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FOOD INTAKE RATES AND HABITAT SEGREGATION OF TUFTED
DUCK AYTHYA FULIGULA AND SCAUPAYTHYA MARILA
EXPLOITING ZEBRA MUSSELS DREISSENA POLYMORPHA

JOEP J. DE LEEUW!2

De Leeuw J.J. 1999. Food intake rates and habitat segregation of Tufted Duck Ay-
thya fuligula and Scaup Aythya marila exploiting Zebra Mussels Dreissena polymor-
pha. Ardea 87: 15-31.

The foraging skills of Tufted Duck Aythya fuligula and Scaup Aythya marila feeding
on Zebra Mussels Dreissena polymorpha were studied in experiments under semi-
natural diving conditions with relevance to the IJsselmeer/Markermeer area (large
lakes in the centre of The Netherlands, former Zuiderzee area), the major freshwater
wintering site of both species in Europe. Daily consumption of mussels (based on
fresh mass) was about two to three times the body mass of the birds because of the
large water and shell content and consequently low nutritional value of mussels.
Feeding costs (diving and processing food) were about 50% of daily energy ex-
penses in winter, as revealed from doubly labelled water measurements. Food intake
rates decreased with the degree of byssal thread attachment of mussels in Tufted
Duck, while intake rates of Scaup were only affected when mussels grew in tightly
attached clumps. Food intake rates were usually 15-25% lower in Tufted Duck than
in the 25% heavier Scaup. Both species were able to swallow all mussels available in
the population, though smaller mussels were slightly favoured. Scaup had higher
food intake rates at low mussel densities than Tufted Duck, but intake rates seemed
unaffected at densities higher than ca. 100 gFM m2, which is similar to giving-up
densities observed in the field. Feeding activity consisted of short feeding bouts of a
number of dives in quick succession to fill the esophagus with mussels, followed by
longer resting pauses of 5-10 minutes to crush mussel shells in the gizzard and digest
the flesh. The limited capacity to store food in the gut (less than 5% of the daily re-
quirement) and long digestive pauses imply that diving ducks must spend a large
fraction of the day on the feeding grounds. The differences in feeding skills between
the two species correspond qualitatively with their spatial segregation in the IJssel-
meer area when local differences in prey properties are taken into account.

Keywords: Aythya fuligula - Aythya marila - Dreissena polymorpha - food intake -
habitat segregation - diving - digestion - IJsselmeer - foraging behaviour
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INTRODUCTION

The adjoining freshwater lakes IJsselmeer and
Markermeer (total surface area 1925 km?) in the
Netherlands, are a major wintering area in Eu-
rope for Tufted Duck Aythya fuligula (average
winter maximum ca. 90 000 birds) and Scaup A.

marila (average maximum ca. 140 000; see Fig.
1). Tufted Duck are found predominantly in the
southern Lake Markermeer while Scaup reside
mainly in the northern IJsselmeer. Both species
feed almost exclusively on Zebra Mussels Dreis-
sena polymorpha (Bij de Vaate 1991). Lake-wide
surveys of the distribution of Zebra Mussels and
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Fig. 1. Average number of wintering Tufted Duck
(A) and Scaup (B) in the IJsselmeer and the Marker-
meer between 1980 and 1995. Four severe winters in
which the lakes were ice-covered for more than 2
weeks (low numbers of diving ducks) are excluded.

the spatial and temporal distribution of diving
ducks in the area revealed that these ducks prefer
to feed on mussels in the shallowest parts of the
lakes (De Leeuw 1997; Van Eerden 1997). Only
10-20% of the total food stock is annually har-
vested by diving ducks, but locally patches can be
exploited by more than 90%.

Many studies suggest that maximization of
energy intake rate is a major criterion for food and
habitat selection (see Stephens & Krebs 1986 for a
review). Intake rates depend on the feeding skills
of individuals, food availability, and interference
between competing individuals (e.g. Siegfried
1976; Rosenzweig 1991; Ranta et al. 1993; Suther-
land 1996), and a variety of models have been de-
veloped to relate variations in feeding rate with
habitat use (Rosenzweig 1991; Sutherland 1996).

In this paper, I address the feeding perfor-
mance of Tufted Duck and Scaup in relation to

their habitat use in the IJsselmeer/Markermeer
area, with particular reference to local differences
in prey properties. Zebra Mussels range in shell
length from several mm to a maximum of ca. 30
mm. They often produce byssal threads for at-
tachment to a substrate of shells, forming loose or
tight clusters (‘mussel clumps’). However, mus-
sels are also found unattached, particularly at wa-
ter depths over 4 m. Due to differences in growth
conditions for mussels, the average shell length of
mussels is about 25% lower in the Markermeer
than in the IJsselmeer (Bij de Vaate 1991). Both
species of diving duck regularly dive up to 5 m
deep and ingest mussels whole. The calcareous
shells are crushed in the muscular gizzard. Energy
costs of feeding are high in these birds, owing to
high thermoregulatory costs when diving in cold
water, and to considerable costs to heat up the
large amounts of cold ingested food (up to three
times their body mass daily; De Leeuw 1996;
1997). Food intake rates (gross intake over dive
time) thus have direct implications for energy and
time budgets of diving ducks in addition to habi-
tat parameters (see Fig. 2). Properties of the prey
are presumed to be the primary determinants of
food intake rates in this study. For example, han-
dling time of mussels may depend on prey size
and byssal attachment of mussels, while search-
ing for mussels depends on the distribution of the
prey (density and patchiness). These prey proper-
ties in turn depend on properties of the habitat, es-
pecially water depth.

Feeding behaviour of diving ducks is often
difficult to study in the field, because the birds
mainly feed at night and ingest mussels underwa-
ter. Information on mussel size selection and for-
aging success in both lake compartments was ob-
tained from bycatches (over 3000 ducks) from the
gill net fishery in the area. More detailed observa-
tions on intake rates were obtained in experiments
with captive Tufted Duck and Scaup feeding on
Zebra Mussels under semi-natural conditions.
Variations in intake rate with diving depth, byssal
attachment of mussels, and mussel length were
studied in diving cages 5 m deep. In addition,
daily food consumption and energy expenditure
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Fig.2. The relationship between habitat properties and the energy balance of diving ducks in their wintering hab-
itat. Prey properties of Zebra Mussels primarily determine food intake rate. Both habitat parameters and food in-
take influence the energy expenses, as visualised by the relative foraging costs in poor and good quality habitats.

(using the doubly-labelled water technique) were
measured in resting and feeding Scaup to deter-
mine foraging costs and net energy intake rates
(energy intake minus energy costs of foraging)
and compared to earlier published results for Tuf-
ted Duck (De Leeuw ef al. 1999). The effect of
mussel density on intake rate (the ‘functional re-
sponse’) was studied in separate experiments with
ducks diving in a large artificial pond (45 m?, 1.5
m deep). The differences in feeding performance
between the two species of diving duck are dis-
cussed in relation to observed feeding conditions
in the IJsselmeer and the Markermeer.

METHODS

Field data on feeding conditions

Diving ducks drowned in gill nets used in the
commercial fishery were collected from local
fishermen (De Leeuw & Van Eerden 1995; Van
Eerden 1997). In total, 45 vessels provided 1136

Tufted Duck and 2182 Scaup during winter
months (November-March) between 1979 and
1990. Depth at which the birds were caught was
either provided by the fishermen or derived from
a nautical chart. Food items in the esophagus
were counted and mussel shell lengths were
measured individually to the nearest mm. The
proportion of ducks with mussels in the esopha-
gus was used as an index of foraging success of
both species in either lake (De Leeuw & Van Eer-
den 1995; Van Eerden 1997). Mussels were dred-
ged at different depths in both lake compartments
(12 stations across the IJsselmeer and 8 stations
across the Markermeer) as part of a long-term
study on the population structure of Zebra Mus-
sels (further details in Bij de Vaate 1991; Van Eer-
den 1997). From samples of 100-250 mussels, the
attachment strength of byssal threads of individ-
ual mussels was measured by tearing off a mussel
from a clump through gently pulling a Pesola
scale clasped around the shell. The length of each
shell was then measured to the nearest mm.
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Diving cages

An outdoor diving device was constructed to
simulate winter feeding conditions. Four 1x1 m
and 5 m deep cages of wire-netting were fixed to
a floating pontoon in an 8 m deep sand pit. Diving
depth in each cage was manipulated by moving a
feeding tray (1x1 m) with the aid of 4 ropes. Div-
ing behaviour was continuously recorded by a
computer-controlled infrared light detection sys-
tem scanning the water surface areas of each cage
(details in De Leeuw et al. 1999). During two win-
ters, three Tufted Ducks (2 males, 1 female; mean
body mass ca. 600 g) and four Scaup (2 males, 2
females; mean body mass ca. 800 g), which were
obtained from a commercial waterfowl breeder,
were trained for 7 weeks to dive for Zebra Mus-
sels. During the training period before the experi-
ments, the ducks acclimated to the experimental
protocol and could adjust their physiology to div-
ing conditions (Butler & Turner 1988) and to pro-
cessing mussel shells in the digestive tract (Piers-
ma et al. 1993). The birds were kept singly in the
diving cages and were fed fresh Zebra Mussels
offered on the feeding trays at depths of 1, 3, or 5
m. In the first 3 weeks, depth was increased grad-
ually, thereafter depth was manipulated randomly.
To minimise disturbance, the pontoon was visited
only once every one or two days for about one
hour in the afternoon. First, the ducks were
caught, weighed and kept in dark boxes. The food
trays were lifted to the surface and the remaining
mussels were weighed. Visual inspections of the
bottom of the cages by SCUBA-divers indicated
that less than 1% of the mussels dropped by the
ducks missed the food trays. A batch of fresh
mussels was weighed, offered on the trays, and
the trays were lowered down. Afterwards, the
ducks were weighed again and released into their
cages. Daily mussel consumption was calculated
from the mass difference of mussels between sub-
sequent visits. Average food intake rates were de-
termined by dividing food consumption by total
time spent underwater per experimental trial.
These intake rates include both mussels swal-
lowed underwater and mussels that were brought
up to the surface and swallowed after surfacing.

The time required for the latter could not be
measured in this set-up. In this paper, I will refer
to apparent intake rate (AIR) to compare the food
consumed relative to the time spent diving under
different feeding conditions of diving depth and
byssal attachment of mussels.

Mussels and feeding conditions

Zebra Mussels were dredged weekly in the
IJsselmeer from a favoured feeding site of wild
ducks at a water depth of 3-3.5 m. The majority of
these mussels (80-90%) lived as mussel clumps
and were offered in this natural fashion to the
ducks in most experiments. To test the effect of
mussel clumping on apparent intake rate, mussels
were detached from their substrate (‘unattached
mussels’) in 7 trials with Tufted Duck and 9 trials
with Scaup. Also, intake rates of ducks feeding on
‘tight clumps’ (strong byssal attachment) were
measured in 11 trials with Tufted Duck and 3
trials with Scaup.

Selection for mussel shell length while feed-
ing on mussel clumps was determined from the
difference in size distributions in samples of 200-
400 g fresh mass (gFM, equivalent to 200-600
mussels) measured before and after 24-h feeding
trials. In Tufted Duck, 12 trials at water tempera-
tures between 3°C and 22°C and diving depths of
3 and 5 m were analysed and in Scaup 11 trials of
diving to 1, 3, or 5 m at water temperatures be-
tween 3 and 7°C. The selection for length classes
was determined from the selectivity index D = (r -
p)/ (r+ p -2 rp), where r and p are the fraction of
a length class in the diet and on offer, respectively
(Jacobs 1974), Positive values of D (0-1) indicate
selection for that length class. Length classes
were 3-7 mm, 8-11 mm, 12-13, 14-15 mm, 16-17
mm, 18-21 mm, 22-26 mm (cf. De Leeuw & Van
Eerden 1992).

Factors for converting mussel intake (fresh
mass, FM) to energy intake were derived from the
length distributions of mussels selected by Scaup
and Tufted Duck, the fresh mass (including
shells) and flesh content (dry mass, DM) of mus-
sels of different lengths, and the energy density of
flesh (22.5 kJ gDM-!; Bij de Vaate & De Leeuw,
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unpublished data). Assuming an energy assimila-
tion efficiency of 85% for the dry mass of flesh
(De Leeuw et al. 1999), the conversion factors
were 0.5 kJ gFM-! for whole mussels for Scaup,
and 0.6 kJ gFM! for Tufted Duck. DM of flesh
were determined in 7 length classes of mussels
between 8 and 22 mm (10 individuals per even
mm length class) for each of the size selection
samples. DM did not vary with date of collection
or experimental conditions (Analysis of Covari-
ance of log,-log,, transformed data of DM and
shell length (L, covariate), n.s.), so data were
pooled: DM(mg) = 0.0069L272! (n = 880 mus-
sels) for Scaup, and DM(mg) = 0.0074L2732 (n =
400) for Tufted Duck. DM of empty mussel shells
were also determined for the Scaup experiments;
DM(mg) = 0.069L%82 (n = 880). Dry mass of
shells consisted on average of 35% of the total
fresh mass. The difference in energy conversion
factors for mussel clumps used in the two species
is caused by local and (or) annual differences in
body condition of the mussels used.

Food processing rate

The rate of food processing was estimated
from diving activity recordings including resting
periods, which yield the longer-term rates of cu-
mulative food gain (crude intake rate), assuming a
constant food gain per dive equal to the daily
mussel consumption divided by the total number
of dives. To estimate the maximum rate of food
processing, feeding time was restricted in experi-
ments with Scaup by removing all food during the
day (7 to 8 h), and offering mussels only at night
(15 to 16 h). Thus, we stimulated nocturnal feed-
ing as commonly observed in diving ducks in the
wild (Van Eerden 1997). During the day, the food
tray was maintained at a depth of 1 m, so that the
ducks could check with minimal diving effort that
no food was available.

Energy expenditure of foraging

Energy expenditure was measured with dou-
bly labelled water in four Scaup during a resting
period of 8 h and a subsequent feeding period of
11 h with mussels offered at a depth of 3 m. This

experiment followed the feeding time restriction
experiments (see preceding section) at a water
temperature of 3.5 °C. The experimental proce-
dure and calculations were equivalent to those de-
scribed for Tufted Duck in these diving cages (De
Leeuw er al. 1999). In short, 1 ml of an isotope
mixture of D,O and H,'®0 (30 atom percent *H
and 60 atom percent '80) was injected into the ab-
dominal cavity. The turnover of hydrogen and
oxygen isotopes was determined from blood sam-
ples (15 pL) drawn from a wing vein, after equili-
bration (1.5 h after injection of isotope mixture)
and at the end of an experimental period. CO,
production was calculated according to Heyman
& Roberts (1990), including fractionation factors
for evaporative water loss (1 g h'! in Tufted Duck
(De Leeuw et al. 1999) and assuming 1.2 g h'! in
the larger Scaup). An energetic equivalent of 26
kJ.L-! CO, (based on the composition of flesh of
Zebra Mussels: 76.1% protein, 8.4% fat, 15.5%
carbohydrates) was used to calculate energy ex-
penditure.

Mussel density

The effect of mussel density on food intake
rate was studied in experiments with Tufted Duck
and Scaup trained to dive in a large artificial pond
(9x5 m and 1.5 m deep) at the Zoological Labora-
tory, Haren, The Netherlands. The visibility (Sec-
chi-disc) was about 0.5 m (max. 0.7 m) during the
experiments. Four Scaup (2 males, 2 females) and
6 Tufted Duck (4 males, 2 females) were used.
Diving behaviour was observed from a hide next
to the pond. Mussel densities were in the range of
the lowest densities found after extensive preda-
tion in late winter in the IJsselmeer area. Mussel
clumps were individually marked with paint on
the substrate shell, weighed on a balance (accu-
rate to 0.1 g), and haphazardly distributed on a net
spread out over the bottom of the pond (net area
ca. 30 m?). After 30-60 dives had been observed,
the clumps were recovered, weighed, and offered
again. This was repeated once or twice. After-
wards, the mass of the dead shells was measured
and subtracted from total clump mass to calculate
the initial biomass of live mussels. Twelve trials
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with Scaup (2 ducks per trial) and 8 trials with
Tufted Duck (3 ducks per trial) were conducted
with mussel densities varying between 5 and 50
gFM m2. The intake rates are compared with the
intake rates observed in the diving cage experi-
ments with ducks feeding at high mussel densities
of > 2000 gFM m2 by linearly interpolating the 1
and 3 m values of AIR to the 1.5 m in the density
experiments.
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RESULTS

Field feeding conditions

The mussel lengths found in the esophagi of
wild Scaup and Tufted Duck had a wide range
(Fig. 3). Mussel lengths up to 30 mm, the largest
sizes in the population, were recorded. Both spe-
cies took more small mussel sizes in the Mar-
kermeer than in the IJsselmeer in both species.
Selectivity, however, could not be tested by com-
paring length distributions in the field and in the
diets of the ducks because of strong local and an-
nual differences in length structure of the mussel
populations (Bij de Vaate 1991). Tufted Duck ate

-

o 5 10 15 20 25 30
shell length (mm)

Fig. 3. Mussel sizes found in the esophagi of 216 Tufted Duck and 960 Scaup bycaught in fishing nets in the 1Js-
selmeer (A, B) and of 445 Tufted Duck and 461 Scaup caught in the Markermeer (C, D), respectively. n refers to
the number of mussels measured. Percentages of numbers of mussels (A, C) and fresh biomass (B, D) are given.
Each pair of size distributions differs significantly (Kolmogorov-Smirnov 2-sample tests, P < 0.05). The shaded
boundaries indicate size distributions of mussels in early winter as obtained from bottom samples in the IJsselmeer
(n=1246) and the Markermeer (n = 1038; Bij de Vaate, unpublished data). Differences in size distributions of diets
and bottom samples are partly due to local and annual variation.



De Leeuw: FOOD INTAKE OF TUFTED DUCK AND SCAUP 21

16—@ .

byssal attachment (N)
[oe]
T

10 30
shell length (mm)

~ 05 ¥=0.58 - 0.082x

e 2=0.65

= o]

= 0.4 \\O\

® o)

o 3 . o

o o

o 03r y=0.46 - 0.064x >

1= ?=0.75

s3]

E o2t

[$3

S

©

K 011 205 sselmesr o

4 — o Markermeer

< 00 L I ! ! | !

0 1 2 3 4 5 6
depth (m)

Fig. 4. (A) Example of byssal attachment strength of

mussels from the IJsselmeer at a water depth of 3 m in
relation to mussel size. Byssal attachment was meas-
ured by tearing off a mussel from a clump through
gently pulling a Pesola balance clasped around the
shell. (B) Length-independent byssal attachment (slo-
pes of regressions of the type depicted in A) in relation
to water depth in the IJsselmeer and the Markermeer.
Data from Van Eerden (1997).

smaller sizes, especially first-year mussels, in the
Markermeer than Scaup (Kolmogorov-Smirnov
2-sample tests, P < 0.05 for both lakes).

Byssal attachment of mussels increased line-
arly with shell length (Fig. 4A). The length-inde-
pendent byssal attachment (the slope of the linear
relationship between shell length and byssal at-
tachment) decreased with water depth and was lo-
wer in the Markermeer than in the IJsselmeer
(ANCOVA, F| =5.3, P <0.05) (Fig. 4B). The
difference in average byssal attachment is larger

between both lakes because smaller mussel sizes
(weakly attached) prevail in the Markermeer.

The fraction of birds caught with mussels in
the esophagus can be used as an index for feeding
success (Van Eerden 1997). This index was 0.57
(n = 327) for Tufted Ducks diving between 2 and
4 m in the Markermeer and 0.52 (n = 217) for
ducks diving in the IJsselmeer. In Scaup, success
rate index was 0.71 (n = 431) for the Markermeer
and 0.63 (n = 709) for the IJsselmeer, respectively
(differences between species (G = 98.6, df = 3)
and lakes (G = 83.0, df = 3) and the interaction
term (G = 79.5, df = 2) were significant (all P <
0.005), following calculation procedures in Sokal
& Rohlf (1981), pp 750-763). This suggests that
feeding success was higher in Scaup than in Tuft-
ed Duck, and was higher in the Markermeer than
in the IJsselmeer.

Feeding performance in relation to diving
depth

Daily mussel consumption and diving behavi-
our of Scaup and Tufted Duck in the outdoor div-
ing cages are summarised in Table 1. Mussel con-
sumption of Scaup was on average 2240 gFM d-!,
which is equivalent to a metabolizabale energy
intake of 1120 kJ d-!. Dive duration increased
with depth, while number of dives per day tended
to decrease with diving depth. Apparent intake ra-
tes also tended to decrease with depth (ANOVA:
F2,36 = 6.9, P < 0.05), although differences be-
tween adjacent depth classes were not significant
(Tukey tests, m.s.). Similar trends with diving
depth were found in Tufted Duck at water temper-
atures below 10°C (Table 1; De Leeuw et al.
1999). For the smaller Tufted Duck (body mass
ca. 600 g), mean daily food intake and apparent
intake rates were about 15% and 25% lower than
in Scaup (ca. 800 g).

Intake rate of mussel clumps

Apparent intake rate (AIR) at a water depth of
3 m did not differ between Scaup and Tufted
Duck at ‘unattached’ and ‘tight’ degrees of byssal
attachment (Student’s #-tests, n.s.), but AIR was
greater for Scaup at ‘moderate’ degrees of byssal
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Table 1. Average (SD) daily food intake and related parameters of four Scaup and three Tufted Duck feeding on
mussel clumps at different diving depths in winter at water temperatures between 3 and 7 °C. Apparent intake rate
is the food intake rate per second underwater. Significant differences between depths are indicated (ANOVA with
Tukey-test, P < 0.05 denoted by different letters (a,b,c)).

Scaup Tufted Duck
Depth (m) Depth (m)
1 3 5 1 3 5

Number of experimental days 10 20 15 11 21 8
Food intake (gFM d1) 2521 (615) 2039 (546) 2299 (477) 1661 (242) 1572 (296) 1623 (193}
Metabolizable energy

intake (kJ d'1) 1260 (308) 1020 (273) 1150(239) 967 (145) 943 (178) 974 (116)
Dive duration (s) 1.1 (1.0 177 (.00 235(1.9¢  98(1.97 158 (1.6)° 209 (1.9F
Number of dives per day 496 (132)> 278 (77T 273 (75)b 497 (37)*  315(47)® 290 (40)
Apparent intake rate (gFM s1) 0.46 (0.10)* 0.42 (0.09)2b 0.36 (0.07)°  0.35(0.08)2 0.32 (0.11)>" 0.27 (0.05)°
Body mass (g) 806 (41) 806 (38) 820 (35) 601 (29) 586 (38) 580 (54)

attachment (¢,5 ; = 2.7, P < 0.01; Fig. 5). AIR
was significantly lower when birds were feeding
on ‘tight clumps’ than when feeding on ‘moderate
clumps’ in both species (Tufted Duck: 7, s =3.2,
P < 0.005; Scaup: #; ;= 3.0, P < 0.01). In Scaup,
there was no difference in AIR between ‘mode-
rate clumps’ and ‘unattached mussels’, but Tufted
Duck were able to profit more from unattached

15 16 1 3

apparent intake rate (gFM-s™")

UNATTACHED MODERATE
mussel clumping

TIGHT

Fig. 5. Average ( SE) apparent intake rates of mus-
sels differing in their byssal attachment (‘loose mus-
sels’, ‘moderate clumps’, and ‘tight clumps’) of Tufted
Duck and Scaup feeding at a diving depth of 3 m.  gi-
ves the number of experimental days.

mussels than from moderately attached mussels
(t715=2.1, P <0.05).

Size selection

At diving depths of 1, 3, and 5 m combined,
both Tufted Duck and Scaup selected mussel
lengths in the range of 7 to 16 mm (Fig. 6), al-
though mussels in the entire range up to 30 mm

0.6

0.4

0.2

selectivity D
o
(=]

| | |
0 5 10 15 20 25 30
shell length (mm)

1

Fig. 6. Average ( SE) selectivity in relation to mus-
sel shell length for Tufted Duck and Scaup feeding on
mussel clumps (solid lines; diving depths of 1, 3, and 5
m combined). The broken line indicates the selectivity
of Tufted Duck feeding on unattached mussels at a div-
ing depth of 3 m (De Leeuw & Van Eerden 1992).
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were taken. Tufted Ducks feeding on unattached
mussels at 3 m depth (De Leeuw & Van Eerden
1992) were more selective than ducks feeding on
mussel clumps in this study (standard errors of
data for clumped mussels pooled for all depths
are low enough to allow comparison with data for
unattached mussels at 3 m only). There was no
significant difference in selectivity for selected
length classes (7-16 mm) among diving depths
and species (Analysis of covariance, n.s.).

Intake rate and mussel density: the functional
response

The relationship between intake rate and food
density, the ‘functional response curve’, generally
shows a phase of rapid increase in intake rate with
density followed by a plateau at higher densities
where encounter rates no longer depend on food
density and intake rates are determined by han-
dling time (Holling 1959). Apparent intake rate
(AIR) of Scaup and Tufted Duck was strongly re-
lated to mussel densities below 50 gFM m2 when
clumps were distributed over a 45 m? pond (Fig.
7). Functional response curves could not be esti-
mated because there are no data of intake rates at

0.5
r— average maximum Scaup

average maximum Tufted Duck

apparent intake rate (gFM-s™)

| I j
0 20 40 60 80 100

mussel density (gFM.m-?)

Fig. 7. Apparent intake rate of four Scaup and six
Tufted Ducks in relation to density of mussel clumps
in a 45 m? pond 1.5 m deep. The average maximum
intake rates were derived from ducks feeding in diving
cages at mussel densities of more than 2000 gFM m2.

intermediate mussel densities. However, plateau
intake rates can be estimated from average intake
rates observed at the extremely high mussels den-
sities of > 2000 gFM m2 used in the experiments
with Scaup and Tufted Duck feeding in the diving
cages (data presented in Table 1). The rapid pha-
ses of increase, at 50% of these plateau intake ra-
tes, were found at mussel densities of 10 gFM m-
2 in Scaup and 35 gFM m2 in Tufted Duck. This
suggests that Scaup maintained higher encounter
rates at low mussel densities than did Tufted
Duck.

Food processing rate

The rate of food processing was approximated
from diving activity recordings, which yield the
longer term rate of cumulative food gain, assum-
ing a constant food gain per dive over the experi-
mental period. The cumulative intake of three
Scaup diving to 5 m over a time span of 42 h is
graphically illustrated in Fig. 8. Periods of con-
stant food intake lasted for several hours and al-
ternated with long resting bouts, both at day and
night. Despite the variation in timing of long rest-
ing periods, maximum crude intake rate (slope of
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Fig. 8. Cumulative intake of mussels during 42 h in
three Scaup diving for mussels at a depth of 5 m. Cu-
mulative food gain was determined from diving activ-
ity, assuming a constant intake per dive over the entire
feeding period.
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Fig. 9. Sequence of pause durations between dives of
Scaup M1 diving to 5 m during 1.3 h of feeding.

the curves) was very similar over periods of sev-
eral hours in all birds. These periods of high food
intake consisted of a regular pattern of feeding
bouts (a number of dives in quick succession and
longer resting periods), as illustrated by a se-
quence of pause durations between dives of duck
M1 (Fig. 9). Feeding bouts of 4 to 5 dives alter-
nated with resting periods of 6 to 8 min. On aver-
age, 30 gFM of mussels were ingested per feeding
bout (SD = 16, n = 1102 feeding bouts). The max-
imum amount of mussels found in esophagi of
2322 dissected wild Scaup which had drowned as
bycatches in fishing nets in the IJsselmeer was ca.
40 gFM (De Leeuw & Van Eerden 1995). It ap-
pears that the esophagus is filled during a feeding
bout and mussels are crushed in the gizzard after-
wards. The storage capacity of mussels in a
duck’s body was estimated from the maximum
difference in body mass between the end of the
resting phase of 8 h (empty gastro-intestinal (GI)
tract) and the end of the feeding phase (full GI
tract) in the feeding time restriction experiments.
The 3 highest values of 44 body mass difference
measurements were 80 g, suggesting that the
amount of mussels in the gizzard and intestines
(thus excluding 30 g of mussels in the esophagus)
probably does not exceed 50 g. At an average
crude intake rate of 214 gFM h'! in the feeding

time restriction experiments (see below) and a
maximum storage capacity of 80 g, throughput
time of mussels would be 22 min. In agreement
with this estimate is the observation in Scaup div-
ing for mussels in the pond in Haren, that the first
defecation appeared 23 + 1.7 min (mean =+ SE, n =
14) after the start of feeding. During this short pe-
riod of time, the shells are crushed in the gizzard
and the mussel flesh is digested.

The short-term resting periods between dive
bouts may reflect both recovery from diving and
(or) time needed for food processing (crushing
mussel shells in the gizzard and digestion of flesh
in the intestines). The question of whether the ob-
served rate of food gain reflects maximum food
processing rate or maximum diving rate was fur-
ther explored by restricting daily feeding time to
16 h and comparing cumulative food gain (crude
intake) and cumulative dive duration for four
Scaup diving to 1 m and 5 m, respectively, to
create the maximum difference in diving costs (il-
lustrated for 2 birds in Fig. 10). Sometimes longer
resting periods were made (up to several hours),
but these were excluded from the analyses. A bout
criterion interval of 14 minutes (method de-
scribed in Martin & Bateson 1988) was used,
which resulted in the removal of 2% of the resting
periods. Dive rate was lower at 1 m (7.8 min sub-
merged h'!) than at 5 m (9.7 min h''; 1, 5, = 7.3, P
< 0.001), but the rate of food gain was similar at
both depths (210 and 216 gFM h-l, respectively;
fs101 = 1.1, n.s., Fig. 11C). This suggests that the
rate of diving was adjusted to the rate of food pro-
cessing.

Crude intake rates were lower in Tufted Duck
(mean * SE) 90.5 £ 2.0 gFM h'!, n = 97 feeding
bouts) than in Scaup (168.0 £ 4.8 gFM h'!, n =72
bouts; t = 14.4, P < 0.001) when ducks were div-
ing for mussel clumps at 5 m depth (Fig. 11). In-
take rates of Scaup were higher when feeding
time was restricted to 16 h per day (213.6 £ 3.2
gFM h'l, n = 152) compared to unrestricted feed-
ing times (¢ = 8.24, P < 0.001). The latter results
suggest that intake rates are not strictly limited by
processing time under normal conditions and that
the ducks can increase processing rates if neces-
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Fig. 10. Cumulative food intake (A, C) and cumulative

dive duration (B, D) of Scaup M1 (A, B) and F4 (C, D),

respectively, at diving depths of 1 m and 5 m during 16-h feeding periods.

sary. However, they appear to prefer processing
food at a rather constant, but submaximal rate
(Fig. 10), which seems to govern alternate periods
of diving and resting (Fig. 9).

Feeding costs

Average metabolic rate of Scaup was 6.4 W
during the resting period of 7.6 h (excluding duck
F4 which was actively diving) and 14.1 W during
the feeding phase of 10.9 h (Table 2). Because av-
erage food consumption during the feeding phase
was only 60% of normal values (Table 1), this
feeding metabolic rate should be maintained for
1.7 times longer than the 10.9 h in this experiment
to meet the daily energy demand. The daily en-
ergy expenditure (DEE) can thus be approxi-

mated from the daily fraction of time feeding (at
14.1 W) and resting (at 6.4 W) yielding a DEE of
(185/24)x 14.1 + ((24-18.5)/24)x 64 =123
W (1063 kJ d'1). This value is within 5% of the
average of 1120 kJ d! (or 2240 gFM d!) esti-
mated from daily food consumption data of Scaup
(Table 1).

The higher costs during the feeding period can
be attributed to energy costs for diving and food
processing. Energy costs of food processing in-
clude crushing mussel shells in the gizzard, diges-
tion of flesh, and warming up the ingested cold
food mass. All heat produced from shell crushing
and digestion can probably be used to warm the
ingested food, because no energy costs for feed-
ing in excess of the obligatory need for thermo-
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Table 2. Energy expenditure of Scaup during resting (7.6 h, no food offered) and feeding (10.9 h, mussels offered
at a depth of 3m) determined from doubly labelled water measurements. Water temperature was 3.5 °C. The net ex-
cess diving cost (EDC) was approximated by subtracting the cost of heating up the ingested food mass from the dif-
ference in energy expenditure between the feeding phase and the resting phase.

Duck Body mass (g) Metabolic rate (W) Dive duration (s) Consumption (g) EDC (I s!)
Rest Feeding

Ml 755 6.9 14.8 3501 1230 53

M2 770 6.1 13.1 2832 1265 55

F3! 700 6.2

F4 715 8.8 14.4 2646 1605 592

1) Duck F3 did not eat during the entire measurement period
2) Duck F4 was actively diving during the resting phase. For calculating the excess diving cost, the average of the

resting values of the other three ducks (6.4 W) was used.
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regulation after food ingestion could be demon-
strated in mussel-feeding Tufted Ducks, as dis-
cussed in De Leeuw ef al. (1998). Therefore, feed-
ing costs can be simply estimated from the energy
necessary to warm up the ingested food mass
from ambient water temperature of 3°C to a core
body temperature of 41°C (heat capacitance of
mussels 2.8 J g1 °C'!). By subtracting these feed-
ing costs and resting costs from total energy ex-
penditure in the feeding period, energy costs for
diving (in excess over resting costs) can be esti-
mated. This excess diving cost (EDC; De Leeuw
1996) amounts to 56 J s°! spent underwater (aver-
aged for three birds; Table 2). This value is 12%
higher than EDC measured in Tufted Duck at
equivalent water temperatures (50 J s spent
underwater, De Leeuw 1996).

Metabolic rate of resting and diving Scaup can
also be estimated from body-mass corrected val-
ues of oxygen consumption obtained in the smal-
ler-sized Tufted Duck (body mass 600 g, Scaup
750 g), assuming that resting and diving costs
scale to body mass by an exponent of 0.80 and

Fig. 11. Frequency distributions of average crude in-
take rates including resting periods. (A) Three Tufted
Duck feeding on mussel clumps at 5 m (n = 97 episodes
with resting durations < 14 min). (B) Four Scaup div-
ing to 1 m (n = 51) and 5 m (n = 21) during 48-h unre-
stricted feeding trials. (C) Four Scaup diving during
trials with feeding periods restricted to 16 h (1 m, n =
61;5m,n=91).
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0.72, respectively, in diving birds (De Leeuw
1996). Thus, we find 6.8 W for resting and 59 W
for excess diving costs, which are only 6 and 5%
higher, respectively, than the values derived from
the doubly labelled water measurements in
Scaup.

DISCUSSION

Adjustment of diving activity to food process-
ing rate

At a crude intake rate of ca. 210 g h'!, the re-
tention time of Scaup was ca. 23 min. Grandy
(1972) found a retention time of 30 min in Black
Ducks Anas rubripes feeding on Mytilus shells.
This seems a short period of time for efficient di-
gestion, given the large amounts of indigestible
matter (water and shell fragments) in the intes-
tines (Dade et al. 1990; Karasov 1996). Kersten &
Visser (1996) measured a retention time of 28 min
in Qystercatchers Haematopus ostralegus (body
mass 500 g), which ingest only the flesh of mus-
sels Mytilus edulis.

The timing of diving activity is apparently de-
termined by the rate of food processing. The num-
ber of mussels gained in a dive bout indicated that
the esophagus was filled with mussels, followed
by a ‘resting’ period of 5-10 min to crush the
shells and empty the esophagus. During these
resting episodes, ducks also recover from body
heat loss imposed by diving (De Leeuw et al.
1998). The limited capacity of food storage both
in the esophagus and in the intestines (less than
5% of the daily needs), implies a large time pen-
alty for mussel-feeding diving ducks, as more
than 95% of their daily food requirements must
be digested at the feeding sites. For example,
Scaup in this study would need more than 13 h,
while Tufted Duck would need almost 15 h to
process their daily food ration. The maximum
time that can be spent at sheltered day-time roosts
would therefore be less than 11 h (Scaup) and 9 h
(Tufted Duck), respectively. Since foraging costs
are high in diving ducks, any adverse effect on
feeding performance will increase the daily en-

ergy expenses (and food requirements) and thus
the daily foraging times. This may explain why in
late winter, when feeding conditions deteriorate,
diving ducks tend to remain on the feeding
grounds instead of fly to their sheltered daytime
roosts (Van Eerden 1997).

Size or site selection?

When feeding on clumps, Tufted Duck and
Scaup showed a slight selection for smaller mus-
sel lengths (Fig. 6). The observed selectivity for
small mussels may partly reflect availability, as
young (small) mussels tend to settle on older
mussels at peripheral positions of a clump and are
thus more accessible to ducks. Selectivity may be
limited by the short time available for selection
while diving at high energy costs. Tufted Duck
actively selected small mussels when these were
not attached to any substrate and could be effi-
ciently strained by a waterflow (‘suction-fee-
ding’), but even under these relatively favourable
feeding conditions, selectivity was relaxed in div-
ing compared with non-diving birds (De Leeuw
& Van Eerden 1992). The selection experiments
with moderately attached clumps showed no dif-
ference between the two species (Fig. 6), but Tuf-
ted Duck appeared to eat smaller mussels than did
Scaup in the Markermeer (Fig. 3). This may sug-
gest that Tufted Duck more strongly prefers
patches with small mussels than do Scaup, rather
than that they select smaller sizes.

Giving up density of mussels

Depletion reduces the density of the food
source and thus it increases searching effort.
From Fig. 7, it appeared that Scaup could main-
tain high intake rates at mussel densities as low as
30-60 gFM m™. This suggests that searching for
food is only limiting at extremely low densities,
while handling prey (swallowing mussels under-
water or the amount of mussels that can be trans-
ported to the surface) is usually limiting intake ra-
tes.

Mussel densities observed in the field after pe-
riods of intense predation by diving ducks con-
firm that diving ducks are able to deplete mussel
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Table 3. Lowest densities of Dreissena polymorpha after periods of intense predation by diving ducks. Only sin-
gle prey situations in which more than 70% of biomass disappeared during the predation period are included.

Species ‘Water system Water depth (m) Density (gFM m?) Reference!
Tufted Duck River Rhine (Switzerland) 1.0 30 1
1.3 32
35 50
Pond Leblanc (Belgium) 33 50-100 2
Markermeer 25 65 3
35 60
Scaup IJsselmeer 2 47 3
3 60

1y References: (1) Suter 1982, (2) Draulans 1982, (3) Van Eerden 1997

Table 4. Parameters for estimating the net energy intake rate of Tufted Duck and Scaup feeding on Zebra Mus-
sels at a water depth of 3 m in the ITsselmeer (IJ) and the Markermeer (M), and in experimental cages (Exp).

Lake Tufted Duck Scaup Reference!
Apparent intake rate (gFM s'1) 0.40 0.42 1
I 0.34 0.42 1
Metabolizable energy content (kJ gFM™1) M 0.40 0.40 2
I 0.48 048 2
Diving cost (W) Exp 50 56 1,3
Food heating cost (kJ g1 °C1) Exp 2.8 2.8 4

1y References: (1) This study, (2) De Leeuw (1997), (3) De Leeuw (1996), (4) De Leeuw et al. (1998, 1999)

beds to densities of 30-60 gFM m2 (Table 3), cor-
responding to the range at which the functional
response curves appear to reach the asymptote
(Fig. 7). The giving-up densities of Scaup and
Tufted Duck are in the same range and increase
slightly with diving depth. Since foraging costs
are high, however, feeding success, i.e. the prob-
ability of finding mussels in a heterogeneous
feeding area, should be consistently high. Lake-
wide surveys by means of bottom sampling sug-
gest indeed a more homogeneous distribution of
mussels and a higher probability of encountering
mussels in the Markermeer (Bij de Vaate 1991).
Also, feeding success of diving ducks estimated
from esophagus contents indicated that mussel
encounter rates were higher in the Markermeer
than in the IJsselmeer.

Habitat use determined by differential forag-
ing skills?

Tufted Duck and Scaup showed great similar-
ities in their foraging behaviour when feeding on
Dreissena, both in the field and in experiments.
The smaller sized Tufted Duck, however, seems
to prefer small mussels (Fig. 3) and may be hin-
dered more by the byssal attachment of mussels
in moderate clumps (Fig. 5) than Scaup. These
differences in foraging skills correspond qualita-
tively with the observed segregation of the two
species in the IJsselmeer area when local differ-
ences in prey properties are taken into account. In
the Markermeer, mussels are smaller (Bij de
Vaate 1991), their substrate attachment by byssal
threads is less developed (Fig. 4), and the prob-
ability of encountering mussels (reducing search-
ing effort) is higher (Van Eerden 1997) than in the
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Fig. 12. Net energy intake rates estimated for Tufted
Duck and Scaup feeding in the IJsselmeer and the Mar-
kermeer at a water depth of 3 m. Intake rates are based
on the values observed in ducks feeding on mus-
selclumps with moderate byssal attachment in The IJs-
selmeer and on unattached mussels in the Markermeer.
In Tufted Duck the potential difference between unat-
tached (higher intake rates) and moderately attached
mussels is indicated by dashed lines; there was no dif-
ference in Scaup (Fig. 5). The higher net intake rates in
the IJsselmeer are due to the higher energy content of
mussels in this part of the lake system.

IJsselmeer. However, the energy content of mus-
sels in the IJsselmeer (metabolisable energy con-
tent (MEC) 0.48 kJ gFM'! at a depth of 3m, De
Leeuw 1997) proved to be higher than that of
mussels in the Markermeer (MEC 0.40 kJ gFM-
1). Thus, both energy costs and benefits are higher
in the IJsselmeer than in the Markermeer. The net
energy intake rate can be used as a currency to
evaluate the profitability of both parts of the lake
for diving ducks. By subtracting the energy costs
for diving (DC) and heating up the ingested food
(assuming a heat capacitance of 2.8 kJ g1 C'! and
a difference between body and ambient water
temperature of 38°C, FC = 2.8 x 38 x AIR), the
net energy intake rate can be calculated as AIR x
MEC - DC - FCkJ s'! spent underwater (Fig. 12).
In the Markermeer most mussels (> 60%, Van
Eerden 1997) live unattached, but in the IJssel-
meer less than 30% occur unattached (mainly in
deep water) while the majority are found in ‘mo-

derate clumps’ (tight clumps are rare in both lakes
and are not considered here). Because intake rates
of Scaup are not affected by the byssal attachment
of mussels (Fig. 5), Scaup greatly benefit from
high energy returns of mussels in the IJsselmeer,
explaining its preference for this part of the lake.
In contrast, for Tufted Duck net intake rates in
both lakes are much closer, since the generally
stronger byssal attachment of mussels in the 1Js-
selmeer reduces intake rate.

Other factors than foraging skills (e.g., dis-
tance between feeding sites and roosting areas,
susceptibility to wind-exposed feeding sites,
likelihood of discovering feeding areas, and com-
petitive ability of Scaup vs. Tufted Duck) doubt-
less play an important role in habitat selection
too. Considering foraging skills in isolation is
thus insufficient to determine the profitability of
feeding habitats. More detailed analyses on prey
distribution combined with energetic models, that
can approximate the complex interplay between
foraging costs and variable energetic returns from
mussels under different field conditions, might
give answers to questions about the extent to
which habitat use can be attributed to differences
in optimal feeding conditions and to what extent
mussel populations can be exploited by diving
ducks.
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SAMENVATTING

Kuifeenden Aythya fuligula en Toppereenden Aythya
marila overwinteren massaal in het IJsselmeergebied,
waar ze voornamelijk Driehoeksmosselen Dreissena
polymorpha eten. Beide soorten duikeenden leven gro-
tendeels gescheiden in het gebied: Toppereenden
vooral in het IJsselmeer, Kuifeenden vooral in het Mar-
kermeer. Onderzocht werd in hoeverre deze verdeling
kan worden verklaard uit verschillen in haalbare voed-
selopnamesnelheden. Deze snelheden hangen af van ei-
genschappen van de mosselen, zoals schelpgrootte, de
aanhechting met byssusdraden aan andere schelpen en
de ruimtelijke verspreiding. Opnamesnelheden werden
gemeten in een reeks experimenten met vogels die in
gevangenschap naar mosselen doken onder omstandig-
heden die zo veel mogelijk de natuurlijke wintercondi-
ties benaderden. In het Markermeer zijn de Driehoeks-
mosselen gemiddeld wat kleiner dan in het IJsselmeer,
de aanhechtingssterkte van de mosselen is er minder en
er treedt minder kluitvorming op. Uit de experimenten
blijkt, dat Kuifeenden in het Markermeer een aanzien-
lijk hogere opnamesnelheid kunnen halen (bijna 20%

meer) dan in het ITsselmeer. Bovendien zijn de mosse-
len in het Markermeer homogener verspreid, waardoor
het foerageersucces ook hoger zou kunnen zijn. Bij de
grotere Toppereenden speelt de aanhechtingssterkte
van de mosselen nauwelijks een rol en neemt de opna-
mesnelheid pas bij zeer lage mosseldichtheden af.
Doordat de energie-inhoud van mosselen in het IJssel-
meer hoger is dan in het Markermeer, is de netto-op-
name voor Toppereenden er ook aanzienlijk hoger, het-
geen hun sterke voorkeur voor dit deel van het gebied
kon verklaren. Bij Kuifeenden is het verschil in netto-
opname tussen beide gebieden echter gering, omdat de
effecten van de sterkere byssusaanhechting en de gro-
tere energie-inhoud van de mosselen elkaar bijna op-
heffen. Naast voedselopnamesnelheid kunnen ook an-
dere factoren, zoals concurrentie tussen beide soorten
duikeenden en de aanwezigheid van luwe plekken voor
dagrustplaatsen, ertoe bijdragen dat de kleinere Kuif-
eenden, die uit energetisch oogpunt gevoeliger zijn
voor wind, het Markermeer verkiezen.
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