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Chapter 12

General Discussion

In this thesis the results were presented of studies that were designed to provide more

insight in the role of the central nucleus of the amygdala (CEA) in the adaptation to

environmental demands. The experiments were performed in several situations, in which rats

react either directly to aversive stimuli or to an expected (conditioned) aversive stimulus with

distinct behavioral responses accompanied by diverse patterns of autonomic and

neuroendocrine alterations. CEA activity was influenced by either electrolytical lesioning or

neurochemical manipulation during different stages of the conditioning process: either before

or after the learning session. Changes in behavioral, autonomic, and neuroendocrine

components were determined during acquisition and retention and compared to changes in

sham-operated controls. The experiments lead to a general model of CEA function in

adaptive responses. The major finding of the studies is a differential involvement of the CEA

in the expression of various stress responses as determined during unconditioned and

conditioned environmental challenges; some of the measures are likely to be influenced

directly by neuronal output from the CEA, whereas the CEA affects oth€r output systems

only indirectly, but failure to alter certain patterns occurs as well. It will be argued that the

expression of the various autonomic and neuroendocrine components of the unconditioned

stress response as induced via CEA mechanisms are crucial in determining the extent of

conditioning.

l2.l Brief Sumrnary of the Results

The present studies and extensive literature (".9. 3, 31, 33, 38, 40, 41, 69) allow the

conclusion that the CEA is involved in the expression of various physiological and behavioral

components of the stress response. Lesioning of the CEA completely abolishes the occurence

of parasympathetic output both during acquisition and retention (Chapters 2, 4, 5 and 7).

This involvement in parasympathetic output is not restricted to stress conditions.



Conditioned stress-independent parasympatheticaliy mediated responses like the cephalic

phase of insulin release are blocked by CEA damage as well (Chapter 3). Conversely,

electrical stimulation of the CEA in a variety of species leads to parasympathetic activation

[1, 14, 38, 42,45). These results indicate that the CEA is a crucial part of the neural circuitry

involved in parasympathetic output. Indeed, neuroanatomical tracing studies showed a direct,

peptidergic innervation of the dorsomedial medulla, particularly of the nucleus ambiguus,

dorsal motor nucleus of the vagus and the nucleus of the solitary tract [16, 64, 68, 73]. These

areas are considered to be responsible for the organization of the vagal responsiveness.

A response that is consistently affected by CEA manipulation is the behavioral passivity, i.e.,

immobility, mostly accompanying the vagal responses (Chapter 4, 5 and 7). The attenuation

of stress-immobility by CEA lesioning is thought not to be causally related to

parasympathetic outflow. It is only observed in situations in which the arrimal has a free

choice between active and passive strategies of coping to the already known stressor

(Chapters 2 and 5). On the other hand, active behavioral coping concomittant with cardiac

sympathetic responses are not altered by CEA lesioning (Chapter 2, 4, 5, 6 and 7). CEA

manipulation affects active shock avoidance acquisition leading thus to an exception of the

above rule (Chapter 6).

Finally, neuroendocrine parameters like plasma catecholamines, corticosterone and prolactin

responses to stressors are attenuated only during acquisition, and not during retention

(Chapters 7 and 8). This emphasized the importance of the complex in learning of behavioral

and neuroendocrine responses.

A major point of discussion regarding the function of the CEA is the question to what extent

the effects mentioned above are directly due to CEA manipulation or to indirect influences.

This issue will be discussed in relation to the suggested role of the CEA in learning and

memory Drocesses.

122 Role of the CEA in the [,earning Process

Several reports support the involvement of the CEA in learning and memory processes

(for a review see: 37, 65). The present thesis also shows evidence that CEA functioning is

related to learning and memory. Conditioned parasympathetically derived responses

disappear both in pretraining (learning) and posttraining (memory) lesioned animals. In

contrast, pretraining lesioned animals, and not posttraining ones, show amnesia during

exposure to conditioned situations leading to immobility, passive shock avoidance, or

defensive burying. The behavioral amnesia is accompanied by an absence of the physiological

stress responses (Chapters 4, 5, 6 and 8). Memory deficits found after destruction of the

CEA are interpreted as being primarily due to either emotional changes (loss of fear) or

cognit ive fai lures [15,51,58,59]. The learning tasks in which the CEA affects learning and

memory are characterized by emotior
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memory are characterized by emotional feelings, and accompanied by elevated plasma levels

of neuroendocrine correlates tgl. McGaugh stated that these expressions of the

unconditioned stress response are of importance in amygdaloid related learning processes.

For example, peripheral epinephrine enhances retention by modulating the release of

norepinephrine in the CEA [47,55]. Short-term adrenalectomy produces deficits in passive

avoidance retention of inescapable footshock. Epinephrine or norepinephrine given

immediately after learning normalizes passive avoidance behavior [7, 8, 19]. Furthermore,

memory-enhancing effects of peripherally administered corticosterone 120, 39) and prolactin

l23l are reported. Prolactin in particular is known to affect conditioning, but not retention of

emotional learning tasks. Findings in this thesis demonstrate that CEA lesioning attenuates

the rise in neuroendocrine responses during acquisition (Chapter 7). On the basis of these

observations it may be hypothesized that the CEA is particularly involved in eliciting an

autonomic and neuroendocrine state during acquisition that is optimal for long-term storage

of the experience. This neuroendocrine and autonomic state affects memory functions via

feedback action to the brain [5, 18, 54]. However, on the basis of connectivity of the

basolateral and lateral nuclei, and to a lesser extent also the CEA [10, 66, 67] it cannot be

excluded that direct amygdalo-cortical connections are also of importance in learning and

memory processes [43].

123 Role of the CEA in the Neuroendocrine State

The proposed role for the CEA in learning and memory processes raises the question by

which way the input-output system(s) of the CEA are involved in this neuroendocrine and

autonomic state. As mentioned in paragraph 12.1, the CEA is thought to be directly involved

in the organization of parasympathetic output to stressful and nonstressful challenges as

demonstrated with the bradycardia and the cephalic insulin response. Indeed, during

retention, the CEA is selectively involved in parasympathetic outflow and passive behavioral

components without affecting other conditioned stress responses.

An important candidate of eliciting neuroendocrine output are central monoaminergic

mechanisms. The CEA is reciprocally connected with norepinephrine containing cell bodies

in the locus coeruleus (LC) [2], 70, 74). The CEA may contribute to the activation of LC

neurons. This may then lead to a stress-induced increase in noradrenergic activity in several

brain areas involved in autonomic and neuroendocrine output like the hypothalamus and bed

nucleus of the stria terminalis (BNST) [2, 3, 25,63]. Furthermore, the CEA innervation of

serotonergic and dopaminergic containing cell groups in the brainstem have been implicated

in several autonomic and neuroendocrine stress responses [3]. This opens the possibility that

the CEA output in relation to unconditioned stress primarily consists of a general activation

of central aminergic mechanisms which leads to secondary activation. However, a direct

t43



pathway between the CEA and the hypothalamic paraventricular nucleus (PVN) has been

described as well [32, 48). Feldman et al. [26] have shown that during exposure to ether

stress, circulating levels of corticosterone show increases independent of this direct pathway.

Electrical stimulation of the CEA has, however, been shown to elicit changes in plasma

corticosterone via the direct pathway to the PVN [26j. This suggests that activation of this

direct pathway may depend on the nature of stress, and probably on individual characteristics

of the rat's behavior as well.

12.4 Role of the CEA in Behavioral Responses

Immobility responses are abolished both during acquisition and retention (Chapters 4, 5, 6

and 7). Because this runs parallel to the effects of the CEA on the vagal response, this may

sugg€st a direct involvement of the CEA in passive behavioral output as well. However, the

precise amygdaloid efferents involved in the expression of these behavioral components are

still a matter of discussion. LeDoux et al. [45] stated that the immobility response is elicited

via a monosynaptic connection to the periaqueductal gray. Fear-potentiated startle is another

behavioral response, influenced by CEA activity. The CEA projects via the caudal part of the

ventral amygdalofugal pathway to the nucleus reticularis pontis caudalis, a nucleus in the

startle pathway [17]. McDonald [52] demonstrated that the lateral part of the CEA shares

common features on cytoarchitecture, histochemistry and hodology with striatal areas. On

the basis of these findings it is suggested that the CEA can be considered as a modified

extension of the striatum. In addition, the projections of the basolateral nucleus of the

amygdala (BI-A) to the CEA and from the BI-A to striatal areas originate in the same

region of the BLA [53]. This extensive interface between the amygdala and extrapyramidal

motor system is considered to be very important for generating behavioral responses to

environmental stimuli [56]. Cools and colleagues attributed a key role to mesolimbic

noradrenergic mechanisms in the nucleus accumbens that sewe as a link between the limbic

(amygdala) and extrapyramidal neurons (for a review see: 13). An interesting phenomenon is

that abolishment of immobility is particularly observed in those situations in which the

animal has a free choice between active and passive coping strategies (Chapter 2 and 5).

These findings suggest that the role of the CEA in the expression of stress-related behaviors

is not absolute, but is restricted to certain aspects of stratery choice.

Most interestingly, active behavioral components are not affected by CEA manipulation

(Chapter 5). An exception is the active shock avoidance acquisition. It is attenuated following

CEA damage, but only during the first day of conditioning (Chapter 6). The mixed character

of this response, consisting of both acquisition and retention aspects, makes this result

difficult to interpret. Moreover, in this experiment, shock punishment is always followed by

an escape response, supporting the view that the CEA is not involved in active behavioral

Fig. I
A schematic represe,ttotion of CEA functionit
Abbreviatiotrs: CEA= central anrygdala; CN!
E-- epinephine; NE= norepinephine; prl= ,
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strategies per se. Taken together, these findings suggest that the CEA is unequivocally

involved in the expression of behavioral output systems: only the passive component of the

behavioral stress response can be changed by CEA manipulation, without affecting most

active behavioral components.

12.5 A Model of CEA Functioning

Summarizing the discussion so far, it can be concluded that the CEA is directly involved in

the induction of parasympathetic output via its monosynaptic connections to the dorsomedial

medulla. In contrast, other effects such as neuroendocrine responses are considered to be

indirect effects due to activation of central aminergic mechanisms. Although a direct

involvement of the CEA in the PVN and adrenocortical output cannot be excluded 132,481.
Thirdly, immobility is also considered to be elicited by CEA activity. The autonomic and

neuroendocrine state during acquisition, which is elicited by the CEA, is thought to be of

importance in the conditioning process of the aversive experience (Fig. 1).

The suggested mechanisms are thought to be attributed to the CEA proper. Electrolytical

lesioning of the CEA destructs both cell bodies and fibers of passage. Thus one cannot

exclude that damage to the fibers crossing is causing a functional deficit rather than the

destruction of cell bodies in the CEA. However, results from both ibotenic acid lesions and

chemical manipulation studies are generally consistent with the electrolytical lesioning studies

[69], suggesting that the observed effects are primarily due to destruction of CEA neurons.

12.6 CEA Involvement in the Passive Coping Strategr

The observation that the CEA directly affects parasympathetic activity concomittant with

immobility, whereas sympathetic outflow and active behavioral components remain

unaffected, indicate that the CEA is predominantly involved in processes of passive coping

(Chapter 6). Studies in psychogenetically selected rat lines, considered as models for active

and passive coping, are consistent with these findings. Independent of the used selection

criterion (e.g. high blood pressure, aggression, active avoidance learning, emotionality etc.),

in the selected l-ines of rodents, coping strategies are coupled to a set of comparable

autonomic and neuroendocrine responses [5]. The Roman low-avoidance (RI-A/Verh) rats

preferentially adopt a passive strategy in response to novelty or to a conditioned emotional

stressor (Chapters 10 and 11)[5]. This passive type of coping to environmental challenges is

accompanied by a parasympathetic response and a stimulated adrenocortical system,

Chapter 12
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strategies per se. Taken together, these findings suggest that the CEA is unequivocally

involved in the expression of behavioral output systems: only the passive component of the

behavioral stress response can be changed by CEA manipulation, without affecting most

active behavioral components.

12.5 A Model of CEA Functioning

Summarizing the discussion so far, it can be concluded that the CEA is directly involved in

the induction of parasympathetic output via its monosynaptic connections to the dorsomedial

medulla. In contrast, other effects such as neuroendocrine responses are considered to be

indirect effects due to activation of central aminergic mechanisms. Although a direct

involvement of the CEA in the PVN and adrenocortical output cannot be excluded [32, 48).

Thirdly, immobility is also considered to be elicited by CEA activity. The autonomic and

neuroendocrine state during acquisition, which is elicited by the CEA, is thought to be of

importance in the conditioning process of the aversive experience (Fig. 1).

The suggested mechanisms are thought to be attributed to the CEA proper. Electrolytical

lesioning of the CEA destructs both cell bodies and fibers of passage. Thus one cannot

exclude that damage to the fibers crossing is causing a functional deficit rather than the

destruction of cell bodies in the CEA. However, results from both ibotenic acid lesions and

chemical manipulation studies are generally consistent with the electrolytical lesioning studies

[69], suggesting that the observed effects are primarily due to destruction of CEA neurons.

12.6 CEA lnvolvement in the Passive Coping Strategr

The observation that the CEA directly affects parasympathetic activity concomittant with

immobility, whereas sympathetic outflow and active behavioral components remain

unaffected, indicate that the CEA is predominantly involved in processes of passive coping

(Chapter 6). Studies in psychogenetically selected rat lines, considered as models for active

and passive coping, are consistent with these findings. Independent of the used selection

criterion (e.g. high blood pressure, aggression, active avoidance learning, emotionality etc.),

in the selected lines of rodents, coping strategies are coupled to a set of comparable

autonomic and neuroendocrine responses [5].  The Roman low-avoidance (RLA/Verh) rats

preferentially adopt a passive stratery in response to novelty or to a conditioned emotional

stressor (Chapters 10 and I l)[5]. This passive type of coping to environmental challenges is

accompanied by a parasympathetic response and a stimulated adrenocortical system,
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reflected in high plasma levels of adrenocorticotropin (ACTH) and corticosterone (Chapters
10 and 11X5, 29]. In contrast, increases in parasympathetic output are not observed in
Roman high-avoidance (RHA/Verh) counterparts in response to stressful challenges that
require a passive kind of coping. In addition, the adrenocortical system is less activated in
these animals [29). A selective activation of the cEA in the RLA/Verh, and not in the
RHA/Verh rats, both during acquisition and retention is considered to underly the distinct
pattern of behavioral, autonomic and neuroendocrine stress responses (Chapters 10 and l1).
This role is consistent with the results by Henke [35], who reported differences in multiple
unit activity in the CEA during restraint stress between both lines.

Norepinephrine infusion into the CEA elicits a bradycardiac response [57]. Noradrenergic
antagonists administered in the CEA inhibit classical heart rate conditioning in the rabbit as
originally described by Kapp [28]. Blockade of the central norepinephrine metabolism by L-
deprenyl (a monoamine orydase B inhibitor) has been shown to prevent vagally mediated
stress-induced gastric pathology [30]. In addition, a pilot study shows that norepinephrine

infusion into the CEA evokes corticosterone release under resting conditions. These findings
altogether suggest that norepinephrine release in the CEA may be involved in the induction
of the unconditioned stress response during acquisition. It was proposed in Chapter 11 that
the induction of unconditioned neuroendocrine responses by amygdaloid norepinephrine may
underly the enhancement of memory storage as suggested by McGaugh and colleagues [37,
46,47,55]. Genetic dif ferences in emotional i ty may determine to what extent central
noradrenergic, serotonergic, and dopaminergic systems are activated by several types of

stress possibly by activation of the CEA. RLA/Verh rats show an increased metabolism of

norepinephrine and serotonin in the hypothalamus alter unconditioned stress, whereas

RHA/Verh rats display an opposite effect on serotonin utilization [2a]. h the Maudsley

strain, the LC is more activated in "emotionally nonreactive" than in "emotionally reactive"

rats in response to stress. The "nonreactive" line is characterized by low sympathetic and

sympatho-adrenal responses [4]. The differential activation of central aminergic systems may

be the underlying mechanism of the substantial stress levels of plasma ACTH, corticosterone,

and prolactin observed in the Rt-A/Verh, and not in RIIA/Verh rats. Furthermore,

activation of the CEA by norepinephrine release in this area may cause an additional

activation of the pituitary adrenocortical axis probably via the direct connection to the PVN.

Peptidergic manipulation studies indicate a predominant involvement of the CEA in passive

coping as well. Activation of the CEA is thought to depend on tonic influences of the

vasopressinergic and/or oxytocinergic receptive system(s) in the CEA. A possible

involvement of these peptidergic mechanisms in the CEA in interaction with aminergic

transmission in cognitive processes has been suggested by behavioral and neurochemical

studies [6, 44). In Chapters 9 and 10, the role of the vasopressinergic V1a and oxFocin

receptor in the CEA has been studied under stressfree and during conditioned emotional

stress conditions. Stimulation of Vla receptors results in an enhancement of CEA activiry,

reflected in parasympathetic and adrenocortical output, and an increase in behavioral



passivity. In contrast, oxytocin receptor activation, elicited by local administration of orytocin

and high doses of vasopressin, inhibits CEA outflow (Chapters 9 and 10). The effects of

vasopressin via V1a activation may be mediated by a release of dopamine in the CEA [71].
Indeed, preliminary results show that dopamine is also involved in activation of CEA output

systems. An important issue that remain to be encovered is whether or not vasopressin shows

this inverse U-shaped response curve under physiological conditions. The idea that

vasopressin induces passive coping is only true if under physiological stress conditions

vasopressin exclusively binds to Vla receptors, and not to oxytocin receptors.

Findings in this thesis indicate fundamental differences in vasopressinergic and/or

orytocinergic function in the CEA between both lines. Local infusion of vasopressin and

orytocin exclusively affects CEA output systems in the RLA/Verh rats, without eliciting

changes in the RHA/Verh rats (Chapter l0). This assumes differences in amygdaloid AVP

and OXT receptor densities between both lines. Furthermore, vasopressinergic innervation of

the CEA, but also of the lateral septum is more dense in genetically-selected passive coping

animals in comparison with active coping animals [11]. The origin of the vasopressinergic

input to the CEA is not yet elucidated. It may arise from cells in the BNST [22]. Numerous

AVP-positive cell bodies have been localized in the BNST [72]. Compaan et al. [12] have

demonstrated that the brain of selected lines of mice predominantly showing passive coping

contain more AVP-positive cell bodies in the BNST than active coping ones. Orytocin

innervation in the brain is known to originate exclusively from the PVN [22]. It may be

hypothesized that the BNST-CEA connection via vasopressin may play a key role in

determining whether active or passive rypes of coping are activated in response to

environmental challenees.

12.7 Role of the CEA in Stress Pathologr and Adaptation

One of the main conclusions of the present thesis is the observation that the CEA is not

uniformly involved in the expression of several physiological and behavioral stress responses.

Thus, malfunctioning of the CEA may lead to selective disturbances of autonomic,

neuroendocrine and behavioral balances that may underly several pathological

manifestations. The involvement of the CEA in the development of vagally mediated gastric

ulceration is one of the best studied amygdaloid related pathologies. Gastric ulceration can

be aggravated by electrical and chemical stimulation of this area [34, 36], whereas lesioning

or chemical blockade of the CEA inhibits this gastric pathology to immobilization [33, 60-62].

Furthermore, in spontaneous hypertensive (SHR) rats a stress experience is characterized by

a relative decline in arterial blood pressure; lesioning of the CEA has been shown to prevent

this effect [27]. Markgraf and Kapp [49, 50] showed that digitalis treated rabbits developed a

cardiac pathology of a bradyarrhy
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rerience is characterized by
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treated rabbits developed a

cardiac pathologry of a bradyarrhythmic nature when tested in a classical conditioning

paradigm; lesioning of the CEA prevented the occurence of this arrhythmia. In contrast,

electrical stimulation of the CEA induces the occurence of arrhythmia. The present

experiments also found some anecdotical evidence for the involvement of the CEA in the

development of bradyarrhythmias that occur in relation to unavoidable social or nonsocial

stressors. After infusion of the low dose of AVP (20p9, one of the animals showed a

transient arrhythmia. Ten minutes after termination of the infusion, heart rafe suddenJy

dropped from 353 to 176 beats per minute. In addition, the variation of the heart rate

increased considerably. This may suggest that peptidergic mechanisms in the CEA may play

a crucial role in the development of cardiac pathology of a bradyarrhythmic nature.

The involvement of the CEA in stress pathologl'has bccn rcstrlc(c.J to .rcu(c, short-te'.',','.

processes. Consequences of chronic dysfunction of the CEA on the development of diseases

like arteriosclerosis and hypertension, cardiac failure, depression, and consequences on the

functioning of the immune system have received little attention so far; studying the role of

the CEA during the whole lifespan may be essential in the understanding of the etiology of

these diseases.
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