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This note generalizes the geometric theory around minimal 
and reduced order observers to the situation in which differ- 
entiation of certain components of the observed output is 
allowed. A geometric theory involving the notion of PID-ob- 
server is introduced, using the concept of almost complemen- 
tary observability subspace. A generalization of the notions of 
dynamic cover and cover index is defined in the context of 
almost controllability subspaces. We prove a result on the 
existence of minimal dimension covers for one-dimensional 
subspaces. These ideas are used to define the concept of 
minimal order PID-observer and to establish the existence of 
minimal order PID-observers for a single linear functional of 
the state. 

Keywords: Geometric theory, PID-observers, Almost controlla- 
bility subspaces, Cover index, Almost complementary ob- 
servability subspaces. 

1. Introduction 

In this note we will consider the dynamical 
system 

2: k=Ax, y=Cx, 0.1) 

with x ES?:= R”, y E ?P:= W P and A and C linear 
maps (matrices of appropriate dimensions). In 2, 
we will interpret y as an obserued output. It will be 
assumed throughout that C is subjective and that 
the pair (C, A) is observable. 

It is well known that a ‘full order’ dynamic 

* Research supported by the Netherlands Foundation for 
Mathematics with financial aid from the Netherlands 
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observer for the state of the system 2 can be found 
as follows [1,2]: let A be a symmetric set (i.e. 
non-real elements of A appear in conjugate pairs) 
of n complex numbers. Let K: ?Y+ “Y be a map 
such that a( A + KC) = A and consider the n-th 
order observer 

2 * obs . +=Jw-Ky, (1.2a) 
i = w, (1.2b) 

with J := A + KC. Obviously, the error e := 2 - x 
satisfies ti = Je. Taking a(J) = A in the open left 
half complex plane then yields e(t) + 0 (t --j co) 
and hence a(t) ultimately identifies x(t). As 
pointed out in [2] and [3], the dynamic order of the 
above observer is unnecessarily large, since from 
the observation y(t) it is possible at once to re- 
cover the part of the state vector modulo ker C. In 
this way it is possible to reduce the order of the 
observer dynamics to n - codim ker C. In [3] the 
existence of this reduced order observer was 
established using the dual version of the following 
proposition: 

Proposition 1.1 [7]. Assume that (C, A) is obserua- 
ble. Let A be a symmetric set of n - p complex 
numbers. Then there exists a subspace 9’~ Xand a 
linear map K: ?Y-+ Zsuch that 

ker C@P’=X, (1.3) 
(A + KC)X.9’ (1.4) 

and 

u((A+KC) mod9’)==. 0 (1.5) 

We will briefly recall the construction leading 
the the ‘reduced order’ observer. Let I/: .9’+ W”-J’ 
be a map such that 9= ker I? From (1.3) we have 

ker 
( 1 

E = (0). 

Hence there are matrices M and N of appropriate 
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dimensions such that 2. Reduction of dynamic order by differentiation 

MC+ NV= InX,. (1.6) 

Let K: ?V+ S be as in Proposition 1.1. Clearly, 
(1.4) and (1.5) are equivalent to the existence of a 
mapJ:R n--p --, R”-J’ with the property that 

V(A+KC)+JV and o(J)=it. 

Instead of assuming the entire observation y(t), 
together with all its derivatives y(‘)(t), y(*)(t), . . . 
to be available for instantaneous identification of 
the plant state, we will take the following option. 
Let 

Consider now the (n - p)-th order observer 

2 obs : i=Jw- VKy, (1.7a) 

2=Nw+My, (1.7b) 

and define e := w - Vx. Obviously ti = Je. Taking 
a(J) = A in the open left half complex plane 
yields e(t) + 0 (t + co). From (1.3), note that 
every x E .%-can be written uniquely as x = x, @ x2, 
with x, E ker C and x2 ESP= ker V. From (1.6) 

y(t)= (Y,wwYp(t))‘. 

For each component y,(t), specify an integer K, 

such that - 1 < K, < n - 1. K, > 0 will mean that 
y,(t), y,“)(t),...,y,‘“,‘(t) may be used for direct 
feedthrough. tci = - 1 will mean that neither y,(t) 

nor any of its derivatives may used for direct 
feedthrough. In a suitable basis it can be arranged 
that K, > K, 2 . . * >, K~. Define integers Y, (i = 
0,. ..,‘$) by 

u, := the number of integers in the set 
x, = NVx, = NVx and x2 = MCx, = MCx. 

Therefore, NW(t) + xl(t) (t --, 00) and &y(t)= 
x2(t). It follows that 

b ,,..., K,} whichare >,i. (2.1) 

Clearly, v0 2 y1 2 . . . 2 v,,. Moreover, the above 
is equivalent to saying that the subvector 

a(t)-x(t)=Ne(t)+O (t-co), 

that the state component in ker C is ultimately 
identified by NW(t) and that the state component 
in 9’ is identified instantaneously by My(t). It is 
vital to note here that this instantaneous identifi- 
cation property is provided by the presence of a 
direct jeedthrough term in (1.7b) which is not pre- 
sent in (1.2b). In this sense, the observer (1.7) 
could be called a PI-obseruer (proportional/in- 
tegral), while the observer (1.2) could be called an 
I-obseruer (integral). In this note we will show that 
it is possible to reduce the dynamic order of the 
observer even more by allowing direct feedthrough 
of derivatives of the observation y(t), i.e. by allow- 
ing the observer to be a PID-observer (differentia- 
tion). In Section 3 we will introduce generaliza- 
tions of the notions of dynamic cover and cover 
index [4] and subsequently establish a generaliza- 
tion of a result by Wonham and Morse on the 
existence of minimal dimension covers for one-di- 
mensional subspaces. Finally, in Section 4, we will 
introduce formal definitions of ‘PID-observer’ and 
‘PID-observer index’. The results from Section 3 
will be dualized to establish the existence of 
minimal order PID-observers for a single linear 
functional of the state. 

(YlW ,...,y”,(t))TEq:=WvI 

may be used for direct feedthrough, together with 
all its derivatives up to the order i. More con- 
cretely, let L, : Y’-, ?Yj be linear maps such that 

( YI ,-,yJT=L;y- 

Then the output equations of our observer should be 
of the form 

a(t) = F(w(t), &y(t), 

L#‘(t),...,L,,y’““(1)) 

for some linear map 

(2.2a) 

Here, w E -Wis the state of the observer, which will 
be assumed to be driven only by y(t). That is, the 
dynamic part of our observer will be assumed to 
be of the form 

k(t) = G(w(t),y(t)) 

for some linear map G: %‘B ‘Y+ fl. 
Obviously, 

(2.2b) 

ker L, c ker L, c . . . c ker L,,. 
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Define a map 

w: x+ Y. @Y, CT3 * . . CT3 Yw:, 

bY 

’ LOC ’ 
L,CA 

wx:= . x. (2.3) 
. 

\ 
L&A”’ 

Denote Y, := ker L,C. We then have the following 
inclusion: 

ker C=:xcX,c .e. cK,,. (2.4) 

It follows that {-X, } is a chain arouid X [5]. 
Moreover, 

ker W= fi A-‘.%‘, 
i=O 

(2.5) 

from which we obtain that ker W is an almost 
complementary observability subspace with respect 
to (C, A) [5]. The following theorem is the dual 
version of [6], Theorem 5.1. It provides a direct 
generalization of Proposition 1.1. 

Theorem 2.1. Assume that (C, A) is observable and 
suppose that M0 c 3 is an almost complementary 
observability subspace. Let A be a symmetric set of 
dimJV^, complex numbers. Then there exist a sub- 
space 9’~ !Xand a map K : Y+ 3such that 

No @Y=X, (2.6) 

(A + KC)P’csP 

and 

(2.7) 

a((A+KC) modY)=A. 0 (2.8) 

It will now be shown how this theorem can be 
applied to reduce the dynamic order of the state 
observer by allowing direct feedthrough of deriva- 
tives of y(t) according to the prespecified integers 
K;. Take JT, = ker W in the above theorem. Let A 
be a symmetric set of n, := dim x0 complex num- 
bers. Let YC Xand K: q+ Xbe as above and let 
V: X+ R”u be a map such that Y= ker V. From 
(2.5) we have ker(E) = (0). Therefore, there are 
maps 

and a map N:lR”u + Xsuch that 

MW+ NV= Z,,,,,. (2.9) 

Again, (2.7) and (2.8) are equivalent to the ex- 
istence of a map J: Iw”” + R”” such that 

V(A+KC)+JV and u(J)=A. 

Let M be partitioned as M = (MO, M,, . . . ,M,,). 
Consider the PID-observer 

%tB: k=Jw- VKy, (2.10a) 

2 = NW + M,,L,y + M,L,y”’ 

+ . . . + M,IL,,y(XI). (2.10b) 

Let e := w - Vx. As in Section 1, t = Je and taking 
A in the open left half complex plane yields e(t) 
-+ 0 (t -+ co). From (2.6) every x E X can be 
written uniquely as x = x, @ x2 with 

x, EJr, = ker W and x2 EY= ker V. 

Again, from (2.9), 

x, = NVx, + Nvx and x2 = MWx, = MWx. 

It follows that 

NW(t)-+x,(t) asr-+co, 

that 

5 M,Liy”‘(t)=x,(t) 
r=O 

and that 

2(t)-x(t)=Ne(t)+O (t+m). 

Note that the state component in JT, is ultimately 
identified from Nw( t), while the state component 
in Yis identified instantaneously from 

The dynamic order of the observer (2.10) is n, = 
dim ker W. From (2.3) it is clear that 

P 
dimker Warnax O,n-p- c ~~ 

i 1 

(2.11) 
i=l 

with equality if and only if W has full rank. 
Therefore, (2.11) only provides a lower bound for 
the order of the observer (2.10) and this lower 
bound is achieved if and only if the map W has 
full rank. One possible way to make sure that W 
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has full rank is to choose the integers K; in the 
following way: Let I, > I, > . . . 2 I,>, 1 be the 
observability indices associated with (C, A). Let 

Cl) c2,. . . , cP be the rows of C. Dualizing a result 
from [7], Section 5.7, it can be shown that, possi- 
bly after relabeling, the base vectors of PJ, the 
following row vectors are linearly independent: 

c,,c,A )...... . . . . . . . . . . . . , C,A'I-', 

c,,c,A ,... . . . . . . . . . . . . . cZA’,-‘, 

(2.12) 

Cp-l,Cp-,A )...) Cp-,A’P-‘-l, 

cp, cpA..., cpA’+. 

Hence, if we take K, >, K~ > . . . > K~ such that 
-l<K,<li-ly then W is surjective and the dy-. 
namic order of the observer (2.10) is 

P 

no=n-p- c K;. 

i=l 

Remark 2.2. Note that the ‘full order’ dynamic 
observer may be recovered from this result by 
taking Ki = - 1 for all i, i.e. by not allowing direct 
feedthrough of any of the components of y (or 
equivalently: W = 0). Also note that the ‘reduced 
order’ observer may be recovered from the above 
result by taking K, = 0 for all i, i.e. by allowing 
direct feedthrough of y(t) only and not of any of 
its derivatives (equivalently: W = C). 

Remark 2.3. If we take K~ 2 li - 1, we obtain n, = 0. 
In this case the observer (2.10) degenerates into a 
PD-observer, or following [5], into an instanta- 
neously acting observer. 

3. Almost controllability subspace covers 

In this section we will generalize the concepts of 
cover and cover-index as introduced in [4]. Let (A, 
B) be a controllable pair, where B : %Y’-, .%Y is an 
injective linear map and 4Y:= R”. Denote %?:= 
im B. Let 9~ 9”. Recall that an (A, B)-invariant 
subspace Vof %-is called a cover for 9 if 2’~ .G@ + 
Y. Consider the following generalization: Let &‘a 
be an almost controllability subspace rel. (A, B). 
(see [8]). Then an (A, B)-invariant subspace V-of % 
will be called an 9’,-cover for 9if 2’~ 9a + V. 
Note that, in our terminology, a cover in the sense 

60 

of [4] would be called a .%cover. We will define 
the .%,-cover index of 9 to be the smallest integer 
v > 0 such that the following holds: for every 
symmetric set A of v complex numbers with the 
property 

A#(a - An(Wzql, 

there exists an .90-cover Vfor 9and a map F: 
X--+ @ such that 

dim V= v, (A+BF)%V 

and 
a(A+BFIV)=A. 

From [6], Theorem 5.1, we immediately obtain 
that every subspace dpc F has an 9’,-cover of 
dimension n - dim .%‘0 and thus that the 9’,-cover 
index v of 9 is well-defined and satisfies 

O<v<n-dimSe,. 

AS already noted in [4], the problem of computing 
the @cover index and the corresponding %covers 
for an arbitrary subspace 9 is unsolved. However, 
for the case that dimPEP= 1, a complete solution 
was described in [4]. In this note we will extend 
the latter result to the problem of computing the 
.9P0-cover index and corresponding .9?0-covers for 
9, in the case that the almost controllability sub- 
space 9, is assumed to be equal to Sk, where 

9+A9+ ... +Ak-%?', k>,O, 
k=O. t3-l) 

Recall from [4] that controllability subspaces 9%‘; 
(1 < i < m) exist such that 

%=%@‘,cT3~*fB f-s @.Gfrn 

and such that Bi n .99=: 4 is one-dimensional. 
Writing CL, := dim 9;, the integers 1-1, are the con- 
trollability indices. We will assume CL, > pZ >, . . . 
3 Pm. Moreover, there is a map F, : T’-, 42 such 
that, with A, := A + BF,, 

A,,Se,c9?, and ~i=~i@A,~i@ ... @Ag~-‘Ji. 

Let bi E @ be such that span{ bj } = d,. Define 

w m+l := (0) and p,+i := 0. 

Now take k 2 0 and for any subspace.ZC Xdefine 

m+l 

l:=max i:lgi<m+l&9C.X?~+ C Se, . 
j-l 1 

(3.2) 
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Then we have the following lemma, the proof of 
which will be given along the lines of [4], Lemma 
3.2: 

Lemma 3.1. Assume that dim -C?= 1. Suppose A is a 
symmetric set of max{O, p, - k } complex numbers 
with the property 

nzg =a nnrw+p. 

Then there is an &JJ-cover Vfor Sand a map F: 
.Y+ @such that 

dimV=max{O,p,-k}, 

(A+BF)VcV and a(A+BFIV)=A. 

Proof. If p, G k, then clearly 

.%,@39,+, a3 ... cB.!2’,c2k, 

so in this case 7v= (0) is an .&-cover for 3 
Assume now that p, > k. Apply [6], Theorem 5.1 
to the system (A,19,, b,) to obtain V, ~9, and 
fi: %-+ R with 

(A, + b,f,)C= 57 

J,@AoJ,@ -.- o I I @Ak-‘& eV=9 I 

and 

(A, + b,f,lC) = A. 

It can be arranged that 

fJ9,=0 (i#l). 

ForI<i<m,if~j<k,takef,=Oand~={O).If 
p, > k, take a symmetric subset A, c A of CL, - k 
complex numbers and apply [6], Theorem 5.1, to 
(Aol.%‘i, b,) to obtain ^u; C.%‘, andh: X+ R with 

(4, + b,hbT +‘Yy 

~;eA,~;@ ... o , , @Ak-‘&$K=&‘. ,, 

u(A, CB b;Al< ) = A; 

and 

J;I.TZj=O (ifj). 

(Note that it is always possible to choose a sym- 
metric subset Ai c A for /.L, - k odd or even be- 
cause of the assumption Z’pn W # 8.) Let P: %A Q 
be such that 

Bi= b,f,@ ... @ b,,,f,. 

Define 

Obviously, (A, + Bk)k $and 

9?,cBa,+, cl3 . *. cB9?mc +-+3fk. (3.3) 

Since Aal.%?, is cyclic, it can be seen that (A, + 
Bk) ]V, is cyclic. Let r(s) be the characteristic 
polynomial of (A, + BP) I f,. Since A, c A, the 
minimal polynomial of (A, + B&)1? must be 
equal to r(s). Let z E X be a vector such that 
J8= span{ z}. From (3.2) and (3.3.), z - h E ? for 
some h E Xk. Define 

Vo:=(Ao+B@]span{z-h}). 

Then (A + Bk)Ifo is cyclic and hence, since V. c 

?, its characteristic polynomial must divide n(s). 
Now, if dim To = p, - k, let C= To and F:= F, + 
k. If dim V. < CL, - k, apply [4], Lemma 3.1, to 
obtain Vand F with the desired properties. u 

The following theorem now generalizes the re- 
sult from [4]: 

Theorem 3.2. Let k 2 0 and assume that dim 2’= 1. 
Then the .Pk-cover index v(k) of 9 is given by 

v(k)=max{O,p,-k}.. (3.4) 

Proof. From the previous lemma, the Hk-cover 
index v(k) of Y satisfies 

v(k)~max{O,p,-k}. 

The proof of the reverse inequality can be given by 
adapting the proof of the corresponding result 
from [4], p. 99, using ingredients similar to those in 
the proof of Lemma 3.1 above. 0 

4. Minimal order PID-observers 

In this section we will introduce formal defini- 
tions of the concepts of PID-observer and 
minimality of order. Starting from these defini- 
tions, we will explain in which sense the observers 
(1.2), (1.7) and (2.10) are minimal. Finally we will 
dualize the results from Section 3 to establish the 
existence of minimal order PID-observers for a 
single linear functional of the state. This result will 
generalize the well known results from [4] (see also 
[71, p. 77). 
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Again, consider the system (1.1) and assume 
that a second output equation 

from (4.2) we have 

ckerD. 
z=Dx (4.1) 

is given. Here, z EZ’:= IWY will be interpreted as 
the variable to be identified by the observer. In the 
following, let X0 be an almost complementary 
observability subspace (rel. (C, A)). Then a (C, A)- 
invariant subspace 3% 57 will be called a PID- 
observer (rel. JL”, ) for Dx if 

Therefore, maps 

M=(M,,M ,,..., M,,):~~M,a3 .a* @Tip%- 

and 

N: R”+Z?“ 

exist such that 

.YnJlr,ckerD. (4.2) MW+NV=D. 

The Jr,-observer index of Dx is the smallest integer 
v > 0 such that the following holds: For every 
symmetric set A of v complex numbers with the 
property 

Moreover, there are maps K: +Y+ %and J: lR ” + R” 
with 

there exists a PID-observer 9’(rel. Jv;) for Dx and 
a map K: %Y+ -%-such that 

dim %(mod 9’) = v, (A+KC)YcS“ 

and 

a((A+KC)mod9’)=A. 

V(A+KC)=JV and u(J)=A. 

Now consider the system 

2 ohs: ti=Jw- VKy, (4.3a) 

z^ = NW + M,L,y + M,L,y”’ 
+ . . . + MK,Lr,y? (4.3b) 

Then e := w - Vx satisfies ti = Jw and i - z = Ne. 
Hence, taking A in the open left half complex 
plane yields 

A PID-observer 9(rel. Jv^,) for Dx will be said 
to have minimal order if dim .%(mod 9) is equal 
to the X0-observer index of Dx. The above defini- 
tions generalize definitions by Wonham and Morse 
[4]. In fact, their definitions of observer and ob- 
server index can be recovered from the above ones 
by taking Jv; = ker C. Note the duality between 
the notions of PID-observer and cover. A little 
thought reveals that a (C, A)-invariant subspace 9 
is a PID-observer (rel. No) for Dx if and only if 
P is an Xi -cover for im DT (rel. (AT, CT)). 
Moreover, the X0-observer index of Dx is equal to 
the Mi -cover index of im DT (see also [S]). 

i(t)-z(t)+0 (t+ CQ). 

We see that (4.3) defines a system that identifies 
z(t). Zobs will also be called a PID-observer. This 
PID-observer Zobs has .minimal order in the sense 
that its dynamic order is equal to the Xti-observer 
index of Dx. In general, the problem of finding the 
Ma-cover index of Dx, being dual to the cover 
problem, is very difficult. We do have a result 
which treats the case that D = I: 

We will now explain how the above formal 
definition of PID-observer yields a ‘real’ PID-ob- 
server, i.e. a system with differentiators identifying 
z(t). For this, specify integers K, > K~ > . . . 2 K~ 

as in Section 2 and take N0 = ker W, where W is 
given by (2.3). Now, let Ybe a PID-observer (rel. 
X,) for Dx and suppose Y’has minimal order. Let 
v = dim .% (mod 9’) be the MU-observer index of 
Dx. Let V: X+ Iw’ be such that ker I/ = 9. Let A 
be a symmetric set of v complex numbers with 
A = $9 if v = 0 and A n lR # $9 if v > 0. Clearly, 

Proposition 4.1. Let MO be an almost complemen- 
tary observability subspace (rel. (C, A)). Then the 
xa-observer index of X ( = Ix) is equal to dim Jvz. 

Proof. From Theorem 2.1, for every symmetric set 
A with A n lR # 8, there is a PID-observer Y(re1. 
M,) and K: 5V+ Iwith 

dim .%( mod 9’) = dim -/vl 

and 

o((A+KC)modY)=A. 

Hence the Jr,-observer index v of Dx satisfies 
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v G dim Ma. On the other hand, every PID-ob- 
server Y(re1. Jv;) for x must satisfy M0 n 9= {0}, 
soalsov>dimMO. 0 

From the above proposition, note that the 
PID-observer Zobs as defined by (2.10) has minimal 
order, in the sense that its dynamic order n, 
( = dim Jv;) is equal to the MU-observer index of x. 
As a special. case of this, we obtain that the ‘full 
order’ observer (1.2) has minimal order (its dy- 
namic order n, = n is equal to the X0-observer 
index of x with Jv; = 3). As another special case 
we obtain that the ‘reduced order’ observer has 
minimal order (its dynamic order n, = n - p is 
equal to the Ma-observer index of x with Jv; = 
ker C). 

Remark 4.2. There is still another sense in which 
the ‘reduced order’ observer (1.7) is minimal. Con- 
sider the set D := { 91 Yis a subspace of X and 
ker C c L?}. Then every 9~ s2 is an almost com- 
plementary observability subspace. Hence, we may 
apply Theorem 2.1 to each element L?in s2 to 
obtain, for each symmetric set A of dim9 com- 
plex numbers, a (C, A)-invariant subspace 9’and a 
map K: @Y-+ Zssuch that 

9@.9= I, (A + KC)Yc9’ 

and 

a((A + KC) modY)=A. 

Corresponding to 9~ a there is a matrix L, such 
that Zip= ker W, with W = L,C. This yields an 
observer 

2 obs : k=Jw- VKy, 

i = NW + M,L,y 

with a(J) = A, which only uses L, y(r) for direct 
feedthrough. Therefore, the set s2 parametrizes the 
set of all PI-observers Eobs for the state x, in the 
sense that each 9’~ 52 yields a PI-observer with 
dynamic order dim .L?a n - p. Taking LZ’= ker C 
yields the ‘reduced order’ observer, which has 
dynamic order n -p. Hence we may state that the 
‘reduced order’ observer has minimal dynamic order 
over the set of all PI-observers for the state x. 

Finally, we will dualize the results from Section 
3 to establish the existence of minimal PID-ob- 
servers for a single linear functional of the state. In 

(4.1) assume that %“= lR and to stress this write 
D = d, where d is a linear functional on .%. We will 
assume that the entire observation y(t), together 
with all its derivatives up to the order k - 1 may 
be used for direct feedthrough. This corresponds 
to taking K, = K~ = . . . =Kp=k-1. Here, k=O 
means that no direct feedthrough is allowed. The 
mapping W corresponding to this choice is W = 
W,, where 

’ c \ 
CA 

w, := . ) w, := 0. (4.4 

, CAkp’ , 

Note that for all i, L, = I and g, = GY. Denote 
Jv;, = ker W,. As noted before, the Mk-observer 
index of dx is equal to the &‘jj-cover index of 
im dT (rel. the pair (AT, CT)). The latter integer 
v(k) can be found using Theorem 3.2. It follows 
immediately that for each symmetric set A of v(k) 
complex numbers with A = $9 if v(k) = 0 and A n 
R # 8 if v(k) > 0, a minimal order PID-observer 9’ 
(rel. Jvk) for dx exists, and a map K : g+ 9” such 
that 

(A + KC).Y’c.Y, a((A+ KC) modY)=A. 

This leads to a PID-observer Eobs for z(t): 

2 - obs . ti=.Iw- VKy, (4Sa) 

i = nw + m,y + m, y”’ 

+ . . . + mk-,y’k-“, (4Sb) 

with a(J) = A, of dynamic order v(k). Here, n 
and m, are linear functionals on wand grespec- 
tively. The observer Zobs has minimal order in the 
sense that its dynamic order is equal to the Nk-ob- 
server index of dx. Note that the original result by 
Wonham and Morse [4] can be recovered from the 
above by taking k = 1. 

In particular, for a given d: .!X+ W it is possible 
to find a PID-observer ZZobs for z = dx, using y(t), 
y’“(t),...,y ck-‘)( t) for direct feedthrough, of dy- 
namic order max{O, I, - k }. Here, I, is the largest 
observability index of the pair (C, A). It is always 
possible to find an I-observer for z = dx (no direct 
feedthrough at all) of dynamic order I,. 
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