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Derivatives of plasmids pBR322, pUB110, pSC101, and pTB19, all containing an identical fragment of
lactococcal chromosomal DNA, were integrated via a Campbell-like mechanism into the same chromosomal site
of Lactococcus lactis MG1363, and the transformants were analyzed for the stability of the integrated plasmids.
In all cases the erythromycin resistance gene of pE194 was used as a selectable marker. Transformants
obtained by integration of the pBR322 derivatives contained a head-to-tail arrangement of several plasmid
copies, which most likely was caused by integration of plasmid multimers. Single-copy integrations were
obtained with the pSC101 and pTB19 derivatives. In all of these transformants no loss of the erythromycin gene
was detected during growth for 100 generations in the absence of the antibiotic. In contrast, transformants
containing integrated amplified plasmid copies of pUB110 derivatives were unstable under these conditions.
Since pUB110 appeared to have replicative activity in L. lactis, we suggest that this activity destabilized the

amplified structures in L. lactis.

A substantial number of genes that are important for
dairying appear to be plasmid located, and because of
segregational instability the traits specified by these genes
are often lost (10, 22). A clear trend in the dairy industry is
the scaling-up and automation of fermentations with strains
having predictable properties under the fermentation condi-
tions used; the success of this approach ultimately depends
on the availability of genetically stable strains, especially
with respect to the traits which are important for dairy
practice.

Basically, the following two ways may be considered to
achieve this goal: (i) the stabilization of the plasmid-encoded
genes in the chromosome by replacement recombination,
and (ii) the stabilization of these genes by incorporation of
the plasmids in the chromosome by Campbell-like integra-
tion, which has the additional advantage of possible gene
copy effects if the integrated plasmids become amplified.

Both approaches seem to be feasible (7, 20). We previ-
ously reported Campbell-like integration of a pBR322 repli-
con into the chromosome of Lactococcus lactis subsp. lactis
in which a chloramphenicol resistance gene was used as a
selectable marker (20). Although amplification of the plasmid
in the chromosome was observed, integrated plasmid copies
were gradually lost under nonselective growth conditions.
However, in all cases examined at least one copy remained
stably integrated. Loss of amplified integrated heterologous
DNA in L. lactis subsp. lactis has also been reported by
Chopin et al. (7).

The fact that the use of pBR322-derived vectors and
selection for resistance to chloramphenicol resulted in un-
stable amplification prompted us to extend our investigation
with a number of different replicons and selection for a
different marker to examine whether these variables could
be used in a more successful way. In this paper we describe
the results of integrations with plasmid vectors pBR322 (4)
and pSC101 (9), both of which originated from gram-negative
bacteria, and with vectors pUB110 (13) and pTB19 (16),
which originated from gram-positive bacteria. We found
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that, with selection for the erythromycin resistance gene
obtained from pE194 (15), stable integration of pSC101- and
pTB19-based vectors and stable multicopy integration of
pBR322-derived vectors could be obtained. Although trans-
formation with pUB110-derived plasmids initially yielded
multicopy integrations, under nonselective conditions deam-
plification was observed, ultimately resulting in the complete
loss of the plasmid from the chromosome. We describe
results which suggest that the unstable integration of the
pUB110-derived plasmids was related to residual replicative
activity of the replicon in the lactococcal host.

MATERIALS AND METHODS

Bacterial strains, plasmids, and growth conditions. The
strains and plasmids used in this study are shown in Table 1.
Bacillus subtilis and Escherichia coli were grown on TY
broth and agar (26). L. lactis was cultured and plated onto
glucose-M17 broth and agar (28). After electrotransforma-
tion of L. lactis, cells were plated onto glucose-M17 agar
plates containing 0.3 M sucrose. Erythromycin and chlor-
amphenicol were used at final concentrations of 5 pg/ml for
both B. subtilis and L. lactis. Ampicillin, erythromycin, and
chloramphenicol were used for E. coli at final concentrations
of 100, 100, and 20 pg/ml, respectively.

DNA isolation and manipulation. Plasmid DNA was iso-
lated from E. coli and B. subtilis as described by Ish-
Horowicz and Burke (17) or by using the method of
Birnboim and Doly (3). The method used to obtain mini-
preparations of plasmids from L. lactis has been described
previously (20). L. lactis chromosomal DNA was isolated by
using a mini-isolation procedure. After overnight growth, S
ml of a culture was centrifuged. The resulting pellet was
washed once with 1 ml of distilled water and suspended in 1
ml of lysis solution (25 mM Tris hydrochloride [pH 8], 50
mM EDTA, 50 mM glucose) containing 5 mg of lysozyme
per ml and 30 U of mutanolysin per ml. The suspension was
incubated for 30 min at 37°C, after which 20 .l of proteinase
K (20 mg/ml) and 50 ul of 10% sodium dodecyl sulfate were
added. Incubation was continued at 60°C for at least 1 h. The
lysate was extracted five times with an equal volume of
phenol-chloroform-isoamyl alcohol (25:24:1) and twice with
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TABLE 1. Bacterial strains and plasmids

Bacterial strain or plasmid

Relevant properties

Source or reference(s)

Bacteria
E. coli IM101 29
B. subtilis PSL1 25
L. lactis subsp. lactis strains
MG1363 Em®, plasmid free 11
MG10A Em", MG1363 carrying (three to five) copies of pKL10A in the This work
chromosome
MG10B Em", MG1363 carrying two copies of pKL10B in the chromosome This work
MG200 EM’, MG1363 carrying amplified pKL200 in the chromosome This work
MG203A Em", MG1363 carrying amplified pKL203A in the chromosome This work
MG203B Em', MD1363 carrying amplified pKL203B in the chromosome This work
MG301B Em", MG1363 carrying one copy of pKL301B in the chromosome This work
MG400B Em", MG1363 carrying one copy of pKL400B in the chromosome This work
Plasmids
pBR322 Ap" Tc" 4
pUCI9E Ori pBR322, Ap" Em" Laboratory collection
pUC19 carrying the erm gene of pE194 in the Smal site 14
pHV60 Ori pBR322, Ap* Cm" Tc¢" 22
pGI404 pHV60 carrying 1.3-kb chromosomal insertion A 19
pGI406 pHV60 carrying 1.3-kb chromosomal insertion B 28
pKL10 Ori pBR322, Em" This work
pKL10A pKL10 with chromosomal insertion A This work
pKL10B pKL10 with chromosomal insertion B This work
pUB110 Km*® 13, 18
pKL200 pUB110, Em" Km* Laboratory collection
pKL202 Ori pUB110, Em" This work
pKL203A pKL202 with chromosomal insertion A, Em", Cm" This work
pKL203B pKL202 with chromosomal insertion B, Em" Cm" This work
pLG339 Ori pSC101, Km" Tc" 27
pKL300 Ori pSC101, Km" Cm" Tc¢’ This work
pKL301B pKL300 with chromosomal insertion B, Em" Km" Tc* This work
pHV1436 Ori pTB19, ori pBR322, Cm" Tc" 17a
pKL400 Ori pTB19, Ap" Em" This work
pKL400B pKL400 with chromosomal insertion B This work

an equal volume of chloroform-isoamyl alcohol (24:1). So-
dium acetate (3 M) was added (0.1 volume), and the DNA
was precipitated with 2 volumes of 96% ethanol (—20°C).
The DNA was dissolved in 150 pl of TE (10 mM Tris
hydrochloride [pH 8], 1 mM EDTA) containing 20 g of
RNase. The DNA concentration was determined spectro-
photometrically.

Restriction enzymes, endonuclease S1, T4 ligase, and
Klenow enzyme were obtained from Boehringer GmbH,
Mannheim, Federal Republic of Germany, or New England
BioLabs, Inc., Beverly, Mass., and were used according to
the instructions of the suppliers.

Construction of integration plasmids. The compositions of
integration plasmids pKL10A, pKL10B, pKL203A, pKL
203B, pKL301B, and pKL400B are shown in Fig. 1. L. lactis
subsp. lactis MG1363 chromosomal fragments A and B
corresponded to the chromosomal fragments present in
previously described plasmids pGI404 and pGI406, respec-
tively (20). Vectors pKL10A and pKL10B carried the origin
of replication of pBR322 and were constructed as described
below. A Dral digest of pBR322 was ligated with EcoRI
linkers. This ligation mixture was then digested with EcoRI
and Pvull. Plasmid pKL10 was obtained by ligating the
EcoRI-Pvull origin-carrying fragment with an EcoRI-Pvull
fragment carrying the erythromycin resistance gene of
pUCI19E. Chromosomal fragment A was isolated as an Sphl
fragment from pGI404 and was ligated in the Sphl site of
pKL10, resulting in plasmid pKL.10A. Plasmid pKL10B was
constructed by inserting chromosomal fragment B as a

BamHI-Sphl fragment from pGl406 in the corresponding
restriction sites of pKL10.

Plasmids pKL203A and pKL203B containing the origin of
replication of pUB110 were constructed as described below.
Accl-digested pUB110 was treated with Klenow enzyme to
fill in the recessed ends and was subsequently cut with
Haelll. The blunt end fragment containing the origin of
replication was isolated. The erythromycin resistance gene
was obtained as an EcoRI-HindIII fragment from pUCI19E,
the recessed ends of which were filled in with Klenow
enzyme. These two fragments were ligated, which resulted
in plasmid pKL202. Chromosomal fragments A and B were
inserted into pKL202 as Sphl-Pstl fragments from pGI404
and pGI406, respectively. These fragments also contained
the chloramphenicol resistance marker.

To obtain pKL301B, which contained the origin of repli-
cation of pSC101 (8, 9), pKL300 was constructed first.
Plasmid pHV60 (23) was digested with EcoRI and Sall, and
the fragment containing the chloramphenicol resistance
marker was then ligated with EcoRI-Sall-digested pL.G339
(27). Plasmid pKL10B was digested with EcoRI, and the
recessed ends were filled in with Klenow enzyme; this was
followed by digestion with Sphl. The fragment containing
chromosomal fragment B, as well as the erythromycin
resistance gene, was isolated and inserted into the EcoRV
and Sphl sites of pKI.300, resulting in plasmid pKL301B.

Plasmid pKL400B contained the following two origins of
replication: the pBR322 origin and the pTB19 origin (16).
Plasmid pKL400 was constructed by inserting the pTB19
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FIG. 1. Schematic representation of integration plasmids pKL10A, pKL10B, pKL203A, pKL203B, pKL301B, and pKL400B. Sizes (in
kilobases) are indicated. The plasmids are not drawn to scale, and only relevant restriction enzyme sites are shown. chr fragm., Chromosomal

fragment.

origin as an EcoRI fragment from pHV1436 (comprising the
repA replication region of pTB19) into the EcoRI site of
pUCI9E. Chromosomal fragment B was isolated as a
BamHI-Sphl fragment from pGI406 and then ligated with
BamHI- and Sphl-digested pKL400, which resulted in
pKL400B.

Transformation. E. coli was transformed as described by
Mandel and Higa (21). Protoplasts of B. subtilis were pre-
pared and transformed by using the method of Chang and
Cohen (5). L. lactis was transformed by a modification of the
electroporation method developed by Harlander (14), using a
Gene Pulser (Bio-Rad Laboratories, Richmond, Calif.).
Cells were grown in 25 ml of glucose-M17 medium supple-
mented with 40 mM pL-threonine to an optical density at 660
nm of 0.2 to 0.3. The cultures were centrifuged, and the
resulting pellets were washed twice with 1 ml of ice-cold
distilled water, once with 1 ml of 50 mM EDTA (pH 8), once
with 1 ml of distilled water, and finally with 1 mi of 0.3 M
sucrose. The cell pellets were suspended in 0.2 ml ofa 0.3 M
sucrose solution. After the DNA solutions were mixed with
the cell suspensions, electroporation was carried out in a
precooled (0°C) 2-mm cuvette at 12,500 V/cm. The capaci-
tance was set at 25 pF, and the pulse controlier (Bio-Rad)
was set at 200 (). Immediately after the electrical discharge
the cell suspensions were transferred to 10 ml of glucose-
M17 medium containing 0.3 M sucrose and 50 ng of eryth-
romycin per ml and left for 2 h at 30°C to allow expression of
the erythromycin marker. Suitable dilutions of the suspen-
sions were subsequently plated onto glucose-M17 agar plates
containing 0.3 M sucrose and selective antibiotics.

Southern hybridization. After electrophoresis in 0.8% aga-
rose gels, the DNA (3 pg of chromosomal DNA per lane in
each case) was transferred to GeneScreen Plus filters (Du
Pont, NEN Research Products, Boston, Mass.) by using the
protocol of Southern, as modified by Chomczynski and

Qasba (6). DNA was labeled either with digoxigenin-dUTP
by using a Nonradioactive DNA Labeling and Detection Kit
(Boehringer) or with [a-3*?P]dCTP (3,000 Ci/mmol; Amer-
sham Corp., Arlington Heights, Ill.) by using a Random
Primed DNA Labeling Kit (Boehringer). The nonradioactive
hybridization, washing, and staining steps were done ac-
cording to the instructions of the supplier. The hybridiza-
tions with the radioactive probes and the subsequent wash-
ing steps were carried out as instructed by the manufacturers
of GeneScreen Plus (Du Pont). Labeled phage SPP1 DNA or
labeled phage lambda DNA or both were added to the
hybridization mixtures to facilitate easy determination of the
sizes of the hybridizing fragments in the chromosomal di-
gests.

Determination of the stability of transformants. To assess
the stability of the Em" phenotype of the transformants,
strains MG10A, MG10B, MG203A, MG203B, MG301B, and
MG400B were grown in the absence of the antibiotic. After
100 generations (indicated by the suffix -I) the erythromycin
gene was induced by incubating the cultures for 2 h with 50
ng of erythromycin per ml. Dilutions were plated onto
selective and nonselective plates. In addition, 50 randomly
chosen colonies were transferred from the nonselective
plates to selective and nonselective plates. The chromo-
somal structures of the strains after nonselective growth
were examined by using Southern hybridization.

RESULTS

Chromosomal structures and stabilities of transformant
strains MG10A and MGI10B. pBR322-derived plasmids
pKL10A and pKL10B were used in several electrotransfor-
mation experiments (with transformation frequencies vary-
ing from 1 to 10 transformants per pg of DNA) to transform
plasmid-free L. lactis strain MG1363; the erythromycin-
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FIG. 2. (A) Southern hybridization analysis of chromosomal DNAs of strains MG1363, MG10A, and MG10A-I digested with EcoRI and
hybridized with digoxigenin-dUTP-labeled pKL10A. Lane 1, Strain MG1363; lane 2, strain MG10A; lane 3, strain MG10A-I; lane 4, pKL10A
cleaved with EcoRI; lane 5, undigested pKL10A; lane 6, phage lambda DNA cleaved with HindIII. Sizes (in kilobases) are indicated on the
sides. M, Multimers; OC, open circular DNA; CCC, covalently closed circular DNA. (B) Structure of the relevant parts of the chromosomes
of host strain MG1363 and transformant strain MG10A. The solid boxes indicate the locations of chromosomal fragment A.

resistant transformants obtained were designated strains
MG10A and MGI10B, respectively. Two independently ob-
tained transformants of strain MG10A and three indepen-
dently obtained transformants of strain MG10B were used
for further analysis. None of these transformants contained
free plasmid DNA when they were analyzed by standard
procedures (data not shown). The chromosomal structures
of the two strain MG10A transformants were identical, as
judged by the results of Southern hybridization when
pKL10A was used as a probe; the results of the analysis of
one of these hybridizations are shown in Fig. 2. In Fig. 2A,
lane 1 contained EcoRI-digested chromosomal DNA of
strain MG1363, and one hybridizing fragment was present, at
2.9 kilobase (kb). In lane 2, which contained an EcoRI digest
of the chromosomal DNA of the transformant MG10A
strain, three fragments were present, one at 4.0 kb, one at
2.5 kb, and one intensely hybridizing band at 3.6 kb, which
was the same size as linear pKL10A (lane 4). A fourth band,
at approximately 7.2 kb, was most likely due to a minor
fraction of undigested chromosomal DNA. Because of some
smearing of the hybridizing bands, the absence of the 2.9-kb
fragment could not be determined with absolute certainty.
Nevertheless, the pattern in lane 2 indicates that there was
Campbell-like integration of pKL10A into fragment A on the
chromosome of strain MG1363. The absence of free plasmid
DNA and the presence of the 3.6-kb band in lane 2 strongly
suggest that there was a tandem arrangement of multiple
copies of pKL10A on the chromosome (Fig. 2B). The
number of copies was determined densitometrically to be
three to five. The tandem arrangement of multiple copies
may have been caused either by amplification of the plasmid
in the chromosome or by the integration of multimeric forms
of the plasmid, as we noticed that the plasmid preparation
which we used contained considerable amounts of multimers
(Fig. 2A, lane 5).

Strain MG10A was grown in the absence of erythromycin

for 100 generations. The resulting culture was designated
strain MG10A-I. In a plate assay no loss of the Em"
phenotype was detected. In addition, 50 colonies that were
randomly picked from nonselective plates were all resistant
to erythromycin (Table 2). The stability of the Em" pheno-
type was confirmed by our analysis of the chromosomal
structure of strain MG10A-I (Fig. 2A, lane 3), which was
identical to that of strain MG10A (lane 2).

The chromosomes of the three strain MG10B transfor-
mants were also examined by using Southern hybridization,
and all were found to be structurally identical. In the
experiment shown in Fig. 3, labeled pKL10B was used as a
probe. In Fig. 3A, lanes 2 to 4 contained Pvull digests of
chromosomal DNA from strain MG1363, chromosomal
DNA from one of the strain MG10B transformants, and
DNA from plasmid pKL10B, respectively. An approxi-
mately 3.6-kb fragment hybridized in the chromosomal di-
gest of strain MG1363 (lane 2). In case of a Campbell-like
integration event, this fragment should have been absent in
the chromosomal digest of strain MG10B (lane 3). However,
in addition to two new fragments at 4.0 and 3.2 kb, as

TABLE 2. Percentage of Em" colony-forming units after growth
in the absence of selective pressure®

Strain % of Em" CFU
MGI363 ... et e e eaaes 0
MGI10A-1 100
MG10B-I 100
MG203A-1 25
MG203B-1 13
MG301B-1 100
MG400B-1 100

“ Values were determined by transferring 100 colonies from nonselective
plates to selective plates after approximately 100 generations of nonselective
growth.
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FIG. 3. (A) Southern hybridization analysis of chromosomal DNAs of strains MG1363 and MG10B digested with PvuIl and hybridized
with digoxigen-dUTP-labeled pKL10B. Lane 1, Phage SPP1 DNA cleaved with EcoRI; lane 2, strain MG1363; lane 3, strain MG10B; lane 4,
pKL10B cut with Pvull. Sizes (in kilobases) are indicated on the sides. (B) Proposed structure of the relevant parts of the chromosomes of
host strain MG1363 and transformant strain MG10B. The solid boxes indicate the locations of chromosomal fragment B.

predicted on the basis of Campbell-like integration, a 3.6-kb
fragment was clearly present (lane 4). This fragment could
have been either the original 3.6-kb chromosomal Pvull
fragment or linear pKL.10B if amplification occurred. When
vector pKL.10 without the chromosomal insertion was used
as a probe, the 3.6-kb fragment in Fig. 3A, lane 3, still
hybridized, whereas the 3.6-kb fragment in lane 2 did not
(data not shown), indicating that the 3.6-kb fragment in lane
3 was linear pKLL10B. Therefore, since no free plasmid DNA
was detected in strain MG10B, we propose the chromosomal
structure for strain MG10B shown in Fig. 3B, in which two
tandemly integrated plasmid copies generate, after cleavage
with Pvull, fragments having the sizes and intensities of
hybridization shown in lane 3. Such a structure may have
been generated either by integration of a monomer with
subsequent duplication of the plasmid in the chromosome or
by integration of a dimer.

The chromosomal structure was very stable; in the stabil-
ity tests no loss of the Em" phenotype was detected in the
strain MG10B-I culture (Table 2). The chromosomal struc-
ture of strain MG10B-I was analyzed and found to be
identical to the chromosomal structure of strain MG10B
(data not shown).

Chromosomal structure and stability of transformant strain
MG301B. Strain MG1363 was transformed by electrotrans-
formation with pSC101-based plasmid pKL301B (transfor-
mation frequency 1 to 10 transformants per pg of DNA).
Two randomly chosen transformants, designated strain
MG301B, were analyzed. Free plasmid DNA was not de-
tected in either of the two transformants. Chromosomal
analysis showed that both transformants had the same
structure. The results of a Southern hybridization analysis of
Pvull-digested chromosomal DNA from strain MG301B are

shown in Fig. 4A, lane 3. Labeled pK1L.301B was used as the
probe. Two fragments hybridized. The sizes of these frag-
ments, (6.2 and 7.0 kb) were in agreement with the expec-
tation after Campbell-like integration of one copy of 9.6-kb
plasmid pKL301B (lane 6) into the 3.6-kb Pvull fragment of
the chromosome of strain MG1363 (lane 2). The relevant part
of the chromosome of strain MG1363 is shown schematically
in Fig. 4B.

The stability of the integrated plasmid in strain MG301B
was examined by growing the organism under nonselective
conditions. The strain obtained, strain MG301B-I, did not
shown any loss of the Em" phenotype in the plating assays
(Table 2). Southern hybridization analysis revealed no dif-
ferences between the hybridization patterns of strains
MG301B and MG301B-I (Fig. 4, lane 4).

Chromosomal structure and stability of transformant strain
MG400B. Transformant strain MG400B was constructed by
electrotransformation of pTB19-derived plasmid pKL400B
to strain MG1363 (transformation frequencies varied be-
tween 1 and 10 transformants per pg of DNA). Two trans-
formants were analyzed. Both lacked free plasmid DNA and
had the same chromosomal structure. The chromosomal
structure of one of the strains was analyzed by comparing
Pvull digests of strain MG1363 and MG400B chromosomal
DNAs and pKL400B; the results of a Southern hybridization
analysis of these digests, in which labeled pKL400B was
used as a probe, are shown in Fig. 5, lanes 2, 3, and 6,
respectively. The hybridization pattern of strain MG400B
showed fragments with sizes which were in agreement with
what was expected after Campbell-like integration of only
one copy of pKL400B into homologous fragment B on the
chromosome of strain MG1363. A schematic drawing of the
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FIG. 4. (A) Southern hybridization analysis of chromosomal DNAs of strains MG1363, MG301B, MG301B-1, and MG301B(E'®) cleaved
with Pvull and hybridized with digoxigenin-dUTP-labeled pKL301B. Lane 1, Phage SPP1 DNA cleaved with EcoRlI; lane 2, strain MG1363;
lane 3, strain MG301B; lane 4, strain MG301B-I; lane 5, strain MG301B(E'%); lane 6, pKL301B cut with Pvull. Sizes (in kilobases) are
indicated on the sides. (B) Structure of the relevant parts of the chromosomes of host strain MG1363 and transformant strain MG301B. The

solid boxes indicate the locations of chromosomal fragment B.

relevant part of the chromosome of strain MG400B is shown
in Fig. 5B.

Strain MG400B was grown in the absence of erythromycin
to examine the stability of the integrated plasmid. The
stability tests showed that strain MG400B-I was still able to
grow in the presence of erythromycin (Table 2). The stable
maintenance of the integrated plasmid was confirmed by
Southern hybridization analysis (Fig. 5, lane 4).

Attempts to amplify single-copy integrations. Strains
MG?301B and MG400B harbored only one integrated plasmid
copy in their chromosomes. The integrated sequences were
potentially amplifiable, since, as a result of Campbell-like
integration, the chromosomal structures of these strains
contained a duplicated sequence. We attempted to amplify
the plasmid sequences by growing strains MG301B and
MG400B in the presence of concentrations of erythromycin
ranging from S to 400 pg/ml. The plating efficiencies of these
cultures did not change significantly. Chromosomal DNAs
were extracted from strains MG301B and MG400B which
had been grown in the presence of an erythromycin concen-
tration of 100 pg/ml (E!®). The results of Southern hybrid-
ization did not reveal any amplification in either strain (Fig.
4A, lane 5, and Fig. 5A, lane 5). We also attempted to obtain
amplification in these strains by using clindamycin as de-
scribed by Chopin et al. (7). However, as with erythromycin,
no difference in plating efficiencies was observed when we
used concentrations of clindamycin ranging from S to 300
pg/ml, and no amplification was detected in these strains
(data not shown).

Chromosomal structures and stabilities of transformant
strains MG203A and MG203B. Transformant strains MG203A
and MG203B were obtained by electrotransformation of

strain MG1363 with pUB110-derived plasmids pK1.203A and
pKL203B, respectively. Two colonies of both types of
transformants were analyzed in Southern hybridization ex-
periments. In Fig. 6A, lane 1, the chromosomal 3.6-kb Pvull
fragment from strain MG1363 was hybridized to pKL203B,
which was used as a probe. Lane 2 shows the hybridization
pattern of a Pvull digest of one of the strain MG203B
transformants, and only a weakly hybridizing 3.6-kb band
was present, together with a strongly hybridizing band
corresponding to a size larger than 10 kb. Figure 6B shows
the expected chromosomal structure of strain MG203B after
Campbell-like integration of pKL203B and predicts the
absence of the 3.6-kb fragment but the presence of a 10.1-kb
fragment if single-copy integration in the chromosome of
strain MG203B occurred. As pKL203B did not contain Pvull
sites, fragments larger than 10.1 kb were expected if ampli-
fication of the plasmid occurred. Since such fragments were
clearly present in the chromosomal digest of strain MG203B
and the intensity of the 3.6-kb chromosomal fragment had
clearly decreased, the plasmid integrated in all probability
via a Campbell-like mechanism. However, the presence of a
weakly hybridizing band at 3.6 kb suggests that strain
MG203B consisted of a mixed population in which part of
the cells had lost the amplified structure through precise
excision. If this is correct, the presence of free plasmid DNA
in strain MG203B might be anticipated. Indeed, we detected
small amounts of free plasmid DNA in strain MG203B, as
well as in the transformants obtained with pKL203A (data
not shown).

To test the stability of the integrated plasmids, strains
MG203A and MG203B were grown under nonselective con-
ditions for 100 generations. The cultures obtained, strains
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FIG. 5. (A) Southern hybridization analysis of chromosomal DNAs of strains MG1363, MG400B, MG400B-1, and MG400B(E!%) cleaved
with Pvull and hybridized with digoxigenin-dUTP-labeled pKL400B. Lane 1, Phage SPP1 DNA digested with EcoRI; lane 2, strain MG1363;
lane 3, strain MG400B; lane 4, strain MG400B-I; lane S, strain MG400B(E!®); lane 6, pKL400B cut with Pvull. Sizes (in kilobases) are
indicated on the sides. (B) Structure of the relevant parts of the chromosomes of strain MG1363 and transformant strain MG400B. The solid

boxes indicate the locations of chromosomal fragment B.

MG203A-I and MG203B-I, showed a considerable reduction
in the number of Em" colony-forming units. Only 25 and 13%
of the cells of strain MG203A-I and MG203B-I cultures had
retained their Em" phenotype, respectively (Table 2). Chro-
mosomal analysis of strain MG203B-I showed that there was
a decrease in the intensity of fragments larger than 10.1 kb

A 1

SELEE

and the presence of a 10.1-kb fragment (Fig. 6, lane 3),
indicating that some of the cells contained only one inte-
grated plasmid copy (Fig. 6B). The concomitant increase in
the intensity of the 3.6-kb band (compared with strain
MG203B) was compatible with the assumption that loss of
integrated plasmid copies occurred via a mechanism of
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FIG. 6. (A) Southern hybridization analysis of chromosomal DNAs of strains MG1363, MG203B, MG203B-I, MG203B-la, and
MG203B-Ila cleaved with Pvull and hybridized with 32P-labeled pKL203B. Lane 1, Strain MG1363; lane 2, strain MG203B; lane 3, strain
MG203B-I; lane 4, strain MG203B-Ia; lane 5, strain MG203B-Ila. Sizes (in kilobases) are indicated on the right. (B) Structure of the relevant
parts of the chromosomes of host strain MG1363 and transformant strain MG203B. The solid boxes indicate the locations of chromosomal

fragment B.
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FIG. 7. Southern hybridization analysis of a plasmid preparation
obtained from S ml of a strain MG200 culture that was treated (lane
3) or not treated (lane 2) with endonuclease S1. Digoxigenin-dUTP-
labeled pKL203B was used as a probe. Lane 1, Phage lambda DNA
cleaved with HindIll; lanes 2 and 3, strain MG200. OC, Open
circular DNA; CCC, covalently closed circular DNA; SS, single-
stranded DNA.

precise excision, resulting in Em® cells. The strain
MG203B-I culture was also a mixed culture, as shown by the
isolation and characterization of randomly picked colonies.
One of these colonies, designated colony MG203B-Ia, con-
tained only one integrated plasmid copy, as deduced from an
analysis of its chromosomal DNA (Fig. 6A, lane 4). Even the
presence of only one copy of pKL203B in the chromosome
appeared to be unstable, because when colony MG203B-Ia
was grown under nonselective conditions for another 100
generations, the intensity of the 10.1-kb band had further
decreased in the culture designated MG203B-Ila (lane 5). A
concomitant increase in the intensity of the 3.6-kb band was
observed, which, as described above, suggests that there
was loss of integrated plasmids through precise excision.
Similar results were obtained with the strain MG203A trans-
formants (data not shown).

To address the question of whether the instability of
integrated pUB110-derived replicons might have been re-
lated to possible replicative activity of this replicon in the
lactococcal host, pKL200 was constructed. Plasmid pKL200
was essentially the same as pUB110 except that it contained
an erythromycin resistance gene instead of a kanamycin
resistance gene. Plasmid pKL200 was used to transform
strain MG1363 and yielded only approximately 100 Em"
transformants per pg of DNA, a frequency which was 10> to
10* times less than the frequencies obtained with a plasmid
such as pGK12 (19), an autonomously replicating lactococ-
cal plasmid used in these experiments as a control. This
result suggests that pUB110 is not capable of maintaining
itself in the lactococcal host as a fully functional replicon.
This is in agreement with the observation that only very
small quantities of free plasmid DNA were present in mini-
preparations of strain MG200. In fact, DNA extracts of 5 ml
of culture were required to visualize plasmid pKL200 on an
agarose gel. As Fig. 7 shows, the replicon produced single-
stranded DNA in the lactococcal host, which was indicative
of replicative activity, because pUB110 replicates via single-
stranded intermediates (12).
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DISCUSSION

We reported previously that Campbell-like integration into
the chromosome of L. lactis of a nonreplicative plasmid
(pBR322) carrying a chromosomal insertion is possible and
results in the duplication of the homologous region provided.
Although amplification was also observed, this appeared to
be unstable under nonselective conditions (i.e., in the ab-
sence of chloramphenicol), ultimately resulting in the stable
maintenance of only one integrated plasmid copy (20). In this
study we extended the range of replicons that are potentially
useful for integration to pUB110, pSC101, and pTB19 deriv-
atives. The pBR322 replicon was included in this study, and
in contrast to the previous experiments in which chloram-
phenicol was used as selective marker, in this study the
clones were selected on the basis of resistance to erythro-
mycin. All replicons were integrated into the same site on
the lactococcal chromosome via a Campbell type of recom-
bination. Two replicons (a pBR322 derivative and a pUB110
derivative) were also integrated at another chromosomal
location by using another chromosomal insertion. The sta-
bilities of the integrated plasmids at the two different chro-
mosomal locations (locations A and B) did not differ signif-
icantly.

The stability of the integrated sequences was not influ-
enced by the size of the plasmid used. Strains MGI10A,
MG10B, MG301B, and MG400B were obtained with plas-
mids which varied in size from 3.6 to 9.6 kb. No loss of the
erythromycin marker was detected in these strains after
growth under nonselective conditions. In contrast, strains
MG203A and MG203B, which were obtained with 6.5-kb
pUB110-derived plasmids, were unstable. The integrated
and amplified plasmid copies were apparently lost under
nonselective growth conditions via a mechanism of precise
excision. We found that free plasmid DNA was present in
strains MG203A and MG203B and that pUB110-derived
plasmid pKL200 was capable of producing single-stranded
replication intermediates in L. lactis. It is doubtful whether
the lactococcal host is capable of efficiently converting these
single-stranded intermediates to fully autonomous replicons,
as the frequency of transformation of L. lactis when the
pUBL110 derivative was used was very low compared with
the frequency of transformation when we used a functional
lactococcal replicon, such as pGK12, which also multiplies
according to the rolling circle mode of replication, thus
generating single-stranded intermediates (J. Seegers, per-
sonal communication). It is even questionable whether the
single-stranded intermediates observed in pKL200-mediated
transformants were produced from free plasmid DNA, as the
plasmid was predominantly present in an integrated form,
presumably as the result of illegitimate recombination (un-
published data). It the view that the single-stranded interme-
diates are formed from integrated plasmid DNA is correct,
then the double-stranded pKL200 molecules shown in Fig. 7
represent precisely excised plasmid DNA rather than single-
stranded intermediates converted into pUB110 replicons.
Replicative activity of integrated plasmids has previously
been invoked as a cause of unstable plasmid amplification in
the chromosome of B. subtilis (24, 30). By analogy, we
believe that the instability of the integrated amplified plas-
mids in L. lactis MG203A and MG203B results from repli-
cative activity of the integrated plasmids.

The stable chromosomal structure of the strains obtained
with the pBR322 replicon (strains MG10A and MG10B) is
interesting for a number of reasons. (i) Hybridization analy-
sis showed that the chromosomes of these strains carried a
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tandem arrangement of three to five plasmid copies (strain
MG10A) or two plasmid copies (strain MG10B). We believe
that it is unlikely that these multiple copies were generated
by amplification after the integration of a monomeric plas-
mid, because no amplification was observed in strains
MG301B and MG400B, either by high levels of erythromycin
or by clindamycin, showing that a single copy of the eryth-
romycin gene is sufficient to confer resistance to high levels
of erythromycin in L. lactis. Instead, the tandemly arranged
integrated plasmids in strains MG10A and MG10B probably
resulted from integration of plasmid dimers or oligomers. It
is known that pBR322 derivatives can produce considerable
amounts of multimers (2), and, indeed, we observed that the
plasmid preparation of pKL10A contained substantial
amounts of multimers. The failure to obtain amplification
with clindamycin is at variance with the observations of
Chopin et al. (7) and may be attributed to differences in the
strains used, since we did not observe a decrease in plating
efficiencies when we grew the strain MG1363-derived strains
in the presence of elevated levels of clindamycin as has been
described previously for strain IL.1403-derived strains. (ii)
The high level of stability of strains MG10A and MG10B
seems to contradict the result of our previous findings for
strain MG404 (20). This strain, which carried multiple copies
of pBR322 derivative pHV60 with chromosomal fragment A,
lost integrated sequences under nonselective conditions.
pBR322- and pCl194-derived fusion plasmids similar to
pHV60 have been used to construct duplicated sequences in
the chromosome of B. subtilis, which were shown to give
rise to instability as a result of residual replicative activity of
the pC194 moiety of such plasmids (30). The loss of amplified
integrated plasmid copies in strain MG404 may well relate to
residual replicative activity on the pC194 part of pHV60.
Because this part of pC194 is not present on pKL10A and
pKL10B, tandemly integrated copies of these plasmids could
be stably maintained. However, the specific pC194 part is
present on pKL301B and, therefore, also on the chromo-
some of strain MG301B. In this strain, one fully stable
integrated plasmid copy was present. This is in agreement
with the observed stability of strain MG404-Ia, which also
carried only one integrated copy of the pHV60 derivative
(20). Apparently, the residual replicative activity of the
pC194 part is compatible with the stable maintenance of just
one integrated plasmid copy.

Loss of amplified integrated plasmid copies has also been
described by Chopin et al. (7) for strain ILL1747. This strain
was obtained by Campbell-like integration and subsequent
amplification of pE194 in a prophage of strain IL1403. The
instability of amplification in this strain may also have been
related to the nature of the plasmid used, since it has been
reported that pE194 has replicative activity in L. lactis (1).

The general outcome of this work is that Campbell-like
integration of plasmids which do not contain plasmid repli-
cation functions that are active in L. lactis can generate
stable tandemly arranged multiple plasmid copies in the
chromosome of this host. Plasmids pUB110, pE194, and
pC194, all of which originated from Staphylococcus aureus,
seem to have at least residual replicative activity in L. lactis
and are therefore less suitable for construction of lactococcal
strains in which multiple copies of plasmids are to be stably
maintained in the chromosome. In contrast, when we used
pBR322-derived replicons and selection for erythromycin
resistance, stable multicopy integrations were obtained,
whereas pSC101- and pTB19-mediated transformation re-
sulted in stable single-copy integrations.
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