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Computation calculus bridging a formalization gap

Rutger M. Dijkstra
Rijksuniversiteit Groningen, P.O. Box 800, 9700 AV Groningen, Netherlands

Abstract

We present an algebra that is intended to bridge the gap between programming formalisms
that have a high level of abstraction and the operational interpretations these formalisms have
been designed to capture. In order to prove a high-level formalism sound for its intended oper-
ational interpretation, one needs a mathematical handle on the latter. To this end we design the
computation calculus. As an expression mechanism, it is su�ciently transparent to avoid begging
the question. As an algebra, it is quite powerful and relatively simple. c© 2000 Published by
Elsevier Science B.V. All rights reserved.

0. Introduction

For reasoning about (imperative style) programs, lots of extensions of predicate
calculus or logic are in circulation: Hoare-logic, wp-calculus, temporal logics of various
kinds, UNITY-logic, etc. All these extensions enrich the language of predicate calculus
with ‘primitives’ intended to capture some operational aspects of programs, e.g. in
wp-calculus:
wp.s.q: holds in those initial states for which every execution of program s termi-

nates in a state satisfying the predicate q,
in linear time temporal logic:
Gs: holds for those computations (i.e in�nite sequences of states) for which

every su�x satis�es s,
and for a UNITY program:
wlt.q: holds in those (initial) states for which every computation of the program

contains at least one state satisfying the predicate q.
The verbal right-hand sides above are ‘intended operational interpretation’ without

any formal status: they serve only to translate operational intentions into the formalism.
In order to actually prove properties of programs, the formalisms supply rules in the
form of postulates, de�nitions, axioms, inference rules, and so forth. Here is a random
sample from each of the aforementioned formalisms:

(a) wp:(S;T ):q=wp:S:(wp:T:q),

0167-6423/00/$ - see front matter c© 2000 Published by Elsevier Science B.V. All rights reserved.
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(b) ` G(s⇒Xs)⇒ (s⇒Gs),
(c) wlt:q= 〈�x :: 〈∃S :: 〈�y :: q∨ (〈∀T :: wp:T:y〉 ∧wp:S:x)〉〉〉.
This is where the problems start. Although for many of the rules it is quite clear that

they are indeed adequate for the intended operational interpretation – see (a) – this is
by no means always the case – see (c). This distance between intended interpretation
and mathematical formalization is what we call “the formalization gap”. If large, the
formalization gap can become a serious problem, since it means that the math we write
down does not necessarily mean what we think it does.
In this paper we develop an algebra, called “the computation calculus”, that is in-

tended to bridge this formalization gap. The idea is that intended operational interpreta-
tions can be expressed succinctly in the computation calculus and characterizations on
a higher level of abstraction can subsequently be derived from that, e.g. for the predi-
cate transformer wlt, we would ideally like to be able to derive the �xpoint expression
in (c) from some ‘direct’ formalization of the intended operational interpretation.
We abstract the computation calculus from a simple model of computations. Thus, we

start with a model wherein we de�ne some operators satisfying certain properties. Sub-
sequently, we forget the de�nitions and postulate the relevant properties. This ensures
that all results in our algebra are at least applicable to the model we abstract it from.
Although the computation calculus is potentially more general than the instance we

abstract it from, greater generality is not the purpose of the exercise. The reason for
the abstraction is twofold. Firstly, life is simpler at the higher level of abstraction, the
landscape less cluttered with detail. Therefore, there is less chance of getting lost or
tripping up. Secondly, since results in the algebra are derived from the postulates only,
their validity in the model relies only on the postulates being satis�ed therein. Thus,
the abstraction provides a clear view on the properties we actually use and, hence, the
assumptions we rely on.
The procedure we follow is incremental for both the model and the algebra. We begin

with a model that is far too general and we extract from this some very elementary
insights that we capture in our postulates. As we become more ambitious in the things
we want to prove, we may �nd that our algebra is still not strong enough. We then add
what is missing to the algebra and impose, if necessary, the appropriate restrictions on
the model.
After the initial exploration of the basics, the �rst slightly more ambitious target we

aim for is the pre-=postcondition semantics of simple sequential programs. The biggest
hurdle to overcome here is the treatment of (tail-) recursion. Subsequently, we prepare
the ground for higher targets by enriching our algebra with some insights concerning
atomic computations. This leaves us with an algebra that is very powerful indeed:
subsuming various temporal logics. Finally, we demonstrate the algebra in action by
applying all of it to a non-trivial problem: the derivation the �xpoint characterization
of wlt – see (c) – from its intended operational interpretation.
We build on the predicate calculus of Dijkstra and Scholten [3] augmented with

whatever facts from lattice theory we have use for, in particular the �xpoint calculus



R.M. Dijkstra / Science of Computer Programming 37 (2000) 3–36 5

as explored by Backhouse et al. [13]. Some highlights of this calculus are listed in the
appendix.
Readers familiar with relation algebra in any form, the sequential calculus of

von Karger and Hoare [9], or any of various temporal logics may recognize where
we got our inspiration from. However, unfamiliarity with these �elds should not stand
in the way of understanding our algebra.

1. Basics of the model

Our model is in essence taken from Johan Lukkien’s Ph.D. Thesis [11].
A “program (fragment)” or “statement” operates on a set of states. Starting a state-

ment in some initial state results in a sequence of (atomic) steps each of which ends in
a new state. We call the sequence of states traversed during the execution the compu-
tation generated by the statement. Computations can be �nite or in�nite but not empty
(0 steps means that the initial state is also the �nal state, i.e. generates a singleton
computation). So we have:

S: the state space; a nonempty set, the elements of which we call ‘states’.
C: the computation space; a set of nonempty, �nite or in�nite sequences of states

that we call ‘computations’.
A speci�cation is a predicate on computations, i.e. a function of the type C→B. We

also consider programs to be speci�cations: they specify exactly those computations
their execution may result in. Thus, both speci�cations and statements are elements of
the set CPred, de�ned as:

De�nition 0. CPred=C→B.

This provides a standard model for the predicate calculus as developed in [3] where
all boolean operators are lifted: (s⇒ t):� ≡ (s:�⇒ t:�); 〈∀i :: s:i〉:� ≡ 〈∀i :: s:i:�〉, etc.,
and ‘everywhere’ quanti�es over all computations: [s] ≡ 〈∀� :: s:�〉.
We extend the predicate algebra with sequential composition. Using #; ↑, and ↓ to

denote the list operations ‘length’, ‘take’, and ‘drop’ respectively, we de�ne:

De�nition 1. For all predicates s and t and computations �

(s; t):� ≡ (#� =∞∧ s:�)∨ 〈∃n : n¡#� : s:(� ↑ n+ 1)∧ t:(� ↓ n)〉:

Note the ‘one point overlap’ between � ↑ n+1 and � ↓ n, which reects that the �nal
state of the s-subcomputation is the initial state of the t-subcomputation.
In order for the right-hand side of (1) to be well typed, the sequences � ↑ n + 1

and � ↓ n must be computations for all n in the range. We therefore impose on C the
restriction that it satis�es:

Requirement 2. Nonempty segments of computations are computations.
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Sequential composition is universally disjunctive in its �rst argument, positively dis-
junctive in its second argument, and associative. Moreover, it has the (left- and right-)
neutral element 5 given by:

De�nition 3. 5:� ≡ #�=1 for all �.

Not distinguishing between a singleton computation and the single state it consists
of, the singleton computations are a subset of S. We assume that S does not contain
states that do not partake in any computation:

Requirement 4. “no junk” : S⊆C.

This means that 5 is the characteristic predicate of our state space and that we
can identify predicates on the state space with predicates that hold only for singleton
‘computations’.

2. Basics of the algebra

The computation calculus is an algebra on objects of the type CPred and it is an
extension of the predicate calculus, i.e:

Postulate 5. CPred is a predicate algebra.

Postulate 5 means that we import all the postulates for the predicate calculus from
[3]. These postulates characterize exactly a complete boolean lattice with the order
[ ⇒ ] and the boolean operators denoting the various lattice operations.
The �rst extensions we introduce are a further binary operator and an extra constant:

; : CPred2→CPred and 5 : CPred:

Composition (;) binds more strongly than the binary boolean operators but – as all
binary operators – more weakly than unary operators.
The additional ingredients satisfy:

Postulate 6.
(i) ; is universally disjunctive in its �rst and positively disjunctive in its second

argument.
(ii) ; is associative and 5 is its neutral element.

These postulates amount to little more than that our calculus is what Roland Back-
house calls a “semi-regular (boolean) algebra”. This is a very general structure and so
there would appear to be little of consequence to be deducible from these postulates
alone. For the moment, however, they are all we have got. Some standard consequences
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that we do not care to list as separate results are that composition is monotonic in both
arguments and has false as a left-zero element.
Life becomes more interesting with the introduction of some vocabulary:

De�nition 7. p is a state predicate ≡ [p⇒ 5] for all p.

As noted in the previous section, these correspond to predicates on our state space.
For state predicates we record the highly useful.

Fact 8 (State-restriction rules). (i) p ; s=p ; true∧ s; and
(ii) s ;p= s∧ true ;p for all s; and all state predicates p.

Proof. We show only the �rst. On account of monotonicity it su�ces to prove ‘⇐’
and this follows after shunting from the observation that

p ; s∨¬s
⇐ { p is a state predicate }
p ; s∨p ;¬s

= { ; over ∨; excluded middle }
p ; true:

The state-restriction rules express that by pre-=post�xing a state predicate p to a pred-
icate s, we obtain a characterization of those s computations for which the initial=�nal
state satis�es p. We proceed by exploring the consequences of requiring the �nal state
to satisfy false, i.e. be nonexistent. Instantiating state restriction rule (Fact 8(ii)) with
p := false yields

s ; false= s∧ true ; false:

Interpreting true ; false in the model, we �nd that this predicate holds exactly for
the in�nite (“eternal”) computations. We introduce names for this constant and for
its negation (which of course characterizes the f inite computations) and we introduce
some more vocabulary.

De�nition 9.

E; F :CPred; E= true ; false and F=¬E:

s is eternal≡ [s⇒ E] and s is �nite≡ [s⇒ F] for all s:

Thus, the preceding observation now reads:

Fact 10. s ; false= s∧ E for all s.
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We now explore to what extent our modest postulates allow us to con�rm our
expectations concerning �nite and in�nite behaviour. The �rst things to note are that,
on account of Fact 10 and elementary predicate calculus, we have for all s

(a) [s⇒ E]≡ s ; false= s and (b) [s⇒ F]≡ s ; false= false.

Composition being universally disjunctive in its �rst argument, false is left-zero thereof.
Consequently, it follows from (a) that the eternal predicates are precisely the left-zeroes
of composition:

Fact 11 (Preemption theorem).

[s⇒ E]≡〈∀t :: s ; t= s〉 for all s:

Since composition is positively disjunctive in its second argument and s ; false= false
means that s ; distributes over existential quanti�cations with an empty range as well,
we get from (b) the useful:

Fact 12. [s⇒ F]≡ s ; is universally disjunctive for all s.

We conclude this section with a couple of exercises. In spite of the heading “Etude”
we freely use the following facts as theorems.

Etude 13. Leaving universal quanti�cation over the free variables understood:
(i) [5⇒ F]; F ; F= F,
(ii) s ; t=(s∧ E)∨ (s∧ F) ; t,
(iii) s ; t ∧ F=(s∧ F) ; (t ∧ F), and
(iv) s ; t ∧ E=(s∧ E)∨ (s∧ F) ; (t ∧ E).

3. Hoare-triples and ‘Leads-to’

Let s be some statement; let p and q be state predicates. The Hoare-triple {p}s{q}
asserts that every s-computation for which the initial state satis�es p terminates in a
�nal state satisfying q. The s-computations with an initial state satisfying p are given
by p ; s and the computations that terminate in a state satisfying q are given by F ; q.
Thus, the Hoare-triple can be translated into our algebra as:

(a) [p ; s⇒ F ; q].

Now, let u be some UNITY program. In UNITY – where the program under con-
sideration is left implicit – the assertion p 7→ q expresses that every u-computation for
which the initial state satis�es p has some state satisfying q. Since the computations
that have a state satisfying q are those that satisfy F ; q ; true, this can be rendered in
our algebra as

(b) [p ; u⇒ F ; q ; true].
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Considered as equations in the unknown p of the type ‘state predicate’, the weakest
solution of (a) is wp:s:q and the weakest solution of (b) is wlt:q: So we would like to
get some grip on these weakest solutions.

4. State predicates and computation quanti�ers

We denote some special attention to the universe of state predicates. The �rst thing
to do is to name this universe:

De�nition 14. p ∈ SPred≡ [p⇒ 5] for all predicates p.

One immediate consequence of this de�nition is that (SPred ; [ ⇒ ]) is also a com-
plete boolean lattice. From the encompassing lattice, it inherits all the lattice operations
that it is closed under, i.e. existential quanti�cation, disjunction, and conjunction. The
other lattice operations on SPred – we use only negation and universal quanti�cation
– are easily de�ned in terms of the corresponding ones on CPred:

De�nition 15. ∼ : SPred→ SPred and ∀s : P:SPred→ SPred;

∼p=¬p∧ 5 and 〈∀s i ::p:i〉= 〈∀i ::p:i〉 ∧ 5:

With these operators (and 5 playing the rôle of true) SPred is yet another predicate
algebra.
For a state predicate p, the computations with an initial state satisfying p are charac-

terized by p ; true. For the restriction of ; true to state predicates we introduce special
notation, the ‘initially operator’:

De�nition 16. · : SPred→CPred; ·p=p ; true:

‘Initially’ enjoys some properties not enjoyed by ; true in general. In particular:

Fact 17. ·∼p=¬ ·p for all p:

Proof. By ping-pong argument.

Ping: [ ·∼p⇒¬·p] Pong: [¬·p⇒ ·∼p]
= { shunt; de�nition (16) } = { shunt; de�nition (16) }
[p ; true∧∼p ; true ⇒ false] [true⇒p ; true∨∼p ; true]

= { state restriction (8) (thrice) } = { ; over ∨ }
[(p∧∼p) ; true⇒ false] [true⇒ (p∨∼p) ; true]

= { false is left-zero } = { neutrality of 5 }
true: true:

Combining the fact that the initially operator inherits universal disjunctivity from
; true with Fact 17, we now �nd that it is universally conjective as well. Consequently,
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the initially operator has both an upper adjoint and a lower adjoint. We introduce
operators denoting these adjoints:

De�nition 18. A;E :CPred→ SPred,

[·p⇒ s]≡ [p⇒As] and

[Es⇒p]≡ [s⇒ ·p] for all s and all state predicates p:

These operators are, in essence, the “trace quanti�ers” from the branching-time temporal
logic CTL∗ [7]. Their interpretation is elementary:

• A’s holds in those initial states for which every computation satis�es s and
• E’s holds in those initial states for which at least one computation satis�es s.

We call these operators the universal and existential computation quanti�er, respec-
tively.
Using the universal computation quanti�er, we can now lay our hands on the weakest

solution of the Hoare-triple equation (a) from the previous section:

[p ; s⇒ F ; q]

= { state restriction }
[p ; true∧ s⇒ F ; q]

= { De�nition 16 and shunting }
[·p⇒ (s⇒ F ; q)]

= { De�nition 18 }
[p⇒A(s⇒ F ; q)]:

Since A(s⇒ F ; q) is a state predicate, it is the weakest solution for p. As a succinct
description of the intended operational interpretation of wp.s.q, we consider this a highly
satisfactory solution: A(s⇒ F ; q) expresses quite clearly that “every s-computation
terminates in a state satisfying q”, which is indeed what wp.s.q is supposed to mean.
The computation quanti�ers are not only in name and notation suggestive of quan-

ti�ers, but also in their algebraic properties:

Etude 19. Leaving universal quanti�cation over the free variables understood:
(i) “de Morgan”: ∼Es=A¬s.
(ii) A〈∀i :: si〉= 〈∀s i ::Asi〉.
(iii) E〈∃i :: si〉= 〈∃i ::Esi〉.
(iv) Afalse= false and Etrue= 5.
(v) A ·p=p=E ·p.
(vi) p∧As=A(·p∨ s) and p∧Es=E(·p∧ s).
(vii) p∧As=A(·p∧ s) and p∨Es=E(·p∨ s).
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For the restriction of true ; to SPred, on might expect properties that are similar to
those of the initially operator. However, since composition is only positively disjunctive
in its second argument, “�nally” is slightly more complicated than “initially”. Adapting
(the mirror image of) the proof of (17) to cater for these complications, we obtain:

Fact 20. true ;∼p=¬(F ;p) for all state predicates p:

Thus, as functions of the type SPred→CPred, the pre�xes true ; and F ; are each
others dual. It follows that the one is as conjuctive as the other is disjunctive. Now,
true ; is positively disjunctive while F ; is, on account of F being �nite, universally
disjunctive; hence

Fact 21. As functions of the type SPred→CPred
(i) true ; is universally conjunctive; and
(ii) F ; is positively conjunctive.

5. Weakest preconditions

In the precondition semantics of Dijkstra and Scholten [3] a statement s is character-
ized by two state-predicate transformers, wp.s and wlp.s. We introduce these functions
into our algebra via their intended interpretation.

De�nition 22. For all s and state predicates q
(i) wp:s:q=A(s⇒ F ; q), and
(ii) wlp:s:q=A(s⇒ true ; q).

Now that we have included the weakest preconditions in our algebra, we may seek
to prove, as theorems in our algebra, facts that Dijkstra and Scholten postulate.
Since A is universally conjunctive (Etude 19(ii)), it follows from, respectively,

Fact 21 and state-restriction rule (Fact 8(ii)) that:

Fact 23. For all s
(i) wp:s is positively conjunctive and wlp:s is universally conjunctive.
(ii) wp:s:q=wp:s:5∧wlp:s:q for all state predicates q.

Dijkstra and Scholten impose these as “healthiness conditions”: properties that a pair
(wp:s;wlp:s) should satisfy in order to qualify as a reasonable de�nition of statement s.
Since we can prove these properties from the intended interpretations (22), anything
else would, indeed, be quite unhealthy.
From the universal conjunctivity of A and predicate calculus, we also get:

Fact 24 (Nondeterministic choice). For all functions s and state predicates q
(i) wp:〈∃i :: s:i〉:q= 〈∀s ::wp:(s:i):q〉 and
(ii) wlp:〈∃i :: s:i〉:q= 〈∀s i ::wlp:(s:i):q〉.
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These equalities are what Hesselink [8] uses to de�ne “nondeterministic choice”.
A moment of reection should su�ce to see that, in our model, nondeterministic choice
is, indeed, captured by existential quanti�cation.
Further exploration of the preconditions is greatly simpli�ed by the following two

observations:

Fact 25. wlp:s=wp:(s∧ F) for all s:

Fact 26 (wp-dualization). ∼wp:s:q=E(s ;∼ q) for all s and state predicates q:

The �rst of these follows immediately from the de�nitions and the fact that, according
to Etude 13(ii), true ; q= E∨ F ; q. The second is established using state restriction and
dualities (Etude 19(i) and Fact 20).
Our next natural target consists of the preconditions of sequential compositions.

This is the point where we �nally reach the limit of our very modest initial postulates.
Following [3], we expect:

Fact 27 (Compositionality of the preconditions). (i) wp:(s; t) :q=wp:s:(wp:t:q) and
(ii) wlp:(s ; t):q = wlp:s :(wlp : t:q) for all s; t and state predicates q.

Using Fact (25) and Etude 13(iii), we �nd the second of these to be equal to the �rst
instantiated with s; t := (s∧F); (t∧F), so we need to consider the �rst only. Attempting
to verify Fact 27(i) we observe – with the types of the dummies understood – that

〈∀s; t; q :: wp:(s; t) :q = wp:s :(wp:t:q)〉
= { negating both sides and (26) (thrice) }

〈∀s; t; q :: E(s ; t ;∼q) = E(s ;E(t ;∼q))〉
= { mutual instantiation: q :=∼ 5 and t := t ;∼q; respectively }

〈∀s; t :: E(s ; t) = E(s ;Et)〉

and here we get stuck. The last line is not provable because, as we will see, it need
not – yet – be true in our model.
We make the compositionality of the preconditions a theorem of our algebra by

adding the last line in the preceding calculation to our postulates.

Postulate 28 (Composition rule). E(s ; t)=E(s ;Et) for all s and t.

In the next section we check what this postulate means for our model, thereby estab-
lishing both that it is reasonable and that it is independent of the previous postulates.
However, we gave the composition rule in its simplest, rather than in its weakest form.
In order to facilitate the analysis of the next section, we request that the reader verify
that Postulate 28 follows from the evidently weaker:
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Fact 28′. [E(s ;Et)⇒E(s ; t)] for all �nite s and all t.

This is the rule that we now have a closer look at in our model.

6. Composition in the model

In our model of computations, the meaning of the existential computation quanti�er
is that, for any predicate s and any state �:

(Es):�= 〈∃� : �= �:0 : s:�〉:
In order to keep the analysis of the composition rule in our model palatable, we
introduce two abbreviations:

� ./ �≡ #�¡∞∧ last:� = � :0 (where last :�= � :(#� − 1));
�' � · �≡ 〈∃n : n¡#� : �= � ↑ n+ 1 ∧ �= � ↓ n〉

(“� �ts �” and “� consists of � followed by �”). Now, Fact 28′ states that

(E(s ;Et)) :�⇒ (E(s ; t)) :� for all �nite s; all t; and all states �;

and spelling out the antecedent and consequent in isolation yields – after a considerable
amount of juggling:

(E(s ;Et)) :�≡ 〈∃�; �: �= � :0 ∧ s :� ∧ t :�: � ./ �〉;
(E(s ; t)) :�≡ 〈∃�; �: �= � :0 ∧ s :� ∧ t:�: 〈∃� :: �' � · �〉〉:

Comparing the two right-hand sides we �nd that the question of whether Fact 28′ holds
in our model boils down to the question of whether

(∗) � ./ �⇒〈∃� :: �' � · �〉 for all � and �:

Is this reasonable? Can we prove it? Well, since � ./ � means that the �nal state of the
�nite computation � coincides with the initial state of the computation �, it is easily
seen that there is a (unique) sequence of states � such that �' � · �: just “paste” �
and � together with one point overlap. However, the dummy � in (∗) ranges over our
computation space C rather than over arbitrary sequences of states; thus, (∗) expresses
that our computation space is closed under “pasting”.
The current restrictions on our computation space do not allow us to conclude this.

Hence, if we �nd it reasonable, we have to require it explicitly. We do �nd it reasonable
and so we impose on C the further restriction:

Requirement 29. C is closed under “pasting”, i.e.

� ./ �⇒〈∃� : �∈C : �' � · �〉 for all � and � in C:
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7. Iterators

So far, the expressive power of our algebra is rather limited. We increase the ex-
pressive power – considerably – by the introduction of two more unary operators, ∗

and ∞, respectively. The operational interpretation of these operators is that s∗ cor-
responds to “s repeated any �nite number of times” and s∞ corresponds – roughly
– to “s repeated forever”. We do not, however, try to formalize these operational in-
tentions. Instead, we de�ne the operators by �xpoint expressions that have proven to
be fundamental in similar algebraic contexts. Subsequently, we have a closer look at
the operational signi�cance of these operators in the current context. For a glossary on
�xpoints, we refer the reader to the appendix.

De�nition 30. ∗; ∞ :CPred→CPred ,
(i) s∗ = 〈�x :: s ; x ∨ 5〉 and
(ii) s∞ = 〈�x :: s ; x〉 for all s.

We call these operators the “�nite iterator” and “in�nite iterator”, respectively, and
they bind stronger than negation and the computation quanti�ers.
Arguably the single most important aspect of these operators is that they give us a

handle on both extreme solutions of the ‘tail-recursion equation’ x = s ; x ∨ t.

Fact 31 (Tail-recursion theorem). For all s and t
(i) 〈 �x :: s ; x ∨ t〉 = s∗ ; t and
(ii) 〈�x :: s ; x ∨ t〉 = s∗ ; t ∨ s∞.

Proof. Along with a lot of other properties of ‘Kleene-stars in general’, a proof of (i)
can be found in [13]. For the sake of completeness, we repeat it here.

s∗ ; t = 〈�x :: s ; x ∨ t〉
= { De�nition 30(i); dummy renaming }

〈�x :: s ; x ∨ 5〉 ; t = 〈�y :: s ;y ∨ t〉
⇐ { ; t is universally disjunctive; �xpoint fusion (see the appendix) }

〈∀x; y : x ; t=y : (s; x ∨ 5) ; t= s ;y ∨ t〉
= { ; over ∨; neutrality of 5; Leibniz }
true:

The proof of (ii) is similar:

s∗ ; t ∨ s∞ = 〈�x :: s ; x ∨ t〉
= { De�nition 30(ii); dummy renaming }
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s∗ ; t ∨ 〈�x :: s ; x〉 = 〈�y :: s ;y ∨ t〉
⇐ { s∗ ; t ∨ is universally conjunctive; �xpoint fusion }

〈∀x; y : s∗ ; t ∨ x=y : s∗ ; t ∨ s ; x= s ;y ∨ t〉
= { predicate calculus; ; over ∨ }

〈∀x :: s∗ ; t ∨ s ; x= s ; s∗ ; t ∨ s ; x ∨ t〉
= { from (i) by unfolding: s∗; t= s; s∗; t ∨ t }
true:

After these preliminaries, we now have a closer look at each of our iterators in
isolation.

7.1. The �nite iterator

With exponentiation de�ned as usual: s0 = 5 and sn+1 = s ; sn, the operational
interpretation of sn is clearly “s repeated n times”. Now, one readily veri�es that

Etude 32. s∗ = 〈∃n :: sn〉 for all s and this substantiates the interpretation we gave for
the �nite iterator, since the right-hand side expresses “s repeated any �nite number of
times” almost literally.

In fact, Etude 32 is the more traditional de�nition of a Kleene-star and all familiar
algebraic properties of Kleene-stars are, indeed, enjoyed by ours. Since re-exploring
these properties is not all that exciting, we refrain from doing so; we will just state the
properties that we use when and where the need arises. For a �ne treatment of general
Kleene-stars based on �xpoint calculus we refer the reader to [13].
We do take a closer look at the interaction between the �nite iterator and the con-

stants F and E, since these are rather speci�c for our algebra. For any s, we calculate:

s∗

= { De�nition 30(i) }
〈�x :: s ; x ∨ 5〉

= { 13(ii) }
〈�x :: (s ∧ F) ; x ∨ (s ∧ E) ∨ 5〉

= { tail-recursion Theorem 31(i); ; over ∨; neutrality of 5 }
(s ∧ F)∗ ; (s ∧ E) ∨ (s ∧ F)∗:

The �rst of these disjuncts is eternal and, since F∗= F (etude), the second disjunct
is �nite. Thus, the eternal s∗-computations are those that eventually get stuck in an
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eternal s-subcomputation and the �nite ones are those wherein every s-subcomputation
is �nite. This is highly unsurprising but it is good to note that �nite iteration does not,
in itself, introduce any ‘new’ nonterminating computations: if s is �nite, so is s∗.
For later reference we list two insights we just obtained:

Fact 33. For all s
(i) [s⇒ F]⇒ [s∗⇒ F] and
(ii) s∗ ∧ F = (s ∧ F)∗.

7.2. The in�nite iterator

Although the in�nite iterator is less well known than the Kleene-star, we are equally
brief about its algebraic properties. These properties are similar to those of the �nite
iterator and, on the whole, unsurprising, e.g. the familiar “leap-frog” and “loop nesting”
rules for Kleene-stars have obvious counterparts for the in�nite iterator:

s ; (t ; s)∗ = (s ; t)∗ ; s and s ; (t ; s)∞ = (s ; t)∞;

(s ∨ t)∗ = (s∗ ; t)∗ ; s∗ and (s ∨ t)∞ = (s∗ ; t)∗ ; s∞ ∨ (s∗ ; t)∞:
An exhaustive treatment of ∞ in relational calculus can be found in [5].
The operational interpretation of s∞ is somewhat more subtle than that of s∗. In

order to get a tighter grip on the operational signi�cance of the in�nite iterator we
begin with a taxonomy of s∞-computations.
For any s, let s1 = s ∧ 5; sf = s ∧ ¬5 ∧ F, and se = s ∧ E, i.e. we partition the

s-computations into singletons, �nite non-singletons, and eternal computations. Then

s∞

= { De�nition 30(ii); s = s1 ∨ sf ∨ se }
〈�x :: (s1 ∨ sf ∨ se) ; x〉

= { ; over ∨; Preemption 11; and diagonal rule (see the appendix) }
〈�x :: 〈�y :: s1 ;y ∨ sf ; x ∨ se〉〉

= { tail-recursion theorem (Fact 31(ii)) }
〈�x :: s∗1 ; (sf; x ∨ se) ∨ s∞1 〉

= { s1 is a state predicate; hence s∗1 = 5 and s∞1 = s1 ; true (etude) }
〈�x :: sf; x ∨ se ∨ s1 ; true〉

= { tail-recursion theorem (Fact 31(ii)); ; over ∨ }
s∗f ; se ∨ s∗f ; s1 ; true ∨ s∞f :

So we �nd that s∞-computations come in three avours and now explicate each of
these in the model.
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Inner eternal s∗f ; se: After a �nite number of �nite s-executions, the entire remain-
der of the computation consists of a single in�nite s-execution. It is this type of
s∞-computation that motivates reading ∞ as “forever” rather than “in�nitely often”
(though even “forever” is misleading in the presence of short circuits).
Short circuits s∗f ; s1 ; true: A �nite number of �nite s-computations ending with

a singleton s-execution and followed by anything if at all. This term is not even
eternal (unless equal to false) and so these computations may be rather unexpected for
“s forever”.
The thing to note is that singleton computations involve no computation steps and

state predicates characterize just single states without any actual computation. Stretching
the imagination, one can see state predicates as statements that “take no time”. The
equality s∞1 = s1 ; true can then be read as expressing that s

∞
1 results in a “short-

circuit loop”: s1 is executed in�nitely often but without any accumulation of time and,
subsequently, anything may happen. Elsewhere, this is known as “unguarded recursion”
or “causal loop”.
Alternatively, we may just conclude that “s forever” is not an adequate interpretation

of s∞ if short circuits are possible (s1 6= false).
Outer eternal s∞f : In�nite computations consisting of in�nitely many �nite s-com-

putations pasted together. More formally, we have for any computation � that

(s∞f ) : �≡ there is an in�nite sequence cut of indices (naturals), such that
• cut0 = 0 and cuti¡cuti+1¡#� for all i (hence #�=∞)
• s:(�[cuti : : : cuti+1]) for all i (where �[n : : : k] = (�↑k + 1)↓n).

Thus, s∞f characterizes “in�nitely often s”.
The only s∞-computations that may unexpectedly be �nite are the short circuits and

these are excluded from the range of possibilities if s1 = false, i.e. [s⇒ ¬ 5]. We
introduce an adjective for the latter property of s and record the insight that in�nite
loops do not, ordinarily, terminate.

De�nition 34. s is active ≡ [s⇒ ¬ 5] for all s.

Fact 35. [s∞ ⇒ E] for all active s.

Alas, our current postulates do not allow us to con�rm the latter fact. So far, all
our postulates are also valid in relational calculus and in this context (Fact 35) is not
true. So we add this to our postulates but �rst eliminate the in�nite iterator:

〈∀s : [s⇒ ¬ 5] : [s∞ ⇒ E]〉 i.e. Fact 35

= { ∞ is monotonic, predicate calculus }
[(¬ 5)∞ ⇒ E]

= { De�nition 30(ii) and Knaster–Tarski (see the appendix) }
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[〈∃s : [s⇒ ¬ 5 ; s] : s〉⇒ E]

= { predicate calculus }

〈∀s : [s⇒ ¬ 5 ; s] : [s⇒ E]〉 (Postulate 36) below

and this is what we take for our new postulate.

Postulate 36. Accumulation rule. [s⇒ ¬ 5 ; s]⇒ [s⇒ E] for all s.

8. Tail-recursion, a.k.a. repetition

We now have a look at repetition or, slightly more generally, tail recursion. We
consider recursive declarations that are, for some active s and some t, of the form

(∗) r= s ; r ∨ t;

i.e. r is a choice (∨) between a recursive case (s ; r) and a base case (t).
Although we generally feel that a recursive procedure declaration characterizes the

procedure in question uniquely, the equality above actually fails to do so. The tail-
recursion theorem (Fact 31) gives the two extreme candidates as s∗ ; t and s∗ ; t ∨ s∞,
respectively, and the latter is in general properly weaker than the former. So we have to
decide what solution of a recurrence equation we expect from a computing mechanism.
We claim that recursion operationally leads to weakest �xpoints, i.e. every com-

putation that is not inconsistent with the equation should be considered possible. The
case of tail-recursion presents corroborative evidence for this. Spelling out the weakest
solution for r from (∗) using the taxonomies from the previous section gives

r=(s ∧ F)∗ ; t ∨ (s ∧ F)∗ ; (s ∧ E) ∨ (s ∧ F)∞:

This sums up the possibilities nicely: either the base case after a �nite number of
unfoldings, an eternal s-computation after a �nite number of unfoldings, or in�nite
recursion.

Remark. The repetition r=while b do s od is characterized by its �rst unfolding:

r= if b then s ; r �= b ; s ; r ∨ ∼b:

The weakest solution for r from this is (b ; s)∗ ;∼b ∨ (b ; s)∞, which one would also
get straight from the operational understanding of the repetition.
The restriction to active s ensures that at least one atomic step separates the starts

of any two incarnations of r. Operationally, this is inescapable, because the repetition
involves at least one jump or subroutine call. So this requirement involves no signi�cant
loss of generality. Without it, some of the things below would come apart as a result
of short-circuit loops.
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The restriction to active s means that the recursion in (∗) is “guarded”. In our algebra,
this does not imply that (∗) has a unique solution, as it does in many process algebras.
The price one pays for having unique solutions to guarded recurrence equations is the
inability to distinguish between “unbounded” and “in�nite”.
Finally, note that nondeterminism has nothing to do with the �xpoint not being

unique. The point is that the strongest �xpoint fails to capture the possibility of in�nite
unfolding.

Now, that we have the pieces together for dealing with tail recursion we take a look
at the preconditions. Generalizing Dijkstra and Scholten’s treatment of the repetition
or applying Hesselink’s theory of general recursion leads us to expect

Fact 37. For all active s; all t; and all state predicates q
(i) wp:〈�x :: s ; x ∨ t〉:q = 〈�y :: wp:s:y ∧ wp: t:q〉 and
(ii) wlp:〈�x :: s ; x ∨ t〉:q = 〈�y :: wlp: s:y ∧ wlp: t:q〉.

Let us see whether we can con�rm this. The closed form of the tail-recursion theorem
suggests that we look at the iterators in isolation �rst and we begin with the �nite
iterator. For any s and state predicate q, we calculate:

wp: s∗:q

= { wp-dualization (Fact 26) }

∼E(s∗ ;∼q)

= { tail recursion theorem (Fact 31(i)) }

∼E〈�x :: s ; x ∨ ∼q〉

= { E is universally disjunctive. Heading for �xpoint fusion, we calculate for

any x and y such that Ex=y

E(s ; x ∨ ∼q)

= { E over ∨, composition rule (Postulate 28) }

E(s ;Ex) ∨ E∼q

= { Ex=y (given) and E∼q=∼q (etude) }

E(s ;y) ∨ ∼q:

Thus, we can now apply �xpoint fusion.}

∼〈�y ::E(s ;y) ∨ ∼q〉
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= { �xpoint dualisation, de Morgan, and wp-dualization (Fact 26)}
〈�y ::wp: s:y ∧ q〉:

Using Facts 25 and 33(ii), the equality we just derived can be transformed into the
corresponding one for the liberal precondition. So we have:

Fact 38. For all s and state predicates q:
(i) wp: s∗:q= 〈�y ::wp: s:y ∧ q〉 and
(ii) wlp: s∗:q= 〈�y ::wlp: s:y ∧ q〉.

In essence, this takes care of Fact 37(ii). Using the closed form from the tail-
recursion theorem and the rules for the liberal preconditions of disjunctions (Fact 24),
compositions (Fact 27), and �nite iterations (above), we get

wlp:〈�x :: s ; x ∨ t〉:q= 〈�y ::wlp: s:y ∧ wlp: t:q〉 ∧ wlp: s∞:q:
Since s is active, s∞ is eternal by Fact 35 and hence (using Fact 25) wlp: s∞:q= 5.
Consequently, the �nal conjunct above vanishes. Note that this �nal conjunct would
not vanish, and indeed Fact 37(ii) would be false, if s were not active.
The equality of Fact 37(i) is less straightforward. Using the same recipe as above,

we get for the left-hand side of Fact 37(i).

wp:〈�x :: s ; x ∨ t〉:q= 〈�y ::wp: s:y ∧ wp: t:q〉 ∧ wp: s∞:q;
whereas, using �xpoint fusion, we get for the right-hand side of Fact 37(i)

〈�y ::wp: s:y ∧ wp: t:q〉= 〈�y ::wp: s:y ∧ wp: t:q〉 ∧ 〈�y ::wp: s:y〉:
Thus, we would be done if we can establish the equality of the two �nal conjuncts on
the right (which amounts to our original proof obligation (Fact 37(i)) with t := false).
Now,

wp: s∞:q= 〈�y ::wp: s:y〉
= { dualization, s∞ ;∼q= s∞ by (11) since s∞ is eternal }
Es∞= 〈�y ::E(s ;y)〉

= { ‘⇒’ is an immediate consequence of �xpoint induction }
[〈�y ::E(s ;y)〉⇒Es∞]

= { Knaster–Tarski and predicate calculus }
〈∀y : [y⇒E(s ;y)] : [y⇒Es∞]〉:

Sadly, this is not – yet – provable because it need not – yet – be true in our model.
We did leave room in our model for the possibility of computations being eternal, but
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nothing in our current assumptions allows the conclusion that our computation space
actually contains eternal computations. If all computations were �nite, the term in the
last line above would almost always be false, but the same would not hold for the
range.
The point is that the nonliberal precondition distinguishes itself from the liberal one

also by guaranteeing termination. If certain eternal computations are a priori excluded
from the range of possibilities, it may well be that a precondition that is weaker than
the strongest �xpoint in Fact 37(i) would be su�cient.
We do not believe in magical termination and we make our scepticism explicit by

adding the �nal line of the preceding calculation as a postulate to our algebra.

Postulate 39 (Cycle rule). [p⇒E(s ;p)]⇒ [p⇒Es∞] for all p and s.

(This brings the total of our postulates up to Postulates 5, 6, 28, 36, and 39.)
Before we check what this means for our model, we record the �xpoint equality we

had rewritten to obtain the cycle rule (see preceding calculation):

Fact 40. Es∞= 〈�y ::E(s ;y)〉 for all s.

And now we have a look at the model.

9. Cycles in the model

Let p and s satisfy [p⇒E(s ;p)], i.e. the antecedent of the cycle rule. We would
like to establish the consequent of the cycle rule: [p⇒Es∞], i.e. every p-state is
initial for some s∞-computation. Roughly, the reasoning goes as follows.
For every initial state satisfying p we have, on account of [p⇒E(s ;p)] an s-

computation that, if �nite, ends with a state that satis�es p again. If existent, this �nal
state is initial for another such s-computation which �ts the previous one and, hence
can be pasted to it. Repeating the process inde�nitely or until an in�nite s-computation
is encountered, now yields our s∞-computation.
Well, almost but not quite. Our ‘computation-under-construction’ converges to a

sequence of states that would, indeed, be an s∞-computation if only it were a com-
putation. But nothing in the current assumptions about C allows us to conclude the
latter: C =S+ would satisfy all restrictions well.
We remedy the situation by imposing yet another restriction on our model.

Requirement 41. C is “limit closed”, i.e. every nonempty subset of C that is linear
w.r.t the pre�x-order has an upper bound in C (upper bound w.r.t to the pre�x-order,
naturally).

It should be noted that the limit closedness is stronger than necessary for ensuring
the validity of the cycle rule. Putting it the other way around: the cycle rule is too
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weak to capture limit closedness in its full generality. We make do with the cycle rule
because it is simple and it su�ces for almost everything we want. Notable exceptions
to the latter are general (mutual) recursion and UNITY programs with in�nite assign
sections.

10. Temporal logic and atomic steps

Having dealt to our satisfaction with the pre-=postcondition semantics of simple
imperative programs, we now raise our sights. In pre-=postcondition semantics, the
only things that interest us in a program are, for every initial state, the reachable �nal
states and the possibility of nontermination. This is OK as long as these are the only
things that matter.
There are, however, situations in which what happens in the course of program

execution is also relevant or is all that is relevant. In particular, this is the case if
programs are supposed to interact (with a user or with other programs). In such cases,
we want to be able to specify run-time behaviour.
Various temporal logics have been designed precisely for this purpose. We have al-

ready mentioned the “branching time” temporal logic CTL∗ from Emerson and
Srinivasan [7], which is the logic from which we have borrowed our computation
quanti�ers. CTL∗ is an extension of another logic: the “linear time” temporal logic
LTL from Manna and Pnueli [12]. In fact, the trace quanti�ers that we borrowed are
exactly what CTL∗ adds to LTL.
The language of LTL extends standard logic with a handful of temporal operators

intended to be used to specify behaviour in time. The single most important of these
is the unary “next-time operator” X: a computation satis�es Xs if the computation that
follows the �rst atomic step satis�es s.
There are two reasons why this is an operator of fundamental importance. Firstly, all

the other temporal operators of LTL can be expressed in terms of it. Hence, X is all we
need to obtain the full expressive power of LTL. Secondly and more importantly, this
operator makes the grain of atomicity explicit and doing so is essential for reasoning
about parallel programs with interleaving semantics.
So we add the next-operation to our algebra. There is, however, a slight di�er-

ence between LTL and our algebra. Where LTL is designed to be sound for models
containing eternal computations only, the model from which we are abstracting our
algebra contains �nite computations as well. In particular, our computation space con-
tains atomic computations. Consequently, we can add “next” as a constant instead of
an operator.
An atomic computation is a computation of length 2 and, after introducing the pred-

icate X that holds for exactly these:

De�nition 42. X:� ≡ #�=2,
we can express the next-operation of LTL as Xs= X ; s.
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To add X to the computation calculus, we need some algebraic characterization of it.
The �rst thing we note is that X ; true holds exactly for the nonsingleton computations:

(a) [5 6≡ X ; true].

From this fact it can be inferred that singleton computations do not satisfy X and that
atomic steps do. However, (a) also holds for X :=¬5 – it follows from (a) that this is
so – thus, we still have to capture the fact that computations of length greater than 2
do not satisfy X. We do this by excluding that possibility of one computation having
more than one pre�x satisfying X:

(b) [X ; s∧ X ;¬s⇒ false] for all s.

Seen as equation in the unknown X, (a)∧ (b) has a unique solution in our model which
is given by De�nition 42. But, models for our current postulates can be constructed
wherein there are no solutions at all. Hence, we have to add this to our postulates.
Right at the beginning, we required that our state space be contained in our com-

putation space. This does not exclude the possibility of states that occur only in a
singleton computation. In fact, a computation space consisting of nothing else but sin-
gleton computations satis�es all the restrictions we imposed so far.
Since we consider this an undesirable degeneration of our model, we replace the

no-junk property by the stronger requirement:

Requirement 43. An atomic step is possible for every initial state, which can be ren-
dered algebraically as

(c) EX= 5.

11. Atomicity and temporal logic

We extend our algebra with a new constant X of type CPred satisfying the following
properties:

Postulate 44 (Atomicity rules).
(i) [5 6≡ X ; true].
(ii) [X ; s∧ X ;¬s⇒ false] for all s.
(iii) EX= 5.

We list some elementary consequences of these postulates:

Fact 45.
(i) [X⇒¬5] and [X⇒ F]
(ii) X∞= E and X∗= F.
(iii) ¬(X ; s)= X ;¬s∨ 5 for all s.
(iv) X ; is positively conjunctive.
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Proof. That X is active and �nite – i.e. (i) – follows, respectively, from Postulate 44(i)
and from Postulate 44(ii) with s := true. From (i), and Facts 35 and 33(i), we im-
mediately obtain ‘⇒’ for the two equalities in (ii) and the reverse implications are
established by

[E⇒ X∞] [X∗ ⇐ F]
⇐ { �xpoint induction } = { predicate calculus }
[E⇒ X ; E] [X∗ ∨ E]

= { De�nition 9 of E } = { neutralities and E= X∞ }
[E⇒ X ; true ; false] [true⇒ X∗ ; 5∨ X∞]

= { Fact 10 and Postulate 44(i) } ⇐ { Fact 31(ii) and �xpoint induction }
[E⇒¬5∧ E] [true⇒ X ; true∨ 5]

= { E is active } = { Postulate 44(i), predicate calculus }
true: true:

The proofs of (iii) and its immediate consequence (iv) are left to the reader.

With the constant X, we have the full expressive power of LTL at our disposal
(the full expressive power of CTL∗ in fact). The other temporal operators of LTL are
“some-time”, “always”, and “until”. Since we have no use for “until” we refrain from
introducing it. The “some-time” operator is something we already have: it is the pre�x
F ; . In order to be in accordance with the axiomatization of LTL, this operator should
satisfy:

Fact 46. F ; s= 〈�x :: X ; x∨ s〉 for all s.

This fact follows immediately from Fact 45(ii) and the tail-recursion theorem
(Fact 31(i)). The most salient algebraic properties of “some time” are captured by:

Fact 47. F ; is a universally disjunctive closure (see the appendix).

Which follows from Fact 12 and Etude 13(i).
We de�ne “always” as the dual of “some time”:

De�nition 48. G : CPred→CPred; Gs=¬(F ;¬s) for all s.

On account of being the dual of a universally disjunctive closure:

Fact 49. G is a universally conjunctive interior (see the appendix).

The axiomatization of LTL for the always-operator boils down to the �xpoint char-
acterization Gs= 〈�x :: X ; x∧ s〉, but – since our computations may be �nite – this
does not hold in our algebra. Instead, dualizing Fact 46 and simplifying the result with
Fact 45(iii) yields:
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Fact 50. Gs= 〈�x :: (X ; x∨ 5)∧ s〉 for all s.

If s is eternal; (X ; x∨ 5)∧ s= X ; x∧ s since 5 is �nite. So; in that case; the above
�xpoint characterization reduces to the one of LTL.
Taking care of the cosmetic di�erences necessary to cater for the existence of �nite

computations, the entire axiomatization of LTL can now be proved correct; so our
algebra subsumes this logic completely. The reader may wonder how we fare with
CTL∗, but there is nothing to subsume here since CTL∗ has no axiomatization that we
know of. Emerson and Srinivasan [7] do give an axiomatization for a (small) segment
of CTL∗ and those axioms and inference rules are, indeed, all provable in our algebra
(Postulate 44(iii) is essential here).

12. Persistence

The �xpoints of the interior operator G are of particular interest: they occur frequently
and are pleasant to work with. We call these predicates ‘persistent’:

De�nition 51. s is persistent ≡ s= Gs for all s.

Since G is strengthening, the mathematical content of this equality consists of the
implication [s⇒ Gs].
If a computation has some persistent property, all of its su�xes have the same

property. This inheritance is something we frequently exploit and the following rule
makes it algebraically explicit.

Fact 52 (Persistence rule).

[t ; u∧ s⇒ t ; (u∧ s)] for all persistent s and all t and u:

Proof. This follows after shunting from the observation that:

t ; u
= { Etude 13(ii) }
(t ∧ E)∨ (t ∧ F) ; u

= { excluded middle and distribution }
(t ∧ E)∨ (t ∧ F) ; (s∧ u)∨ (t ∧ F) ; (¬s∧ u)

⇒ { Etude 13(ii); monotonicity }
t ; (s∧ u)∨ F ;¬s

= { F ;¬s=¬Gs; s is persistent }
t ; (s∧ u)∨¬s:

Using the persistence rule in any particular circumstance requires that we establish
the persistence of the particular instance of s involved. Obviously, a direct proof of
[s⇒ Gs] would do, but there are cheaper alternatives. The �rst and cheapest is induction
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on the syntax; from the idempotency, universal conjunctivity, and monotonicity of G
respectively, it follows that

Fact 53. For all s and functions t
(i) Gs is persistent; and
(ii) 〈∀i :: t:i is persistent〉⇒ 〈∀i :: t:i〉 and 〈∃i :: t:i〉 are persistent.

The second cheap way for establishing persistence consists in weakening the proof
obligation [s⇒ Gs] using Fact 50 and �xpoint induction to [s⇒ X; s∨ 5]. In the – usual
– case where s is active, the �nal ‘: : : ∨ 5’ vanishes and this strategy boils down to

Fact 54. s is persistent ⇐ [s⇒ X ; s] for all s.

As an easy consequence of the persistence rule, we get a relation between the always-
operator G and the in�nite iterator ∞. For any s we have

G(s ; true)
= { G is strengthening }
s ; true∧ G(s ; true)

⇒ { G(s ; true) is persistent; persistence rule (52) }
s ; G(s ; true);

from which we conclude – by �xpoint induction – that [G(s ; true)⇒ s∞]. Asking
ourselves the question under which conditions the reverse implication – and hence
equality – would hold, we �rst note that G(s ; true)= s∞ implies that s∞ is persistent.
Thus the latter is a necessary condition for the reverse implication to hold. It is also
su�cient:

[G(s ; true)⇐ s∞]
= { s∞ is persistent and unfolding }
[G(s ; true)⇐ G(s ; s∞)]

= { monotonicity }
true:

So we have found

Fact 55. For all s
(i) [G(s ; true)⇒ s∞]
(ii) G(s ; true)⇒ s∞ ≡ s∞ is persistent.

13. Atomic actions

An atomic action is a statement generating only single-step computations:

De�nition 56. a is atomic ≡ [a⇒ X] for all a.
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Atomic actions satisfy a property that is similar to the state restriction rule (Fact 8(i))
for state predicates.

Fact 57 (Atomic split). a ; s= a ; true ∧ X ; s for all atomic a and all s.

Proof. On account of monotonicity it su�cies to prove ‘⇐’ and this follows after
shunting from the observation that:

a ; s ∨ ¬(X ; s)

⇐ { Postulate 44(ii) }

a ; s ∨ X ;¬s

⇐ { a is atomic; ; over ∨; excluded middle }

a ; true:

When reasoning on the atomic level, we occassionally need the following stronger
version of the atomic split.

Fact 58 (Abide rule). For all atomic a and b and all s and t

a ; s ∧ b ; t=(a ∧ b) ; (s ∧ t):

Since our algebra is by now quite powerful, one might expect the veri�cation of
the abide rule to be unproblematic. Sadly, it is not. Using the atomic split, one readily
veri�es that it su�ces to prove the abide rule for s and t both equal to true, but then
we get stuck.
The problem is that the validity of the abide rule in the model depends upon a

property of the pre�x order 4 that our current postulates do not address:

〈∃� :: �4 � ∧ �4 �〉⇒ �4 � ∨ �4 � for all computations � and �:

In [9], something akin to this is called “local linearity”.
This brings us to the �nal postulate of our algebra.

Postulate 59 (Linearity). For all s and t

[s ; true ∧ t ; true⇒ (s ; true ∧ t) ; true ∨ (s ∧ t ; true) ; true]:

We leave it to the reader to prove the abide rule from this.
The growing number of postulates is making it increasingly di�cult to �nd alterna-

tive models and we have not been able to construct a model that establishes that our
�nal postulate does not follow from the rest. Still, we are reasonably con�dent that it
does not.
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14. Unity

The need for formal support for operational reasoning was driven home to us in
the course of our explorations of UNITY. State-predicate transformers for UNITY
with a straightforward operational interpretation often have an intractable mathematical
characterization, which makes the correctness of such a characterization nontrivial. As
proof of the pudding, we apply all the machinery we have developed to progress in
UNITY.
A small warning may be in order. Using the algebra does not make operational rea-

soning much less cumbersome than it otherwise would be, only much less error-prone.
Spelling out the derivations below in meticulous detail would require a prohibitive
number of pages. Therefore, the calculations are rather coarse grained, with many of
the steps motivated by an ‘etude’.
A UNITY program is given by a nonempty �nite set A of atomic actions. Execution

of the program results in an in�nite sequence of steps such that

– each step consists of the execution of some action from A, and
– every action in A is executed in�nitely often.

De�ning s by s= 〈∃a: a∈A : a〉, the computations described above are those that
– consist of an in�nite sequence of s-steps, and
– contain, for every a∈A, an in�nite number of a-steps.
From the de�nition of s it follows that s is atomic and that [a⇒ s] for all a∈A. These
consequences are all we ever need and, therefore, all that we require in the formal
characterization of UNITY computations. We give some equivalent characterizations;
the reader may choose the one that he=she considers to be most convincing as the
de�nition.

De�nition and Fact 60. For any atomic s and nonempty �nite set A such that [a⇒ s]
for all a∈A, we de�ne – with the range a∈A understood – that
(i) unity:s:A = G(s ; true) ∧ 〈∀a :: G(F ; a ; true)〉;
(ii) = s∞ ∧ 〈∀a :: (F ; a)∞〉;
(iii) = 〈�x :: 〈∀a :: s∗ ; a ; x〉〉;
(iv) = 〈∀a :: (s∗ ; a)∞〉:

Proof. The �rst two are direct translations into mathematics of the English description
given above. The veri�cation that these two are equal is reasonably straightforward:

G(s ; true) ∧ 〈∀a :: G(F ; a ; true)〉= s∞ ∧ 〈∀a :: (F ; a)∞〉
⇐ { Leibniz and Fact 55 }
s∞ is persistent ∧ 〈∀a :: (F ; a)∞ is persistent〉

⇐ { Fact 54 }
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[s∞ ⇒ X ; s∞] ∧ 〈∀a :: [(F ; a)∞ ⇒ X ; (F ; a)∞]〉
= { etude }
true:

Now, let u= unity:s:A as de�ned by the �rst two. Then

[u⇒ 〈�x :: 〈∀a :: s∗ ; a ; x〉〉]
⇐ { �xpoint induction; predicate calculus }

〈∀a :: [u⇒ s∗ ; a ; u]〉
= { from (i) it follows that u is persistent; persistence rule (Fact 52) }

〈∀a :: [u⇒ s∗ ; a ; true]〉
⇐ { [b∞ ∧ F ; t ⇒ b∗ ; t] for all atomic b and all t (etude) }

〈∀a :: [u⇒ s∞ ∧ F ; a ; true]〉
= { immediate from (ii) }
true:

And we close the cycle by observing that

(iii) 〈�x :: 〈∀a :: s∗ ; a ; x〉〉
⇒ { monotonicity }

〈∀a :: 〈�x :: s∗ ; a ; x〉〉
⇒ { De�nition 30(ii) }

(iv) 〈∀a :: (s∗ ; a)∞〉
⇒ { range nonempty; [a⇒ s]; [s⇒ X] }

(s∗ ; s)∞ ∧ 〈∀a :: (X∗ ; a)∞〉
= { (s∗ ; s)∞= s∞ (etude); X∗= F (Fact 45(ii)) }

(ii) s∞ ∧ 〈∀a :: (F ; a)∞〉:

For the rest of this section we assume that s and A satisfy the premises of De�nition
60 and that u= unity:s:A:
In UNITY logic, as it was designed by Chandy and Misra [1], progress of a unity

program is captured by the relation 7→ (“leads to”) on state predicates. Operationally,
p 7→ q means that in any u-computation, every state satisfying p is succeeded eventually
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– possibly simultaneously – by some state satisfying q. Carefully transcribing this into
our algebra yields

De�nition 61. p 7→ q≡ [u⇒ G(·p⇒ F ; ·q)] for all p and q.

For any q, we calculate the weakest p that leads to q:

p 7→ q

= { De�nition 61 }
[u⇒ G(·p⇒ F ; ·q)]

= { u is persistent; i:e: “open” w:r:t: to the interior operator G }
[u⇒ (·p⇒ F ;·q)]

= { shunt twice }
[·p⇒ (u⇒ F ;·q)]

= { De�nition 18 of A }
[p⇒ A(u⇒ F ;·q)]:

So, we now get:

Fact 62. p 7→ q≡ [p⇒ wlt:q] for all p and q; where the state-predicate transformer
wlt is given by

De�nition 63. wlt:q=A(u⇒ F ;·q) for all state predicates q.

Spelling out the right-hand side in English, we get
wlt:q : holds in those initial states for which every u-computation contains at least

one state satisfying q,
which is essentially what we wrote in the introduction.
The formal de�nition of the predicate transformer wlt given by Jutla et al. [10] is

a double �xpoint expression which, in [6], we showed to be equivalent to formula (c)
of the introduction. Since the universal quanti�cation in this formula corresponds to
the weakest precondition of nondeterministic choice (Fact 24(i)) this characterization
is the special case with s= 〈∃a :: a〉 of the following:

Fact 64. wlt:q= 〈�x :: 〈∃a :: 〈�y :: q ∨ (wp:s:y ∧ wp:a:x)〉〉〉 for all q:

The computation calculus has been designed to enable us to derive characterizations
such as Fact 64 from de�nitions such as De�nition 63.

Remark. One might wonder why a characterization as involved as Fact 64 is even
worth considering. However, replacing in the right-hand side of De�nition 63 u by one
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of its possible De�nition 60(iii), and subsequently eliminating the �nite iterator yields

A(〈�x :: 〈∀a :: 〈�y :: s ;y ∨ a ; x〉〉〉 ⇒ F ;·q):
Something like this is what Fact 64 should be compared with.
Characterization Fact 64 has two big advantages. Firstly, the dummies of the �x-

point expressions are of the type state predicate rather than computation predicate.
Secondly, the computation quanti�ers – hidden in wp-quantify over atomic steps only.
Consequently, Fact 64 serves as a basis for progress considerations conducted solely
in terms of state predicates and single computation steps.

Starting from De�nition 63, the objective is to push the computation quanti�er as
deep into the syntax tree as we can manage (all the way down to the atomic actions).
We begin with dualization and elimination of q from our considerations:

wlt:q

= { De�nition 63; dualization; and De�nition 60(i) }
∼E(G·∼q ∧ G(s ; true) ∧ 〈∀a :: G(F ; a ; true)〉)

= { etude }
∼E(G(∼q ; s ; true) ∧ 〈∀a :: G(F ;∼q ; a ; true)〉)

= { ∼q ; s and { a :: ∼q ; a } satisfy the premises of De�nition 60 }
∼E(unity:(∼ q ; s):{ a :: ∼q ; a }):

Thus, wlt.q is just the complement of the domain of another UNITY program

Fact 65. wlt:q= ∼ E(unity:(∼ q ; s):{ a :: ∼ q ; a }).

Since our current UNITY program is completely general, we can do the instantiation
with s; A := ∼ q ; s; { a :: ∼ q ; a } whenever we want and all that remains to be done
is determining Eu.
Now, according to De�nition 60(iii), u is the weakest solution of

(∗) x : [x⇒ s∗ ; a ; x] for all a∈A
and, from monotonicity of E and composition rule Fact 28 it follows that, for any
solution x of (∗), Ex is a solution of
(∗∗) p : [p⇒E(s∗ ; a ;p)] for all a∈A:
Since u is the weakest solution of (∗), it is not entirely unreasonable to expect, corre-
spondingly, Eu to be the weakest solution of (∗∗). This leads us to conjecture:

Fact 66. Eu= 〈�x :: 〈∀sa ::E(s∗ ; a ; x)〉〉.



32 R.M. Dijkstra / Science of Computer Programming 37 (2000) 3–36

We leave it to the reader to verify whether combining Facts 66 with 65 yields the
�xpoint characterization Fact 64 of wlt.q; so proving Fact 66 is all that is left to be
done.

Proof. The right-hand side is the weakest solution of (∗∗) and, since we just noted
that Eu is a solution thereof, it su�ces to show that [p⇒Eu] for any p solving (∗∗).
To this end we �rst observe

[p⇒Eu]

= { De�nition 60(iv); (s∗ ; a)∞=(s∗ ; a ; s∗)∞ (etude) }
[p⇒E〈∀a :: (s∗ ; a ; s∗)∞〉]

⇐ { monotonicity }
[p⇒E〈∀a :: s∗ ; a ; s∗〉∞]

⇐ { cycle rule (Postulate 39) }
[p⇒E(〈∀a :: s∗ ; a ; s∗〉 ;p)]:

⇐ { instantiation }
[p⇒E(〈∀b : b∈B : s∗ ; b ; s∗〉 ;p)] for all nonempty subsets B of A:

The purpose of the last step is that, A being �nite, the last line above is amenable to
induction over the cardinality of B.
Singleton B: Let B= {a} for some a∈A. Then

E(〈∀b : b∈B : s∗ ; b ; s∗〉;p)
= { B= {a} }

E(s∗ ;a ; s∗ ;p)

⇐ { [5⇒ s∗] }
E(s∗ ; a ;p)

⇐ { p solves (∗∗) }
p:

Non-singeleton B: Let B=C ∪D with C and D (necessarily nonempty) proper sub-
sets of B. With b; c and d understood to range over B; C, and D, respectively, we
observe

p

⇒ { induction hypothesis for C }



R.M. Dijkstra / Science of Computer Programming 37 (2000) 3–36 33

E(〈∀c :: s∗ ; c ; s∗〉 ;p)

⇒ { induction hypothesis for D }

E(〈∀c :: s∗ ; c ; s∗〉 ;E(〈∀d :: s∗ ;d ; s∗〉 ;p))

= { composition rule (Fact 28) }

E(〈∀c :: s∗ ; c ; s∗〉 ; 〈∀d :: s∗ ;d ; s∗〉;p)

⇒ { monotonicity }

E(〈∀c; d :: s∗ ; c ; s∗ ; s∗ ;d ; s∗〉 ;p)

⇒ { [c⇒ s]; [d⇒ s]; [s⇒ s∗]; and [s∗ ; s∗ ⇒ s∗] }

E(〈∀c; d :: s∗ ; c ; s∗ ∧ s∗ ;d ; s∗〉 ;p)

= { predicate calculus; understood ranges of c; d; and b }

E(〈∀b :: s∗ ; b ; s∗〉 ;p):

The predicate transformer wlt is not the only tool of the trade in UNITY theory.
Two others state-predicate transformers capturing temporal properties are:

De�nition 67. For any state-predicate q
(i) wst:q=A(u⇒ G·q) and
(ii) wta:q=A(u⇒ F ; G·q).

The predicate transformer ‘weakest stable’ (wst) is characterized by Chandy and
Sanders [2] via

Fact 68. wst:q= 〈�y ::wp:s:y∧ q〉 for all q.

Upon trying to prove Fact 68 from De�nition 67(i), we found that we need to
assume Eu= 5 for that. This follows from Ea= 5 for all a and, since totality of all the
actions is a running assumption in UNITY, this is not a serious restriction; however,
that it is essential for Fact 68 to be correct had hitherto escaped our notice entirely.
The predicate transformer ‘weakest to-always’ (wta) is introduced by Sanders and

the present author in [4] via

Fact 69. wta:q= 〈�x ::wlt:(wst:(x∨ q))〉.

There, a verbal argument is given for the correspondence with the operational in-
terpretation De�nition 67(ii). This verbal argument can be rendered algebraically as a
proof in the computation calculus.
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15. Summary and concluding remarks

We developed the computation calculus as we went along and, consequently, the
ingredients are scattered throughout the text. So let us summarize. The sum total of
the postulates that make up the computation calculus is:
the basic Postulates 5 and 6,
the composition rule (Postulate 28),
the accumulation rule (Postulate 36),
the cycle rule (Postulate 39),
the atomicity rules (Postulate 44), and
linearity (Postulate 59).
That is it. While, in general, we would like the algebras we use to be less complex,

we feel that this is reasonably modest in view of what it achieves. We covered the
precondition semantics for sequential programs of Dijkstra and Scholten. We have
subsumed the linear time temporal logic of Manna and Pnueli. We have subsumed the
language of CTL∗ and, while this “logic” has no proof system – that we know of –
our algebra does give a handle on these expressions. Finally, the calculus as a whole
is powerful enough for a mathematically explicit analysis of UNITY, something which
no other formalism has enabled us to do.
Also, scattered throughout the text are the restriction on our computation space

ensuring that it provides a model for the computation calculus. We rendered these
restrictions informally as:
Nonempty segments of computations are computations.
C is closed under “pasting”.
C is limit closed.
C contains an atomic step for every initial state.

(Note that Requirement 4, i.e. that every state constitutes a singleton computation, is
subsumed by the �rst and last of this list.) Putting the other way around, the com-
putation calculus is ‘sound’ for the class of computation spaces satisfying these four
‘healthiness properties’.
We consider these healthiness requirements to be quite reasonable and so we can live

with the fact that the applicability of our algebra is restricted to computation spaces
satisfying them. In fact, now that we have this list explicitly in front of us, we can
see that the list constitutes assumptions that we used to make implicitly and without
always being fully aware of it.
Although our algebra is quite powerful, there is some room to make it stronger still.

Burghard von Karger noted that the composition rule (Postulate 28) and the linearity
Postulate 59 can be replaced by a single postulate (“local linearity”) that appears
to be stronger than the conjunction of these two. Unfortunately, the formulation of
this alternative requires the introduction of an operator from sequential calculus that
we were careful to avoid since we felt that it did not go well with the objective of
“expressive transparency”. Moreover, we do not immediately see any use for the added
formal strength.
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A strengthening that would de�nitely serve a purpose concerns the cycle rule. This
rule fails to capture limit closedness in its full generality and, consequently, there
are some signi�cant problems that we cannot tackle. Unfortunately in this case, we
have been unable to come up with a workable rule that captures limit closedness
better.

Appendix A. On �xpoint calculus, closures and interiors

In our explorations of the computation calculus, we make heavy use of �xpoint
calculus [13]. For a monotonic predicate transformer f we use 〈�x ::f:x〉 to denote
the strongest �xpoint and 〈�x ::f:x〉 to denote the weakest �xpoint. We list the essential
rules (for � only).
Leaving universal quanti�cation over the free variables and monotonicity of the

functions understood, we have

Theorem of Knaster–Tarski

〈�x ::f:x〉= 〈∀x : [f:x⇒ x] : x〉:

(Un-)folding

〈�x ::f:x〉=f:〈�x ::f:x〉:

Fixpoint induction

[f:x⇒ x]⇒ [〈�x ::f:x〉⇒ x]:

Monotonicity

〈∀x :: [f:x⇒ g:x]〉⇒ [〈�x :: g:(f:x)〉⇒ 〈�x :: g:x〉]:

Fixpoint rolling

f:〈�x :: g:(f:x)〉= 〈�x ::f:(g:x)〉:

Dualisation

¬〈�x ::f:x〉= 〈�x ::¬f:(¬x)〉:

Fixpoint fusion For universally disjunctive f

f:〈�x :: g:x〉= 〈�y :: h:y〉⇐ 〈∀x; y :f:x=y :f:(g:x)= h:y〉:

Diagonal rule

〈�x :: 〈�y ::f:(x; y)〉〉= 〈�x ::f:(x; x)〉:
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We also make some use of familiarity with ‘closures’ and ‘interiors’. These are
predicate transformers enjoying a cocktail of properties:

f is a closure≡f is monotonic; idempotent and weakening;
f is an interior≡f is monotonic; idempotent and strengthening:

The most frequently exploited algebraic properties thereof are

[f:x⇒f:y]≡ [x⇒f:y] if f is a closure; and

[f:x⇒f:y]≡ [f:x⇒y] if f is an interior:
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