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PYRAZINE REVISITED

Pieter J. de Lange, Karel E. Drabe, Harry Th. Jonkman and Jan Kommandeur

Laboratory for Physical Chemistry, University of Groningen, Nijenborgh 16,

9747 AG GRONINGEN, The Netherlands.

ABSTRACT : Pyrazine is shown by its Molecular Eigenstate Spectra and by its

quantum beats to be a small molecule.  The effect of Coriolis coupling and

non-resonant light scattering are discussed.  This paper further treats the

so-called "fast component".  Its existence with a decay time of about 100

psec has by now been firmly established.  It finds its cause in the

"bunching" of the molecular eigenstates in frequency space.  For broad (i.e.

psec) lasers it is therefore still useful to speak of pyrazine as an ILS-

molecule.  The characterization depends on the laser one uses in the

experiment.



I  INTRODUCTION

The ten atom molecule pyrazine (C4N2H4) has for a long time been taken as

the prime example of Intermediate Level Structure (ILS).  The original

concept came from Tramer et al. (1, 2), who convincingly showed that an

intermediately dense manifold of triplet vibronic states that a singlet

excited state was coupled to, would lead to so-called bi-exponential decay,

where the ratio of the amplitudes of the fast and the slow component (A+/A-)

yielded a measure of the number of dark states coupled to the "doorway"

state.  Pyrazine was considered to be a prime example and the theory was

successfully applied to other molecules as well (3).

With the advance of high resolution lasers and with the use of supersonic

nozzles and molecular beams, the situation changed.  In particular through

the work of van der Meer et al. (4), who showed with a 200 kHz wide laser in

a 5 MHz Doppler broadened molecular beam, that the single rotational singlet

transitions in reality were split into many isolated lines (see fig. 1).

From their work they could show that these lines were due to transitions from

a ground rotational state to the molecular eigenstates formed from a

ro-vibronic singlet state and some 12 to 14 background triplet states (4).

This observation put pyrazine in one class with molecules such SO2 and NO2,

which have been traditionally classified as "small molecules" for the

purposes of radiationless transitions.  In agreement with this

classification, exciting one ME with a very narrow laser yielded single

exponential decay (5) and exciting a limited number of ME's (6,7,8) yielded

quantum beats.

But what then was the cause of the fast component obsesrved?  Tramer's

original calculation (1) appeared to exclude its occurrence for a limited

number of coupled levels (≈ 13) such as in pyrazine, and moreover the A+/A-

ratio never had the values derived from the spectroscopic

experiments.  Nevertheless the existence of the fast component was recently

most firmly established by the work of Rice (9) and Zewail (10).

Also, there was a problem with the quantum yield.  For a really small

molecule one might expect it to be one, while it was measured to be in the

order of 10-2 (11).  Moreover, it was measured to inversely depend on the



Figure 1

a) The vibronic spectrum
of pyrazine in a
supersonic jet

b) The 1B3u-(0-0)
transition blown up
so as to yield the
rotational spectrum

c) The rotational
components P(1) and
P(2) and the
underlying ME's.

d) The ME-spectrum of
P(1)



rotational quantum number J (11,12) similar to the J-dependence of the A+/A-

ratio (9,13).

A suggestion was made (14) that at least the fast component might be due

to non-resonant light scattering (NRLS), which, of course, should have a

quantum yield of one and might show up very preponderantly in an electronic

decay, but it would appear that the experiments of Rice (9) and Zewail (10)

have shown the contribution of NRLS to be at most a minor effect.

This paper therefore addresses three major questions.

1) What is the reason for the low quantum yield?

2) What is the fast component due to?

3) Where does the J-1 dependence of quantum yield and A+/A- derive from?

II THE QUANTUM YIELD

Pyrazine may behave as a small molecule with respect to the triplet

manifold, but not with respect to the singlet ground state manifold  S0 .

It is very dense, and a very small interaction v has a considerable effect

on the quantity 2πv2ρ, which would describe the coupling to the dense

manifold  S0 .  Of course, the triplet state T will also be coupled to  S0,

but ceterus paribus this coupling will be one or two orders of magnitude

less because it is spin-forbidden.  The low quantum yield in this view must

be due to the S - S0 coupling.  This can be studied by looking at the

relative (integrated) intensities of the rotational excitation spectra.

These spectra are the result of a product of absorption intensities and

quantum yields.  The absorption part can be readily calculated using a

Boltzmann distribution and the Hoehnle-London factors for the intensities of

rotational transitions.  In fact it was found (15) that most states are in

Boltzmann equilibrium, except for the Ag ground J = 0, K = 0 state, which

can only be reached by a ∆J = 2 transition, which apparently is impeded in

the low density part of a supersonic nozzle.  Careful comparison of

calculated and experimental values yielded (15) for the z and x,y components

of the Coriolis constants the values listed in table I.  By also taking the

hyperfine interaction in the triplet-state into account, the value of the

quantum yield and the average life-time of the ME transitions can be as

satisfactorily explained as can be hoped for in such a complicated molecule

as pyrazine.



TABLE 1  Coriolis Constants for the 1B3u(0-0) of pyrazine

K K+1 : Γ+
xy = B+(J-K)(J+K+1) B+ = 0,30 Γ

K K-1 : Γ-
xy = B-(J+K)(J-K+1) B- = 0,00 Γ

K K : Γz = Az K
2 Az = 0,20 Γ

Γ is a measure for the J,K independent radiationless

rate (Γ ≈ 3 x 108 sec-1)

Also, by considering K-scrambling to occur at higher J an explanation

could be found for the J-1 dependence of the quantum yield as found for

higher J's (11,12).  K-scrambling leads to averaging of the Coriolis

parameters to a J, K independent constant.  As J goes up, the number of

states a K-scrambled state can interact with is increased by 2J+1, without

the normally concomitant reduction of the matrix element v.  Therefore, the

value of 2πv2ρ goes as (2J+1), and this yields the observed (2J+1)-1

dependence of the quantum yield.

III THE FAST COMPONENT

The experimental evidence for the fast component has by now been firmly

established. Originally measured by Tramer et al (2), its occurrence has

essentially been verified by every worker in the field.  In particular the

recent experiments by Rice (9) and Zewail (10) have shown most clearly that

a decay of about 100 psec is present in the decay of pyrazine, visible of

course only when the laser time is considerably shorter than this value.

The A+/A- ratio was given to vary between 0,3 (Zewail) and from (1 to 5)

(Rice), linearly dependent on J (see also (13)) and this of course is in

flagrant contradiction to the number of states measured spectroscopically

(≈ 13).  The explanation, however, is quite simple.  In their original

theory Tramer et al. (1) assumed the singlet amplitudes of the molecular

eigenstates to have a Lorentzian distribution, due to the fact that they

assumed the matrix element to be invariant over the background manifold, and

the manifold to be more or less uniformly spaced.

Nothing could be further from reality.  As the de-diagonalisation of the

ME-spectra showed (4,16) the matrix elements of the S-T coupling are



observed to vary between 50 and 2000 MHz and the spacings of the triplet

manifold are quite irregular.  Also, the absortion spectrum of one set of

ME's belonging to a particular rotational transition really cuts off, no

absorption can be discerned (S/N ≈ 1000) beyond the range (≈  2000 MHz),

where the ME's occur.

This means then that the ME-spectra occur in bunches (blocks) over about

2000 MHz, after which frequency space is empty for 10.000 MHz, where the

next block of ME's occurs.  Taking a laser with a frequency width ∆ω >> 2000

MHz therefore excites basically a relatively narrow block of absorption,

with some internal structure, which, however, after Fourier transformation

only manifests itself at longer times.  The actual block yields upon Fourier

transformation a function like sin(∆ωt)/t, which after squaring (since the

radiation will follow |cs(t)|
2, the square of the singlet amplitude in the

ME's!) may for a while deceptively look like an exponential.

Performing on a computer the Fourier Transform of a broad laser

multiplied into the actual P(1) and P(2) ME-spectra yielded at 180 psec

decay (17) (see fig. 2), not too far from the value of about 100 ps as

Fig.2. a) The laser and the P(1), P(2) ME spectra.  Note the "bunching".
b) Decay obtained from the square of the Fourier transtorm of a).



observed by Rice (9) and Zewail (10).  The fast component then is still due

to the original dephasing as described by Tramer (1).  It differs mainly in

the fact that the singlet amplitude is not at all distributed like a

Lorentzian, and therefore the quantitative conclusions drawn from the A+/A--

ratio are unreliable.

Why then does the A+/A- ratio depend so strongly on J?  The following

explanation has been put forward (17).  The dephasing is a fast process, it

takes about 100 psec.  The Coriolis interaction of S1 with S0 happens on a

time-scale of about 3000 psec.  This follows from our Coriolis constants,

but also from the quantum yield of 1% and a radiative lifetime of 300 nsec.

It seems then, that the dephasing process is over before the S1-S0

interaction has run any significant part of its course.  Conventionally one

mesures A+ at very short times (<100 psec) and A- at much longer times

(≈ 100.000 psec).  If the decay would be exponential one could easily

calculate back from a measurement at any time window, but since the decay is

at least biexponential (if the quantum beats are averaged out!) the

"initial" quantum yield appears to be much higher than the "delayed" quantum

yield.  Since the "delayed" quantum yield depends on (2J+1)-1, the A+

(initial) and A-(delayed) ratio depends on (2J+1).

CONCLUSIONS

It would seem that the decay of the 1B3u electronic state of pyrazine

can be largely understood.  For narrow lasers (∆ω < 1GHz) it behaves like a

small molecule, for broader lasers (∆ω > 10 GHz) it shows ILS behavior.  The

classification of pyrazine depends as much on the molecular structure as on

the laser used in the experiment!  After all, it is quantum mechanics.  The

answer one gets depends on the experiment one performs!
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