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ABSTRACT

Stable n-pointed trees arise in a natural way if one tries to find moduli for totally degenerate
curves:

Let C be a totally degenerate stable curve of genus g=2 over a field k. This means that Cis a
connected projective curve of arithmetic genus g satisfying
(a) every irreducible component of C is a rational curve over £.

(b) every singular point of C is a k-rational ordinary double point.
(c) every nonsingular component L of C meets C— L in at least three points.
It is always possible to find g singular points Py, ..., Py on C such that the blow up C of Cat
P,,..., Py is a connected projective curve with the following properties:
(i) every irreducible component of € is isomorphic to IP,E
(ii) the components of C intersect in ordinary k-rational double points
(i) the intersection graph of C is a tree.

The morphism ¢ : C—C is an isomorphism outside 2g regular points Q1,055 Q, @y and
identifies Q; with Q;. ¢ is uniquely determined by the g pairs of regular k-rational points (Q;, Qf).
A curve C satisfying (i)~(iii) together with n k-rational regular points on it is called a n-pointed tree
of projective lines. C is stable if on every component there are at least three points which are either
singular or marked. The object of this paper is the classification of stable n-pointed trees. We prove
in particular the existence of a fine moduli space B, of stable n-pointed trees. The discussion above
shows that there is a surjective map = : By, D, of B;, onto the closed subscheme D, of the coarse
moduli scheme M, of stable curves of genus g corresponding to the totally degenerate curves. By
the universal property of Mg, 7 is a (finite) morphism. 7 factors through Bzg = B,; mod the action
of the group of pair preserving permutations of 2g elements (a group of order 28g!, isomorphic
to a wreath product of S, and 7/27).

The induced morphism 7 : Ezg*Dg is an isomorphism on the open subscheme of irreducible
curves in Dy, but in general there may be nonequivalent choices of g singular points on a totally
degenerated curve for the above construction, so 7 has nontrivial fibres. In particular, 7 is not the
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quotient map for a group action on By,. This leads to the idea of constructing & Teichmiiller space
for totally degenerate curves whose irreducible components are isomorphic to B;, and on which a
discontinuous group acts such that the quotient is precisely D,; 7 will then be the restriction of this
quotient map to a single irreducible component. This theory will be developped in a subsequent
paper.

In this paper we only consider stable n-pointed trees and their moduli theory. In § 1 we introduce
the abstract cross ratio of four points (not necessarily on the same projective line) and show that
for a field k the k-valued points in the projective variety B,, of cross ratios are in 11 corre-
spondence with the isomorphy classes of stable rn-pointed trees of projective lines over k. We also
describe the structure of the subvarieties B(T, ) of stable n-pointed trees with fixed combinatorial
type.

We generalize our notion in § 2 to stable n-pointed trees of projective lines over an arbitrary
noetherian base scheme S and show how the cross ratios for the fibres fit together to morphisms
on S. This section is closely related to [Kn], but it is more elementary since we deal with a special
case.

§ 3 contains the main result of the paper: the canonical projection B, — B, is the universal
family of stable n-pointed trees. As a by-product of the proof we find that B, is a smooth pro-
jective scheme of relative dimension 2n—3 over Z. We also compare B, to the fibre product
B, (Xg, , By and investigaie the singularities of the latter.

In § 4 we prove that the Picard group of B, is free of rank

. _n(n-3)
2 n+1) P

We also give a method to compute the Betti numbers of the complex manifold B,(C).

In § 5 we compare B, to the quotient Q, : = Pg/PGL,; of semi-stable points in P{ for the action
of fractional linear transformations in every component. This orbit space has been studied in
greater detail by several authors, see [GIT], [MS], [G]. It turns out that B, is a blow-up of Q,, and
we describe the blow-up in several steps where at each stage the obtained space is interpreted as
a solution to a certain moduli problem.

1. STABLE #-POINTED TREES OF PROJECTIVE LINES OVER A FIELD

(1.1) Let C be a connected projective variety over a field k and ¢ = (¢4, ..., ¢,,)
be a n-tupel of distinct k-rational point of C.

DEFINITION. The pair (C, ¢) is called a stable n-pointed tree of projective lines
over k if

(1) every component of C is isomorphic to the projective line over k
(2) every singular point of C is k-rational and an ordinary double point
(3) The intersection graph of the components of C is a tree

(4) The set

{@1,...,0,} U{singular points of C}
has at least 3 points on every component of C

5) ¢y, ...,0, are regular points on C.

We call ¢ the marking of (C, ¢).

(C, ¢) and (C’, ¢') are isomorphic if there exists an isomorphism «a : C—~C”’
such that a(¢;)=¢; for all i. If (C,¢) and (C’,¢’) are isomorphic, this iso-
morphism is unique. Indeed let § be an automorphism of (C, ¢). Then we have
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to show that £ is the identity. Let L be an end component of C; this means that
L meets only one other component or L =C. Now § must be the identity on L
because it fixes at least three points. In the same way one shows that f is the
identity on any component of C.

Let L be a component of C. There is a unique projection 7, : C—L; 7,
maps the components different from L to k-rational points of L.

Let d=(d}, d,, d;) be a triple of three different indices of n={1,2,...,n} and
let D= D, denote the set of all these triples. Then there is a unique component
Ly of C such that 7 (¢g,), 7;,(@a,), 71,(#s,) are distinct. Thus one gets a
unique morphism

Ag: C—PL

with A;(¢4) =0, 14(¢4,) = o=, Ag(¢4,)=1 which is an isomorphism on L, and
constant on all the other components of C. The component L, is called the
median component relative to the tripel d.

(1.2) Let T be a finite tree in the sense of graph theory. We will denote by T,
the set of vertices of T and by T the set of edges of 7.
Let w be a mapping n—T,.

DEFINITION.  The pair (T, w) is called a stable n-marked tree if for every te T,
the number

val t: = #¢ (1) + # {edges of T with end point t}

is =3.

Let T be the intersection graph of the components of a n-pointed tree of
projective lines (C,¢). Then the marking ¢ defines a mapping y :n—T, by
letting (/) be the component of C on which ¢(i) is sitting. We will call (T,w)
the combinatorial type of (C, ¢).

The median component L, of a tripel d e D is the median of the subtree of
T generated by the vertices y(d,), w(d,), w(d;).

(1.3) Let V=V, be the set of quadruples v=(v;, vy, by, 0,) of distinct indices
of n and PY the product of # V copies of the projective line P over Z. Thus
PY=T1l,., P, and any P, is a copy of P.

Let (C, @) be a b-pointed tree of projective lines over k. Then

/1011)21)304 L= 1010203(¢v4)
is a k-valued point of P for any v= (v, Uy, U3, 04) € V and
A(C, ¢) L= (Au)ue 14

is a k-valued point of P”, It will be called the system of cross-ratios for (C, ¢).
One gets the following relations
1

(1) /101020304=
DUy U30y

133



(2) l1)2:)304111 =1- ADxUzvsva

3 ’lu,uzu,;vs ' }‘01020304 = A1)11)21)3115 .
1

PROOF. (1) is obvious as 4,,,,, = FT

ULy

Ad (2): Let L be the median component of C relative to (vy, by, v3). If
np () # 7L (9,,) for i=2 and i=3, then L is also the median component of
(v, U3,04). Then 4, .., is the cross ratio of the points 7,(9, ), n (@)
n (@), T(By,) While 4,,,,, is the cross ratio of the points 7;(¢,,), 7.(9.,),
nL(¢u4)a nL(¢vl)-

This shows that (2) is a well-known formula for cross-ratios on a line.

If 7.(p,)=mL(#,,), then A, =c. If L” is the median component of
(02, U3, ), then 7, (@,,) = n;(¢,,) and one gets that the cross-ratio of 7, (¢,,),
7TL’((‘J)W)’ T[L’(¢u4): nL’((I)u,) which is }-uzuw‘,ul is o

If n.(9,,)=mn.(0y,), then A,,,,=1. If L’ is the median component of
(U2, v3,04) then m, A, )=7 A,,) and thus Ay, = crOsS-1atio of 7;(¢,,),

nL’(¢03)a nL’(¢u4)s nL'(¢u]) =0.

Ad (3): Let L be the median component of (vy, vy, v3). If 7. (¢, )7, (,,)
and #7;(¢,,) then L is also the median component of (v, vy, by). Then (3) is
another well-known formula for cross-ratios on the line L. If n;(¢,,)=
=n.(¢,) then 4,,,, =0 and if L’ is the median component relative to
(1, U3, g) then 7 (@,) =7,49,,) =7 AL).

If 7,(¢,,) # 1L (@,,), then Ay, #0 and 7, A@,,) =7, (L) =71(¢,,) and thus
Ao = - The formula thus reads «-0=4,,,,, which is correct.

An intuitive picture for this situation is:

Us

If nL(¢u5)=nL(¢u])’ then 11)1020305:0 and nL’(¢uz)=nL'(¢ua)¢nL’(¢us)' Then
Avwaup, =0 and the formula is correct as A, ., #. Intuitive pictures for
these situation are

L' L L L

U3 Uy Uy Uy

Us U3 Uy

Similar reasoning shows that (3) is correct also if 7;(@,,)=7.(,,).
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(1.4) Let P, be provided with homogenous coordinates a,, b, such that
Proj Zla,, b,] =P,.

B, is the closed subscheme of PY given by the multihomogeneous ideal in
the multigraded ring Z[a,, b, : v e V] generated by the equations
1) Ay10305" Aoopsv, = bUz“l”s“A buluzvsva
2 Qy,030401 " Poy050500 = Ouyvsv0, " Ouyvgvan, — Dy 0,050, buzu3v4u1
3) Ap100305 " Foy030,05 * Pv10,0306 ™ Fo0,0305° Oojv050,° U1U,0405
where vy, v, Us, Uy, b5 is any system of 5 distinct elements of n. With respect to
the inhomogeneous coordinates a,/b, one gets formally the relations deduced
for the system of cross-ratios of an n-pointed tree of projectives lines in the
above subsection.

PROPOSITION 1. Let ¢=(q,),ev,> 9,: =a,/b,(q), be a k-valued point of B,.
Then there exists a stable n-pointed tree of projective lines (C, ¢) over k such
that

MC p)=q.

The curve (C, ¢) is unique up to isomorphisms.

PROOF. 1) Let d=(d,;,d, d;) a tripel of distinct elements in 7. For any i e n,
i#d;, (d,i)=diis a quadrupel in V. If i=d, (resp. i=d,, resp. i =d,) we define
gz as 0 (resp. oo, resp. 1).

We define an equivalence relation S onm

I~ iff gui=qq;.

The following properties hold:

a) If D'=(d},d;,d3) is a permutation of d, then 5=

b) If dj—dvdj for 1=j=<3, then 7=

) If ¢} is not ~-equivalent to d, and d, then ~ =~ where d'=(d,, dy, d})

d) If d3 is in the g-equivalence class of d| (resp. d,), then the union of all
the equivalence classes relative to

2]

not containing d, (resp. d,) is in one

equivalence class with respect to = where d'=(d,,d,,d3), where dj#d,,
resp. di#d,.
We now prove these properties:

Ad a) Let 4,: =a,/b,. From the set of relations (1), (2) for B, one can
easily deduce the following relations:

1

Vabyqby
2030104 1_/101020304

Au;vzvlv‘, =1- /10,020304
A

Uy — 1= 4

VU530

FREUN
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1- Avlvzu3u4

A

D30 by T
D Uyl

This shows that g,;= g, if and only if g4,=q4;.

Ad b) Assume first that di=d;, d;=d,. Then g4 ,4,4,=1. From relation
(3) we get
Qd,d,dsi " Dd dydydy = dddydsi -
This shows that gy 4,4 = a,a,q5; If and only if g4 =g,;. Thus

—~ T —

d  didyd;
and b) proved.

I= m— = e~ = ~

ddid, didid;  didsd, didsd; o

Ad ¢) The proof is similar to the one for b). g4z#0 and #oo and
Qa,dodsi* Gai = Qaa; Which shows that gg;=qy; if and only if gg4,4=qa,a,a;;-

Ad d) Let d; be in the ;—equivalence class of d;. Then g4, =0. Again

Qa,d,d;i* 9di = Qad, = 0.

For any / such that g;#0 we get g4 4,4,;,=0 which shows that all / not 5
equivalent to d; are in one equivalence class with respect to Tra
In the same way one proves the result if ggy, = . ne

2) As a corollary to the properties a)-d) one gets: there are tripels de D,
such that all the equivalence classes with respect to 5 except one class contain
just one element.

3) We now prove the proposition by induction on #. The induction starts
with n=4. This case is quite simple.

We pick a triple d such that all equivalence classes except one with respect
to > consist of one element only.

We may assume that one class is {n} because if ¢ is a permutation of x, then

g = (qL,))ue vy dy = 4 6(0,)0(0;)0(v3)0(vg) 3

is also a k-valued point of B,. If ¢~ '(/)=n then {n} is an o 'd;, 67'd,,
o~ 'ds-equivalence class relative to the point g’. The curves for ¢ and g’ will be
the same and the markings are transformed through o.

We consider two cases.

Case 1: We assume that there are =4 equivalence classes relative to =
Then we may assume that d;#n by property 1d). We consider ¢": =(q,)yev,_,
which is obviously a k-valued point of B, _;. By the induction hypothesis we
obtain a (n— 1)-pointed curve (C’, ¢") with A(C’,¢')=¢q’. Let L be the median
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component of C’ with respect to d and let ¢,, be that point of L such that the
cross-ratio of the sequence of points 7;(¢4,), 7.(9g,), 7L(Pa,)s ¢» is equal to
4a,d,4,» Which is different from 0, oo, 1 and also different from gy for any
i#n because there is no i#n equivalent to n relative to ot Thus ¢, # ;. (¢;)
for i<n and ¢,#¢; for i<n.

Let C:=C', ¢=(@i,....0;-1.0,)- Then (C, ¢) is an n-pointed tree of pro-
jective lines. One checks easily that A(C, ¢)=gq.

Case 2:  Assume now that there are just three equivalence classes relative to
~. Then one of the d; must be equal to n. Let dy=n. We assume that {d,} is
also an equivalence class relative to ~ and that d,=n—1. Let again (C’, ¢') be
a (n—1)-pointed curve such that A(C,¢")=¢": =(g,)e v,_, and let L be the
component of C’ on which ¢'(d,,_,) is sitting. Let C: =C’'UL’" where L’ is an
extra projective line over k& which meets C’ only in the point ¢, _, and such
that L'NC’'={¢,_;} is an ordinary double point of C. Let ¢,_,, ¢, be two
distinct k-rational ploints on L' different from ¢,,_,. Then C is a tree of pro-
jective lines over k and @ : =(¢{,...,P;_2 @,_1,P,) is a marking of C which
makes (C, ¢) into a stable n-pointed tree of lines. One checks easily that
MG, 9)=q.

4) Uniqueness follows because in the construction of (C, ¢) in 3) the (n - 1)-
pointed curve (C’, ¢") is unique and there is no freedom in the choice of ¢, in
case 1 while in case 2 there is a unique isomorphism & on C which is the identity
on C’CC and which sends ¢,_,, ¢, to any pair of distinct k-rational points of

L'={¢,_}-

(1.5) Let (T, ) be a n-marked stable tree and ¢ a vertex of T. We define
an equivalence relation ~ onn:

i—;j iff i=j or w(i) can be connected to w(j) by a path in T
not passing through ¢.

If (G, ¢) is a n-pointed tree of projective lines and (7, ) the combinatorial type

of (C, ¢), then the system of crossratios g =(g,) = A(C, ¢) satisfies the following
equations:

g,=0 forall ve V,

where Vr: ={(v},05,05,0) € V), 1 vy ~ U Uy and v; are not ~ -equivalent to u;
for some t€ Ty}.

This is easily proved because T == for d=(v,v,,03)€D,. The median
component L, is just the vertex ¢, if Uy # V3.

In order to formulate a converse statement we need the concept of con-
tractions.

DEFINITION. Let (T,y), (T',w’) be n-marked stable trees and ¢: T'~T q
mapping. & is called a contraction if
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(1) e(Tg)=Ty and ecy'=y

(2) e~ Y¢) is a subtree of T" for any vertex t of T

(3) If t is an endpoint of ke T}, then &(t) is an endpoint of e(k) if &(k) is an
edge or e(t)=¢e(k).

It is easy to show that if ¢: (T, y")—(T,y) is a contraction of stable n-
marked trees, then ¢ is uniquely determined by (7%, v"), (T, v).
Let now B(T, ) be the closed subscheme of B, given by the equations

21,=0

forall ve Vy.

If A(C, ¢) = g is a k-valued point of B(T, y) and if (T", ') is the combinatorial
type of (C, @), then (T, w’) contracts to (7, ). In general (7", ") will be dif-
ferent from (T, y). It is easy to see that B(T", ') is a closed subscheme of
B(T,y) if (T, y') contracts to (T, y).

Let B(T,y)* be the open subscheme of B(T, ) which is the complement
of the union of all the B(T" y") for which (T",w’) contract to (7,y) and

(T, w) #(T, w).

PROPOSITION 2. B(T, ) is canonically isomorphic to H!eTo B, - Moreover
B(T, y)* is isomorphic 10 [1,.;, B& , where By =B(T° y°)* where (T, ") is
the unique n-marked tree possessing just one vertex and val t : = # {edges of
T adjacent to t} + #{y (1)}

PROOF. We start the proof of the first statement by examining the special
case where # Ty=2, say To={fo,#;}, where w ~'(t;)={1,...,k} and w~'(t,) =
={k+1,...,n}.

Let # denote the sheaf of ideals defining B=B(y, T). As a scheme B equals
(B,(0p /¥)|B). We will construct morphisms g:B—By,;xXB,_;,; and
fiB,, 1 %XB,_;,1—B such that fog is the identity.

The first map g is obtained from h=(h,hy): B,= B, XB,_;, by re-
striction to B. Here A, is the projection induced by the natural injection
k+1-—n and A, is induced by the injection n—k+ 1—n given by i—i+k—1.
The second morphism is obtained from a morphism e: B, XB,_ ;.
—=1II,cs, P, given in coordinates e, by the following formulas:

v =(0y, Uy, U3, Ug), With v; <V, <v3<y

if vy <vy,<v3<v,<k+1 then e, is the projection on the factor P, of B, ;.

if vy<v,<v3<k+1=<v, then e, is the projection of B,.; on its factor
n:)(u,,uz,u3,k+1)-

if vy <v,<k+1=sv3<v, then e, is the constant map with image 1.

if v;<k+1=v,<v3<v, then e, is the projection of B, _, . on its factor P,
with w=(1,0,—k+1Lvs—k+1,0,—k+1).

if k+1=<v;<v,<v3<v, then ¢, is the projection of B,_,,, on its factor P,
with w=(;—k+Lvo,—k+1Lv3-k+1,0,-k+1).
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The group S, acts on P; in the well known way:

S,—Ss/K=S; where K is the group of Klein and S; acts on [P and permutes
0, o, 1. For g€ S, we write & for the corresponding automorphism of P.

The definition of the e,’s is now completed by:

=G0
e(vau), Vaay Va3 Vo)) o eUh Uz, U3, Uy

where v;<u,<v3<v4 and g€ S;.

A straightforward verification shows that the image of e lies in B,C
ClHl,cy, Py- The equation ¢,=1 for U <Uy<k+1=v;<uy, yields that the
image of e lies in (B, @5 /¥ ). Another trivial verification shows that f and g
are each others inverses.

We consider now B(T, ) where # To=3. Let #, be an end vertex of the tree
and put S=y ~!(¢;). Consider the marked tree (7", y’) such that 7" has two
vertics #; and ¢{ and such that y'(S)=¢) and y'(S*)=1¢{, where S*=pn-S.

Then we have B(T,yw)C B(T", w’) (meaning the opposite inclusion of the
sheaves of ideals). The isomorphism

B(T", w")>Byay ;X By _va1 541

induces an isomorphism of B(7,y) with the closed subscheme B, ;X
X B(T",w"). This (T",y") is constructed from (7,y) as follows. For con-
venience we suppose that S={k+1,...,n}; put (f,7) for the only edge in
T with endpoint f,. Then 7” is obtained from 7 by deleting #,. Further
" k+1-(T"), is defined by w"(/)=w(/) for i<k and y"(k+1)=1,.
Induction now finishes the proof.
The proof of the second statement proceeds in the same way.

COROLLARY. Let k be a field with q elements and B(T, w)(k) the set of k-
valued points of the scheme B(T, y). Then
#B(T,y)k)= T (g=2“T¥)(g=3)T¥). . (g—n+2)«T¥)
(T
where ri(T', ') is the number of vertices of (T",w’) of valence =i and where

the summation has to be extended over the set of isomorphism classes of stable
n-marked trees contracting to (T, ).

PROOF. #B;(k)=(q—2)(g—3)-...-(g—n+2) because a point in B}(k) is
given by a projective line C over £ and an injective mapping ¢ : n—C(k). But
(C, ¢) and (C, ¢’) are isomorphic if and only if there is a fractional linear trans-
formation o : C—C such that acp=¢". If ¢(i)=¢’(i) for 1<i=<3, then (C, ¢)
is isomorphic to (C, ¢’) only if ¢ =¢’. The number of possibilities to pick the
points ¢(4), ..., ¢(n) is therefore

@-2)g-3)-...-(g—n+2).

Now we use the fact that B(T, )= UB(T’, ') * where the union is over the set
of n-marked stable trees contracting to (7, ) and that
B(T,y)*= 1[I BJy,.
teT}h
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Thus
#B(T,y' Y k)= 11 (@-2)g—3)-...-((g—~(val ) +2))=

teTy

=(g—2)y TV . (g-n+2)TV),

2. STABLE »-POINTED TREES

(2.1) Let m: X—S be a proper and flat morphism of noetherian schemes and
¢ =(¢,,...,9,) be a n-tupel of morphisms S—X.

DEFINITION. The pair (7, ¢) is called a stable n-pointed tree of projective lines
over S, if
(1) nog;=idg for all i
(2) for every point s€ S the fibre X with the points ¢(s),...,9,(s) on it is a
stable n-pointed tree of projective lines over the field k(s) of values at s.
We will show that the system of cross-ratios A(X, ¢) is 2 morphism on S.

PROPOSITION 3. There is a morphism u: S—P" such that u(s) is the system
of cross-ratios of the n-pointed tree (X, ¢) of projective lines over k(s).

The proof is achieved with the help of the dualizing sheaf wy,g, see [DM],
[Kn], p. 163 and will be given in some detail at the end of (2.3). It parallels the
proofs in [Kn] about the properties of the contraction; it is however more
elementary as we only treat a special case compared to the setting in [Kn].

(2.2) In this subsection we give the construction of the dualizing sheaf for
trees of projective lines.

LEMMA 1. Let X—— S be a n-pointed tree of projective lines. Then ¢;(S) is
a divisor in X.

PROOF. Put ¢=¢;. The set ¢(S)CX is closed because ¢(S)=¢on(X) and
¢on: X— Xisan S-morphism. Apply now [H] p. 104, ex. 4.4. We have to find
for every point x=¢(s) with se€ S a neighbourhood U of x and a non-zero-
divisor ¢ on U such that the ideal of UN@(S) equals (). One knows:
ﬁS,sL ﬁX,x_L @S,s:id and ﬁXS,xz @X,x/n *(’LnS,s)@X,X'

The local ring @ _, has coefficient field k(s) and is regular of dimension 1.
Choose a parameter of Oy , and a pre-image femy , with ¢ *(r)=0. Then
n*(mg )U {7} generates the maximal ideal of @y ,. The ringhomomorphism
o @S’S[[T}]—»@AX’X given by Y a,7"— Y n*(a,)t" is then surjective. Hence
ker ¢ *= té’X,x and by flatness ker ¢ *=¢0, ,. We will show that ¢ is an iso-
morphism and so in particular 7 is @ non-zero-divisor.

Let I=ker g and suppose that 7+0, Take b= 1 minimal such that 7 contains
an element /=Y, _, g, T' with a,#0. Let I, denote the ideal in @AS, s consisting
of the b™-coefficients of the elements in I.

140



The exact sequence 07— o ssi71— o x,x—0 remains exact after — @ g, k(s)
because Oy , is flat over O . This implies /&®k(s)=0 and so =15 1. Then
also I = I, and Nakayama’s lemma implies /,=0. This is a contradiction
and so ¢ is an isomorphism.

Choose a neighbourhood W of x in X, put U=¢ " 'W and V=WNz~'U.
Then V2 @(U) and it follows that n(V)=U since ng =id. One finds ring-
homomorphisms

Is(U) =2 Ox(V) — 5> Os(U) = id.

Taking lign, one finds ker (li_r)n ¢7)=(t). For a suitable V one has already

v %
ker ¢;=(f) and ¢ is a non-zero-divisor on V. It follows that ¢(U)=
={ve V|H{{v)=0} and (¢) =the ideal of ¢(U)C V. The proves the lemma.

LEMMA 2. Let xe X be a singular point of the fibre X, with s=mn(x). Then
éx,x’:‘— O 1A, B/ ap—m for some element m € ifig ;.

PROOF. 0 x, x=k(3)]a, 5]]/(55) and from this one finds a surjective ringhomo-
morphism O ([, Bl (4p_m— Oy with a(A)=a, 6B)=b; ¢ is s
linear; m e tig ;[A, B] and a,b map to 4, b in € x,x- After changing the formal
variables A and B one can arrange that m e ffig ;. Put /=ker ¢ and represent
each fel as
f=fo+ ¥ a,A"+ Y b,B" with fo,a, b, e Og,.
nzl mz1

The collection of all coefficients f, (for fel) form an ideal I,C és, s Let I
denote the ideal of the coefficients a, (for feI) and let I,, denote the ideal of
the coefficients b,,.

As in lemma 1 flatness implies /=15 1. Let J denote any of the ideals I,

ndor I,. Then J=mg ;J and by Nakayama J=0. Hence /=0 and the lemma
is proved.

LEMMA 3. Let n: X— S be a n-pointed tree of projective lines. There exists an
invertible sheaf w=wx,s on X such that for every fibre a: X,~X one has
a*w=wy ) =the dualizing sheaf on X; over k(s).

PROOF. The sheaf of differentials Qg satisfies: 2y/5 , is a free module of
rank 1 if x is a regular point of its fibre and Q24,5 ; has two generators and one
relation if x is a singular point of its fibre. The last statement follows from
lemma 2, namely using the above notation: Qs , is generated by da, db and
has the one relation bde + adb=0.

This implies that Q4,5 has locally on X a 2-step resolution

08—t &—2 0, -0
with &, €, free €x-modules of rank 1 and 2. One forms locally w=A%8,®

® ¢/, and a morphism Qy,s—w. The morphism is defined as follows: let Uy
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generated €, and let vj denote the dual element, generating &7, let ae Qx5
have preimage b e &,. Then the image of a in w is given by (¢Av)®v{. One
can show that the local construction above glues over all of X and that the
construction permutes with base-change. The construction above carried out
for X, yields the dualizing sheaf wy (). This proves the lemma.

(2.3) We study now the contraction morphism of a n-pointed tree of lines; it
comes into the game if one forgets some of the marking sections ¢;.

LEMMA 4. Let X—S be a n-pointed tree and let ¥ denote the line bundie
wX/S(<p1(S) +...+0,(S)). Then:

1) R'n¥%=0 fori=1.

2) n«& is a vector bundle on S of rank n—1.

3) X3Proj. ( @ m(&™).

m=0

PROOF. The proof is a simplified version of the proof of Thm. 1.8 in [Kn].
We may assume that S is affine. We want to use the theorem on formal
functions ([H] p. 277 and remark 11.1.1. on p. 279):

(R4 2);3lm H'(X,, Z,)

where s€ S and where

X=X X g spec (R,,) —— X with R,,= O /mi}' and &, =v*%.
First we calculate H'(X,, %;). Consider the exact sequence:

0%y~ GLDQO|L—> E:)Séojd—’o

when L denotes the components of X, and where d denotes the double points
of X,. The cohomology of this sequence is:

0= HOXy, £0) —— @ HOL, Zo|L) 2 @ Lo(d)~ H' (X, Z5)~>
L d
> @HL, ZoL)~ -

It is easily seen that H(L, %,|L)=0 for i>1 and that § is surjective. Hence
H%X,y, %,) has dimension n—1 and H'(Xy, £4)=0 for i>0.

Next we consider #,, on X,,. The cohomology of &, can be calculated with
a Cech-complex 0— @£, (U)~> DL, (UNU)— ---.

Let H°, H! etc. denote the cohomology groups of this complex. Then H' =0
for i=2 because dim ¥£,,=1. Further one has exact sequences:

0= H(Xo, £0)~H®g, Ro=Tor "(H', R)—~0
0~ H'(Xo, £p)~ H'®@r_Ro—Tor"(H? Rp)—0.

One knows that H'! is a finitely generated R,-module. The second exact
sequences implies now H'=0. The first sequence implies H%(Xy, %)=
SH'®g, Ro.

142



The augmented Cech-complex
OQHO_’ @Qm(Ul)_’ @Qm(Utn l].j)_)

is now exact.

Since X/8 is flat, each term &, (U;NU;N --+) is a flat R,,-module. It follows
that H® is a flat R,,-module. Since R,, is a local ring it follows that H is a free
R, -module of rank n—1.

Taking projective limits, one finds (R'n+Z ). =0 for i>0 and so R'n % =0
for i=1. Further (7+¥)} is a free module of rank n—1 and so 7.& is a
vector bundle on S of rank n—1.

INow we prove the last part of the lemma. We take S affine and small enough
such that n.& is free of rank (n—1). Consider the graded @(S)-algebra

A= @ HX LM = @ HS1(LO)= @ A,
m=0 mz0 mz=0

We note the following properties of :

(a) & generates & over O(S). Indeed let & C & be generated by , then
A,/ B, is a finitely generated €(S)-module for every m. For every se S, £ | X,
is very ample and so -#,,/%,, & k(s)=0. This shows &= &,

(b) s a free €(S) module with free basis fj, ..., f,-,. Then

n-2

X= U {xeX|fi(x)+0}.

Indeed, the analogous statement for any fibre Xj is true.
From (a) and (b) it follows that Proj (-«/) is a closed subspace YC P22 and
a well defined morphism

S
We note further:
(¢) o is bijective. Indeed every g;: X;— Y is an isomorphism.
(d) Oy 40— Oy is an isomorphism for every xe X.
Indeed let 5= n(x), then one has isomorphisms

@‘Y,a(x)/’_’hs@)’, a(x):’ ﬁX,x/’ﬁsﬁX,x-

It followsAat once tllat G * is surjective. Let I denote the kernel of 6* The
flatness of @y , over O implies Ifig ;=1 and so IM =1 where M denotes the
maximal ideal of Oy, ... From [}, M™=0 it follows that /=0.

From (d) one concludes that @y ,,,~ @, is an isomorphism and this
finishes the proof that ¢ : X—Y is an isomorphism.

COROLLARY. Let X—S8 be a stable 3-pointed tree, then there exists a unique
isomorphism
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X = PxS
S
such that oo ¢, (i=1,2,3) are the sections S—P xS given by 0, o and 1.

PROOF. We only need to verify this for S affine and small enough such that
7+ is free of rank 2 over S. Then lemma 4 yields an isomorphism which can
be normalized in a unique way such that go¢; is the section 0, o, or 1 for
i=1,2o0r3.

LEMMA 5. (Contraction) Let n : X— S be a n-pointed stable tree of projective
lines. Let &€, =wy,{(@1(S)+ -+ + 0,_1(5)). The morphism c,

X ———— X'=Proj ( @ (£ E™))

N T

has the following properties:

(1) X'>S with cog; (i=1,...,n—1) is a (n~ 1)-pointed stable tree.
(2) c is a proper morphism and is called the contraction morphism.
(3) ¢, X, X! is an isomorphism except in the following two cases:

PROOF. One may assume that S is affine and small enough. As in Lemma 4
one shows that R'n,%,=0 for i>0 and n.¥, is a free Og-module of rank
n—2. Similarly one shows that

A'= @ HXLP™
mz=0
is generated by the terms 7. Further, each «#,, is a projective €(S)-module.

Hence X ’—~———>S is proper and flat. One has to see that c: X—X’ is well-
defined, that amounts to showing that

n-3

X=|J {xeX|fix)#0}
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where fo, ..., f,_3 is a free basis of the €(S)-module HYX,%,). For the
calculation of the fibres one has to calculate explicitely
Proj ( @ H(X, 22" X)).
m=0

This is easily done and one finds that X’— S is an (n — 1)-tree and moreover one
finds property (3). Lemma 5 is proved.

Now we can give the proof of Proposition 3. Fix v=(vj, vy, v5,045) € V,,.
There is a uniquely defined morphism u, : S— P defined as follows: contract in
some order all the sections ¢; with i # v, v, v3 of X—S. This yields a diagram

c

X— X

DU3Ys PXxS
where ¢ is the isomorphism of the corollary. Then u,: = pegocog, where
p is the projection PxS—P. The morphism u of proposition 3 is clearly

u= HueV" U,.

3. THE UNIVERSAL STABLE n-POINTED TREE
In this section we study properties of the projection

n:=n,:B,,,78B,,

where B, is the closed subscheme of P" introduced in (1.4). First we show
that the fibres of 7 are stable n-pointed trees, thus n is a family of stable
n-pointed trees. The main result of this section (Proposition 4) is that this
family is in fact the universal family of stable n-pointed trees of projective lines.
In the proof we use a covering of B, by open affine subsets of A"~? which
also shows that B, is nonsingular.

We also define the fibre product

Z,:=B,Xy B,

formed with respect to two different projections B,—B,_;. We determine the
singularities of Z, and show that it is a contraction of B, , ;. The section ends
with examples for small n.

(3.1) LEMMA 1. Let k be a field and q € B, (k). Then the fibre
B: =B, Xp Speck
is isomorphic to the stable n-pointed tree C: = C(q) over k associated with q

in Prop. 1.

PROOF. For the k-valued points we find a bijective map ¢ : B(k)— C(k) easily
as follows: Let ¢’ : Spec k— B be a point in B(k) and let C’ be the stable (n+1)-
pointed tree over k associated with g’. Then omitting the point ¢,,, on C’

induces a contraction map p : C'—C. Now define o(q’) as the image of ¢, ,
under p.
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This idea leads to a proof of the proposition in the following way: Let & be
the set of components of C. For every L € € we can find d* = (df, df,d¥)e D,
such that L is the median component relative to d*. By (1.1) the morphism
Agr: C—P, =Pl is an isomorphism on L. Thus the product map

Bi= [l Ap:C—> [ Po=:P%
Le¥ LeZ2

is an isomorphism of C onto its image C in =

If we consider A, as (inhomogeneous) coordinate on P, then f(L) is given
by the equations A =qgu;, L'€ &, L'#L, where ie {d}f,d},df} is chosen in
such a way that the g -equivalence class of / contains at least two of the indices
dt, d¥, df: this condition ensures that 7;.(¢;) =7, (L), 50 ggr;=Aqu(@;) is the
constant that A, takes on the component L.

Now for every L € £ the map Ugiglatnsi* B, .~ P defined in (2.3) induces
a morphism y; : B—P;. We claim that the product morphism

yr= TI y.:B->P?
Le¥%

has its image in C. Indeed if &’ is a field extension of k and ¢’ € B(k”’) then by
construction y(g’)=pB°ca(q’), where «:B(k’)—>C(k’) is defined as at the
beginning of the proof. To show that the morphism ¢: =~ 'oy: B-Cis an
isomorphism we construct a map J: P%— PV and show that &(C) is con-
tained in B, considered as subspace of P¥»+! by the canonical embedding of
B, . xSpec k into P"n1 Let ve V,,,. If ve V,, & is defined by sending 1, to
gq,. Otherwise we may after permutation assume v4=n+1. Let L : =L, denote
the median component of C with respect to v;, v;, v3, and let d: =d*. Then
there is a unique automorphism 7, of P; which maps A,(7;(@¢(v;))), i=1,2,3
to 0, o, and 1, resp. Now let § be given by sending A, to t,°4,. By con-
struction it is clear that § maps C onto B and that §|C and y are mutually
inverse, so a: = 'oy: B—C is an isomorphism.

(3.2) ForgeB,,let
U,: ={A,#0 for all ve V,, such that 4,(gq)#0}.

U, is an affine open subset of B, as for any ve V, ., we have U,C{4,#0}
or U,C{A,#}. Therefore any v there is &(v)€ { + 1, — 1} such that

U= [] {0}
veVyi

This clearly is the intersection of an open affine subset of P"=+! with B, ;.

Let 0:=0p | be the structure sheaf on B, ;. Then O(U,) is a Z-algebra
generated by the A,, ve V), , such that 1,(g)# <. If moreover 4,(g)#0 then
Ay is a unit in O(U,).

Let (C, ¢) be the stable (7 + 1)-pointed tree of projective lines associated with
g and let (7, y) be the combinatorial type of (C, ). Then U, consists of all
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q'€ B, ., whose associated combinatorial type is a contraction of (7, ). Thus
Uq =B,.1—UB(T,y’)

where the union is taken over all (T, ) to which (7, ) cannot be contracted.
In particular, U, depends only on (7 ).

LEMMA 2. Let p: =n(q). Then n(U,)=U,, and we have the following cases:
() @,+, lies on a component of valence =4. Then for deD, such that
Gni1€Lg, OUy,) is a localisation of O(Up)[Ag 1]
(ii) ¢, lies on an end component L of valence 3. Choose d € D, such that L,
intersects L and ¢4, € L. Again O(U,) is a localisation of O(Up)[Ag 1]
(iii) ¢, lies on a component L of valence 3 that meets two other components
L, L"
Choose deV, such that L'=Lggpn.1, L"=Lggn.y. Then for x: =
=Agadne1 d ¥ =Agagns1, we have x-y=2iggg4€0U,), and
O(U,) is a localisation of O(U,)lx, y].

PROOF. Let m: =n+1, We shall show that for any eeD, such that
Aem(@) # 00 we have A, € O(U,)[A4,][1/f] for a suitable f. We give the proof
for the first case:

1. If e is a permutation of d, then A,,(g)#c, and 4., is one of the
functions A3,, (1= Agn) =} (Agml = Agm) =L
Thus A, is contained in

A= ﬁ(Up)['ldm] [(Agm(1 = Agm)) ™ 1]-

2. Let e=d,d,e; such that e; is not ;—equivalent to d, or d, relative to
(T, w). Then Ag, € O(U,)*, and from

'{d,dze3m : Ade; =Ldm

we get A, €A4;.

3. Let e define the same equivalence relation as d, ~ = = Then we can
apply step 2 and permutation several times to transform e into 4. The per-
mutations make a further localisation necessary, one sees that

1
A€ A : =A1[— :
S

where f: = H(/ldes-—ldm), the product being taken over all e; with Tre =3
19263

4. Let e=ddyey; if ;< then Aen(g)=o0, 50 let ;~d,. From
/ld,dzqd} = Ad_,dlzd3e3 »=0
we see that Ag 4.4 € O(Uy). Thus A, =2454.4 €A;.
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5. For general e we have to apply step 4, permutation, and step 3 to show
that 4., € A.

The same proof holds for cases (ii) and (iii) with the following difference
in the third case: if the median component of e is in the same connected
component of C~L as L’ (resp. L") one shows that 4,, is contained in a
localisation of @(U,)[x] (resp. of O(U,)[y)).

By induction on # one proves the following consequences of Lemma 2:

COROLLARY. (i) B, can be covered by open affine subsets of A" 3.
(ii) B, is nonsingular.
(i) n:B,. B, is flat.

Note that to prove (i) we have to use all the projections B, ,,— B, with
respect to the different indices. Equivalently we could use the obvious action
of the symmetric group S,., on B, to obtain the desired covering.

(3.3) There are natural sections gy,...,0, to our projection n: B, .~ B, : g;
is the morphism defined by sending A{**V to A if ve V, and Ay v+ 10
Ay vy if 1€ {Vy,v5,v3} and to 0, o and 1 if i=v;, v, and v;, respectively. By
(3.1) and (3.2) these sections make # : B, ,— B, into a stable n-pointed tree of
projective lines.

PROPOSITION 4. 7 : B, =B, is the universal stable n-pointed tree of pro-
Jective lines.

This means that the functor which associates with every noetherian scheme
S the set of stable n-pointed trees of projective lines over S, is represented
by B,.

In other words B, is a fine moduli space for stable n-pointed trees of pro-
jective lines.

PROOF. We have to show that for any stable #-pointed tree of projective lines
S XS there is a unique morphism u : S— B, such that X becomes isomorphic
to B, XpS.

By Prop. 3 we have a morphism u : S—P"». It clearly factors through B,,
so we consider u# as a morphism u:S—B,,.

For any triple d=(d;,d,,d:)e D we have a corresponding contraction
od): X— X, of X and a commutative diagram:

d id,
g@): X—22 x 5p,xs—2Y p «B

n

u
S . B,

The product [],_, g(d): X~ 1], ., Psx B, factors over B, ,,. Here B, is
seen as a closed subscheme of [[P;xB,. The corresponding g: X—B,
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satisfies rog=wucfand gog;=0;°u for i=1,...,n. Moreover g induces on any
component of X, s€S, either a constant map or an isomorphism. As the
fibre X is a stable n-pointed tree over k(s), and as g preserves the marked
points, it cannot map a component onto a point. This shows that the induced
morphism X—B,,;Xp S is an isomorphism. We still have to prove the
uniqueness of #. Suppose that u,:S—B, and a compatible isomorphism
X—B, XS are given. The induced g; : X— B, satisfies again:

(i) nogy=u,°f and g,°¢,=0,°u, for i=1,...,n.

(i1) g; induces for any s€ S on any component of X either a constant map or

an isomorphism,

We fix a triple d=(vy, v, v3) and we contract both X and B, , with respect
to all i¢ {v),v,,v3}. Since contraction commutes with base-change we find a
morphism g, ;, between the contractions X, and (B, ,);. Now X is identified
with P; X S such that ®y,» Oy, 9y, become the sections 0, o and 1, and we
have a similar identification (B, )s=P,xB,. Then g, 4= (idp,u;). For any
vi¢{v,v,v3} one has that priog; ,o¢, :S—P, coincides with u
Hence u=u, and g=g; since g ;= g, for all d.

AN

(3.4) We fix two indices j, j such that | <=i<j=<n, and form the fibre product
Z:=Z}: =B,xy B,

with respect to the projections 7t,i, and 7z,{ induced by omitting the index |
and j, respectively.
The projection

pri: Z—B,

onto the first factor is a stable (n — 1)-pointed tree.

We also have an extra section, namely the diagonal map 4 : B,~Z. In this
situation Knudsen defines in [Kn], § 2 the stabilization of pr, : Z—B, with
respect to 4. We claim that this stabilization is isomorphic to z : B, ,—B,,. By
[Kn], Cor. 2.6 we can equivalently show that Z is isomorphic to the contraction
of 7: B, ,;—>B, with respect to the i-th section ;. Now the projections 7/,

and it} from B, to B, satisfy

J [ | Jj+1
Oy =Tp®Mpyy-

Hence we get a proper morphism
f: Bn+ 1_>Z'

Now for any ge B, the fibre n7(g): =B, .1 Xp, Spec k(q) is isomorphic to
the n-pointed tree C(g) by lemma 1.

On the other hand, pr;'(g) is isomorphic to () ~'(r’(g)), and this is in fact
the contraction of C(g) with respect to the i-th point.

The above remark shows in particular that f: B, .,—Z is birational. More
precisely, fis an isomorphism on the open set U: =B, ,1— UB(T, ), where
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the union is taken over all stable (n+ 1)-marked trees of the following two
types.

(a) . . . ICn+1-{ij+1},
I Lj+1 n+1-1

(b) ———— ken+1-{ij+1}.
Lji+1L,k n+l1-{ij+1,k}

The fibre over a point in Z—f(U) is a projective line. Note that a subspace
B(T, ) of type (b) has codimension 1 in B, ,; whereas a subspace of type (a)
has codimension 2, so their images in Z have codimension 2 and 3, resp.

There is no (n + I)-marked tree which can be contracted to different (7, y)
of type (a) or (b), so the union in the definition of U is disjoint.

Although B, and B,,_, are smooth varieties by (3.2) the morphism 7tf, is not
smooth because of the singularities in the fibres. So Z may have singularities.
In fact we have

PROPOSITION 5. The singular set of Z is S : = Uf(B(T, v)) where the union is
taken over all (T, y) of type (a).

PROOF. We first show that the singularities of Z are contained in S. Since f
is biregular on U, it suffices to show that f(B(7, v)) is nonsingular for (7, y)
of type (b). But any point z in such a set is mapped into B,*_; by nf, opry, SO
it lies in a smooth fibre. Hence we can find an open V'C B, containing pr,(z)
such that 7|V is smooth. Then pr,|Ux B,_,Bn is also smooth, and thus z is a
regular point of Z.

To prove that any ze S is in fact singular we calculate the local ring €5
for simplicity we assume i =4, j=5, and the combinatorial type of z, : =pr(2)
and z,: =pry(2) is

1,2,1 4 3,5 1,2,1 S 3,4
° . . and . ° ® resp.

Here 1: =n-35; one easily reduces to the case n=35, so we may take [ to be
empty.

The proof of lemma 2 shows that we may take = : Aj34 and f: =134 as
local coordinates in z; and y : =35, and d : = 345 as local coordinates in z,.
(We write A and u in order to distinguish the two copies of Bs).

Now 7% is given by sending the coordinate v = v,,34 of B, onto 4,335, whereas
73 is given by v—u54. In local coordinates we have Ap35=1-—af and
Uizzs=1-—ypd. Thus

0‘2, z= Z[as ﬂv Vs 6]/(aﬁ_ }’5),

and Z has a ‘‘conic’’ singularity in z.
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COROLLARY. The singular locus S of Z has codimension 3. Note that
S B, .1 Z is a desingularization of Z which is not obtained by blowing up
the singular locus.

EXAMPLES. 1) From the definition we see that B,=P'.

2) Bsis the blowing up of P!x P! =B, x B, at the three points (0,0), (1,1)
and (oo, o) that correspond respectively to the following 4-pointed trees (the
same on both components):

b
E
o
e
)
o

3) BsXp,Bs has three singular points: namely let the fibre product be
defined by 7} and =¥; then the projection of the singular points s,, s, s; on
the two factors Bs are

2 x x 4 2 x X 5
A
1 x ¥ 3 1 x x 3
5 4
3 x kK 4 3 x X 5
55
1 x x 2 1 x x 2
5 4
4 x x 3 5 x x 3
§53:
1 x x 2 1 x x 2
5 4
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The map f: B¢—Z=Z% has nontrivial fibres over s,, s,, 53, and over the four
disjoint projective lines

5 F 4 x
Ly:
1 x I x
2 3 4 2 3 5
5 X 4 x
L,:
2 x 2 x
1 3 4 1 3 5
5 x 4 x
L3:
3 x 3 x
1 2 4 1 2 5
5 5 x
Ly:
4 4 x
1 2 .3 1 2 3
yd

4. PICARD GROUP AND BETTI NUMBERS OF B,,
(4.1) PROPOSITION 6. Pic (B,) is a free group of rank

2"—1—(n+1)—"("2"3).

PROOF. 1) For any SCn with 2< #S=<n—2 we denote by D(S) the divisor
B(T, ) where T has two vertices £, f, and ¢~ !(#;)=S, ¢ " 1(t,)=S5*: =n-S8.
From Proposition 2 in (1.5) and the Corollary in (3.2) it follows that D(S) is
an irreducible divisor.

It is obvious from the definition that D(S)=D(T) if and only if S=T or
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S=T*=n~-T, and that the irreducible components of B, — B, are exactly
the subschemes of the form D(S) because any n-marked tree (7", ') with more
than one vertex contracts to a n-marked tree with two vertices (7, y) and
B(T", w") S B(T, w), see (1.5).

D(S)ND(T)=+9 if and only if one of the following cases occurs: SC7T or
TCSor SCT*or T*CS because if D(S)YND(T)+4d then there is a n-marked
tree (7, y) with =3 vertices which contracts to the n-marked trees belonging to
the subsets S and T of n.

Now we prove that the divisor of the rational function ’lvlz;zum is equal to

Y D©®- ¥ D©S

U, U4€ S v, U3ES
vy, U3 S* Uy, g ES*

The function 4,,,,.,, has no zeros nor poles in B,’. Further Av,ppom, 18 ZETO ON
D(S) if and only if v,v4eS and v,,0;¢ 8 (or v, v,¢S and vy, ;€ S) and
Ay, Das a pole on D(S) if and only if v;,v3€S and vy, v4¢ S (or v, 03¢ S
and v, v, € 5). We only have to show that all the muitiplicities are 1 or (- 1).
Fix some SCN with 2< #S=n—2. Then D(S)* is given by

Awea=01f a,de S and b,c¢ S
Agpeg#0, 1, oo if #{a,b,c,d}NS=3
orif #{a,b,c,d}NS=1.
Let U denote the open subset of B, given by A,,#0, 1, o if
#{a,b,c,d}NS=3 or #{a,b,c,d}NS=<1.

Clearly D(S)*=UND(S).

Fix now a, b, ¢, d with ¢,de S and b,c&S.

Let vy, 0,5, 03,04 also satisfy v;,v,€S and vy, v;¢S. Consider the following
equations:

A A

0120304 = Aujuause” Au,vzcv“

luluzcw = ’16’040102 = Acu“u]b ’ /lcu‘,bvz = /lv1bcv4 : Acu“buz
Au,bcm, = /‘Lv,bcd ' A'ulbdu,,

Au,bcd = Acdvlb = }“cdvla “Acdap = 'lcdula *Aabed -

This shows that Ay, 0y 03,0, = U+ Agpeg Where u is a unit on U. Hence D(S)NU is
defined by the principal ideal (1,,,) on U. Since a, b, ¢, d were arbitrary,
except for a,deS and b,c¢S, we have shown that all multiplicities are 1
and —1.

2) Pic (B,) is generated by the D(S) because B, is factorial. The number of
generators is 2" !~ (n+ 1). The relations in Pic (B,) are given by the divisors
of t: =A],2,3’1‘, t,*l and (tl—tj)tj_l with l,_]24

n(n—3)
)

(in number
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The proposition will be proved if we can find some

nn—-3) nn-3)
X
2 2

submatrix of the relations with determinant + 1. In order to find this submatrix
we only look at the D(S) with #S=2.
An easy calculation yields:

fy= Appy; and div (1) =D({L,i}) + D({2,3}) = D2, 1}) - D({1,3})
41 = Ay and div (1-1;)=D({1,2}) +D(3,i}) ~ D(2,i}) - DAL 3})
4Nt A)) =4y and div (Ay;:) =D({1,2})+ D{{i j}) - D{2,i}) - D({L, j}).

The underlined D(S) occur just once; they give a submatrix of size

n(n—-3) nn-3)
X
2 2

of determinant 1.

(4.2) Let F,(x) be the polynomial

T (x=2)TV. L (x—n+2)Tw)
v

where the summation is over all isomorphism classes of n-marked stable trees
and where r;(T,w) is the number of vertices of T of valence =i. The term

Fig,4) (%) = —=2)"T¥V.  .(x—n+2)T¥)

has degree (n — 3)-number of edges of T. If (T, w) is obtained from (7", v’) by
contracting one edge, then

deg F(T/’wr)= E r,-(T', l//')=deg F(T,w)_l
i=4
because
Y r(y)= Y (valt—3)and Y valr= Y val¢-2
i=4 teTy teTy t'eTq

while #Tj=1+ #T,.
In the sum there is one term of degree n—3 which is Fz¢ ,0) where T° has
just one vertex and

Fo () =(x—=2)(x-3)-...-(x—n+2).
Thus deg F,(x)=n—3. Let

F= S F.xeZl.
=0

i
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PROPOSITION 7. Let h; be the rank of the cohomology group H'(B,(C),Z)
which is the i-th Betti number of the complex manifold of C-valued points of
B,. Then

Fon_3_,:if i=2ris even

0 1if i is odd.

h2=2”"’—-n—<n—l>,
2

Fon-3—r=Fyr L1, 3 F,; ;-2 is the number of 3-regular n-marked stable trees.
PROOF. 1) The number of F,-valued points of B, is N,= X7} F,.(p")' by

the corollary to proposition 2 in (1.5), where p is any prime number The zeta-
function of B, X [, is thus

z0=e0 (I3 Ry L)
@

)
1 v

n-3
exp X Fni<

i=0

[N aok]

n-3 1
0 ——
i=o (L=p'O)Fy,

B, is smooth and projective and therefore by the Riemann hypothesis for Z()
one gets that all F,; are =0, see [D].

Moreover also through the Weil conjectures one knows that
hyi=Fpi
hair1=0.
The functional equation for Z(¢) tells that F, ,_;_,=F, ,.
2) We determine the n-marked trees (7, ¥) with deg (T, ) =n — 4. Any such
(7, w) is uniquely given by a pair of subsets A, n—A of nwith2=s #A4<n-2.

The number of these subset pairs is 2" ' —n—1.
Now

Firo o) =x""~Q2+3+ - +n—2)x""*
+lower terms and Fr, ,,,)(x)=x"'4+lower terms if deg (7, w)=n—4. Thus
F)=x"3+Q2" 1 —n—-1-Q+3+ - +n-2)x"~*

+lower terms. This shows that

_ ‘n—1
Fn,n_4=2n 1—”-( 2 >.
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If Fz,,, is not a constant then Fir,,,(x)=(x—2)"*--(x—n~-2)" with r,= 1 and
thus Fz,,(2)=0. Thus Y77 F,2" is the number of stable n-marked trees
(T, w) for which F(7,,, is constant. This is the case iff (7, y) is 3-regular and
for 3-regular n-marked trees (7, ) one has F(z ,,=1.

5. B, AS BLOW UP OF P{/PGL,

(5.1) The natural action of PGL, on (P,)", given by o(xy,...x,)=
=(a(x;), ..., (x,)), has been studied in detail in [GIT], [MS}] and [G]. We
denote by (P{),, the set of points in P{ that are semistable for this action, and
by Q, the quotient (P),,/PGL,. In this section we show that B, is a blow up
of Q, and describe this blow up explicitly.

We begin by recalling the basic results on Q, from [GIT], [MS], or [G}]:
x=(xy, ..., X,) € P is semistable if and only if a,(x): = #{i: x;=y} =n/2 for
any ye Py; x is stable if and only if a,(x)<n/2 for any ye P,.

For n odd, the sets (P{), of stable points and (P{),, coincide, and Q, is a
geometric quotient. Moreover Q,, is smooth and projective over Z of relative
dimension n—3.

For n=2m, Q,: =(P),/PGL, is again a geometric quotient, but not
complete, whereas Q, is projective but not a geometric quotient. In fact
Q,— Q, consists of +(37) points corresponding to the orbits of points where
exactly m entries coincide. (Note that the point (0, ...,0, o, ..., ) is contained
in the boundary of the orbit of any point of the form (x, ..., X, X, 1, ..., X,) Or
(X1 vvs X X ..., X).) O, is smooth over Z, but we have

PROPOSITION 8. For n even, Q,— Q, is the singular locus of Q,,.

PROOF. According to [G], Q,,,=Proj A, where A=®;_ A, is a graded
Z-algebra with 4,=7.

A, generates A, and A, as a Z-module is generated by the expressions
Pa,b,Pay,b," " Pa,, b, where
M {1,2,....2m}={a;, b, ..., @, by}
(2) pap=x,0)x,(1) —x,(1)x,(0) and (x;(0), x;(1)) denote the homogeneous

coordinates of the i'* factor in (P}).

Let UC sy, be given by py -+ p #0 for all by, ..., b, with {b,,...,b,,} =
={m+1,...,2m}. Clearly U is affine. Let 7 : (P});,— Q,,, denote the canonical
map. Then t " Y(U)={(py, ..., Do) € P! ipi#Ep; forism<j}. Since t: (P),—
—Q,, is a good quotient we find that €(U)=0(z~'U)"%. Consider
Wct U given as W={(p,,..., pam) €T (V) p1=0,pp =0}, Clearly
O~ U)oLl = (W) O,

Put g;=p;!, for i=2 and identify W with the open part

{(p2a~-',pm1QZa-'-1Qm)EA’Zn_1XAZm_! :piqj¢1 for all lsJ}

of the affine space A3"~2. The action of G,, is given by

A(D3s <oy Prs Q25 > G ) = (A0, ...,apm,a‘qu,...,a'lqm).
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One easily sees that
OW)Cr=Zpiq;li, j=2,..., Mljoc =
=Z[A,j|l,j=2, feey m]/(AijAkl*'AﬂAkj) IOC,

where A4;; stands for p;q; and where loc means localisation at ], ; Ay—=1).

Let A"~ 1®A™"! denote the (m — 1)?-dimensional affine space over Z and
let A" 1o A™"1 be the closed subscheme of A" !®A™~! consisting of the
simple tensors, i.e. the elements of the form v;®uv,. Then

Am_loAm—]ESpeC (Z[AU . i,j=2, ...,m]/(A,-jAk,-Aijﬂ)).

In particular, the singular locus of U corresponds to the O-section of
AT Yo ™1 and corresponds to the prime-ideal (A jall 4, j) of the ring
above.

The isomorphism of U with the open subset of A™ 1o A™~! given by 4 EaR!
for all i, j can be easily described by the morphism 7~ !U—A™ 1o A"~ given
by the formula

(15 o> Pam) 2 (@(D2)s -1, GO ROWDp 1) ™y s 6(D2m) ™),

in which

Note that for m=3 the singularities of Q¢ are isomorphic to those of
BSXB4B5’ see (35).

(5.2) Let (P)*={(xy,...,x,)€eP{:x;#x; for i#j}C(P]); and let Q,: =
=(P!)*/PGL,. Then there is a natural isomorphism p,": B~ Q. We can
extend p,F to a morphism p,, : B,~Q, in the following way:

For g € B, there exists a component L of the associated stable n-pointed tree
C(q) such that (7 (xy), ..., 71 (x,)) € (P])s(k(q)) where n; : C(g)— L is the pro-
jection onto L and x;: = @,(i) € C(g)(k(q)) is the i-th marked point on C(g)
and where we identify L with P(k(q)) in some way. The existence of such an
L can easily be proved by induction on n. Note however that for n odd, L is
unigue, whereas for n even there may be two intersecting components L, L’
with the required property. We call L (or L and L’) the center of C{g). Now
we define p,(g) as the PGL,-orbit of (7, (x;), ..., 7 .(x,)).

Let de D, be a triple of indices such lthat L is the median component L(d)
of d. In an open affine neighbourhood U, of g, L(d) is still the center of
C(q), ¢’e U,. Now it is not hard to see that g—p,(g) is a morphism on U,
and that these morphisms on a covering of B, by Ups fit together to a pro-
jective morphism p,: B,—Q,. Since p, is an isomorphism on B, thus bi-
rational, we have proved (see [H], Ch. II, Thm. 7.17):

PROPOSITION 9. B, is the blowing-up of Q, with respect to some coherent
sheaf of ideals.
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REMARK. p,:B,;—Q, is obviously an isomorphism.

s : Bs— Qs is also an isomorphism since for g € B; any component of C(g)
which is different from the center, has order 3.

The first nontrivial blowing up occurs when n=46. The nontrivial fibres of
e are the 10 disjoint subschemes in Bg, each isomorphic to P; x IP;, for which
the associated 6-pointed tree contracts to a permutation of

3

2

These subvarieties are mapped onto the 10 singular points of Q. Surprisingly,
although Qg and Bs X  Bs are locally isomorphic around the singular points,
the maps Bs— Qg and Bg— BsX g Bs are completely different.

(5.3) In order to find on explicit description of the blow up B,—(Q, we
introduce the notion of a stable (d, n)-tree:

DEFINITION. a) Let k be a field and d, n integers satisfying 1 =d<{(n-1)/2.
A tree of projective lines X over &k (see (1.1)) together with a map
o :{1,...,n}—>X(k) is called a stable (d, n)-tree over k if
(i) ¢(i) is nonsingular for all i
(i) #¢ @)=<d for all ae X(k)
(fii) ordy(L)>2 for any irreducible component of X, where ord, (L): =
= #{L’: L' component of X, L'NL#@}+1/d#¢ '(L).

b) A stable (d,n)-tree X over a scheme S is a flat morphism n:X—8
together with sections ¢y,...,¢,:S—X such that for any seS§, the fibre
X,=XXg spec k(s) together with the map ¢,:i—¢;(s) is a stable (d, n)-tree
over k(s).

Note that a stable (1, n)-tree is just a stable n-pointed tree. On the other hand
a stable (d, n)-tree is in general not stable as (d+ 1, n)-tree.

We want to show the existence of fine moduli spaces B, ; for stable (d, n)-
trees and begin with the case (d,2d+1); it will turn out that B,; . 4 is just
Q441 In order to describe the universal family we have to introduce some
other blow ups of Q,: For disjoint subsets I, ..., I, of {1,...,n} let Q, (I}, ..., I,)
be the image in Q, of {(x,...,x,)€(P{)s:x;=X; if there exists v such that
{i,jyc1,}. Clearly Q,(I},..., I,) is a closed subscheme of Q,,.

Recall from the proof of Prop. 1 that Q,,, is locally at its singular points
isomorphic to A™ o A™~1, Consider the scheme

(AP Lo APy = {(0; @y W) e (AT Lo APy X P, 51 5y =W}
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(here we consider P,,_, as P(A™~ 1y and denote by b, the class of v;). Clearly
(A™ 1o A™~1) is a desingularization of A" 1o A™~! and the fibre over the
0O-section is P,,_,. Let Q3,, be the desingularization of @, which locally over
the singular points is isomorphic to (A™ Yo A™~1)". Q4 is not isomorphic to
the blow up 0%, of Q,, at all singular points since the fibre in Q3, over a
singular point is isomorphic to P, _, X P,,_,. Moreover Q3,, is not symmetric
in the indices 1,...,2m.

We can embed @5, as a closed subscheme of Q,, ; as follows: Let
Y: =Qun_1({1,2},{3,4}, ..., {4m—3,4m —2}); thus Y consists of the orbits of
the points (D1, Dy» P> P2s +++» Dam—1» Dam—1» Pam) € PP~ 1. There is an obvious
morphism Y- Q,,, induced by (py, Py, -, Pam— 1> Pam~ 1> Pam) = D1 D25 -5 Pam)s
it is an isomorphism outside the singular set in Q,,. The fibres over the
singular points are P,,_,: the preimage of the point

(pla"-apm’ Pm+1sPm+1s “-’pm+1)

consists of all points (Py, P1s.++s Pms P Pt t1s s Pms1) € PY™ 1 such that
Di#Pm+y for i=1,...,m and py,...,p, are not all equal. Taking p,=0,
DPm+1=0 leaves us with a G,,-action on {(py,..., pm)#(0,...,00} = A" "1~
—{(0,...,0)}. This shows that Y is isomorphic to Q3,,.

On the other hand, the morphism Y—(Q,,_; induced by

D1 P1s s Dam—15 Pam—15 P2m) > (P15 s Pam—1)
has fibres isomorphic to Py, in fact Y is a locally trivial P,-bundle. There are
sections g;: Q1 Y, i=1,...,2m—1 given by

Gi(pl’ "'3p2m——]):(plapl, s Pom~15 Pam—15 pi)’

We conclude that if we take d=m —1 and identify Y with Q;,,, then Q5,.,—
=)y, I8 a stable (d,2d + 1)-tree.

PROPOSITION 10. Q34,2 Q0y, 1 is the universal stable (d,2d + 1)-tree.

PROOF. Let n:X—S be any stable (d,2d + 1)-tree. For any triple
v=(v}, vy V3) € Dag g

let S(v) be the open subscheme of S on which ¢,,¢, and ¢, do not meet.
Since the S(v) cover S it is sufficient to prove the proposition for §=5(1, 2, 3).

With respect to ¢y, ¢,, ¢3, 7 : X—8 is a stable 3-tree. Thus by (2,3) we get
morphisms ¢/ :S—P,, i=4,...,2d+1, and by (2,3) we have isomorphisms
w;: X—P; xS such that y;o¢;=(@/,id). Letting ¢1,¢;, ¢; be the constant
morphisms 0, o, 1, the ¢; define a morphism ¢ :S—>(P¥* ) ~0,,.,.
Clearly ¢ induces an isomorphism X=Qj;,,X g, . S.

(5.4) PROPOSITION 11. Q3;.3>Q7;.2 is the universal stable (d,2d + 2)-tree.
Here Q3 , , denotes the blow up of Q,, ., at all singular points, and Qj4. 4
is the blow up of Q,y.1 at all Qy, () such that #I=d+1 and 2d+3¢1.
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PROOF. On the open parts

Quss— U Qs and Gy, s,

#l=d+1
2d+3¢l

the morphism 7 is given by (X1, ..., Xo043) = (X1, -..s X244 2)- With the help of the
obvious sections a;: (Xq, -..s X291 2) X1y oovs Xog 19, Xi), i=1,...,2d + 2, 7 clearly
becomes a stable (d,2d+2)-tree. We have to extend n to a morphism
Q437 Q%4 2-

Let V={(x}, ..., Xp0:2)€P{** 2 x;#x; for 1<isd+1<j<2d+2}/PGL,.
V is a neighbourhood of the singular point (0,...,0,,...,) in Q,;,,. Let ¥
be the inverse image of Vin Q5. ,.

On the other hand, let U be the inverse image of V in Q,;.4 (for the
projectives 7). Clearly U is the union of the open subspaces

Uy={0p, o, Xoq0,3) € P i x, #x, for 1sv=d+1<u=<2d+2,
Xy#Xogss #X,}/PGL, for i=1,...,d+1,j=d+2,...,2d+2.

Any Uj; contains Qyy.,3({1,...,d+1}) and Qyy,3({d+2,...,2d+2}), and has
empty intersection with all other Q,,. (1), #I=d+1, 2d+3¢ L

Let U’ and Uj; be the inverse images of U and Uj; in Q34 3, respectively.
Then 7 can be extended to Uj 4., as follows:

First note that U, 4, , has an open immersion into A% x A9 by putting x; =0,
Xg.,=00 and x,,,3=1. The immersion is explicitely given by

(15 eer X204 3) > (O ooy O, D (O (Xg22) Lo, 000242) 1)

where

Z—X1 Xag+3~Xg42

L—Xgr2 Xag+3—X)

This identifies U 4., with {((xy,..., x3), (7, ...,yd))eAdx/Ad{xiyj¢1 for all
iandj}.
In particular

Qaa+3({1, -, d+ 1NNV 42 = {0} x A?
and
Qpa3({d+2,...,2d+ 2N U} 4, ,=~A%x{0}.
So the blow up Uj 4. is an open subset of:
{(v}, s Wy, W,) € AT X AT X P(AY) X P(A%)|v; and W,
are dependent for i=1,2}.
We know already the explicit form of ¥”, namely an open part of
{(1;®v,, Wy, W) € A%0 AT X P(AY) X P(AY) b, @, and w; @ w,

are dependent.}
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The extension of our morphism 7 is now given by:
(01 2, Wy, W) € Uf 42— (01 @0y, Wy, W) € V7.

On affine parts of both of the P(A,)’s this morphism reads:
(Awy, awa, wi, W) = (AUw; @ wa, Wi, Ws).

This morphism is identity in the last two factors and has the form A, x A~
- Ay, (4, #)—Au, in the first factors. Hence the map is flat. The fibre above
a point #0 is isomorphic to A;—{0}. The fibre of 0 is (A;x{0})U
U({0} x A)). Glueing the various Uj ; together one finds that U'— V" is flat
with fibre P, or (P, x {0})U ({0} x P;).

The sections g;: V"= U’ can also be described: For i with 2=i<d- [, we
consider the open part of V” where the i-th coordinate of W, is not zero. On
this open part g; has the form (v;®@v,, Wy, Wo) > (Awy, uw,, Wy, W,) where 1 is
determined by: the /™" coordinate of Aw, equals 1, and where u is determined
by Auw, @ w,=0,Q0,.

Glueing over the various Uj ; yields all the ¢; on all of V”. So we have shown
that Qj,. 3~ 0%, with the o; is indeed a (d, 2d + 2)-tree.

We now prove that this (d, 2d + 2)-tree is universal.

Let X —— S, with sections ¢;, denote any stable (d, 2d + 2)-tree. Locally on
S we have to show existence and uniqueness of a morphism f: S—Q3,, , such
that X is isomorphic to Qj;,3X gy, ,S. For a point s€ S the fibre X has one
or two components. Let us consider the case where X, has two components L,
and L,. We may then suppose that ¢;(s)e L, for i=1,...,d+1; that ¢;(s)e L,
for i=d+2,...,2d+2; that ¢,(s)#¢,(s) and that @y, ,()#@y.3(s). After
shrinking S we may suppose that for all e S and (i, j) of the form (1,2),
(d+2,d+3) or 1=isd+1<j=<2d+2 one has ¢;(t)# ¢;(7).

X—S with the 4 sections ¢y, ¢, @442 Pg.3 iS a stable 4-tree and so there
exists a morphism u:S—B,=P, such that X>BsX 3 S. We may suppose
u(s)=oeP; and u(S)C A, —{1}. According to (3.4), Bs is the blow up of
P, x P, in the 3 sections (0,0), (1,1), (oo, ), and Bs— B, is derived from the
projection on the second factor. Since #(S) does not meet 1 and o we may
replace B,=P; by A;— {1} and Bs by Z, the blow up of P;x(A;—{1}) in
(0,0). This Z is the closed subspace of P;xP;x(A,—~{1}) given by the
equation xpypz —x;¥; =0, where we have used (xy, x;), (o, ¥1), 2 as coordinates
for the three factors. Hence X is isomorphic to the closed subscheme of
Py xPxS given by the equation xpyou—x;y;=0 where ue Oy(S) satisfies
(u—1)e O4S)*.

We note in passing that this implies that {z e S|X, has two components} =
={te S|u(t) =0} is closed.

We identify X with this closed subset of P; xP; xS and we write ¢,(f)=
=(o;(1), (1), 1) for i=1,...,2d+2. The morphism f: S— V" is now given by
1= (v, @ vy, Wy, W,) where

wy=(o1(a (D), ..., o1{ey, (1)
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W, =(03(Bg+3(D)s .-, 02(Bag 4 2(1))

L ®vy=u)w,@w,

and
O'(Z)= Z—al(t) a2(t)_ad+2(t)
T it (0 @) -y (D)
2= Bas2t) Bass()—Bi(2)
03(2) =

2=B1(@®) Bais)—Baia(®)

In order to verify that X— S is isomorphic to U’ x ,».S— S we consider an open
part X’ of X defined by x,#0 and y,#0. On this open part one can define a
morphism g: X2 Uj 4,, by t=(v,v,, W, ;) where wy, w, are defined as
before and where

X1 g
V= wy and v, = — w,.

Xo Yo
The diagram
g (4
X' ————— U442
S S — | 44

is commutative and can easily be shown to be cartesian. (Indeed the morphism
X'—Uj 442X ~S is an isomorphism in every fibre and is therefore an iso-
morphism). Glueing yields an isomorphism X U’x ,.S. One can also prove
uniqueness of f. A similar but easier verification can be done in the neighbour-
hood of a point se S such that the fibre X has only one component.

(5.5) The proof of the previous proposition easily generalizes to an inductive
construction of the fine moduli spaces B, , for stable (g, n)-trees, where we still
assume 1=<d=<(n-1)/2: Let B, ;,—~ B, ; be the universal stable (d, n)-tree. By
induction, B, ;is a blow up of Q, and B, ; is a blow up of Q,,,. Now B, ;_,
is obtained from B, , by blowing up the preimages of all subspaces Q,(/)
where |I|=d. To get B, ;_; from B}, ; we have to blow up the preimages of all
subspaces Q, (/) where {I|=d and n+1¢1l

For fixed n we thus obtain a sequence of blowing ups which finally leads to
B, =B, and in which every intermediate blow up is either a fine moduli space
B, 4 or a universal family B, _, ; for some d. Only the singular spaces Q,,,
have no interpretation in terms of moduli spaces.

The situation is illustrated in the following diagram where the horizontal
arrows are the various blow ups described and where the vertical map labelled
‘‘(d,n)’’ is the universal stable (d, n)-tree:
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By =0,

(1,4)
Bs =Qs
a,s I(Z,S)
By 50§ 20 Qs
(1,6) I(Z,é)
B; =07 =05 _"Q7
(17 I @ G,
By =0¢" 20 208 2O
1,8), { 2,8 I (3.8
By SQ" 20 205 20 —Q
(1,9 I 2,9 [ 3,9 I “,9
B = Q) ~ 0% ~ Qi ~ 0% ~ Qi ~ Qo 200
1,10 ’[ @, 10) I (3,10) I “,10)

~ 6 5 e m ” ’
By _’le)”*Qh)“’Qn =01 20N Qi ~0n
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