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ABSTRACT 

Stable n-pointed trees arise in a natural way if one tries to find moduli for totally degenerate 

curves: 
Let C be a totally degenerate stable curve of  genus g_> 2 over a field k. This means that C is a 

connected projective curve of  arithmetic genus g satisfying 
(a) every irreducible component of  C is a rational curve over k. 
(b) every singular point of  C is a k-rational ordinary double point. 
(c) every nonsingular component L of  C meets C - L  in at least three points. 
It is always possible to find g singular points Pj, ..., Pg on C such that the blow up C of  C at 
Pl ..... Pg is a connected projective curve with the following properties: 

(i) every irreducible component of  C" is isomorphic to IP~ 
(ii) the components  of  C intersect in ordinary k-rational double points 

(iii) the intersection graph of  C is a tree. 
The morphism ~ : C ~ C  is an isomorphism outside 2g regular points QI,Q] ..... Qg, Q'g and 

identifies Qi with Q[. ~ is uniquely determined by the g pairs of regular k-rational points (Qi, Q[), 
A curve C satisfying (i)-(iii) together with n k-rational regular points on it is called a n-pointed tree 
of  projective lines. C is stable if on every component  there are at least three points which are either 
singular or marked. The object o f  this paper is the classification of stable n-pointed trees. We prove 
in particular the existence of  a fine moduli space B n of  stable n-pointed trees. The discussion above 
shows that there is a surjective map n : B2g~Dg of  BEg onto the closed subscheme Dg of  the coarse 
moduli scheme h4g of  stable curves of  genus g corresponding to the totally degenerate curves. By 
the universal property of  .Mg, n is a (finite) morphism, zr factors through/~2g = B2g rood the action 
of  the group of  pair preserving permutations of 2g elements (a group of  order 2gg], isomorphic 
to a wreath product of  Sg and Z/2E). 

The induced morphism ~:B2g--'Dg is an isomorphism on the open subscheme of irreducible 
curves in Dg, but in general there may be nonequivalent choices of  g singular points on a totally 
degenerated curve for the above construction, so ~' has nontrivial fibres. In particular, n is not the 
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quotient map for a group action o n  B2g. This leads to the idea of constructing a Teichmfiller space 
for totally degenerate curves whose irreducible components are isomorphic to B2g and on which a 
discontinuous group acts such that the quotient is precisely Dg; ~ will then be the restriction of this 
quotient map to a single irreducible component. This theory will be developped in a subsequent 
paper. 

In this paper we only consider stable n-pointed trees and their moduli theory. In § t we introduce 
the abstract cross ratio of four points (not necessarily on the same projective line) and show that 
for a field k the k-valued points in the projective variety B n of cross ratios are in 1 - 1  corre- 
spondence with the isomorphy classes of stable n-pointed trees of projective lines over k. We also 
describe the structure of the subvarieties B(T, ~) of stable n-pointed trees with fixed combinatorial 
type. 

We generalize our notion in § 2 to stable n-pointed trees of projective lines over an arbitrary 
noetherian base scheme S and show how the cross ratios for the fibres fit together to morphisms 
on S. This section is closely related to [Kn], but it is more elementary since we deal with a special 
case. 

§ 3 contains the main result of the paper: the canonical projection Bn+ l-"Bn is the universal 
family of stable n-pointed trees. As a by-product of the proof we find that B n is a smooth pro- 
jective scheme of relative dimension 2 n - 3  over ?7. We also compare Bn to the fibre product 
Bn-1 × B,_ 2 Bn-l and investigate the singularities of the latter. 

In § 4 we prove that the Picard group of B n is free of rank 

2 n- 1 _ (n + 1) - n(n - 3____~) 
2 

We also give a method to compute the Betti numbers of the complex manifold Bn(C ). 
In § 5 we compare B n to the quotient Qn : = P2s/PGLa of semi-stable points in Pf for the action 

of fractional linear transformations in every component. This orbit space has been studied in 
greater detail by several authors, see [GIT], [MS], [G]. It turns out that Bn is a blow-up of Qn, and 
we describe the blow-up in several steps where at each stage the obtained space is interpreted as 
a solution to a certain moduli problem. 

1. STABLE n-POINTED TREES OF PROJECTIVE LINES OVER A FIELD 

(1 .1 )  Le t  C b e  a c o n n e c t e d  p r o j e c t i v e  v a r i e t y  o v e r  a f i e ld  k a n d  0 = (¢1, . . . ,  0n )  

b e  a n - t u p e l  o f  d i s t i n c t  k - r a t i o n a l  p o i n t  o f  C.  

DEFINITION. The pair (C, 0 )  is called a stable n-pointed tree o f  projective lines 

over k i f  

(1) every component  o f  C is isomorphic to the projective line over k 

(2) every singular point  o f  C is k-rational and an ordinary double point  

(3)  The intersection graph o f  the components o f  C is a tree 

(4)  The set 

{01, ..., On} O {singular points o f  C} 

has at least 3 points on every component  o f  C 

(5)  01 . . . . .  On are regular points on C. 

W e  cal l  ¢ t h e  m a r k i n g  o f  (C, 0 ) .  

(C,  0 )  a n d  (C ' ,  ¢ ' )  a r e  i s o m o r p h i c  i f  t h e r e  ex i s t s  a n  i s o m o r p h i s m  a : C--,  C '  

s u c h  t h a t  a(¢i )= 01 f o r  al l  i. I f  (C, 0 )  a n d  (C ' ,  0 ' )  a r e  i s o m o r p h i c ,  t h i s  i so-  

m o r p h i s m  is u n i q u e .  I n d e e d  let  fl b e  a n  a u t o m o r p h i s m  o f  (C,  0 ) .  T h e n  we h a v e  
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to show that  fl is the identity. Let L be an end component  of  C; this means that 
L meets only one other component  or L = C. Now fl must  be the identity on L 
because it fixes at least three points. In the same way one shows that  fl is the 
identity on any component  of  C. 

Let L be a component  of  C. There is a unique projection n L : C ~ L ;  nL 
maps the components  different f rom L to k-rational points of  L. 

Let d =(d l ,  d2, d3) be a triple of  three different indices of  _n = { 1,2 . . . . .  n} and 
let D =Dn denote the set of  all these triples. Then there is a unique component  

L d of C such that rCLd(Od), nLd((gdz), 7~La(Od3 ) are distinct. Thus one gets a 
unique morphism 

'~d : C'-* p l  

with ~.d(4%)=0, 2d(C)d2)= 0% ) .d (~d3)=  1 which is an isomorphism on L d and 
constant on all the other components  of  C. The component  L d is called the 
median component  relative to the tripel d. 

(1.2) Let T be a finite tree in the sense of graph theory. We will denote by T O 
the set o f  vertices of  T and by T 1 the set of  edges of  T. 

Let ~ be a mapping n--, T 0. 

DEFINITION. The pair  (T, qJ) is called a stable n -marked  tree i f  f o r  every t ~ T o 
the number  

val t : = #q~ -1(0  + # {edges o f  T with end po in t  t} 

is>_3. 

Let T be the intersection graph of  the components  of  a n-pointed tree of  
projective lines (C,~). Then the marking ~0 defines a mapping qJ :_n~T 0 by 

letting q/(i) be the component  of  C on which q~(i) is sitting. We will call (T, q/) 
the combinatorial  type of  (C, ~). 

The median component  La of a tripel d e D  is the median of the subtree of 
T generated by the vertices qJ(dl), ~,(d2) , ~,(d3). 

(1.3) Let V= V n be the set of  quadruples u = (vl, v 2, v3, 04) of distinct indices 
of  n and PP v the product  of  # V copies of  the projective line PP over 7/. Thus 
IPv-- 1-Io~ v PPo and any ~o is a copy of  PP. 

Let (C, q~) be a b-pointed tree of  projective lines over k. Then 

is a k-valued point of  rP for any v = (01, v2, v3, v4) e V and 

~.(c,  ¢0 : = (;to)o~ v 

is a k-valued point o f  P v. It will be called the system of cross-ratios for (C, $). 
One gets the following relations 

1 
(1) 2o,o:o3o. = 

~O2OIO304 
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(2) ~'02030,01 = 1 - 201020304 

(3) , ; t o ,o2o ,o  , " ~.01020304 =/]*01020305 ° 

1 
PROOF. (l) is obvious as )rococo3- 2o20~03 . 

Ad (2): Let L be the median component of  C relative to (0 l,va,o3). If 
7rL(q~o4 ):¢:nL(q)oi ) for i= 2 and i=  3, then L is also the median component of 
(02, 03, D4). Then 2olo2o3o, is the cross ratio of the points 7rL(q~Vl), 7rL(q~o2), 
nL(q~o3), n/~(q~,) while 2o2o30,0, is the cross ratio of  the points nL((/)vz), nL(q)o3), 

nL(¢o,), nL(¢o). 
This shows that (2) is a well-known formula for cross-ratios on a line. 
If  nz((ko4)= nL(O~o2), then 2o,0203v4= oo. If L' is the median component of  

(02, 03, 04), then n/~,(~o~) = n/~'(q~o3) and one gets that the cross-ratio of rcL,(q~o2), 

T~L,(~O3), gL,(lJ0O4), 7rL,(~)vl ) which is 20~o3o4~ is ~ .  
If  nL(0o,)=rt/~(~0o~), then 201020304= 1. If L '  is the median component of  

(02,03,04) then rr/,(q~v~)=n/,(~0o 2) and thus )to:o3o4o =cross-ratio of ~zL,(q~o2), 
zrL,(¢o3), lrL,(¢~,), ~L,(¢o,)=0. 

Ad (3): Let L be the median component of (01, 02, 03). If ~r/~(~bo4)~JzL(Oot) 
and :~ rr/.(Oo2) then L is also the median component of (01, 02, 04). Then (3) is 
another well-known formula for cross-ratios on the line L. If ~zL(q~o4) = 
= teL(Ova) then )Lo,o:o3v4=0 and if L '  is the median component relative to 
(01, 02, 04) then ~ZL,(¢o2) = nL'(Oo3) = 7rL'(L). 

If rCL(fbo5 ) ~ fez(Ova), then 2o,020305 ~ 0  and ZCL,(Oos)= rtL,(L)= rCL,(~v2) and thus 
;to~ozo4o~ = ~ .  The formula thus reads ~ - 0 =  )-o,~o~, which is correct. 

An intuitive picture for this situation is: 

L L '  

0 1 / ~  02 

// 
05 

If ~L(0o,) = ~L(q~,), then Xo~o2v~ = 0 and ~L'(~v~) = ~'(0o3) ~e ~,(q~,).  Then 
~v~u2v3v4=0 and the formula is correct as 2~v~o,v--,e~. Intuitive pictures for 
these situation are 

L '  L L L '  

02 1 05 

05 03 04 

Similar reasoning shows that (3) is correct also if zcz(Oo,)= nL(q~o~). 
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(1.4) Let ~v be provided with homogenous coordinates a o, b v such that 

Proj Z[a o, bo] = ~o. 
B, is the closed subscheme of ~ v given by the multihomogeneous ideal in 

the multigraded ring 7:[a,, bo : v e V] generated by the equations 

(1) ao2v.osv4,  aDID203D4 = bo2o,o3o4bulo2o3o, 
(2) ao2o3v, ol . bv lozosv ,  = bozvso401 . bolozo3o4 - -  avlo2vso,  . bo2o3v4ol 

(3) aolo2V3v.aolv2~,os.bolozo3o5 =ao~o2o305. bolozoso, bo~v:v4o5 
where o~, 02, vs, v4, 05 is any system of  5 distinct elements of  _n. With respect to 
the inhomogeneous coordinates ao/bo one gets formally the relations deduced 
for the system of  cross-ratios of an n-pointed tree of  projectives lines in the 
above subsection. 

PROPOSITION 1. Let q=(qo)v~v,  qo : =ao/bo(q), be a k-valued point  o f  B,.  
Then there exists a stable n-pointed tree o f  projective lines (C, ¢) over k such 
that 

)t(C, O) = q. 

T~e curve (C, ¢) is unique up to isomorphisms. 

PROOF. l) Let d =  (d 1, d2, d3) a tripel of distinct elements in n. For any i ~ n, 
i ~-dj, (d, i )= di is a quadrupel in V. If i = dl (resp. i = d2, resp. i=  d3) we define 
qdi as 0 (resp. 0% resp. 1). 

We define an equivalence relation - on n: a 

i ~.j iff qdi = qaj. 

The following properties hold: 

a) If D ' =  (d~, d~, d~) is a permutation of d, then - = 
d d '  

b) If d j~d )  for l _ j _ 3 ,  then -~ = d"; 

c) If d~ is not - -equivalent  to dl and d2 then - = - where d ' =  (dl, d2, d~) 
d d d '  

d) If d~ is in the ~--equivalence class of dx (resp. d2), then the union of  all 

the equivalence classes relative to ~ not containing dl (resp. d2) is in one 

equivalence class with respect to a- 7 where d'=(dl ,d2,d~) , where d ~ d l ,  
resp. d~ ~ d 2. 

We now prove these properties: 

Ad a) Let )t o : =av/b  o. From the set of  relations (1), (2) for B, one can 
easily deduce the following relations: 

1 
tO2U301O - 

1 --)tO1020304 

)tO3020tO4 = 1 --)tV1020304 

)t0102D3O 4 
tOlO3O2O - 

1 -)tvlo~,~o4 

135 



__~.DIO2O304 
~'03010204= ~01020304 

This shows that  qdi = qdj if and only if qd'i = q d j "  

Ad b) Assume first that d[ = d l ,  d~ = d 2. Then qd,d2d3d ~ = - l .  From relation 
(3) we get 

qdldzd~i" qdld2d3d ~ = qdld2d3i. 

This shows that qd,a2a~i = qa,a2d~j if and only if qdi = q d j .  Thus 

dld2d ~ dflfl2 dld~d ~ d f l f l  I dflfl~ ~" 

and b) proved. 

Ad c) The proof  is similar to the one for b). qdds~O and ~:co and 

qclflzd;i'qdi= qdd~ which shows that qdi = qdj if and only if qd,dzd~i = qd,dzd~j" 

Ad d) Let d~ be in the - -equivalence  class of d 1. Then qdal = 0. Again 
d 

qcl flzdii" qdi = qeai = O. 

For any i such that qdi-.¢:O we get qd,d2dii=O which shows that all i not -~ 
equivalent to dl are in one equivalence class with respect to 

dldzd~ 
In the same way one proves the result if qdd3 = c~. 

2) As a corollary to the properties a)-d) one gets: there are tripels d e D n  

such that all the equivalence classes with respect to -~ except one class contain 
just one element. 

3) We now prove the proposit ion by induction on n. The induction starts 
with n = 4. This case is quite simple. 

We pick a triple d such that all equivalence classes except one with respect 
to - consist o f  one element only. 

d 

We may assume that one class is {n} because if a is a permutat ion of  _n, then 

¢ 
q '  : = (qo)oe v, q~ : = qa(o,)GCogG(v3)a(o4), 

is also a k-valued point of  B n. If  a - l ( i ) =  n then {n} is an a - l d  1, a-1d2,  

a -  ld3-equivalence class relative to the point q'. The curves for q and q '  will be 

the same and the markings are t ransformed through a. 
We consider two cases. 

Case 1: We assume that there are > 4  equivalence classes relative to - .  a 
Then we may assume that d i ~ n  by property ld). We consider q ' :  = (qo)oe vn_~ 

which is obviously a k-valued point of  B n_l. By the induction hypothesis we 
obtain a ( n - 1 ) - p o i n t e d  curve (C' ,O')  with )~(C',~') = q ' .  Let L be the median 
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c o m p o n e n t  o f  C '  with respect  to d and let 4)n be tha t  point  o f  L such that  the 

cross-ra t io  of  the sequence o f  points  nL(4)d,), nL(4)d2), nL(4)d3), 4)n is equal  to  
qd~d2d3n which is d i f ferent  f r o m  0, oo, 1 and  also different  f r o m  qdi for  any  

i4:n because there is no i4:n equivalent  to n relative to ~-. Thus  4)n4:z~L(4)i) 

for  i < n and 4)n 4: 4)i for  i < n. 

Let  C : = C' ,  4) = (4)~, . . . ,  4)~_ 1, 4)n)- Then  (C, 4)) is an n-poin ted  tree o f  pro-  
jective lines. One checks easily tha t  2(C, 4))= q. 

Case 2: Assume now tha t  there are just three equivalence classes relative to 

-~. Then  one of  the d i must  be equal  to n. Let  d3 =- n. We assume  tha t  {d2} is 

also an equivalence class relative to -~ and that  d 2--- n - 1. Let  again  (C', 4)') be 

a ( n - 1 ) - p o i n t e d  curve such tha t  2 ( C ' , 4 ) ' ) = q ' :  = (qo)o~ vo ~ and  let L be the 
~ d  = c o m p o n e n t  o f  C '  on which 4) ( n - l )  is sitting. Let  C :  C' tAL '  where L '  is an  

extra  project ive  line over  k which meets  C '  only  in the po in t  4);,_ 1 and such 

tha t  L ' N C ' = { 4 ) ; , _ I }  is an o rd ina ry  double  point  o f  C. Let  4)~-1, 4)n be two 
distinct k-ra t ional  ploints on L '  d i f ferent  f r o m  4);,_ 1. Then C is a tree of  pro-  
jective lines over  k and 4) : =(4)~, "",4);~-2,4)n-l,4)n) is a m a r k i n g  o f  C which 
makes  (C, 4)) into a stable n -po in ted  tree o f  lines. One checks easily that  
,~.(C, 4)) = q. 

4) Uniqueness  follows because in the cons t ruc t ion  of  (C, q~) in 3) the (n - 1)- 

poin ted  curve (C', 4)') is unique and  there is no f r eedom in the choice of  4)n in 
case 1 while in case 2 there is a unique i somorph i sm a on C which is the identi ty 

on C ' C  C and which sends 0 n -  l, 4)n to any pair  o f  distinct k - ra t iona l  points  o f  
L ' -  {4)~_1}. 

(1.5) Let (T, ~u) be a n -marked  stable tree and t a vertex o f  T. We define 
an equivalence relat ion - on n: 

t 

i t J  i f f  i = j  or q/(i) can be connected to q/(j) by a pa th  in T 
not  passing th rough  t. 

I f  (C, 4)) is a n-pointed tree of  project ive  lines and (T, q/) the combina to r i a l  type 

o f  (C, 4)), then the system of  crossrat ios  q = (qo) = )t(C, 4)) satisfies the fol lowing 
equat ions:  

qo = 0 for  all v 6 VT 

where  V r : = {(ol, o2, 03, 04) E V n : 01 t 04, 02 and v3 are not  - -equivalent  to vl 
t 

for  some t ~  To}. 

This is easily p roved  because  7" = "Y for  d =  (Vl, 02, 03) ~Dn.  The median  
c o m p o n e n t  L a is just  the ver tex t, if  o 2 47 03. 

In order  to fo rmula te  a converse  s ta tement  we need the concept  of  con- 
t ract ions .  

DEFINITION. Let  (T, qJ), (T',  q/') be n-marked  stable trees and  e:  T ' ~  T a 
mapping,  e is called a contraction i f  
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(1) e(TO)= To and e o q/'= q/ 
(2) e - l ( t )  is a subtree o f  T" f o r  any vertex t o f  T 
(3) I f  t is an endpoint o f  k ~ 7"1, then e(t) is an endpoint o f  e(k) i f  e(k) is an 

edge or ef t )= e(k). 

It is easy to show that if e: (T ' ,  q/ ' )~(T,q/)  is a contraction of stable n- 
marked trees, then e is uniquely determined by (T', q/'), (T, q/). 

Let now B(T, q/) be the closed subscheme of Bn given by the equations 

20=0  

for all v ~ Vr. 
If  2(C, q~) = q is a k-valued point of  B(T, q/) and if (T', q/') is the combinatorial 

type of  (C, ¢), then (T', q/') contracts to (T, q/). In general (T', q/') will be dif- 
ferent f rom (T, q/). It is easy to see that B(T', q/') is a closed subscheme of  
B(T, q/) if (T', q/') contracts to (T, q/). 

Let B(T, q/)* be the open subscheme of  B(T, q/) which is the complement 
of  the union of  all the B(T', q/') for which (T', q/') contract to (T, q/) and 

(T', q/') =~(T, q/). 

PROPOSITION 2. B(T, q/) is canonically isomorphic to IIt~ro Bval t. Moreover 
B( T, q/) * is isomorphic to II t~ ro BvaI t where B n - B(TO, q/o), where (T  °, q/o) is 
the unique n-marked tree possessing just  one vertex and val t : = # {edges o f  
T adjacent to t} + # {q/-l(t)}.  

PROOF. We start the p roof  of the first statement by examining the special 

case where # To = 2, say To = {to, tl }, where q/-lifo) = { 1 . . . . .  k} and q/-1(tl) = 
= { k + l  . . . . .  n}. 

Let ~ denote the sheaf of  ideals defining B=B(q/, T). As a scheme B equals 
( B , ( ~ / ~ a ) [ B ) .  We will construct morphisms g:B-~Bk+lXBn_k+ t and 
f :  Bk+ 1 x B n _ k + l ~ B  such that f o g  is the identity. 

The first map g is obtained from h=(h l ,  ha):Bn-- 'Bk+lxBn_k+ 1 by re- 
striction to B. Here hi is the projection induced by the natural injection 
k +  l ~ n  and h E is induced by the injection n - k +  1--,n given by i ~ i + k - 1 .  
The second morphism is obtained from a morphism e :Bk+lXBn_k+l  ~ 
--' Ho~vo Pv given in coordinates e v by the following formulas: 

V = (O1, 02, 03, 04), with vl < v2< v3 < 04 

if vl < v2 < 03 < v4 < k + 1 then e o is the projection on the factor [Pv of  B k + 1. 
if v l < v 2 < v 3 < k + l < _ v 4  then e v is the projection of Bk+ 1 on its factor 

[P(o, v2,v3,k + 1). 
if 01 < 02 < k + 1 < 03 < 04 then e v is the constant map with image 1. 
if 01 < k + 1 _l_ 02 < o3 < v4 then e 0 is the projection of  B n_k+l on its factor ~w 

with w = ( 1 , o 2 - k +  1 , 0 3 - k +  1, v 4 - k +  1). 
if k + 1 < 01 < 02 < 03 < V4 then e o is the projection of  B n_ k + 1 on its factor ~Pw 

with w=(ol  - k +  1, o 2 - k +  1, o3 - k +  1, o 4 - k +  1). 
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The group $4 acts o n  ~1 in the well known way: 
$4-~$4/K=$3 where K is the group of Klein and S 3 acts on P and permutes 

0, ~ ,  1. For treS4 we write 6 for the corresponding automorphism of IF. 
The definition of the eo's is now completed by: 

= t ~ o  e(/)tr(i), 0or(2), Oo(3), Oct(4)) eDi,/)2, 03, 04 

w h e r e  D l < 0 2 < O 3 < / )  4 and a e S  4. 
A straightforward verification shows that the image of e lies in BnC 

C[Io~v, •/). The equation e0=l  for 01<02<k+1<_03<04, yields that the 
image of e lies in (B, ~ n / : ) .  Another trivial verification shows that f and g 
are each others inverses. 

We consider now B(T, ~,) where # To>_3. Let t o be an end vertex of the tree 
and put S=  ¢/-1(t0). Consider the marked tree (T" ~') such that T' has two 
vertics t~ and t~ and such that ~/'(S)=t~ and ~/(S*)=t~, where S * = n - S .  

Then we have B(T, ~/)c_B(T; ~/') (meaning the opposite inclusion of the 
sheaves of ideals). The isomorphism 

B(T', q/')-'%Ova I t~ X On_va I t~+l 

induces an isomorphism of B(T,q/) with the closed subscheme Bvalt~X 
×B(T", q/'). This (T', ~") is constructed from (T, q/) as follows. For con- 
venience we suppose that S = { k + l  . . . . .  n}; put (t0,tl) for the only edge in 
T with endpoint to. Then T" is obtained from T by deleting t 0. Further 
~u":k+ l~ (T")o  is defined by q/"(i)= q/(i) for i<_k and q/ ' (k+ 1 )=q .  

Induction now finishes the proof. 
The proof of the second statement proceeds in the same way. 

COROLLARY. Let k be a field with q elements and B(T, ~/)(k) the set o f  k- 
valued points o f  the scheme B(T, ~/). Then 

#B(T, ~/)(k) = T. (q_  2)r4(r'. v,')(q_ 3)rs(r'. ~,')..... (q_  n + 2) r.(T' ~'') 
(T', ~') 

where ri(T; ~/') is the number o f  vertices o f  (T', ~')  of  valence >_ i and where 
the summation has to be extended over the set o f  isomorphism classes o f  stable 
n-marked trees contracting to (T, ~/). 

PROOF. # B * ( k ) = ( q - 2 ) ( q - 3 ) . . . . . ( q - n + 2 )  because a point in B*(k) is 
given by a projective line C over k and an injective mapping 0 : n-*C(k). But 
(C, 0) and (C, 0')  are isomorphic if and only if there is a fractional linear trans- 
formation ct : C-*C such that a o 0 = 0  '. If 0(i) =0 ' ( i )  for 1 _<i<_3, then (C, 0) 
is isomorphic to (C,0')  only if 0 = 0 ' .  The number of possibilities to pick the 
points 0(4) . . . . .  0(n) is therefore 

( q -  2)(q - 3)-. . .-  (q - n + 2). 

Now we use the fact that B(T, ~ ) =  UB(T', v/')* where the union is over the set 
of n-marked stable trees contracting to (T, ~) and that 

B(T; ~')*-~ I] B*l t. 
te  T6 
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Thus 

f ~ .B (T , ~ ' ) ( k )=  [I ( q - 2 ) ( q - 3 ) . . . . . ( ( q - ( v a l t ) + 2 ) ) =  
te  T6 

= (q - 2) r"(T' ~'). . . .  • (q - n + 2) r.(T' ~'). 

2. STABLE n-POINTED TREES 

(2.1) Let zr : X ~  S be a proper  and fiat morphism of  noetherian schemes and 

(9 = ((91 . . . . .  (gn) be a n-tupel of  morphisms S ~ X .  

DEFINITION. The pair (n, q~) is called a stable n-pointed tree of  projective lines 

over S, if 
(1) noCPi=ids for all i 
(2) for every point s e S  the fibre X s with the points (gl(s) . . . . .  On(s) on it is a 

stable n-pointed tree of  projective lines over the field k(s) of values at s. 
We will show that the system of cross-ratios 2(X s, (9) is a morphism on S. 

PROPOSITION 3. There & a morph&m u : S-+ • v such that u(s) & the system 
o f  cross-ratios o f  the n-pointed tree (Xs, (9) o f  projective lines over k(s). 

The proof  is achieved with the help of  the dualizing sheaf Wx/s, see [DM], 
[Kn], p. 163 and will be given in some detail at the end of  (2.3). It parallels the 
proofs  in [Kn] about  the properties of  the contraction; it is however more 

elementary as we only treat a special case compared to the setting in [Kn]. 

(2.2) In this subsection we give the construction of the dualizing sheaf for 
trees of  projective lines. 

7r 
LEMMA 1. Let X , S be a n-pointed tree o f  projective lines. Then Oi(S) is 
a divisor in X.  

PROOF. Put  ~=(9i .  The set (9(S)CX is closed because 0 (S )=(9on(X)  and 
Oon : X - - ,X i s  an S-morphism. Apply now [HI p. 104, ex. 4.4. We have to find 
for every point x =  (9(s) with s e  S a neighbourhood U of x and a non-zero- 
divisor t on U such that  the ideal of  UN ¢ffS) equals (t). One knows: 

~S,s ' ~X,x ' ~S,s=id and CX~,x= ~X,x/n*(ms, s)~X,x. 

The local ring OX,,x has coefficient field k(s) and is regular of  dimension 1. 

Choose a parameter  of  6x,,x and a pre-image t e m x ,  x with (9*(0=0.  Then 

7~*(ms, s)U {t} generates the maximal ideal of  Gx, x. The r inghomomorphism 

a:  gS, s ITny~X,x  given by 2anTn ' -*2  n*(a.)t" is then surjective. Hence 
ker ~ * = t ~ x , x  and by flatness ker (9*=tgx,  x. We will show that a is an iso- 
morphism and so in particular t is a non-zero-divisor. 

Let I =  ker a and suppose that Ig :0 .  Take b>_ 1 minimal such that I contains 

an element f =  ~i_~b ai Ti with a o 4:0. Let I b denote the ideal in ~S,s consisting 
of  the bth-coefficients of  the elements in I. 
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The exact sequence 0-~I--, #s,,IT]--' ~X,x~O remains exact after - ®gs.k(s) 
because ~X,x is flat over gs, s. This implies I®k(s )=O and so I=_rhs, ft .  Then 
also Ib = _rhs, sIb and Nakayama ' s  lemma implies I b = 0. This is a contradiction 

and so a is an isomorphism. 
Choose a neighbourhood W of x in X, put U =  ¢ - 1 W and V= WN rc - l U. 

Then V~_O(U) and it follows that zr(V)= U since z~¢=id. One finds ring- 

homomorph isms  

ds(U) ~ ~ x ( V )  ~Ov ¢s(U) = id. 

Taking lira, one finds ker (lim ¢ ~ ) =  (t). For a suitable V one has already 
v v 

ker q ~ = ( t )  and t is a non-zero-divisor on V. It follows that 4~(U)= 

= {oe  Vtt(o)=O } and ( t ) = t h e  ideal of  q)(U)C V. The proves the lemma. 

LEMMA 2. Let x e X be a singular point o f  the fibre X s, with s = zr(x). Then 
~X,x ~ ~S, sHA, B~/(AB-m) for  some element m ~ rhs, ~. 

PROOF. ~X,,x=k(s)la, b]/(o6) and from this one finds a surjective r inghomo- 

morphism ~S,s~A,B~/(AB_m) a , ~X,x with a ( A ) = a ,  o ( B ) = b ;  a is ~S,s- 
linear; m ~ rhs, sIA, BD and a, b map to ~,/) in ~&,x. After changing the formal  
variables A and B one can arrange that m e _rhs, s. Put  I =  ker a and represent 
each f ~  I as 

f = f 0 +  ~ anAn+ ~ bm Bm withfo, an, b m ~ s ,  s. 
n>-i m>_l 

The collection of  all coefficients f0 (for f ~ I )  form an ideal I0C GS, s. Let ~I 

denote the ideal of  the coefficients a,  (for f e  I )  and let I m denote the ideal of  
the coefficients bm. 

As in lemma 1 flatness implies I=_rhs, ft .  Let J denote any of the ideals I0, 

~I  or Im. Then J=~s , s  J and by Nakayama J = 0 .  Hence I = 0  and the temma 
is proved. 

LEMMA 3. Let n : X-~ S be a n-pointed tree o f  projective lines. There exists an 
invertible sheaf oJ =cox/s on X such that for  every fibre a : X s ~ X  one has 
a *co = COxslk(s 3 = the dualizing sheaf on Xs over k(s). 

PROOF. The sheaf of  differentials f2x/s satisfies: f2x/s, x is a free module of  
rank 1 if x is a regular point of  its fibre and f2x/s, s has two generators and one 
relation if x is a singular point of  its fibre. The last statement follows f rom 
lemma 2, namely using the above notation: £2x/s, x is generated by da, db and 
has the one relation bda + adb = O. 

This implies that Dx/s has locally on X a 2-step resolution 

'~o ~ Y2x/s~O 

with ~°1, g0 free gx-modules  of  rank 1 and 2. One forms locally co = A : ~ 0 ®  

® ~ ,  and a morphism f2x/s--,o). The morphism is defined as follows: let Vl 
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generated El and let o[ denote the dual element, generating #l ~, let aef2x/s  
have preimage b e  ~0. Then the image of a in co is given by (a/xvl)®o[. One 
can show that the local construction above glues over all of X and that the 
construction permutes with base-change. The construction above carried out 
for X s yields the dualizing sheaf COxs/k(s ). This proves the lemma. 

(2.3) We study now the contraction morphism of a n-pointed tree of lines; it 
comes into the game if one forgets some of the marking sections ¢i- 

LEMMA 4. Let X ~ S  be a n-pointed tree and let 5~ denote the line bundle 

oOXlS(¢l(S) + ... + Cn(S)). Then: 
1) R i n , ~ = O  for  i>_l. 
2) n . ~  is a vector bundle on S o f  rank n - 1 .  
3) X-~Proj. ( @ n,(Xm)).  

m_>0 

PROOF. The proof is a simplified version of the proof of Thm. 1.8 in [Kn]. 
We may assume that S is affine. We want to use the theorem on formal 
functions ([H] p. 277 and remark 11.1.1. on p. 279): 

(R in ,  ~Ce )s -'~ 1Lm Hi(Xm , ~m)  

where s E S and where 

/ .  n + l  X m = X X  S spec (Rm) U---~X with Rm= ,~S,s/CnS, s and S~m=V*~. 

First we calculate Hi(Xo, t~P0). Consider the exact sequence: 

se0  ® se0lL-  ® Se01d 0 
L d 

when L denotes the components of 2(o and where d denotes the double points 
of X0. The cohomology of this sequence is: 

O~HO(Xo,~o ) u , ®HO(L, YgoiL) n > @~o(d)oHl (Xo , .~o)~  
L d 

@Hi(L, ~ o l L ) ) - - '  " -  

I t  is easily seen that Hi(L,~olL)=O for i>_ 1 and that fl is surjective. Hence 
H°(Xo,~o) has dimension n - 1  and Hi(Xo,~q~o)=O for i>0 .  

Next we consider ~ m  o n  X m. The cohomology of ~m can be calculated with 
a Cech-complex 0 ~  @~m(Ui) ~ @~m(Ui N U j ) o ' " .  

Let H °, H l etc. denote the cohomology groups of  this complex. Then H i = 0 
for i>__2 because dim ~ m  = 1. Further one has exact sequences: 

O~ H°(Xo, S~o)-~ H ° ®  RmRo-~ Tor(m(H 1, Ro)--+O 

0--*Hi(X0, ~ 0 ) ~ H 1  @R Ro--+TorRm(H 2, Ro)~O. 

One knows that H i is a finitely generated Rm-module. The second exact 
sequences implies now H 1 =0. The first sequence implies H°(Xo,~o) ~ 

~ H° ® RmRo • 
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The augmented ~ech-complex 

O ~  HO--. (~)~,~m(Ui)-.-~. (~ ~m(Ui( '~ Uj)  "..-~ .. .  

is now exact. 
Since X / S  is flat, each term ~q~rn(UiCI UjCI ... ) is a flat Rm-module. It follows 

that H ° is a flat Rm-module. Since R m is a local ring it follows that H ° is a free 
Rm-module of  rank n -  1. 

Taking projective limits, one finds (Riz~,Yg)s = 0 for i>  0 and so R i n , ~  = 0 
for i_> 1. Further (rc ,~ ' ) ;  is a free module of rank n - 1  and so r c , ~  is a 
vector bundle on S of  rank n -  1. 

Now we prove the last part of  the lemma. We take S affine and small enough 
such that r r , ~  is free of  rank ( n - 1 ) .  Consider the graded G(S)-algebra 

d =  (~ H ° ( X , ~ ® m ) =  @ HO(s,~z,(~®m))= @ d m. 
m~_O m>_O m~_O 

We note the following properties of o4: 

(a) d 1 generates o4 over 6(S).  Indeed let ~ C J¢ be generated by o41 then 
d m / ~  m is a finitely generated O(S)-module for every m. For every s~  S, ~ iX~ 
is very ample and s o  d ~ m / ~ m @ k ( s ) = O .  This shows ~¢= ~ .  
(b) o41 is a free g(S)  module with free basis f0 . . . .  , f , - 2 -  Then 

n - 2  

x= U 
i = 0  

Indeed, the analogous statement for any fibre Xs is true. 
From (a) and (b) it follows that Proj (o4) is a closed subspace YC p~-2 and 

a well defined morphism 

O" 
X , Y  

\ /  
S 

We note further: 

(c) cr is bijective. Indeed every ~s:Xs---, Ys is an isomorphism. 

(d) #Z~(x) 6 " ,  ~x,x is an isomorphism for every x e X .  
Indeed let s = re(x), then one has isomorphisms 

It follows at once that d*  is surjective. Let I denote the kernel of  d*. The 
flatness of  gX, x over ~S,s implies I ~  s ~=I and so I M = I  where M denotes the 
maximal ideal of  ~Y,o(x)- From (']2_-'1Mm=O it follows that I = 0 .  

From (d) one concludes that gy, ,7(x)~x ,x  is an isomorphism and this 
finishes the proof  that a : X - ,  Y is an isomorphism. 

COROLLARY. Let  X ~ S  be a stable 3-pointed tree, then there exists a unique 
isomorphism 
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(T 
X , P x S  

\ /  
S 

such that a o 0 i  (i = 1,2, 3) are the sections S--* [P x S given by O, oz and 1. 

PROOF. We only need to verify this for S affine and small enough such that 
r r . ~  is free of rank 2 over S. Then lemma 4 yields an isomorphism which can 
be normalized in a unique way such that ao0 i  is the section 0, ~ ,  or 1 for 
i = l , 2 o r  3. 

LEMMA 5. (Contraction) Let  7r : X ~  S be a n-pointed stable tree o f  projective 

lines. Let  ~1 = Ox/s(0t(s)  + "'" + On- l(s)). The morphism c, 

X c ~X'=Proj  ( @ 7t,(Lf~m)) 

has the fol lowing properties: 

(1) X ' ~ S  with c o o  i (i= 1 . . . . .  n -  1) is a ( n -  D-pointed stable tree. 

(2) c is a proper morphism and is called the contraction morphism. 

(3) cs: X s ~ X s  is an isomorphism except in the fol lowing two cases: 

(a) ~ in  , ~ /  (b) n ~ " "  
-- ,n and 

\ 
• o o 

& ,x~ x, 

PROOF. One may assume that S is affine and small enough. As in Lemma 4 
one shows that RiTr .~I=0 for i>0  and rc .~  1 is a free Gs-module of rank 
n - 2 .  Similarly one shows that 

d ' =  ® H°(X, xIOm ) 
m>-O 

is generated by the terms d [ .  Further, each d m is a projective 6(S)-module. 

Hence X'  ~ ' * S  is proper and flat. One has to see that c : X - - * X '  is well- 
defined, that amounts to showing that 

n - 3  

x= U {xexhf~(x),O} 
i=0 
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where fo . . . . .  f n - 3  is a free basis of  the G(S)-module H ° ( X , ~ I ) .  For the 
calculation of  the fibres one has to calculate explicitely 

P r o j (  @ n ( x s ,  gglemlxs)). 
m_>0 

This is easily done and one finds that X ' ~ S  is an (n - 1)-tree and moreover  one 
finds proper ty  (3). Lemma 5 is proved. 

Now we can give the proof  of  Proposit ion 3. Fix 0=@1, I)2, 03, 04)e V n. 

There is a uniquely defined morphism u o : S--, P defined as follows: contract  in 

some order all the sections ¢i with i~v~,  v2, 03 of X ~ S .  This yields a diagram 

X c ~X - r P x S  
01020304 (7 

where a is the isomorphism of  the corollary. Then u v : = p o o - o c o ¢ o  ' where 

p is the project ion ~ x S ~ P .  The morphism u of  proposit ion 3 is clearly 

U= ~Ivev. ~v" 

3. THE UNIVERSAL STABLE n-POINTED TREE 

In this section we study properties of  the projection 

7g : =Trn : Bn+l--+Bn, 

where B,  is the closed subscheme of pv .  introduced in (1.4). First we show 

that  the fibres of  7r are stable n-pointed trees, thus rr is a family of  stable 
n-pointed trees. The main result of  this section (Proposition 4) is that this 
family is in fact the universal family of  stable n-pointed trees of  projective lines. 
In the p roo f  we use a covering of B n by open affine subsets of  A " - s  which 
also shows that B,  is nonsingular. 

We also define the fibre product 

Z n : =BnXB~_lBn 

formed with respect to two different projections Bn-+B n_ I. We determine the 
singularities of  Z,  and show that it is a contraction of B,  + 1. The section ends 
with examples for small n. 

(3.1) LEMMA 1. Let  k be a f i eM and q e B , ( k ) .  Then the f ibre  

B : =Bn+ a xB~ S p e c k  

is isomorphic to the stable n-pointed tree C : = C(q) over k associated with q 
in Prop. 1. 

PROOF. For  the k-valued points we find a bijective map c~ : B ( k ) ~ C ( k )  easily 

as follows: Let q '  : Spec k ~ B  be a point in B(k) and let C '  be the stable (n + 1)- 
pointed tree over k associated with q' .  Then omitting the point ¢n+1 on C'  

induces a contraction map p : C'--, C. Now define a(q') as the image of  Cn + 1 
under p .  
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This idea leads to a proof  of  the proposition in the following way: Let ~f be 
the set of components of  C. For every L ~ ~ we can find d L = (d~, d2 L, d3 L) e D  n 
such that L is the median component relative to d L. By (1.1) the morphism 
).d ~ : C ~  rP L = p l  is an isomorphism on L. Thus the product map 

3 : =  1-I ) - e ' : C °  l-I ~ L = : ~ e  
L~La L ~  

is an isomorphism of  C onto its image ~ in ~se. 
If  we consider 2eL as (inhomogeneous) coordinate on PL then/~(L) is given 

by the equations 2eL' = qdL'i, L 'E ffC, L '~:L,  where i~ {d~, L L d~, d 3 } is chosen in 

such a way that the ~ -equivalence class of  i contains at least two of  the indices 

d~, d~, d~: this condition ensures that ~zL,(Oi) = 1rL,(L), so qa"i = ~-aL'(qi) is the 
constant that ~.eL takes on the component L. 

Now for every L ~ ~ the map ue(d~e~,+l :Bn+l -~ ~ defined in (2.3) induces 
a morphism YL : B - '  PL. We claim that the product morphism 

Y: = I[ YL :B-~Ip~e 
L ~  

has its image in C. Indeed if k' is a field extension of k and q'~ B(k') then by 
construction y(q')=/~oc~(q'), where u:B(k')--*C(k') is defined as at the 
beginning of  the proof.  To show that the morphism a :  = /~ -~oy  : B - , C  is an 
isomorphism we construct a map g:  ~se__,~.~., and show that ~(C) is con- 
tained in B, considered as subspace of  ~vo+, by the canonical embedding of  
B~+I ×Spec k into ~v~+,. Let v~  V,+~. If v~  V~, ~ is defined by sending ,~v to 
q~. Otherwise we may after permutation assume v~ = n + 1. Let L : = Lv denote 
the median component  of C with respect to Vl, v~, v 3, and let d :  = d  ~. Then 
there is a unique automorphism rv of ~L which maps 2e(r~L(O(Vi))), i= 1,2, 3 
tO 0, oo, and 1, resp. Now let J be given by sending 2~ to "CvO2a. By con- 

struction it is clear that ~ maps ~ onto B and that ~ I C and y are mutually 
inverse, so a : = / ~ - l o y  :B-~C is an isomorphism. 

(3.2) For q~B,,+l let 

Uq: = {;tv:g0 for all v~ Vn+l such that ;tv(q):~0 }. 

Uq is an affine open subset of  Bn+l as for any v e  V~+l we have UqC{2v~O} 
or UqC {).v:~ oo}. Therefore any v there is e(v)e { + 1 , -  1} such that 

Uq = N * ). 
vEVn+l 

This clearly is the intersection of an open affine subset of  FP v'+' with Bn+ i" 
Let ~: = 6~o+, be the structure sheaf on B,+ l .  Then 6(Uq) is a Y-algebra 

generated by the ~,,, v~ Vn+ l, such that ,~v(q)~oo. If moreover 2v(q)~0 then 

;tv is a unit in ~(Uq). 
Let (C, q0 be the stable (n + 1)-pointed tree of  projective lines associated with 

q and let (T, ~,) be the combinatorial type of  (C, 40- Then Uq consists of all 
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q'~Bn+l whose associated combinatorial  type is a contraction of (T, q/). Thus 

Uq= Bn+ 1 - U B(T', q/)  

where the union is taken over all (T', ~u') to which (T, ~u) cannot be contracted. 

In particular, Uq depends only on (T, ~u). 

LEMMA 2. Let  p : = n(q). Then zr(Uq)= Up, and we have the following cases: 

(i) 0n + 1 lies on a component  o f  valence >_ 4. Then for  d ~ Dn such that 

On+l eLd ,  ~(Uq) is a localisation o f  ~(Up)[2d, n+ 1]. 
(ii) q~n + 1 lies on an end component  L o f  valence 3. Choose d ~ Dn such that L d 

intersects L and q)d~ e L .  Again G(Uq) is a localisation o f  ~(Up)[2d, n+ 1]. 
(iii) ~On+ 1 lies on a component  L o f  valence 3 that meets two other components 

L ' , L " .  

Choose d ~ V, such that L '  = Ld~d3 n + 1, L"  = Ld2d, n + 1" Then for  x : = 

=2dld2d4n+ 1 and y :  =2d2dld3n+1, we have x 'y=-2d,  d2d4d3 E ~(Up), and 
O(Uq) is a localisation o f  ~(Up)[X, y]. 

PROOF. Let m : = n +  1. We shall show that for any e ~ D  n such that 

2era(q) ~a oo we have 2era ~ ~(Up)[2am][1/f] for a suitable f .  We give the proof  

for the first case: 

1. I f  e is a permutat ion of  d, then )~em(q)¢= ~ ,  and item is one of the 

functions 2 f~ ,  (1 - ~dm) + 1 ( . ~ . d m ( ]  _ )~dm)) +- 1 
Thus ~em is contained in 

A 1 : = ~(Up)[)Ldm][(2am(1 -- 2am)) -11. 

2. Let e=dld2e  3 such that  e 3 is not -~-equivalent to d 1 or d 2 relative to 
(T, ~). Then 2de~e G(Up)*, and f rom 

~dld2e3m" ~de3 = ~dm 

w e  get ~em E A 1" 

3. Let e define the same equivalence relation as d, - = - .  Then we can 
d e 

apply step 2 and permutat ion several times to t ransform e into d. The per- 
mutations make a further localisation necessary, one sees that 

• ~em ~ A  : = - A  1 

where f :  = ~I(2de3--~dm), the product  being taken over all e 3 w i t h  d"~2e3 = ~ .  

4. Let e=dld2e3; if ea-~d I then 2em(q)=~,  so let ea-dd 2. From 

2d,~e3d3~) = dld2d3e3~) =0  

we see t h a t  ~a,d2e3d3 e ~(Up). Thus i~em = }td,d2e3d3 ~ A  1 . 
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5. For general e we have to apply step 4, permutat ion,  and step 3 to show 

that hem E A .  

The same proof  holds for cases (ii) and (iii) with the following difference 
in the third case: if the median component  of  e is in the same connected 
component  of  C - L  as L '  (resp. L")  one shows that J-ern is contained in a 
localisation of ~(Up)[X] (resp. of  ~(Up)[y]). 

By induction on n one proves the following consequences of  Lemma 2: 

C O R O L L A R Y .  (i) B, can be covered by open affine subsets o f /A  n- 3. 
(ii) B n is nonsingular. 

(iii) n : Bn+l~Bn is flat. 
Note that to prove (i) we have to use all the projections Bn+l--+Bn with 

respect to the different indices. Equivalently we could use the obvious action 

of  the symmetric group Sn+x on B n+l to obtain the desired covering. 

(3.3) There are natural sections al  . . . . .  o- n to our projection n:Bn+l~Bn:~Ti  
is the morphism defined by sending ~(n+l) to 2~v n) if v~  V n and )Lhv2hn+ 1 to 

2v,v2v3i if i¢{Vl,  V2, V3} and to 0, oo and 1 if i=v l ,  v2 and v3, respectively. By 
(3.1) and (3.2) these sections make n :Bn +1-*B~ into a stable n-pointed tree of  
projective lines. 

PROPOSITION 4. n : Bn+l--*B n is the universal stable n-pointed tree o f  pro- 
jective fines. 

This means that the functor which associates with every noetherian scheme 

S the set of  stable n-pointed trees of  projective lines over S, is represented 
by B~. 

In other words B n is a fine moduli space for stable n-pointed trees of  pro- 
jective lines. 

PROOF. We have to show that  for any stable n-pointed tree of  projective lines 

f :  X-*S there is a unique morphism u : S~Bn such that X becomes  isomorphic 

to Bn+IXBS.  
By Prop. 3 we have a morphism u : S---,P v". It clearly factors through Bn, 

so we consider u as a morphism u : S~Bn.  

For any triple d=(dl ,d2 ,d3)~D we have a corresponding contraction 
c(d) : X- - ,X  a of  X and a commutat ive  diagram: 

c(d) (id, u) 
g(d) : X - -  X d - ~ r P d X S  - -  [PctXB n 

U 
S B n 

The product l-I a~D g(d) : X ~  1] a~D Pd × B,, factors over B n + 1. Here Bn + 1 is 
seen as a closed subscheme of  rI[Pd×B,,. The corresponding g : X ~ B n +  1 
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satisfies n o g = u o f  and g o q)i = ai° u for i = 1 . . . . .  n. Moreover g induces on any 

component  of  Xs, s e S ,  either a constant map or an isomorphism. As the 
fibre X s is a stable n-pointed tree over k(s), and as g preserves the marked 

points, it cannot  map  a component  onto a point. This shows that  the induced 

morphism X - - ' B n + l X B S  is an isomorphism. We still have to prove the 
uniqueness of  u. Suppose that ul:S-- 'B~ and a compatible isomorphism 

X ~ B ~ +  1 xsoS are given. The induced g l : X ~ B n + l  satisfies again: 
(i) n o g l = u l o f a n d  glo(/)i=giOUl for i=1  . . . . .  n. 

(ii) gl induces for any s ~ S on any component  of  X s either a constant map or 
an isomorphism. 

We fix a triple d =  (v~, v 2, v3) and we contract both X and Bn+1 with respect 
to all i~ {vl, v2, v3}. Since contraction commutes with base-change we find a 
morphism g~,d between the contractions Xa and (Bn+I) d. Now X is identified 

with Pl × S such that  q~v~, tgv2, q~v~ become the sections 0, oo and 1, and we 
have a similar identification (B,+ 1)a= P~ xB~. Then g~,d= (ida,, us). For any 

v I ~ {Vl, V2, V3} one has that pr 1 ogl,dOC/)v~ : S ~ P  1 coincides with Uv~v2~3~4. 
Hence u=u~ and g=g~ since gl,d=ga for all d. 

(3.4) We fix two indices i, j such that 1 _< i<_j<_ n, and form the fibre product 

Z : =Zin j : =Bn×Bn_lBn 

i and n~ induced by omitting the index i with respect to the projections 7r n 
and j ,  respectively. 

The projection 

prl : Z--*B n 

onto the first factor  is a stable ( n -  1)-pointed tree. 

We also have an extra section, namely the diagonal map A : B ~ Z .  In this 
situation Knudsen defines in [Kn], § 2 the stabilization of  prl:Z--*B n with 

respect to A. We claim that  this stabilization is isomorphic to 7r :Bn+ l-*Bn. By 

[Kn], Cor.  2.6 we can equivalently show that Z is isomorphic to the contraction 
of  n :Bn+ 1-'~Bn with respect to the i-th section ai. Now the projections n~+ I 
and nnJ+]+ f rom Bn+ 1 to B n satisfy 

7~JnO i i o ~ J + l  7tn+l = ~n J~n+l" 

Hence we get a proper  morphism 

f : B n + t ~ Z .  

Now for any q e B ,  the fibre n-X(q) : =Bn+ 1XB, Spec k(q) is isomorphic to 
the n-pointed tree C(q) by lemma 1. 

On the other hand,  pr~ l(q) is isomorphic to (zd) -  l(7r/(q)), and this is in fact 
the contraction of  C(q) with respect to the i-th point. 

The above remark shows in particular that f :  B,+I--,Z is birational. More 
precisely, f is an isomorphism on the open set U : = B , +  l - kJB(T, q/), where 
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the union is taken over all stable (n + 1)-marked trees of  the following two 

types. 

(a) • -- " I C n + l - { i , j + l } ,  
I i , j + l  n + l - I  

(b) *. * k e n +  1 - {i , j+ 1}. 

i , j + l , k  n + l - { i , j + l , k }  

The fibre over a point in Z - f ( U )  is a projective line. Note that a subspace 
B(T, ~,) of  type (b) has codimension 1 in B , ÷ I  whereas a subspace of  type (a) 

has codimension 2, so their images in Z have codimension 2 and 3, resp. 

There is no (n + 1)-marked tree which can be contracted to different (T, g/) 
o f  type (a) or (b), so the union in the definition of U is disjoint. 

i i s  not Although B n and B,_ 1 are smooth varieties by (3.2) the morphism n,  

smooth because of  the singularities in the fibres. So Z may  have singularities. 

In fact we have 

PROPOSITION 5. The singular set o f  Z is S : = U f(B(T, ~)) where the union is 
taken over all (T, ~) o f  type (a). 

P R O O F .  We first show that  the singularities of  Z are contained in S. Since f 

is biregular on U, it suffices to show that f (B(T,  ~,)) is nonsingular for (T, ~,) 
of  type (b). But any point z in such a set is mapped into B*_1 by zr / oprl, so 

it lies in a smooth fibre. Hence we can find an open VC/ ] ,  containing prl(z) 
such that n/I V is smooth. Then Pr2IU×B._B . is also smooth,  and thus z is a 
regular point of  Z. 

To prove that any z e S  is in fact singular we calculate the local ring ~Z,z: 
for simplicity we assume i = 4, j = 5, and the combinatorial  type of zl " =prl(z) 
and z2 : =Pr2(z) is 

1 ,2 , I  4 3,5 1 ,2 , I  5 3,4 

• • * and • - 0  ® resp. 

Here I : = n - _5; one easily reduces to the case n = 5, so we may take I to be 

empty.  
The proof  of  lemma 2 shows that we may  take ct = : 21342 and fl : = 21354 as 

local coordinates in zl and y • =/~1352 and g : =/~1345 as local coordinates in z2. 

(We write A and/1 in order to distinguish the two copies of  B5). 

Now n 4 is given by sending the coordinate v = v1234 of  n 4 onto A1235, whereas 
n~ is given by v~/~1234. In local coordinates we have ) .1235=l-c tp  and 

,//1234 = 1 - y~. Thus 

~z, ~ = zIt~, #, y, ~ ] / ( a # -  ~,~), 

and Z has a "con ic"  singularity in z. 
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COROLLARY. The singular locus S o f  Z has codimension 3. Note that 
f :  Bn+I--*Z is a desingularization o f  Z which is not obtained by blowing up 
the singular locus. 

EXAMPLES. 1) From the definition we see that B 4 = - - [ p l .  

2) B5 is the blowing up of FP l x [pl =BaxB4  at the three points (0,0), (1, 1) 
and (oo, oo) that correspond respectively to the following 4-pointed trees (the 
same on both components): 

4 

1 

2 

1 

x x 

2 3 
x x 

3 4 
x x 

2 4 

3) B 5 x S B  5 has three singular points: namely let the fibre product be 
4. then the projection of the singular points sl, s2, s3 on defined by n~ and n 5, 

the two factors B5 are 

S l :  

2 

1 

x 

5 

4 2 

3 1 

S 2 : 

x 

5 

3 

1 

5 

2 

S 3 : 

3 

2 

x 

4 

3 

2 
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The map f :  B6~Z  = Z 45 has nontrivial fibres over s1, $2, $3, and over the four  

disjoint projective lines 

L l :  

x x x 

2 3 4 
X X X - -  

2 3 5 

L 2 :  

x x x 

1 3 4 
x x x 

1 3 5 

L3: 

x x x 

1 2 4 
X X X 

1 2 5 

L4: 

x x x 

1 2 / ~  3 
x X x 

1 2 3 

4. P1CARD GROUP AND BETTI NUMBERS OF B n 

(4.1) PROPOSITION 6. Pic (Bn) is a free group o f  rank 

n(n - 3 )  
2 n - 1  - - ( n +  1) 

2 

PROOF. 1) For  any Sc__n with 2_< ~ ¢ S < n - 2  we denote  by D(S) the divisor 

B(T, #9) where T has two vertices t l, t 2 and ~ - 1(tl) = S, ~ -  1(t2) = S* : = n - S. 

F r o m  Propos i t ion  2 in (1.5) and the Corol lary  in (3.2) it follows that  D(S) is 
an  irreducible divisor. 

It is obvious  f rom the definition that  D(S)=D(T) if and only if S =  T or  
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S =  T * = _ n - T ,  and that the irreducible components  of  Bn-B* are exactly 

the subschemes of  the form D(S) because any n-marked tree (T', q/) with more 

than one vertex contracts to a n-marked tree with two vertices (T,~u) and 

B(T', q/') c B(T, ~u), see (1.5). 
D(S)ND(T)~O if and only if one of  the following cases occurs: SC T or 

TCS or SC T* or T*CS because if D(S)AD(T)4:0 then there is a n-marked 
tree (T, q/) with _> 3 vertices which contracts to the n-marked trees belonging to 

the subsets S and T of  n. 

Now we prove that the divisor of  the rational function J.vj02o3o4 is equal to 

2 D(S) - 2 D(S) 
OI,O4ES O1,D3ES 

02~ 03 ES* o2~ 04~S* 

The function 20~02v3o, has no zeros nor poles in B*. Further ~l)lO2O3O 4 is zero on 
D(S) if and only if 01, 04 ~ S and 02, 03 ~ S (or 01, 04 ~ S and 02, 03 ~ S) and 
)L~v2o~o, has a pole on D(S) if and only if 01, 03 e S and 02, 04 ~ S (or 0~, 03 ~ S 
and 02, 04 e S). We only have to show that all the multiplicities are 1 or ( - 1). 
Fix some SC_N with 2 <  # S < n - 2 .  Then D(S)* is given by 

2abca = 0 if a, d e S and b, c ~ S 

2abca:gO, 1, oo if #{a,b,c,d}NS>_3 

or if #{a,b,c,d}NS<_l. 

Let U denote the open subset of  B n given by )~abcd:¢:O, 1, oo if 

#{a,b,c,d}NS>3 or #{a,b,c ,d}OS<l.  

Clearly D(S)* = UO D(S). 
Fix now a, b, c, d with a,d~S and b,c~S. 
Let 01, oz, v3, 04 also satisfy Ol, 04 ~ S and 02, 03 ~ S. Consider the following 

equations: 

~-01020304 = t~010203 c " t~OlV2CO 4 

~OlO2CV 4 = t~COaVlO 2 = ~CO4Olb" ~co4bv 2 = 2OlbCV4" ~co4bo 2 

~olbcv4 = ~olbc d " 201bdv 4 

)tvlbcd = ~cdolb = )~cdola" ~cdab = ~cdola" "~abcd" 

This shows that  2o~,o2,o3,o4= u. ;t~bcd where u is a unit on U. Hence D(S)O U is 
defined by the principal ideal (2abca) on U. Since a, b, c, d were arbitrary, 

except for a,d~ S and b, c~  S, we have shown that all multiplicities are 1 
and - 1. 

2) Pic (Bn) is generated by the D(S) because B* is factorial. The number  of  
generators is 2 n- 1 _ (n + 1). The relations in Pic (Bn) are given by the divisors 
of  ti: =)t1,2,3,i, ti-1 and ( t i - t j ) t f  1 with i,j>_4 

( in number  n(n~ 3) ) .  
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The proposition will be proved if we can find some 

n ( n -  3) n ( n -  3) 
- -  X - -  

2 2 

submatrix of  the relations with determinant + 1. In order to find this submatrix 
we only look at the D(S)  with # S = 2. 

An easy calculation yields: 

ti=-2n3i and div ( t ~ ) = D ( { 1 , i } ) + D ( { 2 , 3 } ) - D ( { 2 , i } ) - D ( { 1 , 3 } )  

-- t i + 1 = A23il and div (1 - ti) = D({ l, 2}) + D({ 3, i }) - D({ 2, i }) - D({ 1, 3}) 

lj-l(ti--)~j)=)~2jil and div O t z j n ) = D ( { 1 , 2 } ) + D ( { i , j } ) - D ( { 2 ,  i } ) - D ( { 1 , j } ) .  

The underlined D(S) occur just once; they give a submatrix of  size 

n ( n - 3 )  n ( n - 3 )  

2 2 

of  determinant 1. 

(4.2) Let F~(x) be the polynomial 

( x -  2)r4(r'~). ... . ( x -  n + 2)r.(r'~') 
(7", ~ )  

where the summation is over all isomorphism classes of  n-marked stable trees 
and where ri(T , ql) is the number of vertices of  T of  valence ~ i. The term 

F(r, ~,) (x) = ( x -  2) rdT' ~').... • ( x -  n + 2) r"(r' ¢) 

has degree (n - 3)-number of edges of T. If (T, qJ) is obtained from (T', ~ ' )  by 
contracting one edge, then 

deg F(r,,¢,)= ~ ri(T' ,gt ' )=deg F ( r , ¢ ) - I  
i = 4  

because 

ri(T,~u)= Y. ( v a l t - 3 )  and Z v a l t =  E v a l t ' - 2  
i = 4  t ~ T 0 t E T 0 t '  ~i T~ 

while # T~ = 1 + # T 0. 

In the sum there is one term of degree n -  3 which is F(ro, v,0) where T o has 

just one vertex and 

F(ro ~,0)(x) = ( x -  2 ) (x -  3) • ... • ( x -  n + 2). 

Thus deg F,(x)  = n - 3. Let 

n - - 3  

FAx)= 2 F.ixieZ[xl. 
i = 0  
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PROPOSITION 7. Let hi be the rank o f  the cohomology group H'(Bn(C), Z) 
which is the i-th Betti number o f  the complex manifold o f  C-valued points o f  

B n. Then 

S Fn, n-a-r: i f i = 2 r  is even 
hi= 

L 0 : i f i i s o d d .  

Moreover 

h 2 = 2  n -  1 - n -  (n--2 1 ) ,  

Fn,  n - 3 - r = Fn,  r ,  ~ 7=0 3 Fn,  i" 2i is t h e  n u m b e r  o f  3-regular n - m a r k e d  s t a b l e  trees. 

PROOF. 1) The number of  DZpr-valued points of  B n is N r = ~7=o 3 Fni(pr)  i by 
the corollary to proposition 2 in (1.5), where p is any prime number. The zeta- 
function of  Bn × Dzp is thus 

Z(t) = exp ~ ~ Fni(pi) v 
v=l i=0 

=exp 2 F., 2 
i=0 v=l  

n -3  1 

= ~=o1-I (l_pit)Fni 

B, is smooth and projective and therefore by the Riemann hypothesis for Z(t) 
one gets that all F~i are >_ 0, see [D]. 

Moreover also through the Weil conjectures one knows that 

h 2 i =  F n i  

h2 i+ 1 = O. 

The functional equation for Z(t) tells that F~,n_ 3-r = F~, r. 

2) We determine the n-marked trees (T, g/) with deg (T, ~)  = n - 4. Any such 
(T, g/) is uniquely given by a pair of  subsets A, n - A  of  n with 2 <_ # A  < n - 2. 
The number of  these subset pairs is 2 n- 1 _ n -  1 .  

Now 

F(To, q/o)(X)=Xn-3--(2 + 3 + "'" + n-- 2)X n-4 

+lower terms and F(r,~,)(x)=x"-4+lower terms if deg (T, q / ) = n - 4 .  Thus 

Fn(x) = x~- 3 + (2 n-1 - n -  1 - ( 2 + 3 +  ... + n -  2))x n-4 

+lower terms. This shows that 

(o;1) 
n , n - 4  --  - -  n --  . 
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If F(T ' ~,) is not a constant then F(r  ' ¢)(x) = ( x -  2) r4... ( x -  n - 2) ~ with r4 >- 1 and 
Eg=0 F~i 2i is the number of stable n-marked trees thus F(T ,¢)(2)=0. Thus ,-3 

(T, ~) for which F(r,~,) is constant. This is the case iff (T, g,) is 3-regular and 
for 3-regular n-marked trees (T, ¢)  one has F(r,¢)= 1. 

5. Bn AS BLOW UP OF Ozf /PGL 2 

(5.1) The natural action of PGL 2 on ([Pl) n, given by a(xl . . . . .  xn)= 
=(a(x l )  . . . .  ,(xn)), has been studied in detail in [GIT], [MS] and [G]. We 
denote by ([P'()ss the set of  points in Pf that are semistable for this action, and 
by Qn the quotient ([Pf)ss/PGL2. In this section we show that B n is a blow up 
of  Qn and describe this blow up explicitly. 

We begin by recalling the basic results on Qn from [GIT], [MS], or [G]: 
x =  (xl . . . . .  x~) 6 IPf is semistable if and only if ay(X): = # { i : x i = y }  <_n/2 for 
any y ~ rP 1 ; x is stable if and only if ay(x) < n/2 for any y ~ Pl.  

For n odd, the sets ([Pf)s of stable points and (P'~)ss coincide, and Qn is a 
geometric quotient. Moreover Qn is smooth and projective over Z of relative 
dimension n - 3. 

For n = 2 m ,  Q.n :=(Pf ) s /PGL2 is again a geometric quotient, but not 
complete, whereas Qn is projective but not a geometric quotient. In fact 
Q n - ( ~  consists of  2"~. m !lt'2m~ points corresponding to the orbits of  points where 
exactly m entries coincide. (Note that the point (0 . . . . .  0, ~ . . . . .  ~ )  is contained 
in the boundary of  the orbit of  any point of the form (x, .... x, Xm+ l . . . . .  xn) or 
(xl . . . . .  x m, x, .... x).) Q~ is smooth over Z, but we have 

PROPOSITION 8. For n even, Qn - Q.~ is the singular locus o f  Qn. 

PROOF. According to [G], Q2rn=Proj A, where A = @~ A~ is a graded k=0 
Z-algebra with A 0 = Z. 

A~ generates A, and A 1 as a Z-module is generated by the expressions 

pai ,bIPa2,  b z " " p a m ,  b, ~ where 
(1) {1,2 . . . . .  2m}={a l ,b l  . . . . .  am, bm} 
(2) pa, b=Xa(O)xb(1)--Xa(1)Xb(O) and (xi(O),xi(1)) denote the homogeneous 

coordinates of  the i th factor in (Pf).  

Let U c  Qzm be given by pl ,b '"Pm,  bm4:0 for all bl . . . . .  bm with {bl, ...,bin} = 
= {m + 1 . . . . .  2m}. Clearly U is affine. Let r : (rPf)ss--,Q2 m denote the canonical 

map. Then r -  I (U)= {(Pl . . . . .  P2m) e Pf:Pi  *Pj for i<_ m < j  }. Since r : (rP~)s,--* 
--*Q2m is a good quotient we find that ¢ ; ( U) = ~ ( r - I U)  POLZ. Consider 

W C r - I U  given as W = { ( P l , . . . , P E m ) e r - l ( U ) : p l = 0 ,  pm+l=oo}.  Clearly 
G ( r -  ~ U) P°L~ = 6(W)G,,. 

Put qi=Pi+lm for i > 2  and identify W with the open part 

{(P2 . . . . .  Prn, q2 . . . . .  qm)~/A~ -1X/A~ -I : piqj=/: l for all i , j }  

of  the affine space/A 2m-2. The action of G m is given by 

a ( P 2  . . . . .  Pro,  q2 ,  " ' ,  qrn)  = ( a P 2  . . . . .  a p  m, a - t q  2 . . . .  , a - l q m ) .  
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One easily sees that 

~(W) Gm = 7/[piq j ]i, j = 2 . . . . .  m]loc = 

= Z[A 0 ]i, j = 2 ..... m]/(AoAk:-  AilAkj ) loc, 

where Aij stands for Piqj and where loc means localisation at IIi.j (Aij-  1). 
Let ,/Am-I@/A m- 1 denote the (m-1)2-d imens iona l  affine space over 2[ and 

let / , ~ , m - l ° , ~ ,  m - 1  be the closed subscheme of  A m- l ® A m - 1  consisting of  the 

simple tensors, i.e. the elements of  the fo rm v1®v;. Then 

/ t im - 1 o A rn-  1 ~ spec ( Z [ A i j  : i, j = 2,..., m]/(AijAkl-  A k j A i l ) ) .  

In particular, the singular locus of  U corresponds to the O-section of  
/Am-lo/A m-l, and corresponds to the prime-ideal (Aij:all i,j) of  the ring 

above. 
The isomorphism of Uwi th  the open subset of  A m- 1 e a r n -  1 given by A/j:~ 1 

for all i, j can be easily described by the morphism r -  1U--,/A m- 1 o/Am- 1 given 

by the formula 

( P l ,  " " ,  P2m)---~ (o ' (P2)  . . . . .  o ' (Pm) )  @ (o ' (Pm + 1) - 1  . . . . .  O.(P2m ) - 1), 

in which 
Z - p 1  

~(z)  = 
Z - P r o  + 1 

Note that for  m = 3  the singularities of  Q6 are isomorphic to those of  

B5 x ~,Bs, see (3.5). 

(5.2) Let (PP~)*=-- {(X 1 . . . . .  Xn) ~ [P~ : Xi~Xj for i~ej} C(lP~')s and let Q* : = 
=(P'~)*/PGL 2. Then there is a natural isomorphism p * :  B*~Q*.  We can 

extend p *  to a morphism Pn :B,-+Qn in the following way: 
For q ~ B n there exists a component  L of the associated stable n-pointed tree 

C(q) such that (nL(xl), ..., nL(Xn))~ (P~)ss(k(q)) where nL: C(q)-+L is the pro- 
jection onto L and x l :  = ~pq(i)~ C(q)(k(q)) is the i-th marked point on C(q) 
and where we identify L with rP1(k(q)) in some way. The existence of  such an 

L can easily be proved by induction on n. Note however that for n odd, L is 
unique, whereas for n even there may be two intersecting components  L, L '  
with the required property.  We call L (or L and L ' )  the center of  C(q). Now 

we define Pn(q) as the PGL2-orbit of (zrL(xl) . . . . .  Z~L(Xn)). 
Let d e D  n be a triple of  indices such lthat L is the median component  L(d) 

of d. In an open affine neighbourhood Uq of  q, L(d) is still the center of  
C(q'),  q'e Uq. Now it is not hard to see that q--,p,(q) is a morphism on Uq 
ar,d that these morphisms on a covering of  B n by Uqs fit together to a pro- 
jective morphism Pn : B~--+Qn. Since p~ is an isomorphism on B*, thus bi- 
rational, we have proved (see [H], Ch. II, Thm. 7.17): 

PROPOSITION 9. B n is the blowing-up o f  Qn with respect to some coherent 
sheaf o f  ideals. 
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REMARK. P4 " B4"*Q4 is obviously an isomorphism. 
P5 : Bs~Q5 is also an isomorphism since for q e B  5 any component of  C(q) 

which is different f rom the center, has order 3. 
The first nontrivial blowing up occurs when n = 6. The nontrivial fibres of  

P6 are the 10 disjoint subschemes in B6, each isomorphic to FP 1 × rp I , for which 
the associated 6-pointed tree contracts to a permutation of 

X X X 

4 5 6 

These subvarieties are mapped onto the 10 singular points of  Q6. Surprisingly, 
al though Q6 and B5 ×B, B5 are locally isomorphic around the singular points, 
the maps B6--*Q6 and B6~B5 × ~4B5 are completely different. 

(5.3) In order to find on explicit description of  the blow up Bn~Qn we 
introduce the notion of  a stable (d, n)-tree: 

DEFINITION. a) Let k be a field and d, n integers satisfying 1 ~ d _  ( n -  1)/2. 
A tree of  projective lines X over k (see (1.1)) together with a map 
~ :  {1 . . . . .  n}~X(k )  is called a stable (d,n)-tree over k if 

(i) ~b(i) is nonsingular for all i 
(ii) #$-l(a)<_d for all aeX(k)  

(iii) Ordd(L)>2 for any irreducible component of X, where Ordd(L): = 
= # {L': L'  component of X, L ' N L , O }  + 1/d#cb-l(L). 

b) A stable (d,n)-tree X over a scheme S is a flat morphism n : X - , S  
together with sections 01 . . . . .  $n:S-- 'X such that for any s~S,  the fibre 
X s = X ×  s spec k(s) together with the map ~)s:i-,$i(s) is a stable (d,n)-tree 
over k(s). 

Note that a stable (1, n)-tree is just a stable n-pointed tree. On the other hand 
a stable (d, n)-tree is in general not stable as (d + 1, n)-tree. 

We want to show the existence of  fine moduli spaces Bn, d for stable (d,n)- 
trees and begin with the case (d ,2d+ 1); it will turn out that B2d+l,d is just 

Q2a+l. In order to describe the universal family we have to introduce some 

other blow ups of  Qn: For  disjoint subsets 11 . . . . .  /r of  { 1 . . . . .  n} let Qn(I1 .. . . .  lr) 
be the image in Qn of  {(xl,...,xn)e(rPf)ss :xi=xj if there exists v such that 
{ i , j }Clv} .  Clearly Q,,(11 ... . .  I r) is a closed subscheme of Q,.  

Recall f rom the proof  of Prop.  1 that Q2m is locally at its singular points 
isomorphic to /A m- 1 o/Am- 1. Consider the scheme 

( A m  - 1 o / A m  - 1) ,  : = {(Vl (~) 02 , 1~) ~ ( / A m -  1 o / A  m- t) X IPrn _ 2 : 01 = ~"} 
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(here we consider ~m-2 as [P(A m- 1) and denote by 01 the class of 01). Clearly 
( A m -  1 o A m-  1), is a desingularization of A m- 1 o A m- 1, and the fibre over the 

0-section is [?m-2. Let Q2m be the desingularization of Q2m which locally over 
the singular points is isomorphic to  ( A m - l ° A  m-  1),. Q2m is not isomorphic to 
the blow up Q ~  of  Q2m at all singular points since the fibre in Q~'~ over a 
singular point is isomorphic to ~ m - 2  X ~m-2"  Moreover Q2m is not symmetric 
in the indices 1 . . . . .  2m. 

We can embed Q2m as a closed subscheme of  Q4m-1 as follows: Let 
Y: = Q4m- 1({ 1,2}, {3, 4} . . . . .  {4m - 3, 4m - 2}); thus Y consists of  the orbits of  

the points (Pl, Pl, P2, P2 . . . . .  P 2 m -  1, P 2 m -  1, P2m) E ~o4m- 1. There is an obvious 

morphism Y-'*Q2m i nduced  by (191, Pl . . . . .  P Z m -  1, P 2 m -  1, P2m)"* (Pl,  P2, ---, PZm); 
it is an isomorphism outside the singular set in Q2m. The fibres over the 

singular points are Pro-z: the preimage of  the point 

(191 . . . . .  Pm, Pro+ 1, Pm+ l . . . . .  Pro+ 1) 

consists of  all points (Pl, Pl . . . . .  Pm, Pm, Pm+l . . . . .  P m + l ) E P  4m-1 such that 
pi~ePm+l for i=1  . . . . .  m and Pl .. . . .  Pm are not all equal. Taking P l = 0 ,  
Pm+l=OO leaves us with a 03m-action on {(P2 . . . . .  Pro):~:( 0 .. . . .  0)} = A m - l -  
- {(0 . . . . .  0)}. This shows that Y is isomorphic to Q~m. 
On the other hand, the morphism Y~Qzm-1 induced by 

(Pl ,  Pl . . . . .  PZm-  1, P z m -  1, P2m)---~ (Pl . . . . .  P 2 m -  I) 

has fibres isomorphic to ~1, in fact Y is a locally trivial [Pl-bundle. There are 
sections tr i : Q2m - 1 ~ Y, i = 1 . . . . .  2m - 1 given by 

tTi(Pl . . . .  , P 2 m - 1 )  = (/71, P l  . . . . .  P 2 m -  1, PZm - 1, Pi)" 

! t __~ We conclude that if we take d =  m -  1 and identify Y with Q2m, then Q2d+2 

~Q2d+1 is a stable (d ,2d+ 1)-tree. 

PROPOSITION 10. Q2d+2 Q2d+l is the universal stable (d ,2d+  1)-tree. 

PROOF. Let 7t : X ~  S be any stable (d, 2d + 1)-tree. For any triple 

v = (Vl, v2, v3) ~ D2d+ 1 

let S(v) be the open subscheme of  S on which Ov,, q)v2 and q~v3 do not meet. 
Since the S(v) cover S it is sufficient to prove the proposition for S = S(1,2, 3). 

With respect to q~l, ~2, 03, rt : X ~ S  is a stable 3-tree. Thus by (2,3) we get 
morphisms O'i: S ~ P l ,  i = 4  . . . . .  2d+  1, and by (2,3) we have isomorphisms 
~i : X-~ ~1 x S such that gli ° ~i= (~[,id)" Letting ¢~, ~ ,  0~ be the constant 
morphisms 0, oo, 1, the 0[ define a morphism q~:S~(p2d+l)ss~Q2d+ I. 

__~ , Clearly q~ induces an isomorphism X Q2a+2 × Qu+S. 

(5.4) PROPOSITION 11. Q~d+3---~Q2"d+2 is the universal stable (d,2d+ 2)-tree. 
ttere Q~'d+Z denotes the blow up o f  Q2a+2 at all singular points, and Q~a+ 3 

is the blow up o f  Q2a+3 at all Q2d+3(I) such that # I = d + l  and 2 d + 3 ~ I .  
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PROOF. On the open parts 

Qzd+3- U Qza+3(I) and Qzd+2, 
# l = d + l  

2d+3~1 

the morphism 7r is given by (x 1 . . . . .  XZd+3)-*(X 1, ..., X2d+2 ). With the help of  the 
obvious sections (7 i : (X l . . . . .  X2d+Z)--~(XI . . . . .  X2d+2 , Xi), i=  1 . . . . .  2d+ 2, rc clearly 
becomes a stable (d,2d+2)-tree.  We have to extend n to a morphism 

t __~ t !  

Qzd+ 3 QZd+2" 
Let V= {(xl . . . . .  XZd+2) e (p2d+2 : Xi~aXj for 1 <_i<_d+ 1 <j<-2d+2} /PGL 2. 

V i s a  neighbourhood of  the singular point (0 . . . . .  0, ~ . . . . .  ~ )  in Q2d+2" Let V" 
be the inverse image of  V in Qz'~+2. 

On the other hand, let U be the inverse image of V in Qzd+3 (for the 
projectives r0. Clearly U is the union of the open subspaces 

Uij= {(X1 ' . . . ,  X2d+3) ~ ~2d+3 :Xv:r/zXl~ for 1 <_v<_d+ 1 < / ~ < 2 d +  2, 

Xv¢X2d+3~xu}/PGL 2 for i=  1 . . . . .  d +  1 , j = d + 2 ,  . . . , 2d+2 .  

Any Uij contains Q2d+3({1, . . . , d +  1}) and Q2d+a({d+2, . . . ,2d+2}) ,  and has 
empty intersection with all other Q2d+3(I), # I = d +  1, 2d+ 3 ~I.  

Let U' and Uij be the inverse images of U and Uij in Q~d+3, respectively. 
Then 7r can be extended to U{,o+ 2 as follows: 

First note that U1. d+ 2 has an open immersion into/A a x A d by putting xl = 0, 
Xd+ 2 = o¢ and X2d+3 = 1. The immersion is explicitely given by 

(Xl, " " '  XZd + 3 )--~ ( ( tT(X2) . . . . .  G(X d + 1))' ( G(X d + 2) -1 . . . . .  G(X2d + 2) -1)  

where 

Z - - X  1 X2d+3 --Xd+2 
~ ( z )  = - -  

Z--Xd+2 X2d+3 - -X 1 

This identifies Ux,d+ 2 with {((x I . . . . .  Xd), (Yl . . . . .  Yd)) ~ AdX AdlxiYj~ 1 for all 
i and j} .  

In particular 

Qzd+ 3 ({ l, ..., d +  1 }) f') Ul,d+ 2 : {0} >(/fld 

and 

Qzd+ 3({d+ 2 . . . . .  2d+ 2})f3 Ul,d+2=/idx {0}, 

So the blow up U{,d+2 is an open subset of: 

{(Ol,/92, WI, 1~'2) ~ /A d >(/]~d ).< ~(  /fl d) X [['3(./A d)Io i and W i 

are dependent for i=  1,2}. 

We know already the explicit form of  V", namely an open part of 

{(Ol (~)02, ~ ' l ,  W2) E A d ° A d x  [P(Ad)  X [P(/Ad)tol(~02 and w l ® w  2 

are dependent.} 
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The extension of our morphism n is now given by: 

(O1, 02, 1+'1, W2) E U~,d+2-"~(Ol (~O 2, WI, ~'~2) ~ V". 

(On affine parts of both of  the PP(/Ad)'s this morphism reads: 

(2W D ,UW 2, W 1, W2)--'~ (2flW1 ~)W2, W 1, W2)- 

'This morphism is identity in the last two factors and has the form/A 1 x/A 1 
--,A l, (2,/~)-~2/1, in the first factors. Hence the map is flat. The fibre above 
a point ~e0 is isomorphic to /AI -{0  }. The fibre of  0 is (/A1x{0})U 
U({0} xAa) .  Glueing the various U~,j together one finds that U'--,V" is flat 

with fibre ~1 or (~1 x {0})U({0} x ~1). 
The sections tri: V " ~ U '  can also be described: For i with 2<_i<_d-, ~, we 

,consider the open part of  V" where the i-th coordinate of  ~'1 is not zero. On 

this open part (7 i has the form (Dl@02, ~'1, I~2)---~(J.WI,/./W2, 1~1, 1~'2) where 2 is 
determined by: the ith coordinate of 2w I equals 1, and where/~ is determined 

by /]41WI @ W 2 = Ol@O 2. 
Glueing over the various U~j yields all the o- i on all of  V". So we have shown 

t . . ~  I t  that Qzd+3 Qzd+2 with the ai is indeed a (d,2d+2)-tree.  
We now prove that this (d, 2d+ 2)-tree is universal. 

7~ 
Let X , S, with sections ~0 i, denote any stable (d, 2d + 2)-tree. Locally on 

S we have to show existence and uniqueness of a morphism f :  S-*Q~'d+ 2 such 
that X is isomorphic to Q~d+3 x Q~,~+2S. For a point s e S the fibre Xs has one 
or two components. Let us consider the case where X s has two components L~ 

and L 2. We may then suppose that ~i(s) EL 1 for i=  1 . . . . .  d +  I; that (bi(s)~L 2 
for i = d + 2 , . . . , 2 d + 2 ;  that ~l(s)4:q~2(s) and that Ckd+Z(S)~Od+3(S ). After 
shrinking S we may suppose that for all t e S  and (i,j) of the form (1,2), 
( d + 2 , d + 3 )  or 1 <_i<_d+ 1 < j_<2d+2  one has ~i(t)~Oj(t) .  

X ~ S  with the 4 sections t~l,t~Z,t~d+Z,q~d+ 3 is a stable 4-tree and so there 
exists a morphism u : S ~ B 4 = ( P l  such that X ~ B  5xB4S. We may suppose 
u(s)=oe[P 1 and u (S)C/AI-{1  }. According to (3.4), B 5 is the blow up of  
PPI x ~l in the 3 sections (0,0), (1, 1), (o% ~) ,  and Bs~B4 is derived from the 
projection on the second factor. Since u(S) does not meet 1 and oo we may 
replace B4=TP 1 by A x - { 1  } and B 5 by Z, the blow up of  r P l x ( A l - { 1 } )  in 
(0,0). This Z is the closed subspace of  IPlxrPIx( /A~-{1})  given by the 

equation XoYoZ-xlYl = 0, where we have used (x0, xl), (Y0, Yl), z as coordinates 
for the three factors. Hence X is isomorphic to the closed subscheme of 
P l x F P x S  given by the equation XoYoU-x~yl=O where UeOs(S  ) satisfies 
(U-  1)~ Us(S)*. 

We note in passing that this implies that {teSISt has two components} = 
= { t~S lu ( t )=0}  is closed. 

We identify X with this closed subset of ~ x ~P1 x S and we write (gi(t) = 
=(ai(t),fli(t),t ) for i=  1 . . . . .  2d+2 .  The morphism f :  S ~ V "  is now given by 
t~(vl@v2,  Fv~, W2) where 

Wl ----- (O'1 (u2(t)) . . . . .  al (ad+ 1(0)) 
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W 2 = (a2(fld + 3(t)) . . . .  , tTZ(f12d+2(t))) 

ol ® vz = u(t)wl @ w2 

and 

O'I(Z) = 
Z--  Cq(t) ~2(t ) - -ad+2(t )  

Z--ad+2(t) a E ( t ) - a l ( t )  

Z--fld+2(t) ~d+3(t)--fll(t)  
~ r 2 ( z )  = 

Z - P l ( t )  ~d+3(t)--fla+2(t) 

In order to verify that X- - .S  is isomorphic to U '×  w S ~ S  we consider an open 
part X '  of  X defined by Xo:~O and yo:~O. On this open part one can define a 
morphism g : X '  ~ U~,d+ z by t---~(Ol, oZ, CVl, Cv2) where Wl, W 2 are defined as 
before and where 

Xl Yl 
ol = -  Wx and 0 2 = -  W 2 .  

Xo Yo 

The diagram 

g 
X t U~,d+ 2 

1 1  
f 

S V" 

is commutative and can easily be shown to be cartesian. (Indeed the morphism 
X'~U~,d+2× w S  is an isomorphism in every fibre and is therefore an iso- 
morphism). Glueing yields an isomorphism X - ~ U ' ×  r,,S. One can also prove 
uniqueness o f f .  A similar but easier verification can be done in the neighbour- 
hood of a point s t  S such that the fibre Xs has only one component.  

(5.5) The proof  of  the previous proposition easily generalizes to an inductive 
construction of the fine moduli spaces Bn, d for stable (d, n)-trees, where we still 
assume 1 < d < ( n - 1 ) / 2 :  Let B'n,d~Bn, d be the universal stable (d,n)-tree. By 
induction, Bn, d is a blow up of  Qn and B~, a is a blow up of  Qn+l. Now Bn, d-1 
is obtained from Bn, d by blowing up the preimages of  all subspaces Qn(I) 

t ' f rom Bn, d we have to blow up the preimages of  all where ]I1 =d .  To ge Bn, d_ 1 
subspaces Qn+l(1) where 1I I = d  and n+  1 ¢I .  

For  fixed n we thus obtain a sequence of  blowing ups which finally leads to 
B n = Bn, 1 and in which every intermediate blow up is either a fine moduli space 

Bn, a or a universal family B'~-l.a for some d. Only the singular spaces Q2m 
have no interpretation in terms of  moduli spaces. 

The situation is illustrated in the following diagram where the horizontal 
arrows are the various blow ups described and where the vertical map labelled 
"(d, n)"  is the universal stable (d,n)-tree: 
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( 1 , / 4  -'%Q4 

B5 ~ Q 5  

( 1 /  I (2,5) 

B6 -~ Qg --' Q ~ "-* Q6 

(1 /  I (2,6) 
By ~ Q~' ~ Q.~ ---,Q7 

/ 
B8 -~ Q~" --" Q~" --' Q~' --* Q; "-* e s  

B9 --n (2¢' --' (2~" ~ Q~' --" Q~ --' Q9 

B;o -% el6o) -* Q}5o"-* e ['o"-* Q;'; --. e{'o --~ Q~o -* Qlo 

,,,,o/ T, ,lO, l,,,lO, T,4, o, 
Oil  --~ ~.11°(6) "* ~11°(5' "~ Q ' I '  ~ Q{'I "-'* Q•I ~ Q ; I  "-* Q I1 
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