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INTRODUCTION

Living cells are in a constant process of information
exchange with their environment. The kind of information to
which cells can respond is often chemical and largely deter-
mined by the assortment of receptors they possess on their
surface. Occupation of cell surface receptors by a specific
ligand (or excitation by light, in the case of photoreceptors)
triggers a sequence of reactions between proteins in the
plasma membrane, which results in the alteration of the
activity of effectors: membrane-bound enzymes or ion
pores. This process is called transmembrane signal transduc-
tion or, briefly, signal transduction.

Receptors either have direct effector functions (i.e., are
multifunctional molecules) (e.g., see references 43 and 93) or
are coupled to effectors via transducers (14, 15, 115). The
latter have been identified as guanine nucleotide binding
proteins, or G-proteins for short (15, 103, 271). The
heterotrimeric G-proteins, of which there are at least four
types, regulate the activity of enzymes such as adenylate
cyclase (15, 103), cyclic guanosine 3',5'-phosphate (cGMP)
phosphodiesterase (271), phospholipase C (170), and maybe
also some ion pores (23, 233), as well as guanylate cyclase
(164). The levels of the intracellular regulatory compounds
(second messengers) regulated by these enzymes and ion
pores have a profound influence on cellular function (41, 102,
218). Some of the protein kinases through which the second
messengers exert their effects on cellular functions also
phosphorylate components of the signal transduction system
itself. This, together with phosphorylation by receptor-

* Corresponding author.

specific kinases, appears to be a crucial event in the attenu-
ation of responsiveness, generally referred to as desensitiza-
tion (10, 11, 133, 166, 237, 267, 270). Most of this knowl-
edge has been obtained from the study of vertebrate signal
transduction systems, which nowadays serve an exemplary
function for research on signal transduction in other orga-
nisms, including the eucaryotic microbes.
The eucaryotic microbe Dictyostelium discoideum has

long been used as a model system for cell differentiation and
pattern formation because of its life cycle. Within 24 h after
the removal of nutrients, the solitary amoebae of this slime
mold aggregate and form a multicellular fruiting body which
consists of two cell types (17). Obviously, a major factor in
this developmental process is cell-cell communication. First,
solitary cells attract one another chemotactically (53, 97,
215, 243). Second, cell differentiation and the spatial distri-
bution of the cell types in the multicellular aggregate are
regulated by cell-cell contacts and diffusable factors secreted
by the cells. These cell interactions work in concert with
other factors, such as cell cycle phase, to control develop-
ment (176, 208, 264, 272). Since the late 1960s, several
compounds have been found that transmit information be-
tween D. discoideum cells. The first to be identified was
cyclic adenosine 3',5'-monophosphate (cAMP) (161). cAMP
is the chemoattractant that governs the aggregation of soli-
tary living cells after food exhaustion (54, 94); furthermore,
it stimulates differentiation of the starving cells (39, 208,
272). Soon after, the proteins that detect and metabolize
cAMP were discovered. These include cAMP receptors
(105, 110, 180), adenylate cyclase (145, 245), and cAMP-
phosphodiesterase (36, 181, 229). In the 1970s, other signal
molecules were discovered: compounds with chemotactic
activity for solitary D. discoideum cells, such as folic acid
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TRANSMEMBRANE SIGNAL TRANSDUCTION IN D. DISCOIDEUM

and pterin (226, 227), and factors that affect multicellular
stages, such as differentiation-inducing factor (DIF) (284),
slug-turning factor (85), spore-inducing factor (329), and
adenosine (216, 257). The discovery of these signal mole-
cules together with cellular responses to each of them
allowed D. discoideum to become a useful model system for
the study of signal transduction.

PHYSIOLOGY OF SIGNAL TRANSDUCTION IN
D. DISCOIDEUM

Vegetative amoebae of D. discoideum feed on bacteria. It
is supposed that they find their food by means of chemotac-
tic attraction to folic acid and other pteridines secreted by
bacteria (226, 227). Mutant D. discoideum strains (termed
axenic strains) that can grow in artificial liquid media of
defined composition (89, 236) have been isolated (273; re-
viewed in reference 212). Use of these strains in axenic
culture allows a more rigid control of growth conditions and
the culture of cells on a larger scale. When food is ex-
hausted, cells start to differentiate, resulting within 24 h in
the formation of a multicellular fruiting body (17). About 5 h
after the initiation of starvation, cells acquire the capacity to
attract one another by means of a chemotactic machinery,
acting in concert with a signal relay system. D. discoideum
cells start to secrete the chemoattractant cAMP. Other slime
molds secrete other chemoattractants such as pteridines in
D. minutum and D. lacteum (67, 299) or a modified peptide
in Polysphondylium violaceum (265). During 1 to 2 h after
initiation of the chemoattractant secretion, several thousand
cells aggregate and stick together by means of cell adhesion
molecules located on the cell surface (8, 17, 22). This
aggregate starts to behave as an organized multicellular
individual, moving over the substratum seeking the best
conditions f6r formation of a fruiting body. Within the
aggregate, two major cell types become apparent: prestalk
cells in the anterior and prespore cells in the posterior part.
These give rise to stalk and spore cells in the fruiting body
(17).
The physiology of signal transduction during the aggrega-

tion process has been described in detail in a numbet of
reviews (39, 53, 54, 90, 94, 186, 215, 243, 287, 306). Here,
only the most prominent features are dealt with.
By the time of aggregation, each D. discoideum cell has

acquired the ability to respond chemotactically to extracel-
lular cAMP and to transmit this signal to its neighbors (signal
relay). Some cells in the population spontaneously start to
emit small pulses of cAMP at a frequency of once per 6 to 9
min. Neighboring cells detect this cAMP by means of cell
surface receptors and move towards the emitted signal.
Concomitantly, adenylate cyclase is transiently activated at
least 3- to 10-fold in these cells (53, 148, 245, 248), maximal
activity being reached about 1 min after stimulus presenta-
tion (53). As a result, intracellular cAMP rises, peaking 1 to
3 min after the first contact of the cells with extracellular
cAMP. This cAMP is secreted at a rate proportional to its
intracellular concentration (53, 292), thereby increasing
cAMP extracellularly. A neighboring cell will react chemo-
tactically to this secreted cAMP and relay the signal by the
same mechanism to the next neighbor. A wave ofcAMP thus
travels from cell to cell (283). When adenylate cyclase is not
activated, the concentration of environmental cAMP is
decreased by the action of extracellular and cell surface
cAMP-phosphodiesterase (36, 181, 229). Regulation of the
extracellular cAMP concentration by secreted phosphodies-

TABLE 1. Responses known to be induced by cAMP in
aggregation-competent D. discoideum cells

Responses Reference(s)

Activation of adenylate cyclase and
secretion of produced cAMP from
the cells ................... ..........53, 148, 245, 248, 292

Decrease in optical density of cell
suspension.................................95

Fluctuations in amt of actin associated
with Triton-insoluble cytoskeletons........203, 205

Increases in phosphorylation of heavy
and light chains of myosin.................. 12, 179, 237

Increase in amt of cell-associated Ca2 ......30, 328
Increase in intracellular concn of cGMP .....201, 336
Alterations in level of methylation of

phospholipids ............................. 198
Efflux of K+ ions from the cells .............2
Efflux of protons from the cells ..............182, 183
Alterations in no. of various intra-

cellular vesicles............................177

terase and its inhibitor (139, 242) must be a prerequisite for
proper cell aggregation, because a phosphodiesterase-
deficient mutant is unable to aggregate unless exogenous
phosphodiesterase is supplied (49). There is no evidence that
active regulation of phosphodiesterase is necessary for the
generation of the cAMP relay response.
The responses of aggregating cells to extracellular cAMP

are most conveniently investigated with cell suspensions (95)
or with cells on filter disks in a perfusion apparatus (56). In
both setups, large numbers of cells can be activated synchro-
nously. Of all the responses to chemoattractants, the most
thoroughly studied is the cAMP relay response. This focus
of attention derives from the fact that the biological signifi-
cance of this response is clear, as explained above. Other
responses induced by addition of cAMP to a suspension of
aggregation-competent cells are listed in Table 1. Most of the
listed responses have been confirmed by various groups
since their original discovery (see reviews in references 53,
90, and 306). An increase in protein carboxyl methylation
has also been reported to be a response to cAMP (198, 315),
but subsequent investigations suggest that this conclusion
was based on artifacts (317). Except for the cAMP-induced
Ca2+ accumulation (30), all of the responses are transient;
i.e., the induced change returns partially or completely to
prestimulus levels, even while the stimulus persists.

Several of the responses induced by cAMP in aggregating
cells were also found to be induced by folic acid in vegetative
cells, or in cells starved for a few hours (2, 53, 201, 203, 334,
335). Some of the responses have also been shown to occur
in slime mold species other than D. discoideum following
application of the chemoattractants that these species use
(193, 204, 289, 310, 331). The cAMP response to folic acid of
D. discoideum cells that have been starved for a few hours is
atypical in that this response appears not to result from a
direct stimulation of adenylate cyclase via folic acid recep-
tors. Rather, it might be mediated via cAMP receptors (55).
Such starved cells spontaneously secrete small amounts of
cAMP; folic acid seems to make cells more sensitive to
cAMP. As a result, these cells become stimulated by their
own secreted cAMP when folic acid is presented (55). The
other folic acid-mediated responses appear to operate differ-
ently. Folic acid or other pteridines induce responses such as
chemotaxis, a transient decrease in optical density, fluctua-
tions in the association of actin to cytoskeletons, and a
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398 JANSSENS AND VAN HAASTERT

transient increase in cGMP in vegetative D. discoideum cells
(201, 203, 227, 334, 335) or in other slime mold species (193,
195, 204, 310), both of which are insensitive to cAMP.
Furthermore, adaptation of D. discoideum cells to cAMP
does not abolish these same responses to folic acid (see
below; 55, 205, 289, 290). Finally, folic acid induces a
decrease in optical density even in the presence of caffeine
(55), a compound that inhibits cAMP secretion (25). There-
fore, it is unlikely that these responses to pteridines are
mediated via cAMP receptors.
The changes in optical density (95), in cytoskeletal actin

(204), and in the phosphorylation of myosin (12, 237) follow-
ing application of cAMP to aggregation-competent
Dictyostelium cells probably reflect the chemotactic move-
ment in response to chemoattractants. The chemotactic
movement (91, 96, 98) as well as the optical density (95) and
actin (203) responses are all observed within a few seconds
after receptor occupation. An increase in cell-associated
45Ca, accumulated from the extracellular medium, was ob-
served within 6 s after application of chemoattractants (30).
In cell-free extracts, Ca2' regulates the organization of the
contractile proteins actin and myosin (269) and inhibits
myosin heavy-chain kinase (187). Local application of the Ca
ionophore A23187 to an amoeba in the presence of extracel-
lular Ca2+ causes a pseudopod to extend at that site (178).
Therefore, it was proposed that the chemotactic reaction is
regulated by an influx of extracellular calcium ions (e.g., see
references 30 and 178). However, in a recent study Europe-
Finner and Newell observed that the initial rate of 45Ca
uptake was independent of the presence or absence of
chemoattractants (78). There was, however, a difference in
the extent of 45Ca uptake, which became evident only 10 to
30 s after presetntation of chemoattractant to the cells (78).
This result suggests that the accumulation of extracellular
Ca2+ is a slow response, eventually involved only in the
regulation of other slow responses.
Whether or not extracellular Ca2+ is essential for chemo-

taxis and cell aggregation is a matter of debate, indeed. Some
investigators have reported that chemotaxis, cell aggrega-
tion, or the light-scattering response of cells is inhibited by a
Ca2+ chelator such as EGTA [ethylene glycol-bis(,-
aminoethyl ether)-N,N,N',N'-tetraacetic acid] (178, 188).
Other investigators have reported that these responses take
place when the extracellular Ca2+ concentration is low (193,
200, 253). Part of this controversy was resolved by Europe-
Finner et al. (77), who observed that the sensitivity of
aggregation to EGTA was strain dependent. With some
strains aggregation was inhibited by EGTA only after thor-
ough washing of the cells in the presence of EGTA (77).
Such washing might deplete intracellular Ca2+ pools. Thus,
these results (77) might not indicate that extracellular Ca2+ is
needed for chemotaxis and cell aggregation, but that intra-
cellular Ca2+ is required. This conclusion would not be
surprising because Ca2+ ions play a role in the cell motility
apparatus (269). In fact, discussion of the possible role of
Ca2+ in the regulation of the chemotactic and other re-
sponses is hindered by lack of measurements of cytosolic
Ca2+ concentrations during chemotactic stimulation. This
deficiency is a consequence of the problem that the widely
used Ca2+ indicator Quin 2, and related compounds, is
difficult to introduce into and is not easily hydrolyzed by D.
discoideum cells (H. Padh and M. Brenner, Cell. Slime Mold
Newsl., vol. 54, March 1984; M. van Lookeren Campagne
and R. Aerts, unpublished observations). At present it
cannot even be rigorously excluded that chemoattractants
merely induce an increase in Ca2+ binding to the cell surface

rather than affecting its uptake. However, this possibility
seems unlikely.

Besides the cAMP relay response and the role of Ca2l in
signal transduction, an intensively studied response to
chemoattractants is the transient rise in intracellular cGMP.
The maximal cGMP concentration in wild-type D. dis-
coideum cells is reached around 10 s after stimulus presen-
tation (196, 336). This response probably results from a
stimulation, at least three- to sixfold, of the activity of
guanylate cyclase (197). About 20% of the accumulated
cGMP is secreted; the remainder is degraded intracellularly
(310). cGMP appears to have a role in regulating the chemo-
tactic machinery, as suggested by observations on a so-
called streamer F mutant (215, 252). This mutant shows
dramatically prolonged periods of chemotactic movement
during cell aggregation. These periods correspond with
prolonged periods of elevation of intracellular cGMP, fol-
lowing stimulation with chemoattractant. The mutant pos-
sesses little intracellular cGMP-phosphodiesterase (252,
311). How cGMP regulates chemotaxis or other cellular
processes in D. discoideum is unknown; maybe it acts via
the intracellular cGMP receptor protein that has been dem-
onstrated (202, 312). Whether or not this receptor protein
regulates a cGMP-dependent protein kinase as do receptor
proteins in other cells (102, 116) is unknown.

Less is known about the significance of the other re-
sponses to D. discoideum signal transduction. A study using
transmethylase inhibitors suggests that there is no direct
relationship between phospholipid methylation and adenyl-
ate cyclase activation or cAMP secretion (316). Phospholipid
methylation (198) and also K+ and proton efflux (2, 182, 183)
might play a role in the slower responses of cells to chemoat-
tractants, e.g., the stimulation of cell differentiation. The
correlation of the signal relay process with changes in
intracellular vesicles (177) points to the possibility that
cAMP produced by the activated adenylate cyclase is se-
creted from the cells in vesicles.
As mentioned above, almost all known responses of D.

discoideum cells to chemoattractants are transient. In fact,
this is a prerequisite for the functioning of the signal
transduction system, because cells can (and do) stimulate
themselves via their surface cAMP receptors with the se-
creted cAMP, produced by the activated adenylate cyclase
(53, 56). As a result of this positive-feedback loop, activation
would go on indefinitely, or in practice, until the cells were
exhausted, were it not that the adenylate cyclase response
adapts. We define adaptation here as the characteristic of a
response to terminate (not just to diminish), even though the
stimulus remains present at the same level. It is meant here
as a specific case of homologous desensitization, which is a
type of response attenuation encountered in almost all signal
transduction systems (162, 267). Activation and adaptation
of the cAMP relay response in D. discoideum were investi-
gated in detail by Devreotes and co-workers (58, 72-74). The
response can be adequately described by assuming separate
excitation and adaptation processes (53, 73, 74). Following
application of a stimulus, excitation and adaptation build up
to a new level that is the same for both and is determined by
the magnitude of the stimulus. However, adaptation builds
up more slowly than excitation. The transient excess of
excitation over adaptation determines the magnitude of the
response, i.e., the activation of adenylate cyclase. After
excitation and adaptation have reached their equilibrium
levels, further activation can only be obtained by increasing
the stimulus level, up to a concentration which saturates the
system (10-5 M cAMP; 58). After removal of the stimulus
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cells recover their ability to give a cAMP relay response to
the same or lower stimulus levels with a half-life (t.05) of 3 to
4 min (deadaptation) (73). Other responses of D. discoideum
for which adaptation has been studied in some detail are the
chemotactic response (3, 91, 290), the optical density change
(200, 333), the cGMP response (289, 308, 333), the changes in
cytoskeletal actin (205), and the increase in myosin phos-
phorylation (12).
The availability of different chemoattractants that can be

sensed by the same cell offers the possibility of investigating
the interaction between various transduction pathways. A
phenomenon encountered in many organisms is heterolo-
gous desensitization: prolonged application of a specific
signal compound leads to a decrease in sensitivity of the cell
to other signal molecules that act via receptors other than
those that recognize the compound presented (267). Heter-
ologous desensitization has not yet been demonstrated in
Dictyostelium spp. The pathways of adaptation to folic acid
and to cAMP proved to be separate for all responses
investigated so far, namely, chemotactic cell movement
(290), cGMP response (289), and changes in cytoskeleton-
associated actin (205). Application of folic acid does not
make cells insensitive to a cAMP stimulus and vice versa.
This suggests that adaptation results from alterations in
components which are unique to the folic acid and cAMP
signal transduction pathways, for instance, the cell surface
receptors for either of these compounds.

cAMP RECEPTORS IN D. DISCOIDEUM

Introduction
Starvation of D. discoideum cells triggers the appearance

of cAMP receptors (105, 110, 180), adenylate cyclase (145,
224), cAMP phosphodiesterase (144, 181), and cell adhesion
molecules (8, 22); all contribute to cell aggregation. The
development of cAMP receptors in cell suspensions of
starving D. discoideum cells can be accelerated by pulses of
cAMP (149, 246, 338) and folate (134). The number of cAMP
receptors on cells is maximal at the time of aggregation;
subsequently, the number decreases (105, 110). Receptors
specific for cAMP have been found on the surface of
aggregating cells of four Dictyostelium species that use
cAMP as chemoattractant; three other species that use other
chemoattractants lack detectable cAMP binding activity
during the aggregation period (192, 210, 256). However, all
of these species acquire cAMP receptors in later multicel-
lular phases of differentiation, during which cAMP appears
to act as a morphogen (256).
A challenge after the discovery that cAMP acts as

chemoattractant of D. discoideum during cell aggregation
(161) was to measure receptors without interference by cell
surface phosphodiesterase, which is abundant on aggregat-
ing cells (144, 181). Both activities were initially discrimi-
nated by exploiting the observation that cGMP is a good
substrate for the enzyme, but a weak chemoattractant (110,
160, 180). Soon various other cAMP derivatives were found
that discriminate between chemotaxis and receptor binding
on the one hand and hydrolysis by phosphodiesterase on the
other hand (97, 191, 194). The discrimination between pro-
teins with enzymatic or binding activities (including the
intracellular cAMP-dependent protein kinase) on the basis of
their substrate specificity has become much easier in recent
years because of the increased knowledge about the cyclic
nucleotide specificities of these proteins (60, 291, 303-305).
Furthermore, cAMP-phosphodiesterase activity was found

to be inhibited by sulfydryl compounds such as dithiothreitol
(105, 110, 229). Inclusion of this compound in binding assays
enables cAMP receptors to be measured without interfer-
ence by phosphodiesterase.

Ligand Specificity and Activation Mechanism of
the Receptor

The structural requirements for ligand binding to the cell
surface cAMP receptor were defined investigating the com-
petition of 16 nucleotides with the binding of radioactive
cAMP to cells (305). Competition was tested at two cAMP
concentrations, 10-9 and 10-7 M, so that the specificity of
both the low- and high-affinity receptor forms (see next
subsection) was studied. The potency of inhibition for all
nucleotides was the same at both cAMP concentrations,
suggesting that low- and high-affinity receptor forms with
different binding specificities do not exist (305). The binding
affinity of various derivatives for the receptor suggests that
cAMP probably binds to the receptor in the anti conforma-
tion; the adenine moiety is probably positioned in a hydro-
phobic cleft, while two H-bridges are formed: one with the
amino group on the purine and one with the 3'-oxygen atom
of the cyclic phosphate group (Fig. 1) (305).
The specificity of binding of about 10 cAMP analogs to the

receptor is closely correlated with the specificity of induc-
tion of several biological responses, including chemotaxis
(191, 291, 304), the cGMP response (305), the cAMP relay
response (279), the stimulation of synthesis of phosphodies-
terase in early development (as determined at threshold
concentrations) (309), and expression of various genes later
in development, determined by synthesis of specific proteins
(255) or messenger ribonucleic acids (109, 221). This corre-
lation suggests that all of these responses are triggered via a
similar kind of receptor protein.

Several compounds have been found that antagonize
biological responses (chemotaxis or the cGMP response) at
concentrations that are approximately half-saturating for
binding (291, 301, 305). Some of these compounds were
classified as partial antagonists: at low concentrations they
inhibited chemotaxis to cAMP, but at higher concentrations
they became attractants (291, 301). Two full antagonists for
chemotaxis, the cGMP response and the cAMP relay re-
sponse, have been found. These compounds competitively
inhibited responses to cAMP, without themselves eliciting a
response at any concentration (291, 305). Both full antago-
nists are analogs of cAMP, modified in the phosphate moiety
of the molecule, namely, the Rp isomer of cAMP-S and the
Rp isomer of cAMP-dimethylamidate (291, 301). The struc-
tures of these antagonists suggest that the configuration of
the cyclic phosphate group is critical for activation of the
receptor. Comparison of the chemical structures of antago-
nists and agonists (like the Sp isomers of both cAMP
analogs) led to the proposal that the receptor becomes
covalently linked to the cyclic phosphate group during
activation of the receptor (301).

Theoretically, a receptor can respond to its ligand in two
ways: an occupancy receptor responds in proportion to the
duration of occupation with ligand; a rate receptor responds
in proportion to the number of associations with ligand (231,
288). Thus, an occupancy receptor gives the greatest re-
sponse with tight-binding agonists, whereas a rate receptor
gives maximal responses with agonists that rapidly ex-
change, i.e., that have a high dissociation rate and, conse-
quently (most often), a low affinity. The latter type of
response was found when the induction of total cellular and
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400 JANSSENS AND VAN HAASTERT

FIG. 1. Model of the binding ofcAMP to the cell surface cAMP receptor in D. discoideum based on the study of the competition ofcAMP
binding by cAMP derivatives. Binding of cAMP is in the anti configuration, via two hydrogen bonds, at N6 and 03', and with the adenine
moiety in a hydrophobic cleft (indicated by dots). Reproduced from reference 305, with permission.

secreted phosphodiesterase by pulses of cAMP and cAMP
analogs was investigated (309). At high concentrations,
low-affinity analogs induced higher levels of phosphodiester-
ase than did high -affinity analogs. These results suggest that
the Dictyostelium cAMP receptor functions as a rate recep-
tor (309). It might have been useful if this hypothesis had
been confirmed by investigation of the induction of markers
(or cellular responses) other than phosphodiesterase. How-
ever, in the meantime we have obtained insight into the
molecular interactions of receptors and G-protein(s) (see
below); we presently consider such insight more fundamen-
tal than the distinction between the occupancy- and rate-
receptor concepts.

Kinetic Properties of the cAMP Receptor

In the late 1970s, investigators observed that much of the
cAMP-receptor complex of D. discoideum cells dissociates
very rapidly (141, 210). Present binding assays therefore use
filtration without washing (44, 105), sedimentation of cells or
membranes without washing (119, 180), or sedimentation of
cells or membranes through silicone oils (247). The rele-
vance of data derived from the so-called ammonium sulfate
stabilization assay (305) to the in vivo situation is not always
apparent, because ammonium sulfate decreases the dissoci-
ation rate of the cAMP-receptor complex and alters the
affinity and the site distribution of the kinetic receptor forms
(see below). In addition, ammonium sulfate exposes latent
binding sites and down-regulated receptors (120, 295, 297).
Curves relating the equilibrium binding of cAMP to intact

cells or isolated meinbranes are nonlinear, indicating the
existence of site heterogeneity or negative cooperativity or
both (44, 105, 150, 210). Assuming site heterogeneity, these
equilibrium binding curves are compatible with the existence
of two classes of receptors with Kds of about 10 and 150 nM
(44, 105, 210). Evidence for positive cooperativity in equi-

librium cAMP binding has also been found (44, 120, 207,
217).
The earlier studies on the kinetics of cAMP binding (141,

210) have recently been extended, producing direct evidence
for the existence of receptor heterogeneity and cooperativity
in cAMP binding. Four different kinetic receptor forms,
which differ from each other in dissociation rate or apparent
affinity, have been distinguished on D. discoideum cells (298,
300). These forms have been called H, L, S, and SS (Table
2). cAMP bound to the H and L forms dissociates relatively
fast, but the apparent affinity of the L form is much lower
than that of the H form (Table 2) (298). During association of
cAMP with cells, the H form converts to the L form with a
to.5 of about 10 s (298). As soon as the cAMP is removed, the
affinity of cAMP binding is restored with a to.5 of 70 s (29);
this probably reflects the formation of the original H form.
The S and SS forms have a similar affinity for cAMP, but

they are easily distinguished by dissociation kinetics; both
dissociate slowly, but at 10-fold different rates (Table 2). The

TABLE 2. Kinetic cAMP receptor forms observed in
D. discoideum cells and isolated membranesa

Receptor Apparent Dissociation rate No.of sites Effect of guanine
forr KD (nM) 2constant, - per cell nucleotides onformKD (nM) 20'C ( -1)b pe el abundancy

HC 60 4 x 10-1 Decrease
Lr 450 10 x 10-1 7 '00 Increase
S 6-13 4.3 x 10-2 2,300 Decrease
SS 6-13 4.7 x 10-3 1,100 Decrease

a Data were compiled from references 118, 119, 293, 298, 300.
b The H and L forms have recently been called A sites (AH and AL) and the

S and SS forms have been called B sites (Bs and Bss) to mark their possible
coupling to adenylate cyclase and guanylate cyclase, respectively (300). At
OC, dissociation rate constants are 1.4- to 4-fold lower (300).

c In preparations of isolated membranes, no discrimination was made
between H and L in dissociation kinetics and forms with k-1 of >10-1 s-
were designed fast forms (118, 119, 300).
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TRANSMEMBRANE SIGNAL TRANSDUCTION IN D. DISCOIDEUM

apparent number of sites of the S and SS forms is much
lower than that of the H and L sites (Table 2) (300).

All receptor forms have also been observed in isolated
membranes (118, 119, 293, 300). The H and L forms were not
always distinguished from each other and were collectively
called the fast (F) form, which applies to all forms with kL1
> 10-1 s-1 (Table 2) (118, 119, 300). In contrast to the
situation in cells, the H -- L transition does not appear to

take place during association in isolated membranes (118,
293). In isolated membranes part of the SS form converts to
faster dissociating (maybe S) forms during dissociation in the
presence of high cAMP concentrations, indicating the par-

ticipation of cooperative interactions (118).
Notwithstanding that the kinetics ofcAMP binding to cells

and isolated membranes are accurately explained by assum-

ing the separate receptor forms H, L, S, and SS and
cooperative effects, it may be noted that these are all
hypothetical entities, the existence of which has been dem-
onstrated only by kinetic means in rather complex systems.
Nevertheless, it is likely that at least some of the proposed
receptor forms and interconversions account for the site
heterogeneity or cooperativity suggested by the equilibrium
binding studies on cells and in isolated membranes.

Coupling of Receptor Forms to G-Protein and Adenylate
and Guanylate Cyclase

The binding of subsaturating concentrations of cAMP to
isolated membranes is decreased by guanosine di- and tri-
phosphates (118, 119, 293, 300). The decrease results from a

lowered affinity of the receptor for cAMP, not a decrease in
the total number of binding sites. Furthermore, guanine
nucleotides accelerate the overall dissociation of cAMP
bound to isolated membranes (118, 119, 300). However, they
have no effect on cAMP bound to intact D. discoideum cells
(119), suggesting that guanine nucleotides do not compete
with cAMP at the binding site of the receptor, but exert their
effect via an interaction at the cytoplasmic surface of the
membrane. The decrease in affinity of membranes for cAMP
and the accelerated dissociation result from a reduction in
the relative abundancy of the SS, S, and H receptor forms,
which apparently become converted to forms with a lower
affinity and higher dissociation rate (118, 119, 293, 300)
(Table 2).
The effects of guanine nucleotides on cAMP receptors in

Dictyostelium spp. are reminiscent of their effects on G-
protein-coupled receptors in vertebrates (15). This similarity
suggests a role for a G-protein in Dictyostelium signal
transduction, as was first proposed by Leichtling et al. (167).
The supposition that G-protein(s) functions in Dictyostelium
signal transduction is further supported by the recent obser-
vations that guanine nucleotides modulate the activity of
Dictyostelium adenylate cyclase (277, 307) (see below).
Furthermore, both cAMP and folic acid increase the equi-
librium binding of [3H]guanosine 5'-triphosphate (GTP) to
membranes and accelerate its dissociation (69). These re-

sults suggest that binding of agonists to receptors stimulates
the exchange of free GTP with guanine nucleotides that are

bound to G-protein. The same has been demonstrated to
occur in vertebrates (15). Definite proof of a role for a

G-protein in Dictyostelium signal transduction, i.e., its iso-
lation and reconstitution into a functional system, has not
yet been obtained.

In vertebrates, high- and low-affinity receptor forms are

explained by the different complexes that can be formed
between receptors and guanine nucleotide-occupied or

empty G-proteins (15). By analogy, we proposed that the
different kinetic forms of the receptor (Table 2) mirror the
association states of cAMP receptors with G-protein (118,
300) (Fig. 2, inset). Binding of guanine nucleotides to the
receptor-G-protein complex induces shifts in the equilibria
between the various forms, which are observed experimen-
tally as changes in abundance.
One might wonder whether in Dictyostelium spp. all

effectors are regulated via the same G-protein and cAMP
receptors. Two lines of evidence suggest that adenylate
cyclase and guanylate cyclase in Dictyostelium spp. are
activated via different pathways. First, a study of the behav-
ior of kinetic receptor forms during down-regulation of
receptors (see also below) has shown that the observed
reduction of the number of cAMP binding sites results from
a decrease in the number of fast-dissociating receptor forms
H and L (Table 2) (137). The number of slowly dissociating
S and SS sites does not decrease in down-regulated cells;
rather, their affinity for cAMP decreases 10-fold (137).
Measurement of the cAMP-evoked cAMP and cGMP re-
sponses showed that cells, when down-regulated, accumu-
late significantly decreased amounts of cAMP in response to
a saturating stimulus dose. In contrast, the dose-response
curve for the cGMP response was shifted to 20-fold-higher
stimulus levels, but the maximally attainable cGMP re-
sponse was unchanged (137). So, the capacity of both the H
and L receptor forms and the cAMP response were de-
creased, while the affinity of both the S and SS receptor
forms and the cGMP response were decreased.

Another argument against a single set of receptors and
G-proteins mediating all signal transduction comes from a
study of the effect of extracellular Ca2+, Mg2+, and Mn2+
ions on the cAMP-evoked cAMP and cGMP responses in
Dictyostelium spp. It was found that the cation concentra-
tions at which alterations in the fast-dissociating H and L
receptor forms are observed correlated with the cation
concentrations at which alterations in the cAMP response
were induced (294). The cation concentrations at which
alterations in the slowly dissociating receptors were ob-
served correlated with the concentrations at which changes
in the cGMP response were found (294).
Both sets of data (137, 294) can be best explained by

assuming that the H and L receptor forms are involved in the
activation of adenylate cyclase while the S and SS receptor
forms are involved in the activation of guanylate cyclase
(Fig. 2). Such a scheme would be analogous to the scheme
proposed for the coupling of folate receptors to these en-
zymes in Dictyostelium spp.: fast-dissociating receptors
appear to couple to adenylate cyclase and slowly dissociat-
ing receptors appear to couple to guanylate cyclase (see next
section) (65, 66). A difference between folate receptors and
cAMP receptors is, however, that the fast and slowly
dissociating receptors for folate can be discriminated on the
basis of their analog specificities (see next section), while
cAMP receptors cannot. In analogy with the folate recep-
tors, we have termed the cAMP receptors which are proba-
bly coupled to adenylate cyclase "A sites," and those
probably coupled to guanylate cyclase "B sites" (300).
Thus, the fast-dissociating H and L receptor forms are the A
sites and the slowly dissociating forms S and SS B sites
(Table 2). Since both the H and L and S and SS receptor
forms appear to be coupled to G-proteins (118, 119, 293,
300), it was proposed that both the A and B sites are coupled
to adenylate and guanylate cyclases through a G-protein
activation cycle (Fig. 2) (300). Such a hypothesis predicts
more receptor forms than have been hitherto observed.
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FIG. 2. Model of coupling ofA and B sites to adenylate and guanylate cyclase. R, Receptor (RA, A sites; RB, B sites); G, G-protein; A.C.,
adenylate cyclase; G.C., guanylate cyclase; PlC, phospholipase C; PIP2, phosphatidylinositol 4,5-bisphosphate; DAG, diacylglycerol; IP3,
inositol 1,4,5-trisphosphate. The inset gives a general G-protein activation cycle as supposed to be working at both RA and RB sites.

However, not all receptor forms are necessarily observable;
some forms might exist only transiently for very short times
after receptor occupation. Furthermore, the fast-dissociating
component of the dissociation process is difficult to analyze,
and it may very well be that there exist other fast-
dissociating forms in addition to the H and L forms. The
hypothesis that different subsets of receptors are coupled to
adenylate and guanylate cyclase through different G-proteins
needs to be elaborated.

Isolation of the Receptor
Addition of detergents such as Triton X-100 to Dictyo-

stelium amoebae results in cell lysis and extraction of the
majority of cellular proteins. The insoluble residue left is
termed the cytoskeleton (28, 219). At a pH of about 6.1, a
cAMP binding activity is present on such residues, which
has properties of the cell surface receptor (92; unpublished
observations), indicating that in vivo the receptor is attached
to the cytoskeleton. Such a hypothesis agrees with the
finding that cAMP receptors are found in a very high-
molecular-weight aggregate in gel filtration experiments,
following extraction of isolated membranes with the deter-
gent CHAPS {3-[(3-cholamidopropyl)dimethylammonio]-1-
propanesulfonate} (121; unpublished observations). Similar
observations have been made with adenylate cyclase (39,
122a). Whether indeed cAMP receptors in vivo are linked to
the cytoskeleton must be proven by other approaches, e.g.,
by receptor mobility studies with antibodies against the
cAMP receptor. Such antibodies are now available (see
below).

Membrane preparations enriched in cell surface cAMP
receptors have been obtained by centrifugation of cell
homogenates (293), sometimes followed by fractionation of
the sediments in either aqueous two-phase separations (207)
or sucrose gradients (118, 122a, 141). Such preparations are
useful for studying the effects of regulatory compounds (e.g.,
guanine nucleotides) on cAMP receptors and may provide
starting material for solubilization of the receptor and its
purification. Alternative methods for membrane isolation,
involving binding of cells to polylysine beads and subsequent
cell lysis (resulting in membranes attached to the beads)
(147) or membrane shedding from cells induced by guani-
dine-HCI (44, 111), have also been reported.

In most cases when detergents are added to receptor-
enriched membrane preparations, cAMP binding activity is
rapidly lost. Of 11 detergents we tested, appreciable binding
activity was retained with only 2 dipolar ionic detergents
(121). This could agree with data of Meyers-Hutchins and
Frazier, who observed appreciable cAMP binding activity
only after fractionation of Emulphogene-solubilized mem-
brane proteins over diethylaminoethyl-Sephadex (207).
These results suggest that the cAMP receptor is strongly
dependent on the proper lipid environment for binding
activity, a conclusion also drawn from the observation that
the cAMP binding activity is very sensitive to the presence
of unsaturated fatty acids (see below) (122).
When solubilization of the cAMP receptor in membranes

is attempted with the dipolar ionic detergent CHAPS, cAMP
becomes persistently bound to the receptor (121). This
suggests that in the presence of this detergent a conforma-
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TRANSMEMBRANE SIGNAL TRANSDUCTION IN D. DISCOIDEUM

tional change of the receptor has taken place such that bound
cAMP is locked in the binding site, while empty binding sites
have become inaccessible (121). This behavior is reminiscent
of that of the P-adrenergic receptor in the presence of
deoxycholate (258).
Aiming at purification of the receptor, investigators have

circumvented the problems with solubilization of the recep-
tor by making use of photoaffinity labeling. Visualization of
cAMP binding proteins in Dictyostelium cells and isolated
membranes has been reported by three groups, using 8-
azido-cAMP (8N3-cAMP) as a photoaffinity label. As the
receptor has about a 10-fold-lower affinity (kd, -300 nM) for
this reagent than for cAMP (154), relatively high concentra-
tions of labeled ligand have to be used with the risk of
nonspecific labeling of proteins. Maybe for this reason the
studies of Klein and co-workers (129, 151) showed labeling
of many proteins in addition to the cell surface cAMP
receptor. A useful mnethod to decrease nonspecific labeling
was used by Devreotes et al. (154, 278), who, after binding of
8N3-[32P]cAMP to cells, washed the cells in the presence of
high concentrations of ammonium sulfate and only then
irradiated them with ultraviolet light. Ammonium sulfate
retards the dissociation of the 8N3-cAMP-receptor complex
(295, 305), but apparently not the dissociation of nonspecifi-
cally bound ligand. As ammonium sulfate decreases, but
does not stop the dissociation of the ligand (295), it would be
expected that predominantly slowly dissociating receptors
are photolabeled. However, a comparison made between the
saturation curves for binding and photolabeling suggests that
all binding sites give the same product on gels (154).
Both Klein et al. and Devreotes et al., working with

different techniques, have identified two closely related
proteins of about 45,000 molecular weight that show prop-
erties expected for the cell surface receptor, namely (129,
154, 278); (i) competition of 8N3-cAMP binding and photoaf-
finity labeling by low concentrations ofcAMP and by cAMP
derivatives with a potency according to their affinity for the
receptor; (ii) abundance of the products of photolabeling in
Dictyostelium cells around the time of cell aggregation; (iii)
presence in membrane preparations and not in soluble cell
fractions; (iv) lack of reaction with antibodies against cAMP-
dependent protein kinase; (v) difference from cell surface
cAMP-phosphodiesterase as apparent from molecular
weight (cf. reference 322) and from its presence in a phos-
phodiesterase-deficient mutant.

Evidently, both groups have identified the same two
proteins as the cAMP receptor. On gels, these two proteins
differ in molecular weight by about 2,000; the lower- and
higher-mobility proteins were termed D or P47 and R or P45,
respectively (57, 129). Both groups have presented evidence
that the lower-mobility protein is a phosphorylation product
of the high-mobility protein (151, 153, 173).

Devreotes and co-workers have purified the phospho-
protein to homogeneity by hydroxyapatite chromatography
and two times a different one-dimensional gel electrophore-
sis (153). The phosphoprotein copurifies with the photoaf-
finity-labeled protein, which indicates that they are identical.
The high- and low-mobility proteins were shown to be
related by peptide mapping (153). The low-mobility protein
contains about seven phosphate residues; the high-mobility
protein contains about one (153). Different antibodies have
been raised against the low-mobility protein that was either
completely purified (155) or excised from gels on which
solubilized plasma membrane proteins were electrophoresed
(152). The availability of antibodies against two closely
related proteins which appear to be the cell surface cAMP

receptor opens the way for the molecular cloning and study
of the receptor gene; in fact, a first claim for the cloning of
the receptor gene has recently been made (152).
A different result was obtained by Meyers-Hutchins and

Frazier (207), the third group that used photoaffinity labeling
in an attempt to purify the cAMP receptor. These investiga-
tors used different cellular material for their photoaffinity
labeling than Klein and Devreotes and co-workers. They
started with a fraction containing cAMP binding activity,
obtained from a diethylaminoethyl-Sephadex column on
which Emulphogene-solubilized membranes were applied
(207). A 70-kilodalton (kDa) protein from this fraction was
photoaffinity labeled with 8N3-[32P]cAMP, which labeling
could partially be inhibited by excess unlabeled cAMP (207).
An acidic 70-kDa glycoprotein was purified by subsequent
decyl-agarose chromatography and preparative gel electro-
phoresis, and photoaffinity labeling of this protein was
completely blocked by unlabeled cAMP. This protein was
present in aggregation-competent Dictyostelium cells and
absent in vegetative cells. The cAMP binding fraction eluted
from the decyl-agarose column was partially characterized.
Its affinity for cAMP and its nucleotide binding specificity
matched that of the chemotactic cAMP receptor (207).
However, the binding specificity was investigated with only
four nucleotides, which is a rather limited survey in view of
the current knowledge (see above).
The relationship between the proteins identified by

Devreotes' and Klein's groups on the one hand and by
Frazier's group on the other is not clear. A 70-kDa protein
was not detected by photoaffinity labeling of cells, or at most
in minuscule amounts (154). The possibility that the 70-kDa
protein is a precursor of the Mr-45,000 proteins is unlikely,
because a 70-kDa protein was not observed after in vitro
translation of messenger ribonucleic acid from preaggrega-
tion cells; rather, a product of 37 kDa was detected with the
antiserum prepared against the photoaffinity-labeled product
of Mr 45,000 (155). On the other hand, the 70-kDa protein
might be an aggregation product of the -45-kDa proteins, as
it has been observed that the latter have a high tendency to
aggregate, even in the presence of detergent (153). The
relative amounts of the two proteins of about 45 kDa vary
according to the state of adaptation of the cells (see section,
"Desensitization to cAMP"). This, together with the argu-
ments given above, makes them the most interesting candi-
dates for the cAMP receptor.

Agents That Modulate cAMP Binding

A number of compounds in addition to guanine nucleo-
tides modulate the cAMP receptor function in Dictyostelium
spp. (see above), but their mechanisms of action are less
clear.

Millimolar concentrations of divalent cations and polyval-
ent anions cause a two- to threefold increase in the number
of cAMP binding sites as detected on cells and in isolated
membranes (120, 121, 128, 294, 295). In addition, some salts
(notably ammonium sulfate) increase the affinity of receptors
for cAMP (120, 295). The effect of saturating concentrations
of different ions is not additive (120, 295). This, however,
does not mean that all ions act by the same mechanism. For
instance, Ca2+ ions, but not Mg2+ ions, counteract the effect
of unsaturated fatty acids on cAMP binding, while in the
absence of fatty acids both ions increase the binding of
cAMP (122) (see below). Also, ammonium sulfate can induce
the exposure of down-regulated cAMP receptors in cells,
while Ca2+ ions cannot (297). The effect of Ca2+ on cAMP
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binding to cells is rapid (within seconds) and reversible (128);
inhibitors of Ca2+ uptake do not counteract the effect (294).
These results suggest that Ca2+ ions act at the extracellular
surface of the cell membrane. The observation that exposure
of cryptic receptors can be induced in metabolically arrested
cells and iti isolated membranes (120, 121, 128) suggests that
these receptors are hidden within the membrane itself and
are not derived from intracellular stores by some kind of
exocytosis. A reasonable hypothesis seems that polyvalent
cations and anions alter the structure of the membrane in
such a way that hidden sites become accessible. Such a
working mechanism might be similar to that proposed for the
effect of cholesterol on biological membranes; stiffening of
the membrane structure by cholesterol also results in expo-
sure of hidden membrane proteins (266).
The physiological function of the ionic effects on cAMP

receptors, or of the cryptic receptors themselves, is open to
speculation. Extracellular ionic conditions strongly influence
cellular processes related to signal transduction and cell
differentiation in D. discoideum (171, 184, 294) (see also
"Physiology of Signal Transduction in D. discoideum").
Some of these effects might result from altered receptor
function. However, it is not clear how in vivo cells could
modulate the exposure of cryptic receptors. Presently, ionic
conditions are mainly used as a tool for modulating the
functioning of the cAMP receptor and the processes regu-

lated via the receptor, as was described above.
Millimolar concentrations of adenosine and related com-

pounds inhibit the binding of cAMP to cells (217). In
wild-type cells, starved for relatively short times, and in
axenic cells, the inhibition is partially noncompetitive (217,
276, 291), whereas in wild-type cells starved for longer
periods fully competitive inhibition is found (276). The
observed noncompetitive nature of inhibition argues against
the possibility that adenosine inhibits the binding of cAMP
only by interacting with the cAMP binding site of the
receptor. Uptake of adenosine does not appear to be re-

quired for its effect, because inhibitors of adenosine uptake
did not counteract the effect on cAMP binding (313). There-
fore, there might be an adenosine receptor at the outer
surface of the plasma membrane which mediates the effects
of adenosine. Study of the equilibrium binding of [3H]
adenosine to Dictyostelium cells reveals two binding com-

ponents (216, 291), suggesting the existence of multiple
adenosine receptors. The affinity of one component (Kd, 300
,uM) (216, 291) is such that it could mediate the effects of
adenosine on cAMP binding and on various responses.

Whether this binding component indeed represents a protein
needs further support, especially because its number of
binding sites is rather high (7 x 106 per cell) (216, 291). If
these binding sites would represent a protein with a normal
molecular weight, say 50,000, they would comprise nearly
1% of total cellular protein, which seems excessive for a

protein with a regulatory function.
Millimolar concentrations of adenosine inhibit the cAMP-

induced cGMP and cAMP responses (25, 276, 291), chemo-
taxis (291), and the formation of cell aggregates (216, 217). In
later developmental stages adenosine inhibits the induction
of prespore cell differentiation by cAMP, which has led to
the hypothesis that adenosine is a morphogen for D.
discoideum (257, 327). Al of the above-mentioned effects of
adenosine might result from alterations in cAMP receptor
function (either by competition with cAMP binding or via an
adenosine receptor), as in each of these processes cAMP
receptors play a more or less decisive role (see "Ligand
Specificity and Activation Mechanism of the Receptor"; 53,

221, 255, 257). However, it is questionable whether adeno-
sine ever accumulates in millimolar concentrations in the
extracellular space. Indeed, this might occur in multicellular
aggregates, where the extracellular space is small, but it
seems unlikely in the preaggregative phase of development.
In the multicellular stage a cAMP-regulated signal transduc-
tion system also appears to operate since receptors (135,
256), a cAMP response, and a cGMP response (138, 220) can
be demonstrated. It might be that the effects of adenosine on
signal transduction in aggregating cells merely foreshadow
the role of adenosine in multicellularD. discoideum aggregates.

Micromolar concentrations of unsaturated fatty acids
noncompetitively inhibit the binding of cAMP to isolated
membranes and intact cells (122). The inhibition is counter-
acted by Ca2` but not by Mg2. ions. This and other
arguments suggest that the effect of unsaturated fatty acids
on the receptor results from alterations in the lipid bilayer
structure of the membrane (122). Such a working mechanism
has also been proposed for other systems (142, 143). Condi-
tions to make the effect of unsaturated fatty acids on the
cAMP receptor reversible have not been found (122). Rever-
sibility would make a role in regulation of receptor functions
in vivo more likely. Unsaturated fatty acids have been
observed to alter various cellular functions in D. dis-
coideum; e.g., they inhibit cell differentiation (326). Further-
more, inhibitors of the oxidation of polyunsaturated fatty
acids inhibit the cAMP-induced light-scattering response
(254). Phospholipids in D. discoideum membranes are un-
usually rich in unsaturated fatty acids (326), thus forming a
large store of free unsaturated fatty acids. Whether this store
is sometimes used, and whether unsaturated fatty acids play
a role in the regulation of Dictyostelium signal transduction,
is not known, as no data on the concentration of free unsatur-
ated fatty acids in the plasma membrane are available.
The stalk cell differentiation-inducing factor (DIF) (284) is

another lipophilic compound which modulates the binding of
cAMP to its receptor. It decreases the affinity of the receptor
for cAMP, as studied in intact aggregation-competent cells
(324). Concomitantly, DIF inhibits the cAMP relay re-
sponse, but not the cAMP-induced cGMP response (324).
The amounts of DIF, necessary to observe effects on cAMP
binding and relay with a certain amount of cells, are of the
same order of magnitude as those affecting stalk cell differ-
entiation (324), which opens the possibility that the effects of
DIF on signal transduction are physiologically relevant. The
interference of DIF with the signal transduction system
deserves special attention, as both DIF and cAMP relay
appear to be important for morphogenesis in multicellular D.
discoideum aggregates (138, 176, 220, 256).

FOLIC ACID RECEPTORS
Vegetative Dictyostelium amoebae are chemotactically

attracted by folic acid and pteridines (226, 227). Within
several hours of starvation, amoebae lose the sensitivity to
folic acid, concomitantly with their folic acid receptors, and
gain receptors for cAMP (66, 214, 281, 332). Various lines of
evidence suggest that folates, pteridines, and cAMP are
detected by different types of cell surface receptors (53, 301,
332); however, direct binding studies on pteridine receptors
have not been done yet. Initial studies on the folic acid
receptors were complicated by the high activity of the folic
acid-degrading enzyme folate deaminase that is present on
the surface of D. discoideum cells (13, 330). This problem
was solved by using the folate deaminase inhibitor 8-
azaguanine (59) or the degradation-resistant folic acid analog
methotrexate (71, 214).
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In the first binding studies a high-affinity binding site was
detected that had almost the same affinity for folic acid and
its deaminated product 2-deaminofolic acid (Kd, 100 to 300
nM; about 105 sites per cell [286, 332]). However, amoebae
are chemotactically at least 104 times less sensitive to
2-deaminofolic acid than to folic acid (228, 301), suggesting
that these binding sites are not the chemotaxis receptor for
folic acid. De Wit observed another receptor which has
binding affinities for folic acid and its derivatives that corre-
late much better with the chemotactic activities of these
compounds (59, 65). This receptor was present only in small
numbers (1,500 sites per cell) (71); some studies could not
even detect it (281).

Detailed investigations on the pharmacology and kinetics
of the folic acid binding activity of cells and isolated mem-
branes have shown as many as five kinetic receptor forms
(62, 71). Two kinetic forms, AH and AL, are of a "nonselec-
tive" type and bind both folic acid and deaminofolic acid.
The specificity of these forms does not correlate with that of
chemotaxis, but with the specificity of the folic acid-induced
cAMP response, which occurs in early aggregative cells (55,
65, 66). This response probably results from an indirect
activation of adenylate cyclase via cAMP receptors (55), as

mentioned above ("Physiology of Signal Transduction in D.
discoideum"). The other kinetic forms, BF, Bs, and Bss,
bind folic acid more selectively and have a binding speci-
ficity correlating with that of chemotaxis, the folic acid-
induced cGMP response, and the stimulation of expression
of two developmental markers (64, 65, 314). The main
difference between the A and B receptor types is that the A
sites have much less specific requirements with respect to
the structure of the pterine part of the folic acid molecule
than the B sites (65). The binding specificities distinguish
both A and B receptor types from each other and from the
two folic acid-degrading enzymes present on cells, i.e.,
folate deaminase (13, 330) and folate C9-N1O-cleaving en-
zyme (65, 67).
Many properties of folic acid receptors on vegetative D.

discoideum cells are similar to those of cAMP receptors on

aggregative cells. Similar kinetic forms exist, and different
subsets of receptors appear to couple to guanylate and
adenylate cyclase. Folic acid receptors probably interact
with a G-protein because guanine nucleotides modulate the
ligand binding to both the A and B folic acid receptor types
(61, 63); vice versa, folic acidmodulates the binding of GTP
to isolated membranes (69). These observations have led to
models explaining the different kinetic forms of the folic acid
receptor by the existence of different complexes of receptors
with empty or occupied G-proteins (62, 63). Similar models
have been proposed for vertebrate signal transduction sys-
tems (15) and for signal transduction through cAMP recep-
tors in D. discoideum (Fig. 2) (118, 300).

Relatively little progress has been made towards the
molecular identification and isolation of folic acid receptors.
Some folic acid receptors might be associated with the
cytoskeleton (281), similar to cAMP receptors (92). Several
proteins from solubilized D. discoideum membranes bind to
folic acid-derivatized Sepharose and are specifically eluted
(286). Among these might be the folic acid receptors.

ADENYLATE CYCLASE

Basal Activity

All adenylate cyclase activity in D. discoideum is partic-
ulate (107, 224). Histochemical data suggest that the enzyme

is localized on the inner side of the plasma membrane (48,
84). However, adenylate cyclase does not copurify on su-
crose gradients with plasma membrane marker enzymes
such as alkaline phosphatase and 5'-nucleotidase (112, 122a,
212, 230). This could imply that Dictyostelium adenylate
cyclase is localized in specialized domains of the plasma
membrane that contain little of these plasmna membrane
markers (cf. references 39 and 122a). Such uneven distribu-
tion of different plasma membrane-bound proteins has also
been found in other cells (104, 126).
The adenylate cyclase activity in homogenates of aggre-

gating cells is very unstable (107, 206, 224). The basal
enzyme activity is about 10 pmol min-1 mg of protein-' with
Mg-adenosine 5'-triphosphate (ATP) as substrate (45, 53,
248). This activity is stimulated by Mn2+ ions (45, 47, 171)
and inhibited by Ca2+ ions (45, 145, 171, 248); the latter
inhibition is antagonized by Mn2+ ions (45, 171). Basal
adenylate cyclase has a Km of 0.4 mM for Mg2+-ATP (171).
In the presence of Mn2+ ions the kinetics are non-
Michaelian, being best described by two K,, values of 0.02
and 0.4 mM ATP (107, 239). The basal enzyme activity is
inhibited by preincubation with a heat-stable inhibitor,
present in soluble as well as particulate fractions of vegeta-
tive cells (47). The roles of Ca2+, Mg2+, or Mn2+ ions and the
heat-stable inhibitor in the regulation of adenylate cyclase in
vivo are unknown. Compounds such as NaF (or AIF3) and
Forskolin that modulate the activity of, respectively, G-
protein-coupled and uncoupled adenylate cyclase in verte-
brates (15) do not modulate Dictyostelium cyclase (24, 119,
145, 206, 245). Similar observations were made in other
eucaryotic microbes (32, 35, 50, 86, 123, 124, 156, 225, 249,
323; exceptions, in which NaF inhibits, are reported in
references 40, 42, 106, 185).

Adenylate cyclase activity remains associated with an
insoluble protein residue following extraction of membranes
with the detergent CHAPS (39, 122a). Up to 60% of basal
adenylate cyclase is solubilized by this detergent when
membranes are preincubated with 1 M NaCl before the
addition of CHAPS (108). Lubrol PX is probably a better
solubilizing detergent than CHAPS, as assessed from the
size of adenylate cyclase determined by gel filtration chro-
matography (122a).

Stimulated Activity
The periodic activation of adenylate cyclase in aggregating

D. discoideum cells is the central event in the cAMP relay
response and is responsible for the propagation of thecAMP
signal from cell to cell. Activation of adenylate cyclase in
vivo may require the movement of proteins in the plasma
membrane, because treatment of cells with cross-linking
agents such as lectins, antibodies, or chemical compounds
inhibits the cAMP relay response and prevents activation of
adenylate cyclase (88). Some important components of the
signal transduction system are probably associated with the
cytoskeleton, for instance, cAMP receptors (92) (see above)
or adenylate cyclase (39, 122a). The submembrane cytoskel-
eton might have to move for adenylate cyclase activation,
and this movement would be inhibited by the cross-linkers.
Interestingly, the cAMP-mediated cGMP response is not
inhibited but is potentiated by the lectin concanavalin A
(200).

Until very recently, the only way to demonstrate the
activated state of adenylate cyclase was by stimulating the
enzyme with cAMP in vivo, rapidly lysing the cells, and
instantaneously measuring enzyme activity in vitro (53, 148,
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171, 245, 248). The 3- to 10-fold increase in enzyme activity
thus observed rapidly decays to basal activity, a process
which can be retarded at 0°C (39, 246). More detailed
investigations of the "in vivo stimulation-in vitro measure-
ment" approach were recently reported by Padh and Bren-
ner (223). They observed that inclusion of [a-32P]ATP in the
mixture during cell lysis resulted in an eightfold increase in
basal adenylate cyclase activity as compared to the situation
normally used, in which [a-32P]ATP is added after cell lysis.
As a result, the stimulus-induced increase in the adenylate
cyclase activity in homogenates was relatively much lower
when the substrate [a-32P]ATP was added prior to cell lysis
instead of thereafter. The authors presented evidence sug-
gesting that a significant fraction of the enzyme becomes
latent shortly after cell lysis, more so in homogenates from
unstimulated cells than from stimulated cells. This might
indicate that activation of adenylate cyclase in vivo is
correlated with an increased accessibility of ATP to the
enzyme (223).

Several observations challenge the interpretation of the
"substrate accessibility" studies of Padh and Brenner (223)
and their relevance to the regulation of adenylate cyclase in
vivo. First, there is almost no difference in cAMP production
between lysis in the presence and absence of [a-32P]ATP,
when enzyme activity is measured with Mn2+ ions instead of
Mg2+ions; in parallel experiments with Mg2 +ions (as used
by Padh and Brenner [223]), the differences are 7- to 15-fold
(A. Theibert and P. Devreotes, personal communication).
As in many other systems, Dictyostelium adenylate cyclase
is stimulated by Mn2+ ions and uncoupled from guanine
nucleotide regulatory proteins (277; see below). It would be
expected that latency of adenylate cyclase is not affected by
its intrinsic activity. Second, even when cells are lysed in the
presence of Mg2+ [a-32P]ATP, an increase is observed in the
formation of [32P]cAMP in homogenates from stimulated
cells compared to unstimulated cells, although this increase
is greater when cells are lysed in the absence of [a-32P]ATP
(223). Third, higher adenylate cyclase activity is also ob-
served in homogenates from stimulated cells, as compared to
unstimulated cells, when cells are lysed with the detergent
CHAPS (88). It is unlikely that after lysis by detergents
differences in enzyme sequestration are preserved. This
suggests that altered substrate accessibility, when occurring,
is not the sole regulatory mechanism of adenylate cyclase
activity in vivo.
The activation of adenylate cyclase in vivo probably

results, at least partly, from coupling of the enzyme to a
G-protein (277, 307). While many investigators tried in vain
to activate the enzyme with guanine nucleotides (cf. refer-
ence 53), this now appears to be possible under specific
conditions. About 10- to 20-fold stimulation of adenylate
cyclase occurs when guanine nucleotides are present during
cell lysis or within 5 min thereafter; a preincubation of about
5 min at 0°C of cell homogenate with guanine nucleotides is
required to obtain maximal stimulation (277). Alternatively,
a twofold activation of adenylate cyclase in crude membrane
preparations is observed when enzyme incubations are per-
formed at temperatures between 0 and 10°C (307). In addi-
tion, inhibition of adenylate cyclase by guanosine triphosph-
ates becomes detectable when membranes are preincubated
with ATP-yS, suggesting that an inhibitory G-protein may
also be present (307). It is not clear why the specific
conditions are necessary to observe effects of guanine nu-
cleotides on adenylate cyclase. They might relate to neces-
sary coupling/uncoupling events of G-protein to adenylate
cyclase or to a transient latency of adenylate cyclase or

G-protein. Also, it should be noted that the Dictyostelium
adenylate cyclase system is rather unusual, compared to
other systems, in that the product of the enzyme, cAMP, is
the agonist of the receptor which regulates the enzyme. The
possibility of a positive-feedback loop in vivo, with cells
stimulating themselves with their secreted cAMP (53, 56),
may require more control elements than in other systems.
The observations of Theibert and Devreotes and ourselves

regarding the stimulation of adenylate cyclase are qualita-
tively similar in many respects (277, 307). Adenylate
cyclase, as measured with Mg-ATP, was stimulated by
micromolar concentrations of guanosine triphosphates,
nonhydrolyzable analogs being better than GTP. The
nonhydrolyzable guanosine diphosphate GDP,S did not
stimulate adenylate cyclase and antagonized the stimulation
by guanosine triphosphates. In the presence of Mn2+ ions,
micromolar concentrations of guanine nucleotides did not
stimulate enzyme activity, but were slightly inhibitory, es-
pecially at higher concentrations (50 to 1,000 ,uM). Such
observations have also been reported by Khachatrian et al.
(140). Because millimolar concentrations of Mn2+ ions are
unphysiological (222), and guanosine diphosphates tended to
inhibit more strongly than guanosine triphosphates in the
presence of Mn2+ ions (140), it is unlikely that these inhibi-
tory effects are related to a physiologically significant regu-
lation via G-proteins. Guanine nucleotide stimulation of
adenylate cyclase in thoroughly washed membranes de-
pended on the addition of a cytosolic fraction (307). This was
especially apparent from studies with a mutant which has
lost the cAMP relay response in vivo. Adenylate cyclase
activity in this mutant could not be stimulated by guanine
nucleotides, unless cytosol from wild-type cells was added
(277, 307). Various lines of evidence suggest that the cyto-
solic factor is not identical to a soluble G-protein (307), but
more definite conclusions have to await its further charac-
terization.

In both types of preparations (277, 307), cAMP stimulated
the activity of adenylate cyclase 1.3- to 4-fold in both the
presence and the absence of guanine nucleotides. Theibert
and Devreotes could demonstrate this stimulation of activity
only when cAMP was added to cells shortly prior to lysis
(277). This in fact is the in vivo stimulation-in vitro measure-
ment approach, mentioned above. In contrast, we could
observe stimulation of cyclase by adding cAMP to our crude
membrane preparations (307).

In conclusion, the guanine nucleotide stimulation of ade-
nylate cyclase and its potentiation by cAMP support the
concept of a receptor-Ge protein-adenylate cyclase coupling.
However, the observation that cAMP must be added to
intact cells and guanine nucleotides directly after cell lysis
(277), or alternatively that all measurements must be done
below 100C to observe regulation of the enzyme (307),
suggests that other control mechanisms operate in vivo
which are incompletely controlled in vitro. Such mecha-
nisms might also involve a special architecture of the ade-
nylate cyclase system, i.e., linkage to the cytoskeleton or
compartmentalization of the enzyme.

GUANYLATE CYCLASE AND THE INOSITOL
PHOSPHATE PATHWAY

Guanylate cyclase activity is present in both vegetative
and aggregating D. discoideum cells and is stimulated via
folic acid and cAMP receptors. Basal enzyme activity in
aggregating cells is two- to sixfold higher than in vegetative
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cells (199, 222, 325). Guanylate cyclase is found in soluble
and particulate cell fractions (122a, 197, 222, 325), as in
many higher organisms (211). It is not known whether these
activities represent different molecular entities. Soluble gua-

nylate cyclase has an Mr of -250 kDa (222). Attempts to
further purify this enzyme are hampered by the instability of
the enzyme (222).
As in vertebrates (211), Dictyostelium guanylate cyclase in

vitro can as yet only be measured in the presence of Mn2+
ions (KM, 0.7 mM Mn2+) (222). This seems unphysiological,
because the intracellular Mn2+ concentration in D. discoid-
eum is S to 10 ,uM (222). Apparently, the in vitro enzyme

measurements are not representative of the in vivo condi-
tions, which is a major obstacle for the study of the regula-
tion of this enzyme. The activity as measured with Mn2+-
GTP is stimulated by micromolar concentrations of ATP and
AppNHp (190, 222). ATP, but not AppNHp, added to intact
aggregation-competent cells increases the cAMP-induced
cGMP response (189). The relevance of these observations
to the regulation of the enzyme in vivo is unknown. Only
Mato and Malchow (197) have measured the activated state
of guanylate cyclase in vitro, following the same approach as

used for adenylate cyclase. After stimulation of cells with
cAMP and rapid cell lysis by sonication, three- to sixfold
activated guanylate cyclase activity persisted in homo-
genates for about 1 min, as measured with Mn2+-GTP
(197).

Europe-Finner and Newell recently obtained important
evidence which suggests that guanylate cyclase is regulated
via the inositol phosphate pathway. They reported that the
addition of inositol 1,4,5-trisphosphate to saponin-per-
mealized cells results in a rapid transient elevation of cGMP
(79) and a permanent increase in cytoskeleton-associated
actin (80). Similar responses can be evoked by addition of
Ca2+ ions to permeabilized cells (80, 268). In higher orga-

nisms, as well as in Dictyostelium spp., inositol trisphos-
phate stimulates the liberation of Ca2+ ions from cellular,
nonmitochondrial stores (14, 81, 115). Taken together, these
data might suggest that Ca2+ is the direct activator of
Dictyostelium guanylate cyclase.

In ciliates, Ca2+ ions activate guanylate cyclase via the
universal Ca effector protein calmodulin (131, 157, 259).
Padh and Brenner, however, observed that neither Ca2+ ions
nor calmodulin could stimulate D. discoideum guanylate
cyclase activity in vitro with either Mn2+-GTP or Mg2+-GTP
as substrate (222). These and some other aspects of the
regulation of Dictyostelium guanylate cyclase remain to be
clarified. For instance, inositol 1,4,5-trisphosphate also
evoked a (small) cGMP and an actin response in nonper-

meabilized cells (80). Furthermore, the inositol 1,4,5-
trisphosphate-induced cGMP response in permeabilized
cells did not require the addition of GTP or ATP (79),
although it might be expected that cellular GTP, ATP, and
other small molecules should have leaked out of the cells.

Dictyostelium cells contain polyphosphoinositides (M. M.
van Lookeren Campagne, unpublished observations) and
phosphatidylinositol kinase (318). Direct evidence for the
existence of a cAMP receptor and G-protein-regulated phos-
phatidylinositol cycle was recently presented by Europe-
Finner and Newell (82, 83). They reported that in
[3H]inositol-labeled intact or permeabilized aggregation-
competent Dictyostelium cells cAMP and guanosine
triphosphates induce the accumulation of radio-activity that
coelutes with inositol 1,4,5-trisphosphate and other inositol
phosphates on anion-exchange columns (82, 83). Basal or

activated phospholipase C activity, i.e., the turnover of

(poly)phosphatidyl inositol, has not yet been demonstrated
directly (cf. references 117 and 302).

In summary, although some important regulatory mecha-
nisms are still unknown, recent progress is bringing new
impetus into guanylate cyclase research in D. discoideum.
Saccharomyces cerevisiae (130) and Dictyostelium spp. are
the only eucaryotic microorganisms for which evidence for a
phosphatidylinositol cycle has been obtained so far.
Dictyostelium is probably the first organism in which the
inositol phosphate pathway is linked to guanylate cyclase,
actin polymerization, and cell locomotion (Fig. 2).

DESENSITIZATION TO cAMP

Homologous (or agonist-specific) desensitization in verte-
brate signal transduction systems results primarily from
alterations in the receptors (267). The same may be the case
in D. discoideum. This is suggested by studies of the binding
characteristics and the physicochemical properties of the
cAMP receptor during signal transduction and desensitiza-
tion.

Alterations in Binding Properties

Ligand-induced alterations in ligand binding in D. dis-
coideum were first observed by Klein and Juliani (146, 150).
cAMP induces a decrease in the number of cAMP binding
sites on cells (146, 150), a phenomenon termed down-
regulation (267). Originally, high cAMP concentrations (10-4
to 10-3 M) were reported to be necessary (146, 150), but
much lower ligand concentrations are sufficient when the
phosphodiesterase activity is reduced by using a phosphodi-
esterase-deficient mutant, a phosphodiesterase inhibitor
(dithiothreitol), or a nonhydrolyzable analog of cAMP (146,
297). The minimal concentration of cAMP necessary to
induce down-regulation was found by maintaining the extra-
cellular cAMP concentration constant, i.e., by inhibition of
phosphodiesterase with dithiothreitol and inhibition of ade-
nylate cyclase with caffeine (25, 275). Under these condi-
tions a half-maximal loss of cAMP binding sites was induced
by exposing cells for 15 min at 20°C to 50 nM cAMP (297).
The molecular mechanism of down-regulation in D.
discoideum and the fate of down-regulated receptors are not
known. It has been suggested that accessible receptor sites
are lost as a result of the formation of an extremely slowly
dissociating cAMP-receptor complex (146). Following re-
moval of cAMP, lost sites reappear slowly with a to.5of
about 1 h at 20°C (137, 150, 297). Protein synthesis is not
required for the reappearance of the receptors, suggesting
that down-regulated receptors are not degraded. Binding
studies of the residual receptors imply that the H and L
kinetic forms of the receptor are reduced in number,
whereas the S andSS forms are reduced in affinity (Table 2),
as mentioned above (137). Down-regulation affects the
cAMP relay response by decreasing the amount of cAMP
accumulated in response to a saturating stimulus dose,
whereas the dose-response curve for the cGMP response is
shifted to higher stimulus concentrations (137) (see subsec-
tion, "Coupling of Receptor Forms to G-Protein and Ade-
nylate and Guanylate Cyclases").

Recently, a more rapid alteration of cAMP binding was
observed that may be related to desensitization. A short
preincubation of cells with cAMP prevented the subsequent
binding of ligand to the SS form of the receptor (300). From
analysis of the association kinetics of cAMP binding to cells
it was inferred that occupiedSS sites originate from the
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conversion of other sites, which have higher "on" rates
(300). Apparently, cAMP-occupied SS sites can only be
formed when the cAMP concentration is raised. Thus,
formation of occupied SS sites depends on the prevailing
cAMP concentration, which is akin to adaptation at the
receptor binding level. Based on the assumption that the SS
receptor form is involved in guanylate cyclase activation
(see above), it was proposed that cessation of new formation
of occupied SS sites is directly responsible for the cessation
of activation of guanylate cyclase, i.e., adaptation of the
enzyme (300).
A third ligand-induced change in ligand binding was al-

ready mentioned and is the conversion of the H receptor
form to the L form shortly after initiation of cAMP binding
(29, 137, 298). Assuming that the H and L forms are involved
in adenylate cyclase regulation (see above), this change is
too fast (t0.5 of 10 s [298]) to be related to adenylate cyclase
adaptation (to.5 of 3 min [53, 74]).

Covalent Modification of Receptors

Devreotes et al. and Klein et al. have identified by
photoaffinity labeling two closely related proteins of Mr
=45,000 which are different forms of the same cAMP recep-
tor protein, as described above (subsection, "Isolation of the
Receptor") (129, 151, 154, 278). The low-mobility protein in
gels is a phosphorylation product of the high-mobility pro-
tein (151, 153, 173). Photoaffinity labeling and in vivo phos-
phorylation experiments revealed that the low-mobility
strongly phosphorylated protein predominates in cells after
stimulation by cAMP and the high-mobility weakly phospho-
rylated protein is abundant in cells that are not stimulated
(57, 151, 154). As a result, in autonomously oscillating cell
suspensions the abundancy of the low- and high-mobility
receptor proteins alternates with the frequency of the oscil-
latory activation of the cells (154). Apparently, occupation of
the receptor by cAMP triggers a signal that gives rise to
increased receptor phosphorylation.
The appearance and disappearance of the low- and high-

mobility receptor proteins during cAMP stimulation of cells
correlate well with adaptation of adenylate cyclase (57).
First, the cAMP-induced transition of high- to low-mobility
receptor protein occurred with the same rate as adaptation of
adenylate cyclase, both having a tO.5of 2.5 to 3 min (57, 74).
This rate is compatible with the rate of appearance of the
strongly phosphorylated protein, as observed by Klein et al.
(151, 173). Second, the amount of low-mobility receptor
protein in stimulated cells was proportional to the concen-

tration of extracellular cAMP presented and matched the
dose-response curve for adaptation. Finally, the low-
mobility protein persisted as long as the cAMP concentra-
tion was unchanged, while as soon as cAMP was removed,
the high-mobility receptor protein returned with a tO.5 of 5 to
6 min at 20°C (57). About the same rate is observed for
de-adaptation of adenylate cyclase (t0.5 of 3 to 4 min [73]).
Mathematical models have been designed that could explain
both adenylate cyclase adaptation and autonomous oscilla-
tory signalling in cell suspensions through receptor modifi-
cation and positive-feedback stimulation (104, 158, 263).
The transition of the receptor protein from the high- to the

low-mobility form is probably not related to activation of
adenylate cyclase. Receptor modification takes place in the
presence of caffeine (154), whereas this compound blocks
activation of adenylate cyclase, but not adaptation (25, 275).
Furthermore, it is also unlikely that the high- to low-mobility

form transition is related to either guanylate cyclase activa-
tion or adaptation, because both of these processes are
>10-fold faster (308) than the receptor transition.
The relationship between the physical and binding char-

acteristics of the receptor have been investigated by
Devreotes and co-workers (57, 154). They reported that
phosphorylated receptors have a lower affinity for cAMP.
However, interpretation of this result is complicated be-
cause cAMP binding, like the photoaffinity labeling, was
done in the presence of ammonium sulfate, which pro-
foundly alters the receptor binding properties and exposes
down-regulated receptors (120, 295, 297). The relationship
between receptor phosphorylation and the various kinetic
forms of the receptor (Table 2) is not obvious. We might
suppose that the photolabeled products on gels are repre-
sentative of the majority of cAMP binding sites on cells and
that, as a result, most of the receptors undergo modifications
(154; see subsection, "Isolation of the Receptor"). This
would suggest that the H and L kinetic forms of the receptor,
which together comprise 96% of the total number of binding
sites on Dictyostelium cells, are the subjects of receptor
modification and phosphorylation. However, it is unlikely
that the H and L forms are identical to the high- and
low-mobility proteins, respectively, because the transition of
H to L following application of cAMP to cells is much faster
(t0.5 of 10 s [298]) than the transition of the high- to low-
mobility protein (to.5 of 2.5 min [57]). In addition, it is not
known whether the S and SS forms of the receptor have been
detected in photoaffinity labeling and phosphorylation exper-
iments. Thus, a comparison between photoaffinity labeling
data and binding characteristics of the receptor presently
cannot clarify the relationship between modification and the
kinetic forms of the receptor.

Incubation of membranes under conditions designed to
stimulate protein phosphorylation alters the binding proper-
ties of both the H and L and S and SS kinetic forms or their
putative coupling to G-proteins or both (174, 296, 302). In
addition it abolishes GTP stimulation of adenylate cyclase
(307). These observations, however, give no insight into the
relationship between binding and receptor modification,
because possible physical alterations in the receptors result-
ing from phosphorylation were either not observed (296) or
not investigated (174, 302). The altered receptor binding
properties were assumed to be caused by phosphorylations
catalyzed by different kinases, such as protein kinase C
(302), kinase A (174), or an endogenous membrane-bound
kinase (296). It is likely that phosphorylation of receptors
and possibly other transducing elements by various kinases
can occur in Dictyostelium spp. and plays a role in the
regulation of desensitization, as also occurs in vertebrate
systems (10, 11, 133, 136, 166, 270). At present we are only
at the beginning of unraveling the complex phenomena
related to phosphorylation and desensitization in Dictyo-
stelium species.

COMPARISON WITH OTHER
EUCARYOTIC MICROBES

The eucarvotic microbes form a vastly divergent group,
including organisms as different as fungi, protozoa, and
algae. A large number of behavioral studies are at hand (159,
165, 169), and in many organisms alterations of cyclic
nucleotide levels have been correlated with a specific growth
phase or behavior (225). The enzyme activities involved in
cyclic nucleotide metabolism have often been demonstrated
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and partly characterized, but the biochemistry underlying
the regulation of the enzymes is still largely unknown (1, 42,
113, 123, 175, 225). Among the eucaryotic microbes, mole-
cules possibly involved in signal transduction have been
studied in some detail in only a few organisms besides
Dictyostelium spp., notably, Paramecium, Tetrahymena,
Saccharomyces, Neurospora, Mucor, and Trypanosoma
species.
The study of extracellular messenger molecules and cell

surface receptors in lower eucaryotes has been approached
from two directions. First, evidence for chemoattractants or

pheromones has been found in various species, and some

compounds have been identified (16, 132, 159, 165, 169, 209,
280). In a few organisms, including Dictyostelium spp., these
studies have been followed by binding studies, giving direct
evidence for cell surface receptors (31, 51, 125, 262). To our

knowledge, besides the Dictyostelium cAMP receptor, no

membrane receptor has been isolated from eucaryotic mi-
croorganisms. However, in S. cerevisiae the genes of the
receptors for the pheromones a-factor and a-factor have
been cloned and sequenced (30a, 107a, 213a).
The second approach is based on the observation that

microorganisms can either produce or respond to substances
that are very similar to vertebrate signal molecules such as

hormones (168). This suggests an early evolutionary appear-

ance of vertebrate signal compounds and their receptors (cf.
references 168 and 172). However, this approach has not
been very fruitful for the understanding of signal transduc-
tion mechanisms, because either the vertebratelike sub-
stances produced were almost never found to affect the
microorganisms themselves (106, 168) or specific vertebrate
compounds that affected microorganisms were not produced
in sufficiently high concentrations by these microorganisms
to be important (4, 42, 127).

Until a few years ago, the regulation of adenylate cyclase
in microorganisms was largely unknown; guanine nucleo-
tides had no influence on the enzyme activity, and the
unphysiological substrate Mn-ATP was often strongly pre-

ferred over Mg-ATP (32, 123, 175, 225, 260). More recently,
however, data have accumulated that suggest the regulation
of adenylate cyclase by GTP-binding regulatory proteins in
Phycomyces (42), Saccharomyces (20, 35), Neurospora (86,
249, 250), Trypanosoma (75, 76), and Dictyostelium (see
subsection, "Stimulated Activity") species. The character-
ization and isolation of the presumed GTP binding regulatory
proteins are still in a preliminary phase. At best, reconstitu-
tion experiments with crude fractions have been performed
(20, 250). In Neurospora and Trypanosoma species, recon-

stitution of guanine nucleotide and hormone-sensitive ade-
nylate cyclase could also be accomplished with G-proteins
and hormone receptors from detergent extracts of vertebrate
membranes (75, 86). These unique observations suggest a

close homology between fungal and vertebrate signal
transduction systems. This seems to contrast with a study
using antibodies against subunits of purified G-protein: even

antibodies against the most homologous subunit of different
G-proteins, P (101, 244), do not recognize a similar protein in
invertebrate organisms (5). Although information about the
homology of adenylate cyclase systems in higher and lower
eucaryotes may be inconclusive and scarce, it is likely that
the overall regulation of adenylate cyclase in some eucary-

otic microorganisms is the same as in vertebrates.
Not all adenylate cyclase activity in microorganisms is

regulated by guanine nucleotides. For instance, adenylate
cyclase in trypanosomes is stimulated by Ca2+ ions (319,
320) and may resemble the Ca/calmodulin-regulated enzyme

prominent in vertebrate brain tissue (27, 37). However, the
calmodulin antagonist trifluoperazine had no effect on acti-
vation of Trypanosoma adenylate cyclase by Ca21 ions
(320). It is not clear whether the Ca2+-stimulated adenylate
cyclase in Trypanosoma spp. is the same enzyme as the one
that can be activated by (vertebrate) G-proteins (75). In
other eucaryotic microbes adenylate cyclases are inhibited
by Ca2+ ions (1, 42, 213). Adenylate cyclase of Paramecium
spp. is peculiar, because its activity seems to be regulated by
K+ ions (156). In Neurospora spp. a soluble adenylate
cyclase has been purified to homogeneity (238). This enzyme
appears to be different from the G-protein-regulated adenyl-
ate cyclase in this organism (250).
A most exciting development has come with the discovery

of the ras protooncogenes in divergent eucaryotes including
Dictyostelium spp. and yeasts (52, 232, 234, 235, 241). The
products of ras genes are proteins of Mr -21,000 having
guanosine triphosphatase activity, as do the a subunits of
G-proteins (100, 274). In S. cereviseae, strains deficient in
ras function lack GTP-stimulated adenylate cyclase and
have a phenotype similar to that of adenylate cyclase-
deficient strains (282). The guanine nucleotide sensitivity of
cyclase in ras-deficient strains can be restored by reconsti-
tution with yeast or human ras proteins (26, 282). The
identification of the gene encoding the catalytic subunit of
adenylate cyclase in S. cerevisiae (21, 34) has enabled the
successful reconstitution of adenylate cyclase and the S.
cereviseae RAS gene products, using extracts of trans-
formed bacteria in which each of the genes was expressed
(285). These observations have raised the question whether
in S. cerevisiae the RAS protein is identical to the endoge-
nous GTP binding regulatory protein (18). However, mam-
malian adenylate cyclase is not affected by reconstitution
with ras proteins (9), suggesting that ras is not a regulatory
component of the mammalian enzyme. In addition, overex-
pression of endogenous or mutated ras genes in Dictyoste-
lium spp. does not alter the regulation of adenylate cyclase
by cAMP in vivo or by guanine nucleotides in vitro (204a,
240). Dictyostelium cells transformed with mutated ras
genes show altered adaptation of the cAMP-induced cGMP
response (204a). This may indicate that in Dictyostelium
cells ras proteins are involved in the regulation of guanylate
cyclase or phosphatidylinositol turnover, which is linked to
guanylate cyclase (see section, "Guanylate Cyclase and the
Inositol Phosphate Pathway"). Recently, data have been
presented which suggest that also in vertebrates ras proteins
are involved in the regulation of phosphatidylinositol hydrol-
ysis (38, 87, 321), and this may be more general than the
involvement of ras in the regulation of adenylate cyclase
occurring in yeasts.
Guanylate cyclase has been thoroughly investigated in the

ciliates Paramecium and Tetrahymena. This enzyme is
regulated by Ca2" ions via the Ca2+ regulatory protein
calmodulin (131, 157, 259). Paramecium calmodulin can
activate a vertebrate enzyme (phosphodiesterase) and calm-
odulin from soya bean, pig brain, or Tetrahymena will
activate guanylate cyclase in Paramecium membranes (157,
261). These data suggest a strong conservation of the
Ca2+/calmodulin regulatory mechanisms during evolution.
Intracellular Ca2+ concentrations in ciliates fluctuate in
response to various stimuli, giving rise to a Ca2+/K+ action
potential across the plasma membrane (163). Investigations
with several Ca2+ channel mutants indicate that the activity
of guanylate cyclase in the cilia (cf. reference 260) is directly
determined by the Ca>2 fluxes across the ciliary membrane
(261).
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In many of the eucaryotic microbes studied so far, it is
unclear whether adenylate and guanylate cyclase form a part
of a signal transduction system, e.g., in Neurospora (249),
Mucor (33), Acanthamoeba (1, 40), and Alternaria (123)
species (cf. reference 225). The currently most advanced
model systems for transmembrane signal transduction in
lower eucaryotes are the ciliates Paramecium and Tetrahy-
mena and the slime mold Dictyostelium. Rapid progress is
also being made with yeasts (cf. reference 19). Prominent in
the ciliates are electrical phenomena, such as the Ca2+ action
potential, that result from chemical or mechanical stimuli
(163). Paramecium therefore aphoristically has been called
"a swimming neuron" (163). Chemical phenomena are
prominent in Dictyostelium spp. following stimulation by
chemoattractants. Therefore, Dictyostelium sp. may be con-
sidered the model hormone-responsive cell among the
eucaryotic microbes.

PROSPECTS

In recent years much of the biochemical basis of trans-
membrane signal transduction in D. discoideum has been
defined. The pharmacology and the kinetics of ligand binding
to cAMP and folic acid receptors have been described and
the cAMP receptor has been purified. Strong evidence for a
G-protein(s) has been obtained from the study of cAMP and
folic acid receptors as well as adenylate cyclase. Evidence
for the regulation of guanylate cyclase via a phosphatidyl-
inositol phosphate cycle has been obtained, and some light
has been shed on the mechanism of adaptation in Dictyo-
stelium spp. This has led to a model of Dictyostelium signal
transduction which has close analogies with vertebrate sys-
tems (Fig. 2). Apparently, the signal transduction systems in
vertebrates are of very ancient evolutionary origin.
Now that the homology with vertebrates seems clear, the

peculiarities of the Dictyostelium signal transduction system
may also be discovered. For instance, why does Dictyo-
stelium adenylate cyclase resist activation in vitro by recep-
tor ligands and guanine nucleotides, under conditions which
operate in vertebrates? This may be related to the architec-
ture of the system, e.g., coupling of its elements to the
cytoskeleton. The answer may be valuable for the study of
other eucaryotic microbes.
The isolation of components presently suggested to oper-

ate in signal transduction is a major task to perform in the
coming years: receptors, G-proteins, adenylate cyclase,
phospholipase C, Ca2+-regulated guanylate cyclase, and
protein kinases regulating the system, to mention some of
them. Significant progress has only been made with the cell
surface cAMP receptor. The experience in vertebrates
shows that isolation is not always an easy task, and it may
take several years before reconstitution of various compo-
nents will be accomplished. However, only this approach
will give definite proof of the existence of the components
now supposed to be involved and their interactions.The
discovery of new factors involved in the regulation of signal
transduction may be expected. The role of some of other
factors needs to be more clearly defined, e.g., protein
kinases and ras proteins. The regulation of guanylate cyclase
via receptors coupled to G-proteins remains to be substan-
tiated. The mechanism of cAMP secretion is still largely
unknown. Insight into this mechanism could provide essen-
tial information on the compartmentation of receptors, ade-
nylate cyclase, and produced cAMP. The study of mutants
may be of great help in defining the function of the compo-

nents and regulatory mechanisms involved in Dictyostelium
signal transduction. In general, mutants are more easily
obtained in this lower eucaryote than in vertebrates, and
many Dictyostelium mutants are already available (cf. refer-
ences 6, 7, and 46). With these tools at hand, a detailed
description ofDictyostelium signal transduction in molecular
terms may not be so far away.
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