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Abstract 

Hesselink, W.H., Processes and formalisms for unbounded choice, Theoretical Computer Science 

99 (1992) 105-119. 

In the field of program refinement a specification construct has been proposed that does not have 
a standard operational interpretation. Its weakest preconditions are monotone but not necessarily 

conjunctive. In order to develop a corresponding ca1culus we introduce specification algebras. 

These algebras may have two choice operators: demonic choice and angelic choice. The wish to 

allow unbounded choice, of both modalities, leads to the question of defining and constructing 

completions of specification algebras. It is shown that, in general, a specification algebra need 

not have a completion. On the other hand, a formalism is developed that allows for any specific 

combination of unbounded demonic choice, unbounded angelic choice and sequential composi- 

tion. The formalism is based on transition systems. It is related to the processes of De Bakker 

and Zucker. 

0. Introduction 

In the field of program refinement, several authors (cf. [2,9]) have proposed a 

specification construct that represents an angelic choice between an unbounded set 

of commands. We use the notation (Oi :: Ci) for the angelic choice between 

commands C.i. It is specified by its weakest precondition for postcondition P, 

wp.(Oi :: C.i).P=(3i :: wp.(C.i).P). 

On the other hand, the demonic choice (vi :: C.i) is given by 

wp.([i :: C.i).P= (Vi :: wp.(C.i).P). 

In the case of a choice between two commands, the symbols “0” and “0” are used 

as infix operators, so that 

wp.(C 0 D).P= wp.C.Pv wp.D.P, 

wp.(C 0 D).P= wp.C.Ph wp.D.P. 

0304.3975/92/$05.00 @ 1992-Elsevier Science Publishers B.V. All rights reserved 
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The angelic choice has rather strange properties. If, for example, i is an integer 

program variable, then command C = (i := 0 0 i := 1) is easily seen to satisfy both 

wp. C.( i = 0) = true, and 

wp.C.( i = 1) = true, although 

wp.C.(i=Or\i=l)=,fulse. 

So the command seems to guess the postcondition. For this reason we prefer to 

speak of specification C instead of command C. The angelic properties of 

specification C prohibit an operational model in the usual style. In this special case, 

wp.C can be expressed by means of the diamond operator of dynamic logic, cf. [4], 

but that formalism cannot express mixtures of demonic choice and angelic choice. 

In [2], a general specification C is regarded as a game between a demon and an 

angel: predicate wp.C.P means that the angel has a winning strategy to establish 

postcondition P. We refer to [8] for a more extensive discussion. 

For a general specification C, the predicate transformer wp.C is montone, but it 

may fail to be conjunctive (as is shown in the above example), 

The aim of refinement calculus in the sense of [2, 9, lo] is to calculate with 

specifications that satisfy some algebraic laws. Therefore, we would like to consider 

specifications as forming a certain algebra, which is an abstraction of the algebra 

of the monotone predicate transformers. This algebra should have three operators: 

composition “‘;“, demonic choice “I”, and angelic choice “0”. 

In this paper, we want to point out an obstruction in combining the composition 

with the unbounded demonic choice in the presence of angelic commands. We 

define a concept of a spec$ication algebra, with operators “;” and “0”. A specification 

algebra is called complete if it allows unbounded demonic choice. We define the 

concept of a completion of a specification algebra. The problem is that a simple 

specification algebra may fail to have a completion; or rather, the “completion” is 

too big to be a set, it is a proper class in the sense of set theory, cf. [ 111. As a 

remedy, we introduce transition systems with termination and both angelic and 

demonic choice to represent the elements of the “completion”. 

The motivation for the paper came from refinement calculus in sequential program- 

ming. The proposed transition systems and their wp-interpretation, however, may 

be useful for concurrency as well. 

In each section, the formulae are numbered consecutively. For reference to 

formulae of other sections, we use i(j) to denote formula (j) of Section i. 

1. Process algebras and specification algebras 

We start with the (basic) process algebras of Bergstra et al., cf. [l]. A process 

algebra is defined to be a triple (A, 0, ;), where A is a set and “0” and “;” are binary 

operators on A. The operator “0” stands for demonic nondeterminate choice. So its 

interpretation differs from the interpretation of the operator “+” of [ 11. The operator 
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“;” stands for sequential composition. The following axioms are postulated. 

(0) a[a=LZ, 

(1) a[b=b[a, 

(2) (u il b) 0 c = u 0 (b II c), 

(3) (a; 6); c = a; (b; c), 

(4) (u[b);c=u;cOb;c. 

In (4), and henceforth, we give the operator “;” a higher priority than “0”. In fact, 

“;” is regarded as a multiplication and “0” is regarded as an addition operator. If 

no ambiguity can arise, we speak of the process algebra A instead of (A, 0, ;). 

On a process algebra A we define the binary relation c by 

(5) usb = u=u[b. 

As is well known (and easily verified), axioms (0), (l), (2) imply that s is a (partial) 

order on A. Relation c is called the order ofdeterminucy. In fact, if a 4 b, cf. (S), 

then b is a possible choice for a; in other words, a is less determinate than b. 

One easily verifies that a 0 b is the greatest lower bound of a and b in the ordered 

set (A, s), and that 

(6) usbticsd =, u0csbud. 

The composition operator “;” is monotone with respect to its first argument: 

(7) usb =a u;csb;c. 

This is proved in 

a; cc b; c 

= {(5)}u;c=u;c~b;c 

= {(4)}u;c=(u~b);c 

e ((5)) us b. 

A specijicution algebra is defined to be a process algebra in which the composition 

operator “;” is also monotone with respect to its second argument: 

(8) bsc =a a; bsu;c. 

Postulate (8) can be replaced by the equivalent axiom 

(9) u;(bflc)=u;(b[c)[u;c. 

In fact, the equivalence is proved in 

(Vb :: bsc =a a; bsu; c) 

= I(5)) 

(Vb::b=b[c + u;b=u;b[u;c) 

= {take b := b 0 c and use b 0 c = b 0 (b 0 c)) 

(Vb :: a; (b 0 c) = a; (b 0 c) 0 a; c). 
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Notice that we do not postulate a; (b 0 c) = a; b 0 a; c, see formula (8) in Section 2 

below. 

A function w : A+ B between specification algebras A and B is called a 

homomorphism if and only if it satisfies 

(10) w.(Poq)=w.Pow.q, w.(p; q) = w.p; w.q. 

For any nonempty finite subset E of A, the repeated choice (Ox E E :: x) can be 

defined in the obvious way. By axiom (4), the nonempty finite repeated choice 

satisfies the left-&distributive law 

(11) (ux~E::x);?)=(u.\-E::.~;y). 

One can verify that (lx E E :: x) is the greatest lower bound of set E in A with 

respect to the order of determinacy (5). 

2. Complete specification algebras 

The specification algebra A is called complete if and only if every subset E has a 

greatest lower bound. In a complete specification algebra we use the notation 

(lx E E :: x) to denote the greatest lower bound of an arbitrary subset E. 

A homomorphism w : A + B between complete specification algebras A and B is 

called O-complete if and only if for every subset E of A 

(0) w.(flx E E :: x) = (ox E E :: w.x). 

We do not go into the axiomatisation of angelic choice for arbitrary specification 

algebras. Let M be a complete specification algebra. Since it has arbitrary greatest 

lower bounds, it also has arbitrary least upper bounds: the least upper bound of a 

subset E of M is (as is well known, and easily verified) the greatest lower bound 

of its upper bounds. Using the symbol 0 for the least upper bound, we have 

(OxEE::x)=(~yEM:(VxEE::x~y):y). 

Notice that M has a biggest element T and a smallest element _L given by 

T=([xE@::x), 

The complete specification algebra M is called completely left-distributive if and 

only if for every subset E of M and every element y E M 

(1) (ox E E :: x); y = (ox E E :: x; y), and 

(OXE E :: x); y = (Ox G E :: x; y). 
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Notice that, in the analogous formula l(ll), the set E is supposed to be nonempty 

and finite. Notice also that formula (1) with E = B implies 

(2) T;y=T, _L;y=l for all y E M. 

The set of the monotone predicate transformers is our prototype of a complete 

and completely left-distributive specification algebra. This algebra is constructed as 

follows: Let [EB be the set of the two boolean values true and false. Let S be a set, 

the so-called state space. We write Bs to denote the set of the boolean functions 

on S. By abuse of language, the elements of B” are called predicates, even though 

we do not impose any syntax. We write 

(3) [p*q] - (VSG s :: p.s%q.s). 

A function f: 5.’ + lEBs is called a predicate transformer. It is called monotone if and 

only if 

(4) (vP,q~BS:[PJql:[~P~~ql). 

Let MT be the set of the monotone predicate transformers. It is made into a 

specification algebra by defining 

(5) (f 0 g).p.s =jp.s A g.p.s, (f; g1.p =.ku) 

for all J g E MT, p E Bs, s E S. One can easily verify that (MT, 0, ;) is a process 

algebra. Relation l(5) specialises to 

(6) f sg = (tlp~B :: [,fp*g.p]). 

Now it follows from (4), (5), (6), that for all f, g, h E MT 

fsg * h;fsh,g, 

so that MT is a specification algebra indeed. Actually, MT is complete and com- 

pletely left-distributive. For a subset E of MT, the predicate transformers (If E E :: f) 

and (Of E E :: f) are given by 

(7) (If E E :: f ).p.s = (Vf E E ::Jp.s), and 

(Of E E :: f).p.s = (3f E E ::jp.s). 

The remaining proofs are left to the reader. 

Remark. In [7], we define a command algebra to be a process algebra that satisfies 

the right-distributive law for “0”: 

(8) a;(b[c)=a;bfla;c. 

It is easy to see that every command algebra is a specification algebra. The algebra 

MT is not a command algebra, as is shown in the following example. 

Let S be the set of the integers and let variable i range over S. We consider the 

specifications 

a=(i:=OO i:= I), b=(i:=i+l) and c=skip, 



110 W. H. Hessrlink 

and the postcondition P : (i = 1). One easily verifies that 

wp.(a; (b 0 c)).P 

= wp.a.( wp.( b 0 c).( i = 1)) 

= wp. a.false 

= false 

whereas 

wp.(a; b 0 a; c).P 

= wp.(a; b).(i = 1) A wp.(a; c).(i= 1) 

= wp.a.( i = 0) A wp.a.( i = 1) 

= true. 

Thus, if we identify a, b, c with their predicate transformers wp.a, etc., in MT, then 

a;(b[c)#a;b~a;cinMT. 

Similarly, the right-distributive law for 0 is not valid in MT, as is shown by taking 

P, b, c as above and 

d=(i:=O[i:=l), 

in which case one can verify that 

wp.(d; (b 0 c)).P = true, 

wp.( d; b 0 d; c).P = false. 

The failure of right distributivity suggests some connection with the semantics of 

process algebras, cf. [l, p. 1321. 

3. Completion of specification algebras 

Let a specification algebra A be given. Since A need not allow infinite choice, 

we want to embed A into a complete specification algebra A’. Moreover, we expect 

that any semantic interpretation of A has some (preferably unique) extension to 

A’. Therefore, we impose the condition that every homomorphism w : A + M of A 

to a complete (and possibly completely left-distributive) specification algebra M 

has some extension to a [-complete homomorphism w’: A’-+ M. Such an algebra 

A” would be called a completion of A. 

We now show that not every specification algebra has a completion. Let B be the 

free specification algebra over a single indeterminate t. It consists of all specification 

algebra expressions in t, modulo the equalities induced by the axioms 1(0)-l(4) 

and l(9). It is characterised by the “universal” property that for every specification 

algebra M and every m E M there is precisely one homomorphism of specification 

algebras wp: B+ M with wp.t = m. 
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Here, the name “wp” is chosen for the analogy with weakest preconditions: if B 

is the programming language, M is an algebra of predicate transformers, t is a 

command specified by wp.t = m, then indeed function “wp” gives the weakest 

preconditions of the commands in B. 

We shall prove that B does not have a completion B’. To do so, we assume that 

B’ exists and we prove that the cardinality of B’ exceeds the cardinality of an 

arbitrary ordinal number, cf. [ll]. 
Let A be an arbitrary ordinal number. As is usual, A is identified with the set of 

the ordinals (T < A. This set is treated as the state space of our programs. Therefore, 

the set of the “predicates” is [EBA, the set of the boolean functions on A. Let MT be 

the set of the monotone functions B” + Et”, i.e. the algebra of the monotone predicate 

transformers of A. It is a complete and completely left-distributive specification 

algebra. We define m E MT by 

(0) m.p.a - (3~~Eh:~Ca:p.~) 

for any predicate p E B” and any state u E A. The predicate transformer m represents 

the unbounded angelic choice of a smaller ordinal. Notice that m is monotone, as 

required. By the universal property of B, there is a unique homomorphism of 

specification algebras wp : B + MT with wp. t = m. By the defining property of B’, 

there is a [-complete homomorphism wp’: B’ + MT that extends wp. We claim that 

for every ordinal v E A there is a specification e. v E B’ with 

(1) wpc.(e.v).true.a = v< cr. 

The specifications e. v are constructed by transfinite induction. Let 5 E A be an ordinal 

such that e.v is constructed for all v < 5. Then we define 

(2) e.t= t; (Iv: v<[:e.v). 

We verify that for any c 

wp’.( e.[).true.cT 

= {(2), wp’homomorphism} 

(wp’. t; wp’.([v : v < 5 : e. v)). ttx4e.c 

= { wp’.t = m and “;” in MT is composition} 

m.(wp’.([v: v<[: e.v).true).a 

SE i(O)1 

(3p:j.~ <CT: wp’.([v: v<[:e.v).true.~) 

= {(l), wp’ is I+complete} 

(3~:/_<(T:(vv:v<‘$:v<~)) 

- {ordinal calculus} 

(3/_L::<u::S~) 

= {ordinal calculus} 

l$ < LT. 
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This implies that e.5 satisfies the induction hypothesis (l), thus concluding the 

inductive construction (one may notice that the induction starts with e.0 = (t; T)). 

It follows from (1) that for any p, v E A 

p#u =+ e.p#e.v. 

This proves that the cardinality of B’ is at least the cardinality of A. As A was 

arbitrary, this proves that B’ is not a set, cf. [ 111, though it may exist as proper class. 

We suspect that a similar argument can be given if the monotone predicate 

transformers are replaced by the conjunctive ones, but we know that in the case of 

the positively conjunctive predicate transformers a completion exists. Here, a predi- 

cate transformer .f is called conjunctive if and only if it satisfies $( p A q) =,tp Ajq. 

It is called positively conjunctive if and only if.f(A p E E :: p) = (A p E E :: jp)) for 

any nonempty set of predicates E. 

4. Transition systems as specifications 

Now that we know that the completion A“ cannot be constructed as a set, we 

may try and construct A’ as a class. So the aim is to construct objects that represent 

elements of A’. We call our constructs “D-specifications”. In a modification of the 

construction the objects are called “AD-specifications” and both angelic and 

demonic choice are admitted. A D-specification is a kind of forma1 expression with 

unbounded choice. It is formalised as a transition system with termination point, 

i.e. a kind of nondeterministic, not necessarily finite, automaton. This formalisation 

was inspired by [3] and [.5]. 

We need two auxiliary symbols, a symbol 7~ A to denote a silent action and a 

symbol e to denote a termination state. We write A’ = A u {T} and P’ = P u {e}. 

A D-spebjication over a set A is a triple (P, p, TT), where P is a set with P if P, and 

p E P is a constant, and r c P x A’ x P’ is a ternary relation such that 

(0) (x,a,y)E~ 3 ~(~=TA?‘=F). 

If no ambiguity can arise, we speak of D-specification P instead of (P, p, r). 

The intutition is that x E P corresponds to the demonic choice between composi- 

tion (a; y) with (x, a, y) E 7~. The distinguished element p serves as the initial point 

which represents the whole D-specification. A triple (x, a, E) E 7~ corresponds to the 

call of a followed by termination. We introduce the concept of extension to formalise 

this intuition. 

Let P be a D-specification over a set A and let .f‘: A + M be a function from A 

to a complete (and preferably completely left-distributive) specification algebra M. 

A function w : P + M is called an extension of ,f‘ to P if and only if for every x E P 

(1) w.x = ([a, y :(x, a, _v) E 7-r : 

ifa#r~y#~then~a;w.~ 

[a = T then w.1’ 

Or= F then.fia fi) 
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Remark. The righthand side of (1) is well defined because of condition (0). In the 

absence of (0), equation (1) would need an extra clause 

[a = 7 A y = F then skip, 

where skip would have to be a unit element of the composition of M. Since we do 

not want to postulate the existence of skip in every specification algebra, we impose 

condition (0). 

It is a straightforward application of the theorem of Knaster-Tarski to show 

that every function f: A-+ M has a unique smallest extension and a unique 

biggest extension. In fact, let Mp be the set of the functions P-, M. An element 

w E MP is an extension if and only if it is a fixpoint of the function E : Mp + MP 

given by 

(2) E.w.x = ([a, y:(x, a, y)E 7r: 

ifa#rAy#&thenjIu; w.y 

[a = T then w.y 

0~’ = E thenju fi) 

for all WE MP and x E P It follows from the formulae l(8) and l(6) that 

function E is monotone with respect to the induced order of Mp. Therefore, by 

the theorem of Knaster-Tarski, cf. [12], function E has a smallest and a biggest 

fixed point. 

Let f’ and fp be the biggest and smallest extension off to l? The meaning of 

D-specification P itself is determined by the elements 

(3) fC.P =fP.p, fc.P =fP.P (EM). 

D-specifications are most useful if the extension is necessarily unique. This leads 

to the following considerations. For a D-specification P = (P, p, T), the binary relation 

“0’ on P is defined by 

(4) y~Ix = (3u~A~::(x,a,y)~~~). 

The D-specification P is called well-founded if and only if the relation “Q” is 

well-founded, i.e. for every subset CJ of P 

(5) lJ=P = (VXE P:: (VyE P:yclx:yE u)*xE U). 

For a well-founded D-specification P every function f: A + M has precisely one 

extension. This is proved by the following standard argument. Let ~1 and w be 

extensions ofJ Let U be defined as the subset of P where v and w are equal. For 
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any x E P we have 

(V-YE P:yux:yE U) 

= ((4) and definition U} 

(Vy E P, a E A’ :(x, a, y) E r : u.y = w.y) 

=3 {(l), u and w are extensions) 

v.x = w.x 

= {definition U) 

XE- u. 

By (5), this proves that U = P so that ZI = w. 

Every element a E A has an associated well-founded D-specification 

(‘5) i.a = ({PI, P, l(P, a, F)}), 

which is easily seen to satisfy 

(7) f’“.( i.a) =$a 

5. Choice and composition of D-specifications 

The unbounded demonic choice (Ii : : Pi) of D-specifications (Pi, p. i, r. i) is defined 

as P = (P, p, VT) where p is a new symbol and the set P is the union of {p} with the 

disjoint union of the sets Pi. Relation n is the union of the set of the silent transitions 

(p, T, p.i) with the union of the transition relations r.i of the constituents. It is left 

to the reader to prove that 

(0) fc.P = (Ii :: ,f’.( Pi)), 

and similarly for f,. It is easy to see that P is well-founded if and only if all 

constituent D-specifications Pi are well-founded. 

The composition of a D-specification P = (P, p, n-) and a D-specification Q = 

(Q, q, +) is defined as the D-specification (P; Q) = (R, p, p), where R is the disjoint 

union Pu Q of the sets P and Q, and p is given by 

(1) (X,U,),)EP = ((X,u,y)E~A.?,#F)V((X,u,~)~~A?,=q) 

v (x, o, y) E ti. 

Again it is easy to see that (P; Q) IS well-founded if and only if both P and Q are 

well-founded. 

It is the aim of the construction that the composition should satisfy the property 

,f“.( P; Q) =f”.P; f’.Q, and similarly for,f,. Our proof of these facts is unexpectedly 

difficult. It is here that we need the assumption that M be completely left-distributive. 
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Let P be a D-specification and let m E M. We define function F.m : MP + MP by 

(2) F.m.w.x = ([a, y : (x, a, y) E r : 

ifa#TAy#Ethenja;w.y 

[la = -r then w.y 

[y = F thenju; m fi) 

for all w E MP and x E P It follows from 4( l), (1) and (2) that we have the next lemma. 

(3) Lemma. A function u E M P”Q is an extension off to (P; Q) if’ and only if u ) P 

is a jixpoint of F.( u.q) and u 1 Q is an extension off to Q. 

This result leads to consideration of the fixpoint equation for F.m with m E M. 

(4) Lemma. Let M be completely left-distributive. Then F.m has a biggest jixpoint 

g E M p, and it satisfies 

(VxE P :: g.x = ((f 4x); m)). 

Proof. Let G:(MP)2+(MP)2 be given by 

(5) G.(u, v) = (Eu, F.m.v). 

We use the componentwise ordering of ( Mp)‘. Therefore, ( Mp)’ has greatest lower 

bounds, which can be calculated componentwise. We use 0 to denote greatest lower 

bounds in ( Mp)‘. 

Function G is easily seen to be monotone. Let Y be the subset of ( Mp)’ given by 

(6) (u, U)E Y = (VXE P:: v.x=(u.x; m)). 

We claim that Y is G-invariant and closed under greatest lower bounds in (M ‘)‘. 

In fact, for any (u, V)E Y and any XE P we have 

(7) F.m.v.x 

= i(2), (6)) 

(Oa, Y : b, a, Y) E 77 : 

ifafrAy#~thenjIa;u.y;m 

[a = T then u.y; m 

Oy = F thenJa; m fi) 

= {2(l), M is completely left-distributive; 4(2)} 

E.u.x; m. 
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It follows that Y is G-invariant, since for any pair (u, U) we have 

G.(u, U)E Y 

= i(5), (6)I 

(Vx E P :: F.m.v.x = E.u.x; m) 

(= {(7)1 

(u, U)E Y. 

The subset Y is closed under greatest lower bounds, since for any family (i E 

I :: (u.i, ni)) in (IMP)’ we have 

(Ii :: (ui, 0.i)) E Y 

= ((6) and definition fl in (M ‘)‘} 

(VxE P :: (ii :: v.i).x = ((Ii :: u.i).x; m)) 

= {definition [I in M ‘} 

(Vxe P :: (Ii :: v.i.x) = ((Ii :: u.i.x); m))) 

= {2(l), M is completely left-distributive} 

(VxE P :: (Ii :: v.i.x) = (Ii :: (u.i.x; m))) 

(Vi :: (u.i, U.i)E Y). 

This shows that Y is G-invariant and closed under greatest lower bounds in (M ‘)‘. 

By the extended theorem of Knaster-Tarski, i.e. the dual of the theorem in [6, 

Section 1.31, it follows that G has a biggest fixpoint in (M ‘)’ and that this fixpoint 

is element of Y. 

Since function G acts diagonally, cf. (S), the biggest fixpoint of G is a pair of 

biggest fixpoints of E and F.m, respectively. The biggest fixpoint of E is fp. Let g 

be the biggest fixpoint of F.m. Since (f’, g) E Y, we have g.x = (f?x; m) for all 

XEP 0 

(8) Theorem. Let M be complete!,, left-distributive. Then f ‘.( P; Q) = f ‘.P; f ‘.Q. 

Proof. Let m =,f’.q in M. Let g t M” be the biggest fixpoint of F.m. By Lemma 

(4) we have 

(9) (VxEP::g.x=(fp.x;f‘~.q)). 

Recall that (P; Q) is the D-specification (R, p, p) where R is the disjoint union of 

the sets P and Q, and where p is given by (1). The union g u fQ is a function on 

R. By Lemma (3), it is an extension off to R. Therefore, we have g u f” c f R, or 

equivalently 

(10) g~fRIJ? .f-fKiQ. 
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By Lemma (3), function F R 1 Q is an extension off to Q. This implies f” 1 Q sf’, 

and hence f R ) Q =f’ by (10). This proves that f”.9 = rrz. From Lemma (3) and 

fR.q = m, it follows that f” ) P is a fixpoint of F.m, so that f R 1 P d g. With (lo), this 

proves that f R (P = g. By (9), this implies 

f’.(P; Q) =fR.p=g.p = (fCp;.f?q) = (fC.P;fC.Q). 0 

Remark. If P and Q are well-founded, the proof of Theorem (8) can be simplified 

by using well-founded induction instead of fixpoint induction. One still needs 

complete left-distributivity of M as used in calculation (7). 

(11) Corollary. Let M be completely left-distributive. Then fC.( P; Q) = f,. P; fC.Q. 

Proof. The proof is almost identical to the proof of the theorem, if everywhere the 

word “biggest” is replaced by “smallest”. In the analogue of Lemma (4), however, 

one needs the second formula of 2(l) to show that the set Y is closed under least 

upper bounds. 0 

We finally come to the construction of a completion A’ of specification algebra 

A. Let WFD be the class of well-founded D-specifications over A. We define the 

equivalence relation = on WFD by 

P=Q - (Vf ::f’.P=f’.Q) 

where f ranges over the homomorphisms f: A + M from A to complete and com- 

pletely left distributive specification algebras M. It follows from formula (0) that 

for families of D-specifications P.i and Q.i with i ranging over some set, we have 

(Vi :: Pi = Q.i) * (Ii :: Pi) = (Ii :: Q.i). 

Similarly, it follows from Theorem (8) that for D-specifications P, P’, Q, Q’ 

P=P’AQ=Q’ =ZJ P;Q=P’;Q’. 

This shows the class of equivalence classes ( WFD/;=) can be equipped with induced 

operators “[I” and “;” to yield an “algebra” 

A’= (WFD/=, 0, ;). 

It can be shown that A’ satisfies the axioms of a complete specification algebra. 

Every homomorphism f: A + M from A to a complete and completely left distribu- 

tive specification algebra induces a function f ‘: WFD+ M, which factors over a 

(l-complete homomorphism f’: A’+ M. This shows that A’ is a completion in the 

sense of Section 3. By the result of Section 3, it follows that ( WFD/=) is not a set, 

but a proper class, cf. [ 111. Note that relation “3” can be compared with bisimilarity, 

although its definition is not based on the existence of a bisimulation, but on a 

universal quantification over homomorphisms. 
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Remark. In this construction of A’, we have restricted ourselves to well-founded 

D-specifications. The reason for consideration of general D-specifications is that 

they may be useful for reactive systems where one has to use other semantical 

formalisms such as traces, failure sets, or temporal logic. We leave this as a subject 

of future research. 

6. Transition systems with angelic choice 

The formalism for D-specifications is chosen in such a way that it is easy to 

incorporate angelic choice. We only have to add a subset P,> of P to indicate the 

states where the choice is to be angelic. 

We define an AD-specijcation to be a quadruple (P, p, TT, PO) where (P, p, T) is a 

D-specification and PC, is a subset of P 

Let f‘: A + M be a function from A to a complete and completely left-distributive 

specification algebra M. A function NJ: P + M is defined to be an extension off to 

the AD-specification P if and only if for every XE P\P,, formula 4(l) holds and 

for every x E PO we have 

w.x=(Oa,y:(x,a,y)E7r: 

if a # T A y # E then,fa; W.Y 

[a = T then W._V 

0~9 = F then,ca fi). 

The existence of extreme extensions is proved in the same way as for D-specifications. 

Again, we write f’ and ,fp to denote the extreme extensions off to P, and we write 

J“.P =,f”.p andf,.P=f,.p. If P is a well-founded AD-specification, thenf’.P=f,.P 

as before. 

The construction of the composition is a straightforward adaptation of the case 

of the D-specifications: take (P; Q)(,> = Pi,> u Qo. In the construction of the demonic 

choice between AD-specifications, one defines P0 as the union of the sets P, .i. The 

angelic choice is completely analogous, but with the new initial state p added to 

P<?. The main result is 

Theorem. (a) For anyfami!l, (i :: Pi) of AD-specifications 

f’.([i :: Pi) = (Ii ::.f’.( Pi)) 

and similarly for the combinations (.f“, 0) and (fC, 0) and (fc, 0). 

(b) For AD-specijications P and Q we have f '.( P; Q) =,f ‘.P; f ‘.Q, and similarly 

.for .fc. 
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7. Concluding remarks 

A lot remains to be done. We have not axiomatised noncomplete specification 

algebras with both demonic and angelic choice. It may be important to characterise 

the order of determinacy for AD-specifications. Actually, this is a preorder and it 

will induce an equivalence relation that must be related to bisimulation. A complicat- 

ing factor is that if A is itself a specification algebra, then every finite well-founded 

AD-specification should be equivalent to an element of A. This problem is related 

to the encapsulation problem in bisimulation. 
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