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A Proof of the lsoenergetic KAM-Theorem 
from the “Ordinary” One 
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A proof is given of the &energetic KAM-theorem for Hamiltonian systems, 
using the “ordinary” KAM-theorem and a transversality argument. 0 1991 Academic 

Press, Inc. 

1. INTRODUCTION 

The “ordinary” KAM-theorem is concerned with the persistent 
occurrence of quasi-periodic tori in nearly integrable Hamiltonian systems. 
Here the tori are Lagrangian, implying that their dimension is maximal, 
i.e., equal to the “number of degrees of freedom.” For an account of this we 
refer to [l-3,9]. An important variation of this result, the so-called 
isoenergetic KAM-theorem, concerns the persistent tori for a fixed value of 
the Hamiltonians. An account of this is given in, e.g., [3,2]. In [S] a 
strong connection (equivalence) if proven between these theorems and 
between the corresponding theorem for symplectic maps. 

In [7,4] a somewhat more geometric viewpoint is assumed, based on 
the setting and ideas of Poschel [9]. In [9], and later in [7,4], it is 
obtained that the persistent tori under consideration foliate smoothly over 
a set that is the union of closed halflines. This is a nowhere dense set of 
positive measure and the smoothness is understood in the sense of 
Whitney, compare Zehnder [lo]. In fact in [7,4], also in contexts different 
from the Hamiltonian one, a general unfolding theory of quasi-periodic tori 
is given, using Moser [S]. 

The “ordinary” KAM-theorem provides conjugacies between (non- 
degenerate) integrable systems and their perturbations. These conjugacies 
are defined on the union of the invariant tori under concern and they are 
(Whitney-) smooth. So this theorem can be phrased in terms of structural 
stability, in this case, in [7,4], called quasi-periodic stability. 

Moreover, in [7, Chap. 7c; 4, Sect. 7c)] in general the relation, con- 
cerning nondegeneracy-conditions, the necessary number of unfolding 
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parameters and the relevant invariants, is studied Ilows and maps via 
Poincare-sections resp. suspensions. Here the usual correspondence 
between equivalences and conjugacies occurs, when passing to sections of a 
flow resp. to suspensions of a map. We recall that both conjugacies and 
equivalences are transformations that map orbits to orbits, but that 
conjugacies preserve the time-parametrization, while equivalences only 
have to preserve the direction of this parametrization. In [7,4] the term 
weak quasi-periodic stability is employed when instead of conjugacies 
equivalences, likewise (Whitney-) smooth, are used between quasi-periodic 
tori. 

In [7, Chap. 9a], the isoenergetic KAM-theorem is formulated as a 
statement of weak quasi-periodic stability and proven directly from the 
“ordinary” KAM-theorem [9] and a straightforward transversality argu- 
ment concerning the aforementioned halflines. Technically speaking this is 
a more geometric and qualitative version of [5, Chap. 1, II], where 
presently moreover, instead of one at the time, a whole (Whitney-) smooth 
foliation of quasi-periodic tori is treated at once. For a similar proof also 
compare [7; 4, Cor. 7.11. 

This article contains a slight modification of [7, Chap. 9a], presented 
here for the sake of general availability. It is organized as follows: In the 
next section a more detailed exposition of the results of [9] will be given. 
Then, in the last section, the isoenergetic KAM-theorem is deduced from 
this. 

2. PRELIMINARIES 

We start by recalling the setting of the problem. Let ‘IT” := R”/(27rZ)” be 
the standard n-torus, with coordinates x = (x1, x2, . . . . x,) mod 271. Our 
dynamics lives in the phase space M := T” x R”, where on R” we use the 
coordinates y = ( y, , y,, . . . . y,). We endow M with the symplectic form 
e := cj”= I dxj A dyj (= dx A dy for short). Given a function H: it4 + R 
the associated Hamiltonian vector field X, on M is given by dH= lXHo, 
implying that 

X&T Y)’ f: 
( 

%Y Y&-g(x, Y)$, 
j=l ayj 3 3 J > 

=E(x, y)-&-g(x, y)~$forshort. 
> 

Then H, the Hamiltonian or energy, obviously is a first integral, implying 
that A4 is a disjoint union of the XJnvariant level sets of H. In cases of 
our concern this union is a foliation (with singularities). 
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a. The Real Analytic Topology 

Throughout this paper we assume real analyticity. We mention however 
that straightforward adaptations exist for the Ck-case with k < 00 suf- 
ficiently large. Compare [9], also see [4]. In our analytic case we consider 
M= (R”/(27rZ)“) x R” as the real part of ((C”/(27rZ)‘) x C”, while any of 
our Hamiltonians H on M is assumed to have a complex analytic or 
holomorphic extension to a neighbourhood of M in (@“/(2nZ)“) x @“. 

Perturbations of such H are taken in the compact-open topology on 
these complex analytic extensions, which we call the real analytic topology. 
At the end of this section we shall give an explicit example of a 
neighborhood in this topology. 

b. Integrability 

A Hamiltonian system as above is integrable if for some function 
Ho: R” + R we have H(x, y) = Ho(y), so if H is independent of x. In that 
case consider the map f: R” -+ R” given by f:= JH,Jay, using the same 
abbreviations as before. We see that now 

a 
XH(X, Y) =f(y) ax? 

implying that the coordinate functions yl, y,, . . . . y, all are first integrals. 
So for each fixed y, = (y,,, yo2, . . . . y,,,) the torus U” x { yO} EM is 
XKinvariant, while the restriction of X, is constant, implying parallelity of 
the corresponding flow. We say that that f( y,,) is the frequency vector of 
this torus, while f is the frequency map of the integrable vector field X,. 
The question then is what is the behavior of the invariant foliation 
{T” x { yO} 1 y0 E R”} of tori, under nonintegrable perturbations. 

c. Some “Cantor Sets” 

KAM-theory deals with the persistence of those invariant tori, the fre- 
quency vector w = (wr , 02, . . . . 0,) of which satisfies so-called diophantine 
(or small divisor) conditions. To be precise let T > n be a constant and y > 0 
a parameter. Then for all integer vectorts k 6 Z”\(O) consider the 
inequality 

I<w,k)l aylkl-‘, 

where (w, k) :=C;=r ojkjand Ikl :=cyE1 Ikjl. By R; we denote the set of 
o E I&‘” satisfying all these inequalities for a fixed y. We say that IIX; contains 
the diophantine frequency vectors of order y. Note that for w E Iw; the 
numbers o,, w2, . . . . w, certainly are rationally independent. 

Evidently with w also all scalar multiples SW, s 3 1, belong to IRY. 
Moreover rW: intersects the unit sphere in R” in a closed set, which by the 
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Cantor-Bendixson theorem, cf. [6], is the union of a Cantor set and a 
countable set. The measure of the complement of this set in the sphere, is 
of order y as 710. It follows that [w: is a Whitney-C” foliation of closed 
halflines, parametrized over a Cantor set of positive measure. 

If the frequency mapf under b is a (local) diffeomorphism, the same can 
be said of the pullback f -‘(iR;). Throughout this paper we colloquially use 
the expression “Cantor set” for any such a Whitney-smooth foliations of 
manifolds (with boundary). 

In particular we have that the collection T” x f - ‘( R;) of invariant tori 
of the integrable system X,, is such a “Cantor set.” The fact that the 
corresponding frequencies are rationally independent implies that these tori 
are quasi-periodic: all of them are densely filled by each of the integral 
curves contained in them. 

d. The “Ordinary” KAM-Theorem 

We next give a qualitative description of the “ordinary” KAM-theorem, 
compare [9]. To this end first consider an integrable Hamiltonian vector 
field 

as under b, so with H(x, y) = H,,(y) and f := 8H,,/+. We say that X, is 
nondegenerate at the invariant torus 8” x { y,} if 

det $$o) ZO. 
( ) 

This condition implies that near y, the frequency map f is a local 
diffeomorphism. Hence the invariant tori T” x { y} for y near y, can be 
parametrized by their frequency vectors. 

According to [9], given nondegeneracy of X,, at T” x { yO}, there exists 
a neighbourhood II/‘ of H in the real analytic topology, depending on y, 
such that for all perturbations RE Y the following holds. There exists a 
(local) Whitney-C”, symplectic conjugacy (5, q) H (x, y), which puts XR 
on an integrable normal form 

where (5, Q) E T” x $-‘(02;) and where y varies near y,. So q and [ form 
action-angle variables for the perturbed system, when restricting to the 
“Cantor set” U” x @-‘(R;). 

The fact that the map (5, tf)t+ (x, JJ) is Whitney-C” means that it can 
be extended as a C”-diffeomorphism to a full neighbourhood in T” x R”. 

505/90/l-5 



56 BROER AND HUITEMA 

Outside the “Cantor set,” however, this nonunique extension usually can 
not be a conjugacy to an integrable system. Finally we mention that the 
map (5, q) H (x, y) is analytic for fixed values of q E Ic/ P1(R;). 

Next we consider the map 

observing that it conjugates the integrable systems IC/(V)~/LJ~ and 
XJx, y) =f( y)a/ax. Composition of this map with the inverse of the one 
obtained before yields a near-identity conjugacy between appropriate sub- 
systems of X, and X,, namely between “Cantor sets” of quasi-periodic 
tori. Here the foliations of the invariant tori can be parametrized by the 
corresponding frequency vectors, which are preserved by the conjugacy. 
Note that this conjugacy is not necessarily symplectic. 

We say that the vector field X,, (near T” x { y,}) is quasi-periodically 
stable. The smoothness of the involved maps guarantees that the property 
of having a “Cantor set” of quasi-periodic tori is open in the real analytic 
topology. (Here recall that “Cantor sets” have positive measure. For 
another proof of this stability result see [7,4].) 

Remarks. (i) For completeness’ sake and in order the clarify the role 
of the parameter y, let us more explicitly describe a real analytic 
neighbourhood Y of H, from which fi is chosen, again see [9]. To this 
end let 0 denote a compact neighbourhood of P” x f in (C’1/(27r.Z)“) x C”, 
such that H has a complex analytic extension to 0. Here r is a 
neighborhood of y, in R”, such that the restriction off to r is a dif- 
feomorphism onto its image. Then V is the compact-open neighbourhood 
of H, determined as follows by 0, y and a positive constant 6 provided by 
[9]. In fact V consists of all “real” analytic functions 8: 0 + C, such that 
sup0 l@x, y) - H(x, y)l < ~‘6. For y > 0 sufficiently small 6 is independent 
of y. The conjugacy then is defined on a set T” x f’ with r’c r slightly 
smaller, the difference vanishing for y JO. 

(ii) Relative to a bounded neighbourhood of 8” x (yO} in 
M= U” x OX”, the measure of the complement of the perturbed tori is of 
order y as y JO. 

3. THE RESULT 

In this section we give a formulation of the isoenergetic KAM-theorem, 
e.g., compare [2] or [3], and subsequently prove this from the “ordinary” 
KAM-theorem as stated in [9], compare Section 2d. First, however, 
observe that from the result of Section 2d alone it does not follow directly 
that in a given level set of if any XFinvariant tori persist. 
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Quoting from [2,3] we say that the integrable system X, at the 
invariant torus T” x ( y,} is isoenergetically nondegenerate if 

det 

[ 

%PY(Yo) f(YoY z. 

f(Yo) 0 1 ’ 

where the superscript t denotes transposition. This condition means that, 
near 8” x { yO}, in each level set of H the XJnvariant tori can be 
parametrized by their frequency ratios [fi( y): fi( y): . . . : f,,(y)]. 

The following example, due to R. Douady [S], shows that isoenergetic 
nondegeneracy is independent of the “ordinary” nondegeneracy of 
Section 2d. In fact we take n = 2 and consider the Hamiltonians 
H,,H*:U2xW + [w, respectively detined by H,(x, y) := y, + y, + y: and’ 
ff2(x, Y) := Yl + Y2 + Y: - YL which both give rise to integrable vector 
fields X, and X,,. Now consider the torus U2 x {0}, invariant for both 
systems. It is easily verified that here X,, is isoenergetically nondegenerate, 
but degenerate in the “ordinary” sense, while for X, the converse holds. 

The isoenergetic KAM-theorem roughly says that isoenergetic non- 
degeneracy implies that, restricted to fixed energy levels, the vector field X, 
is weakly quasi-periodically stable. We recall that the adjective “weak” 
means that the transformation, to be found between perturbed and unper- 
turbed tori, is not necessarily a conjugacy, but only an equivalence. 

Now, to give a precise formulation of the isoenergetic KAM-theorem, 
we first need the following notation: For n c [w” we write /i, := 
{ y E /1 1 f(y) E IF!;}, cf. Sections 2c, d. Similarly we write r,, etc. 

THEOREM. Let X = X, be a real analytic, integrable Hamiltonian vector 
field on A4 = U” x Iw”. Let E E Iw and y, E KY’ be such that X is isoenergetically 
nondegenerate at the invariant T” x { yo) c H-‘(E). Then there exists a 
neighborhood A of y, in IF’, such that for all real analytic Hamiltonian vec- 
tor w= Xn on M, with R sufficiently near H in the real analytic topology, 
the following holds. In the level set I?-‘(E) there exists an f-invariant 
“Cantor set,” which is a P-near-identity dtffeomorphic image of 
(8" x A?) n H-‘(E). The corresponding dffeomorphism in these tori is a real 
analytic equivalence from X to 2, preserving the frequency ratios and the 
(trivial) normal linear behaviour. 

Before giving a proof of this we give some further remarks. 

Remarks. (i) First, if we regard the energy E as a parameter, the 
equivalence can be chosen in analytic dependence of it, compare [9, 7,4]. 

(ii) Second, both “Cantor sets” of invariant tori, perturbed and 
unperturbed, are Whitney-C” foliations that can be parametrized by the 
corresponding frequency ratios. 
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(iii) Moreover, relative to a suitable bounded neighbourhood of 
71” x ( y, > in M = 8” x [w”, the (2n - 1 )-dimensional measure of the comple- 
ment of the perturbed tori in n-‘(E) is of order y as y JO. 

Proof of the Theorem. We start from the results of Poschel [9], 
compare Section 2d. Also, for simplicity we take E = 0 and y, = 0. 

First, due to the following argument of R. Douady [S], it is sufficient 
only to consider the case where X= XH at 8” x (0) also is nonedegenerate 
in the “ordinary” sense. Indeed, if this extra condition is not fulfilled, we 
replace the Hamiltonian H by H + Hz. The new vector held then satisfies 
both nondegeneracy conditions. Moreover, near T” x {0}, both vector 
fields are conjugate when restricted to the level sets with energy 0. Finally 
small perturbations of H correspond to small perturbations of H + HZ and 
vice versa. So from now on we assume both nondegeneracy conditions 
hold. 

The result mentioned in Section 2d, from the “ordinary” nondegeneracy 
gives us a neighbourhood r of 0 in [w”, such that the frequency mapf: IR” 
is a diffeomorphism onto its image and such that the following holds. For 
a Hamiltonian fl, sufficiently near H in the real analytic topology, a 
C”-diffeomorphism @: T” x r-+ U” x !R” onto its image exists, where the 
restriction @) Tm x r, is a conjugacy between appropriate subsystems of X and 
%= XR. Moreover @ is analytic in the U”-direction and near the identity 
in the C”-topology. In fact all of this holds for sufftciently small 
neighbourhoods r of 0. Of course, in order to avoid having r, = a, for r 
small also y > 0 has to be small, which has its consequences for the allowed 
size of the perturbation A-- H, compare the remarks ending Section 2d. 
Furthermore observe that by choosing r appropriate we can ensure that 
f(r) G R” is convex. 

Next we consider the restrictions of X and f to the respective level sets 
H-‘(O) and A-‘(O). Note that by the “ordinary” nondegeneracy both of 
these level sets are (2n - 1)-dimensional manifolds, or hypersurfaces, in 
U” x r with r sufficiently small. With help of the above map @ and the 
isoenergetic nondegeneracy we shall construct an equivalence between 
these restrictions on the level of our quasi-periodic tori. 

For this purpose we give the following geometric interpretation of 
isoenergetic nondegeneracy. Let n: U” x I&!” -+ Iw” be the projection on 
the second factor and for any o E tJV’\{ 0} consider the open half-line 
SE (0, co) H SW E R”. One easily sees that the condition means that near 
f(0) in R” all these halflines are transverse to the hypersurface 
(fon)(H-‘(0)). Note that the halflines are sets of constant frequency ratio. 

Now consider the “Cantor set” of X-invariant, quasi-periodic tori in the 
set H-‘(O) n (8” x r,). We shall link a large piece of this set to a “Cantor 
set” of X-invariant tori in @-‘(R(O)) by an equivalence Y of the form 
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FIG. 1. Description of the map $ in the frequency domain. 

@P(y(x, y) = (x, rl/(x, y)). In fact, since A is close to H and @ near the iden- 
tity, the hypersurface (forr)(W’(ff-‘(0))) also is transverse to the above 
halflines. This implies that the map $ is completely determined by the 
relation [fi( v) : . . . : f,(v)1 = Cfi(t4Y)) : ... : f,($( y))] between the corre- 
sponding frequency ratios. See Fig. 1. In the frequency domain f(r) this 
map just goes from one set to the other along the hallhnes described above. 

Clearly this construction works for f sufficiently small with f(f) convex. 
Considering the domain of $ for f(A) we then have to take the inter- 
section of f(r) and the cones on the sets (forr)(H-i(0)) nf(r) and 
(fo~)(~-‘(R-‘(O)))nf(r) with 0 as top. This determines the 
neighborhood A in the theorem. The desired equivalence now is the 
composition 0 0 Y. Since the map Y is quite simple, this composition has 
the same regularity as @. 1 
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