresponding task for L.=K+l p02 82 . By doing so one reduces the index of
 regular variation to a/2 E [k - 0.5, k], and one can use an obvious inductive
 procedure. C

 For a E (0, 2], the assumptions (A.3) on the coefficients 9p, can be relaxed
 provided the slowly varying function L in (1.4) satisfies certain additional
 assumptions. We consider two such possible assumptions:

 (A.7) L(A2) < cL(A1) for Ao < Al < A2, some constants c, Ao > 0,

 (A.8) L(A1A2) < cL(A1)L(A2) for Al, A2 > Ao > 0, some constants c, Ao > 0.

 LEMMA A.4. Assume that the regular variation and tail balance condition

 (1.4) holds for some a c (0, 2], that the infinite series (A.1) converges a.s.,

 0O

 (A.9) E] 1s,jla < 0o,
 j=-oo

 and one of the conditions (A.8) or (A.7) is satisfied. Then relation (A.2) holds.

 Thus (A.2) holds not only under the condition (A.3), but also under (A.9)
 provided (A.8) or (A.7) hold. Notice that (A.8) holds for Pareto-like tails P(E >
 A) cA-a and in particular for a-stable random variables E. Moreover, (A.8) is

 satisfied for slowly varying functions L(A) = (lnk(A))Y for any real /3, where
 lnk A is the k times iterated logarithm of A.

 PROOF. Following the steps in the proof of Lemma A.3, it suffices to show
 that (A.5) holds for a < 1. In the latter proof we used Lemma 4.24 in Resnick
 (1987); for its application we needed condition (A.3) for some 8 > 0. A careful
 study of pages 228 and 229 in Resnick (1987) shows that this condition is only

 needed for proving

 00 P(kJ8CjE > A) 00
 (A. 10) lim A = Lli

 A-Joo P(> A) 00

 in which case the relation

 P( J~j > A) < const I SDj Ia
 P(18 > A) -
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 allows one to apply Lebesgue dominated convergence in (A. 10) when inter-
 changing the sum and the limit as A -> oo.

 Now assume that (A.8) holds. Then we have for large A,

 P(fqOjEf > A) _ jjaL(pjKl)A < c)qsjj'L Jqsj| 1 = cP(1spjE1 > 1).
 P(8 > A) L(A) :~ PILkJ1

 Since series (A.1) converges a.s.,

 E P(J jE, > 1) < x0,
 J=-00

 by virtue of the three-series theorem. Using the latter bound, we may apply
 Lebesgue dominated convergence in (A.10), and so Lemma 4.24 in Resnick

 (1987) remains valid under assumption (A.8).

 Now assume that (A.7) holds. Then for large A,

 P( 1DjEj > A) J pjj(I -1A)
 <~ cj~pj P(18- > A) L(A)

 By virtue of (A.9) and the latter bound, one may apply Lebesgue dominated

 convergence to obtain (A.10). E

 Large deviations for sums of linear processes with a regularly varying tail.

 In what follows, we extend the large deviation result of Lemma A. 1 for sums

 of iid random variables to sums of linear processes. As before, (X,,) denotes
 a two-sided linear process (1.3) with iid noise variables 8,,with Es = 0 satis-
 fying the regular variation condition (1.4) for some a > 1 and coefficients (Pn
 satisfying (1.5). We also assume that ,tu = 0 in (1.3).

 LEMMA A.5. Let
 00

 m(?) :=E(pi.
 J=-00

 If m(p) < 0 we also assume that 0 < p < 1. Then the relation

 (A. 1 A1) sup P(|?| > A) ([(m ()) ] p + [(m(?))>aq 0, n - o
 A>A nP(181 > A) (o) +1

 holds for every sequence (A,,) of positive numbers converging to infinity such
 that

 (A. 12) sup ( EX- 81 > cA -( 0, n oo for every fixed c > 0,
 A >A, nP(s > A)

 if m(0) > 0;

 (A.13) sup P( -A) -c 0, n-+ oc for every fixed c > 0,

 if m(0) < O and 0 < p < 1.
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 REMARK A.6. If a > 1, (A.12) holds for A11 = (n for any 8 > 0; see

 Lemma A.1. If a > 2 then (A.12) holds for An = (a11n inn)1!2, where (a11)
 is any sequence of real numbers an -> oc; see Nagaev (1979).

 PROOF. We will prove the lemma in the case m(?) > 0. All other cases are
 similar. We have

 00 0 00 n

 Sn = >1 8if83j = Y. 8j3,ny + >Y 8,83nj + Y, 80f3j
 J=-00 j=-00 j=n j=1

 = (1) (2) S(3) - Sz1 + Sn + n -

 By virtue of Lemma A.3,

 Pt Zz n> A) < P Elj qi+E|y 9i
 j=-Lk i=l-j j=n z=-0o

 < constP(l >A)L ( Y ( sil +) , Y, ( il)]
 _j=-oo) i=l- j j=O i=-oo)

 Since both A and n converge to oc, it suffices to show that

 spP(S(' > A) [M(o)r ]a?c
 A>A,, nP(8> A)

 We have

 n 1z 1-j-1 00

 - 3 m(0) Y 8 L8j (~ ? SZ2~~ =o m ? ?j - Y, ? i + (i
 j=1 j=1 i=-00 i=nl-j?l/

 s(3' 1) s(3' 2) = Sn + Sn

 By virtue of assumption (A. 12) we have

 P(S(3' 1) > A) n oo sup [() 0 c
 A>A, nP(8 > A) ~

 Thus it remains to show that the contribution of S 3' 2) to the large deviations
 is negligible. Again by Lemma A.3,

 (sjl >A)YP I(jl > A/2) + (I jlY 1 il > A/2)

 Thi col 00 1- j-o 1 m -

 < const P(Io I > A) Y I lCi I + YE Y koil_.
 _j=0 i=j j=l i=-oo

 This concludes the proof of the lemma. O-
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 For iid random variables Yi with regularly varying tail a simple compu-
 tation shows that one also has, in addition to the conclusion of Lemma A.1
 that

 sup P(maxj=1,...,,n Yi > A) _1 0 n +oo
 supn nP(Y > A)

 for every 8 > 0, and so, in particular, for every such 8 one has also

 sup P(S11 > A) __ n_o_
 A>51i P(maxj1 YY > A)-1 0, n o0.

 The following lemma shows that this result does in general not remain valid

 for the linear process (1.3).

 LEMMA A.7. Let

 [M()]- = pap+ + qsoa and -p+ = sup (,+ (P- = sup (R-

 Under the assumptions of Lemma A.5 the following relation holds for every
 8 > 0:

 (A.14) sup P(maxj=,, n X i > A) _ -m ] 0 n -oo

 where C I I a is defined in (1.6). In particular,

 P(S11 > A) [(m( ))?]ap + [(m( ))-] q
 (A.15) A>5n P(maxi=, ..._ n Xi > A) [m(l)]a

 O, n -> oo.

 Observe that m(l) > 0 under the assumptions of Lemma A.5.

 PROOF. It follows from Lemmas A.3 and A.5 that both claims will follow
 once we prove that for every 8 > 0,

 P(maxj=,.., Xi > A) [nl)a - , n- 0
 (A.16) sup n 8-v ,z j > A) _

 For k > 1 write

 O n+k oo() (2 3
 Xi= E ?j( i_ + E ?j( i-j + E ?jPji-j =: Xi + Xi n + Xi n

 j=-oo j=1 j=z+k+l

 Exactly as in the proof of Theorem 2.1 it is enough to consider the case p = 1

 and q+ > 0. It follows from Lemma A.3 that

 P(maxi. n x~(i) > A) p >X(1) A)
 sup nP(S ( ) =sup -0 n -> o,
 A>5n 8PIs > A) A>8n1 nP( 81 > A)
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 and that

 P (maxi=i,...,,, X, n > A)

 k-ool n-oo A>8n nP(Isl > A)

 Tin P PX (3)z > A)
 < lim lim sup sup (0.

 ko0 n-o A>5n nP(|?| > A)

 Therefore, (A.16) will follow once we prove that for every k > 1,

 (A.17) su P(maxi i , > A ) - [m (l)]a 0 n -> C.
 A>5n nP(181 > A)

 Repeating the argument of Lemma 2.6 one sees that there is a 0 > 0 small
 enough compared to 8 such that

 s P(maxi=i. X (2) > A, Si < OA for j = 1,..., n + k)
 (A. 18) supA nP( 8 > A)

 --.0, n ->. oo.

 Fix a T E (0, 1). It follows from (A. 18) and the argument of Lemma 2.8 that

 P(maxi=,,...,X(2) > A

 A>5n nP(Isl > A)

 P(maxi=,. X7(2) > A, s > (1- )((p)1A for some 1 < I < n + k) j
 nP(Isl > A)

 0, n -> oc.

 Since

 P( max X(2) > A, sj > (1 -T)(p?<1A for some 1 < I < n + k)

 < P(sj > (1 -)(q?<1A for some 1 < I < n + k)

 < (n + k)P(s > (1-

 we immediately conclude that

 lim sup sup (P( maxi.n > A) -[m()] a < ((1 )-a M (1)
 I-0 A>5n nP(Isl > A)T)

 and letting T -+ 0 we obtain

 (A.19) lim sup sup P( maxi. P; A) )-[m()] ) < 0.
 I-*0A>5n nP(I 8> A)
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 Furthermore, define for a K > 1

 n-K

 i n, K - ?j(Di-j-
 j=K+l

 Then

 P(maxi=i n Xi, n> A) P(maxii . n Xi )K> A) >
 (A.20) A>8n nP(18 > A) nP(Isl > A)

 -> , n > oo.

 Let, once again, T be a number in (0, 1). Choose a K so large that

 sup _ >
 1-K<j<K

 We have by the choice of K, for any 0 > 0 small enough, as in Lemma 2.6,

 P max X 2 >K > A, j >

 > P P(max X(2) > A, 8 > (1+ T)2(pO ) 1A f6rsomeK+1<1<n- , j<=K+1,...,n-K,1<1<n-K

 n-K

 > P > (1 + T)2G+) 1A) -Oy1
 1=K+1

 with hn satisfying

 su nP( >A) -0, n+ oc.

 We immediately conclude by (A.20) that

 / ~~P(maxi=i., X (2 >A
 lim sup sup - A) ) < (1-(1+,

 n-coA>8n knP(181 > A)

 and letting T -> 0 we obtain

 (A.21) lim sup sup ([m) - _ i) < A

 The claim of the lemma now follows from (A.19) and (A.21). 0

This content downloaded from 129.125.148.19 on Thu, 20 Dec 2018 09:30:26 UTC
All use subject to https://about.jstor.org/terms



 THE SUPREMUM OF A RANDOM WALK 1063

 Acknowledgments. This research has been conducted during mutual
 visits of each of the authors to the home institution of the other author. Both
 authors thank Cornell University and the University of Groningen for the hos-
 pitality. The authors take pleasure in thanking the anonymous referee for the

 extraordinarily detailed report that contributed significantly to improvement
 of the way the material is presented in this paper.

 REFERENCES

 ASMUSSEN, S., SCHMIDLI, H. and SCHMIDT, V. (1999). Tail probabilities for nonstandard risk and

 queueing processes with subexponential jumps. Adv. Appl. Probab. 31 442-447.

 BACCELLI, F. and BREMAUD, P. (1994). Elements of Queueing Theory. Palm-Martingale Calculus

 and Stochastic Recurrences. Springer, Berlin.

 BINGHAM, N., GOLDIE, C. and TEUGELS, J. (1987). Regular Variation. Cambridge Univ. Press.

 BROCKWELL, P. and DAVIS, R. (1991). Time Series: Theory and Methods. Springer, New York,
 2nd ed.

 CHISTYAKOV, V. (1964). A theorem on sums of independent random variables and its applications

 to branching random processes. Theory Probab. Appl. 9 640-648.

 CLINE, D. (1983a). Estimation and linear prediction for regression, autoregression and ARMA
 with infinite variance data. Ph.D. dissertation, Colorado State Univ.

 CLINE, D. (1983b). Infinite series of random variables with regularly varying tails. Technical

 Report 83-24, Institute Applied Math. Statist., Univ. British Columbia, Vancouver, B.C.

 CLINE, D. and HSING, T. (1991). Large deviation probabilities for sums and maxima of random

 variables with heavy or subexponential tails. Preprint, Texas A&M Univ.

 CUNHA, C., BESTAVROS, A. and CROVELLA, M. (1995). Characteristics of WVW client-based traces.

 Preprint. Available as BU-CS-95-010 from {crovella, best}cs.bu.edu.

 DAVIS, R. and MIKOSCH, T. (1998). The sample autocorrelations of heavy-tailed stationary pro-
 cesses with applications to ARCH. Ann. Statist. 26 2049-2080.

 DAVIS, R. and RESNICK, S. (1985). Limit theory for moving averages of random variables with
 regularly varying tail probabilities. Ann. Probab. 13 179-195.

 DAVIS, R. and RESNICK, S. (1986). Limit theory for the sample covariance and correlation func-

 tions of moving averages. Ann. Statist. 14 533-558.

 DAVIS, R. and RESNICK, S. (1996). Limit theory for bilinear processes with heavy-tailed noise.
 Ann. Appl. Probab. 6 1191-1210.

 EMBRECHTS, P., KLUPPELBERG, C. and MIKOSCH, T. (1997). Modelling Extremal Events for Insur-

 ance and Finance. Springer, Berlin.

 EMBRECHTS, P. and VERAVERBEKE, N. (1982). Estimates for the probability of ruin with special

 emphasis on the possibility of large claims. Insurance Math. Econom. 1 55-72.

 HSING, T., HUSLER, J. and LEADBETTER, M. (1988). On the exceedance point process for a station-
 ary sequence. Probab. Theory Related Fields 78 97-112.

 KOKOSZKA, P. and TAQQU, M. (1996). Parameter estimation for infinite variance fractional
 ARIMA. Ann. Statist. 24 1880-1913.

 KWAPIEN, S. and WOYCZYNTSKI, N. (1992). Random Series and Stochastic Integrals: Single and
 Multiple. Birkhauser, Boston.

 NAGAEV, A. (1969a). Integral limit theorems for large deviations when Cramer's condition is not
 fulfilled 1, 11. Theory Probab. Appl. 14 51-64, 193-208.

 NAGAEV, A. (1969b). Limit theorems for large deviations where Cramer's conditions are violated.
 Izv. Akad. Nauk UzSSR Ser. Fiz.-Mat. Nauk 6 17-22. (In Russian.)

 NAGAEV, S. (1979). Large deviations of sums of independent random variables. Ann. Probab. 7

 745-789.

 PETROV, V. (1995). Limit Theorems of Probability Theory. Oxford Univ. Press.

 PROKHOROV, Y. (1959). An extremal problem in probability theory. Theory Probab. Appl. 4
 201-204.

 RESNICK, S. (1987). Extreme Values, Regular Variation and Point Processes. Springer, New York.

This content downloaded from 129.125.148.19 on Thu, 20 Dec 2018 09:30:26 UTC
All use subject to https://about.jstor.org/terms



 1064 T. MIKOSCH AND G. SAMORODNITSKY

 RESNICK, S. (1997). Why non-linearities can ruin the heavy tailed modeler's day. In A Practial

 Guide to Heavy Tails: Statistical Techniques for Analysing Heavy Tailed Distributions

 219-240. Birkhauser, Boston.

 RESNICK, S., SAMORODNITSKY, G. and XUE, F. (1999). How misleading can sample ACF's

 of stable MA's be? (Very!). Ann. Appl. Probab. 9 797-817.

 ROSENBLATT, M. (1962). Random Processes. Oxford Univ. Press.

 STRASSEN, V. (1965). The existence of probability measures with given marginals. Ann. Math.

 Statist. 36 423-439.

 DEPARTMENT OF MATHEMATICS

 P.O. Box 800

 UNIVERSITY OF GRONINGEN

 NL-9700 AV GRONINGEN

 THE NETHERLANDS

 E-MAIL: mikosch@math.rug.nl

 SCHOOL OF OPERATIONS RESEARCH

 AND INDUSTRIAL ENGINEERING

 CORNELL UNIVERSITY

 ITHACA, NEW YORK 14853

 E-MAIL: gennady@orie.cornell.edu

This content downloaded from 129.125.148.19 on Thu, 20 Dec 2018 09:30:26 UTC
All use subject to https://about.jstor.org/terms


	Contents
	1025
	1026
	1027
	1028
	1029
	1030
	1031
	1032
	1033
	1034
	1035
	1036
	1037
	1038
	1039
	1040
	1041
	1042
	1043
	1044
	1045
	1046
	1047
	1048
	1049
	1050
	1051
	1052
	1053
	1054
	1055
	1056
	1057
	1058
	1059
	1060
	1061
	1062
	1063
	1064

	Issue Table of Contents
	Annals of Applied Probability, Vol. 10, No. 3 (Aug., 2000), pp. 685-1064
	Front Matter
	Explicit Solution to the Multivariate Super-Replication Problem under Transaction Costs [pp. 685-708]
	r-Scan Statistics of a Marker Array in Multiple Sequences Derived from a Common Progenitor [pp. 709-725]
	Analysis of a Nonreversible Markov Chain Sampler [pp. 726-752]
	Self-Similar Communication Models and Very Heavy Tails [pp. 753-778]
	Analytic Expansions of Max-Plus Lyapunov Exponents [pp. 779-827]
	Strong Approximations for Multiclass Feedforward Queueing Networks [pp. 828-876]
	Index-Based Policies for Discounted Multi-Armed Bandits on Parallel Machines [pp. 877-896]
	Discrete-Review Policies for Scheduling Stochastic Networks: Trajectory Tracking and Fluid-Scale Asymptotic Optimality [pp. 897-929]
	Two-Server Closed Networks in Heavy Traffic: Diffusion Limits and Asymptotic Optimality [pp. 930-961]
	Large Deviations of Jackson Networks [pp. 962-1001]
	A Model for Long Memory Conditional Heteroscedasticity [pp. 1002-1024]
	The Supremum of a Negative Drift Random Walk with Dependent Heavy-Tailed Steps [pp. 1025-1064]
	Back Matter



