

 University of Groningen

Locked Discrete Event Systems: How to Model and How to Unlock
Smedinga, Rein

Published in:
Discrete event dynamic systems-Theory and applications

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1993

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Smedinga, R. (1993). Locked Discrete Event Systems: How to Model and How to Unlock. Discrete event
dynamic systems-Theory and applications, 2(3/4), 265-297.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/e59dd425-208b-4eb1-9dd1-17bee14655c8

Discrete Event Dynamic Systems: Theory and Applications 2, (1993): 265-297
© 1993 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Locked Discrete Event Systems:
How to Model and How to Unlock

REIN SMEDINGA
Department of Computing Science, University of Groningen, Groningen, The Netherlands

Received May 31, 1990; Revised January 25, 1991, November 20, 1991, and June 9, 1992

Abstract. To model qualitative aspects of discrete event systems, i.e., the order of the events is of sole impor-
tance, we use a triple consisting of the set of all possible events (the alphabet), the set of all behavior (possible
strings of events), and the set of all tasks (completed behavior). We use this view to model synchronous as well
as asynchronous connection of systems. Moreover, it is easy to define notions like deadlock and livelock in this
view. We give a method to construct a second system that, in connection with the original system, gets rid of
its deadlock and/or liveloek. A state-space representation is introduced. In this representation computations can
be done effectively:

Key Words: discrete event dynamical system, synchronous interaction, asynchronous interaction, trace structure,
deadlock, livelock

1. Introduct ion

Discrete event systems, in which qualitative aspects are of importance, arise in the domains
of manufacturing, computer and communication networks, robotics, vehicular traffic, and
many others. Modeling such systems can be done at a logical level (consider only the logical
order of the events), a temporal level (introducing time), or a stochastic level (introducing
probabilities). Here, we consider the logical level.

Logical discrete event systems are first introduced by Hoare and Milner (communicating
sequential processes [Hoare 1985] and the calculus for communicating systems [Milner
1980]). Control of such systems is first introduced by Ramadge and Wonham [1987], using
a theory based on the theory of automata and languages.

The theory presented here is based on trace theory, introduced in van de Snepscheut

[1985]. A logical discrete event system (DES) can then be denoted by two sets: one finite
set of symbols representing the events and one set of finite sequences of such symbols,
representing the behavior.

The approach as presented here differs from other modeling approaches in the sense
that it does not impose any structure on the behavior set, it just is a set of sequences of
symbols. It turns out that, even with this simple definition, a DES can be defined, control
problems can be formulated, etc. It is not even necessary (for example) to have a prefix-
closed behavior.

The first part of this article will introduce DESs using this simple definition. It is a tutorial
which captures aspects from other approaches, although stated in a different setting. As
an illustration of the usefulness of our approach we give a control problem (how to undo

266 REIN SMEDINGA

deadlock), formulate it, and give a solution. To be able to perform the necessary computa-
tions we also give a state-space form. This enables us to compute the controller effectively.
In future articles we would like to study other control problems.

Modeling discrete event systems in a straightforward sense as is done in this article
originally comes from Hoare [1985], although he uses recurrent equations, which is only
one way of defining the behavior. The ideas of synchronizing discrete event systems using
common events that should occur in all systems that are involved at the same moment is
also first stated in Hoare [1985] and Milner [1980].

Discrete event systems are also studied by Wonham and Ramadge (for an overview see
[1989]). They use a state space to model the behavior of a system. Although the synchroni-
zation of systems looks alike there are some (minor) differences: system and controller
(supervisor) do not act precisely the same: the controller follows the system and control
depends on the state the controller is in. As in this article, Ramadge and Wonham also
deal with two aspects of systems: they have L(G), the set of all traces that can be generated
by the graph of the system, corresponding to the behavior of the system, and Lm(G), the
set of all traces that end in a marker state, corresponding to the task set in our definition.

In this article discrete systems are defined using trace structures. Although trace theory
was developed in the context of concurrent programs and found useful in modeling elec-
tronic components (see Van de Snepseheut [1985] and Udding [1984]), it seems to be the
natural setting to model discrete events in general. In Smedinga [1988] trace theory is first
used to model discrete event systems, but without separated task and behavior sets. In
Smedinga [1989] the ideas are used to define and solve control problems.

2. Notation

We use a, for pure mathematicians perhaps nonstandard, alternative notation, developed
by Dijkstra, that leads to a clear, unambiguous way to display the theory. Also, proofs will
be given in a different setting: instead of the (unfortunately too often used) mixture of English
and bad mathematical notation we prefer this clearly mathematical style which does not
lead to misinterpretations, vague arguments and difficult-to-find en'ors.

(Vx : B(x) : C(x)) is true if C(x) holds for every x satisfying B(x); e.g.,
(Vx : x ~ IN 0 : x _> 0).

(]x : B(x) : C(x)) is true if there exists an x satisfying B(x) for which C(x) holds; e.g.,
(3 x : x ~ I N : x = 10).

{x : B(x) : y(x)} is the set constructor and denotes the set of all elements y(x) constructed
using elements x satisfying B(x); e.g., (with c the empty string), {n : n ~ IN : anb ~}
= {e, ab, aabb, aaabbb }.

3. A discrete event system

Logical discrete event systems are systems in which the order in occurrence of events is
of importance, not the time of the occurrences. Such a system has a behavior that can be

L O C K E D D I S C R E T E E V E N T SYSTEMS 267

described by giving all sequences of events that are possible. The number of such sequences

can, of course, be infinite. We assume that events have no duration, i .e. , they occur in
infinitesimal time. This implies that no two events can ever occur at the very same time,

except if these events are the same. In fact, we think of an event as a suddenly change
in the state. For example, if a person arrives at some point, we have a suddenly (instan-
taneous) change in state: before the arrival n persons were present, after the arrival we
have n + 1 persons. The arrival itself occurs in infinitesimal time: the one moment that

person has not yet arrived, the next moment he is present. This assumption is no restric-
tion if we model a system by observing it. The system then is a black box and an observer
writes down a symbol each time the corresponding event occurs. The behavior of such
a system is now given by all possible sequences of symbols (events) such an observer could
write down.

3.1. Trace sets

The essence of a discrete event system lies in its behavior, which is, in fact, a set of se-
quences of events. Events can be represented by letters, like a , b, or c. Sometimes also
words like arrival, stop, or enter are used. A sequence of events can be represented by

a sequence of letters (or words) like a • b • a • c, meaning that first event a occurs, then
event b, then event a again, and, last, event c (see Hoare [1985]). Such a sequence of events
is called a trace. A special trace is the empty trace, denoted by e. It represents the nothing-
has-happened behavior.

A number of operators on traces can be defined. We mention (with x and y traces, n some
natural number, and A some set of events, called the alphabet, see van de Snepscheut [1985]:

concatenation x • y first x, then y
choice x {y x or y (but not both)
finite repetition x ~ n times x: x x

n times

repetition x* zero or more times x
nonempty repetition x + one or more times x
weaving x , y shuffling of x and y (see Example 4.2)
restriction x [-A projection on alphabet A

Weaving introduces concurrency. I f x and y have no events in common the trace x, y rep-
resents the concurrent behavior o f x and y. We will return to this subject later on (see Ex-
ample 4.3).

I f letters are used to denote events, we omit the dots for concatenation and write abac
instead of a • b • a " c.

268 REIN SMEDINGA

The alphabet restriction is defined by

e [A = e,

S x [A if a ¢ A,

FA x a l
~ (x [A)a if a ~ A.

Moreover, we have the operator p r e f that denotes the set of all prefices of a trace:

pref(x) = {y, z : yz = x : y}.

pref , [, and * can also be performed on trace sets. I f T is a trace set then

pref(T) = {y, z : yz ~ T: y},

TFA = { x : x ~ T : x [A}.

The alphabet generating set A*, at last, is defined by

e EA*,

x ~ A* A a ~ A = xa CA*.

Sometimes we need the ordering of traces, the length of a trace, or the number of occur-
rences of some event in a trace. For two traces x and y the order of traces is defined by

x _< y = x ~ pref (y) ,

x < y = x < _ y A x # y .

For some trace x and event a the length of a trace is defined by

=0,

Ixal = Ixt + 1.

Last, for some trace x and events a and b the number of occurrences of a in x is denoted

by xNa and defined by

e r a = 0,

f xNa + 1 i f b = a,
(xb)Na)

[x N a if b # a.

LOCKED DISCRETE EVENT SYSTEMS 269

EXAMPLE 3.1. TO illustrate the above definitions:

(ablc*d) = {ab, d, cd, ccd, cccd, . .. }

ab2cb r {a, c} = ac,

pref(ab) = {e, a, ab},

{a, b}* = {e, a, b, aa, ab, ba, bb, aaa, aab },

ab2cbNb = 3,

l ab2cbl = 5,

ab < ab2cv.

3.2. Discrete event system

The simplest way to model a discrete event system is by giving all possible events and all
(finite) sequences of events an observer could possibly see when observing the system. So

P = (aP, bP)

is such a system, where aP is the alphabet, the set of all possible events (and we suppose
that we have only a finite number of different events) and bP is its behavior, a subset of
the set of all finite sequences of events over the alphabet aP, so bP c_ (aP)* Moreover,
to get a system with a realistic interpretation, we add the restriction that if some sequence
is in bP, then also all prefices of that sequence should be in bP. Formally, bP is prefix-
closed: pref(bP) = bP. This is the only restriction on bP. In the theory that follows even
this restriction is not needed at all. No other restrictions are imposed on bP, especially,
bP need not be regular.

If bP = 0, we say the system is empty and if bP = (aP)* we say the system is complete.
Notice that an empty system has no behavior at all, not even the empty behavior e. I f
bP = {e} the system has precisely one behavior: doing nothing.

EXAMPLE 3.2. in general, we will simplify the system when we are modeling it in this
way: Consider a system with a farmer, a wolf, a goat, and a cabbage in which the farmer
should bring wolf, goat, and cabbage from one side of a river to the other. In order that
the wolf does not eat the goat and the goat does not eat the cabbage, the farmer should
be aware not to leave wolf and goat or goat and cabbage alone at either side of the river.
In fact, this is some old puzzle: how should the farmer solve the problem when he is able
to bring at most one item at the time to either side of the river.

Events we can think of are "'farmer takes wolf from one side of the river to the other,"
"farmer takes goat from one side of the river to the other" "farmer takes cabbage from

270 REIN SMEDINGA

one side of the river to the other," and "farmer goes alone from one side of the river to
the other." In fact, each such an event is a simplificatiion of a great number of actions:
"pick up the wolf," "put it into the boat," "go into the boat itself," "unrope" "row to
the other side," etc. In modeling such a system we consider all these actions to be just
one event (and therefore occurring at the same time, changing the state from "items are
at some place" to "items are at the same place, except the wolf is now on the other side").

Modeling discrete event systems using (a/~, b P) has one disadvantage: sometimes (mostly
when considering more discrete event systems in cooperation with each other) we want to be
able to tell when a system has ended legally or when it has ended illegally. A legal ending
means that the system has performed a completed task. The above system of farmer, wolf,
goat, and cabbage has ended legally if the farmer has succeeded in bringing wolf, goat, and
cabbage to the other side of the river. Ending legally (performing a completed task) does
not mean the system cannot continue: of course, after a legal behavior more events may
occur: the farmer may bring wolf, goat, and cabbage to this side of the river and afterwards
to the other side again. After these actions he has, again, performed a completed task (the
puzzle does not say anything about efficiency). A system can also end illegally. In that
case no task is completed, ff also no next event is possible the system has deadlocked.

To distinguish between legal and illegal ending we should add in the definition of a system
all completed tasks, i.e., we define a discrete event system as a triple:

P = (aP, bP, tP)

with aP and bP as before and tP the task set of P. Again, to get a realistic interpretation
we add the restriction tP c_ bP (i.e., all tasks of P should belong to the behavior of P).
tP need not be prefix closed (as a completed task need in general not be complete if the
last event of it has not yet occurred). MoreoveL bP may be larger than the prefix closure
of tP (i.e., in bP sequences of events may exist that are no prefix of a sequence of tP).
These extra sequences are called the locked sequences of the system, because once the
system is in such a sequence no task can be completed.

Summarizing, we have

DEFINITION 3.1. A discrete event system P is defined by P = <aP, bP, tP> with

aP alphabet finite set of events
bP behavior bP c_ (aP)* A bP = pref(bP)
tP task set tP ___ bP

The restrictions bP = pref(bP) and tP _ bP are added to get a system with a realistic
interpretation. Sometimes we will use systems in which these restrictions are not met. Such
a system will be called a generalized discrete event system (GDES). It may have, for exam-
ple, a behavior that is not prefix closed or a task that is no behavior. Such systems go beyond
our scope of a discrete event system. Nevertheless, they play a crucial role in some parts
of the theory. In Smedinga [1992b] GDESs are used to find a controller system such that
the connection with a given system has a behavior that remains between certain limits.

LOCKED DISCRETE EVENT SYSTEMS 271

All properties of DESs that are given below do not use the restrictions on behavior and
task set, unless stated explicitly. Moreover, all operators that are introduced below, result
in a DES if performed on DESs, unless stated otherwise.

In the approach of Ramadge and Wonham a DES is modeled using a deterministic auto-
maton. The resulting languages generated by the automaton correspond to the behavior
and task set in our approach. However, our approach does not need a representation of
the behavior and task set. It works on the sets itself. Instead of an automaton also other
representations can be used to model the system. We mention the well-known command
structure from trace theory (see Kaldewaij [1988] and van de Snepscheut [1985]) and the
recurrent expressions from Hoare [1985]. The theory derived below does not assume any
representation of behavior and task sets.

If bP = pref(tP) we say the system is lock-free. Lock-free systems will be denoted by
a tuple (aP, tP), where bP is left out because it can easily be determined from tP. The
term lock-free corresponds to the term nonblocking as is used in supervisory theory (see
Ramadge and Wondam [1989]).

EXAMPLE 3.3. A one-place buffer can be modeled as the following lock-free system:

buffer = ({in, out}, (in • out)*).

4. Connection of discrete event systems

Now we know how to model one discrete event system we could investigate the coopera-
tion of more discrete event systems. In fact, at the beginning of this article, we have already
mentioned the important assumption that no two events could ever occur at the very same
time, unless those events are the same (an observer cannot write down two symbols at
the same time). From this assumption we might conclude that different discrete event systems
should cooperate via common events, events that are the same in these systems (Hoare
[1985]; van de Snepscheut [19851).

But how could one event be the same in, say, two different discrete event systems? Con-
sider for a moment a vending machine that gives coffee after inserting a coin. The machine
can be modeled with task set equal to

(coin • coffee)*.

The event coin represents the insertion of the coin by a person as well as the acceptance
of the coin by the vending machine. Also, the event coffee represents producing the coffee
by the machine as well as accepting the coffee by the person. Both events are representa-
tions of a number of actions, partly performed by the vending machine, partly by the per-
son who wants coffee. Those events are common to both vending machine and person and
therefore only occur if both systems can engage in it: the vending machine must be able
to accept a coin and the person must be able to insert it in order for event coin to occur.
In this example no coffee can be produced by the vending machine if the person wants
tea instead of coffee.

272 REIN SMEDINGA

The event coin in the discrete event system "vending machine" only occurs if the event
coin in the discrete event system "person" occurs also (and at the same time). This kind
of interaction is called synchronous interaction (Hoare [1985]; van de Snepscheut [1985]):
a common event occurs only if all systems involved can engage in it.

4.1. Synchronous connection

There is another way of looking at (synchronous) interaction of two systems. We also can
say that the resulting behavior of these two systems should be such that, if we restrict this
behavior to the alphabet of one of the systems, we should get a behavior from that system.
This way of explaining interaction is equivalent to the previous one, but it is simpler to
make formal. Therefore, the definition of' interaction of discrete event systems makes use
of this view:

DEFINITION 4.1. The system that results if two discrete event systems P and R are inter-
acted is called the connection of P and R, denoted by P [[R, and defined by

P IJR = <aP tO aR, {x : x ~ (aP tO aR)* A x FaP E bP A x FaR E bR : x},

{ x : x 6 (a P O a R) * A x F a P 6 t P A x F a R E t R : x } .

The operator]], the connector, arises from trace theory (see van de Snepscheut [1985]), where
it is called the weave operator. It is a shuffle, where common events occur simultaneously.

EXAMPLE 4.1. Consider the lock-free systems

P = ({a , b, c, d}, (abclad)), R = ({a , c}, (ac)).

Then we have

P ttR = ({a , b, c, d}, pref(adlabe), (abe)).

For example, abc ~ t(P [[R) because abc FaP = abc ~ tP and abc FaR = ac ~ tR.

EXAMPLE 4.2. For separate traces we can use the comma operator to denote weaving (notice
that concatenation has higher priority when weaving and choice):

(ab , bc) = (abc), (ab , cb) = (acb]cab).

EXAMPLE 4.3. The operator 1[denotes not only synchronization but also concurrency. Events
that are not common may occur concurrently. I f x = ab and y = de, then x , y denotes
the concurrent behavior of ab and de; i.e.,

x , y = {abde, adbe, adeb, dabe, daeb, deab}.

LOCKED DISCRETE EVENT SYSTEMS 273

Because of our assumption that any event occurs in infinitesimal time no two different events
can really occur at the very same time, but always in some order. If that order is arbitrary,
we have concurrency. In fact, the set x , y represents the sequences that can be observed
outside the system. In trace theory (nor other language-based theories) any difference can
be made between the concurrent behavior of events a and b and the choice between the
sequential behaviors ab and ba. Both result in an observed behavior equal to a , b. Only
in Petri nets (Peterson [1981]) this difference can be modeled.

In the supervisory theory of Ramadge and Wortham the above interaction of two systems
is only part of the connection of a system (a plant) and its controller. In their approach
the controller, dependent on the state he is in, can enable or disable events in the plant.
Enabling or disabling in our approach is implicit. I f the system is in a state where it is
able to do some (common) event a and the controller is in a state where a is unable, a
is disabled in the connection. Notice that this form of disabling events is fully symmetrical
with respect to plant and controller. Moreover, we do not distinguish between controllable
and uncontrollable events beforehand. Again, this is implicit. I f we chose a controller R
with alphabet aR, then aR is the set of controllable events. However, aR may also contain
events that are not in aP. In our approach a controller is also a system. In the supervisory
theory a controller is a function f" b P ~ 17, giving, for each behavior of P a control input
to be applied on P, by which events are disabled.

Our approach also deals with partial observations: only those events that are common
to plant and controller can be observed by the controller. No additional observation alphabet
and projection or mask is needed to model partial observability as has to be done in the
supervisory approach (see Ramadge and Wonham [1989]).

4. 2. Properties of the connection operator

The operator l] defines a binary operation on the set of discrete event systems. It has some
nice properties, which are listed below:

PROPERTY 4.1. For general systems P, R, and S, the following hold:

1. Symmetry: P tlR = R II P.
2. Idempotency: P liP = P
3. Associativity: (P IIR) Ira = p 11 (e list.
4. The system skip = (0, {e}, {e}) is the unit element: P 11 skip = P.
5. The system empty = (0, 0, 0) is the zero element: P II empty = (aP, 0, 0) .

We do not have P t l empty = empty, so empty is not really a zero, but it reduces all behav-
ior to nothing, so the name is not completely misplaced here.

DEFINITION 4.2. The ordering of discrete event systems is defined only for systems with
equal alphabets as

p c R = (aP = a R A t P _c t R A b P c_ bR).

P is called a subsystem of R.

274 REIN SMEDINGA

PROPERTY 4.2. For discrete event systems P, R1, and R2 with aR 1 = aR 2, we have

R1 - R2 = (PIIR1) - (PtIR2).

Van de Snepscheut [1985] emphasized that it is essential to involve the alphabet into the
definition of connection in order for 1] to be associative. Because of this associative prop-
erty we can connect more discrete event systems without worrying about the order of com-
putation. We use the following notation for connection of more discrete event systems (where
Y~ is some class of systems with equal alphabets):

(lIP : P ~ 0 : P) = sk ip ,

(liP: P ~ (R U Qv) : p) = R II (IIP z P ~ Y : n) .

4.3. A directed connection

Using the above definition of connection means dealing with synchronous interaction. Events
have no direction: sending and receiving occurs at the same time. We also have asynchronous
interaction: events then have a direction: sending goes before receiving. In that case insert-
ing a coin by a person should come before accepting it by the vending machine and pro-
ducing coffee should go before accepting it. In that case "sending" and "receiving" are
different events (although related to each other). We can distinguish between sending (in-
serting a coin) and receiving (accepting it) by postfixing the event by ! and ? respectively.
For example, coin! is inserting a coin, coin? is accepting it, coffee! is producing coffee,
coffee? is accepting it. Asynchronous interaction now means that "receiving should come
after sending," so coffee'? should come after coffee!.

Asychronous interaction can be defined using the synchronous interaction operator I[.
In order to do so we first divide the events into two kinds: inputs iP and outputs oP, so
that aP = iP U oP and iP (3 oP = 0.

A (directed) discrete event system now is a discrete event system with all events in oP
postfixed by ! and all events in iP postfixed by ?. Such a discrete event system is denoted
by P?.!. The (directed) task set of the vending machine equals

(coin? • coffee!)*,

and the (directed) task set of the person equals

(coin! • coffee?)*.

Connection can then be defined with the use of the following additional set and system:

Q--~A) = {a : a E A : ({a! , a?}, (a! " a?)*)} ,

t rans (A) = (I t P : P E ~-J(A) : P) .

LOCKED DISCRETE EVENT SYSTEMS 275

Y(A) is the class of all lock-free discrete event systems with alphabet equal to {a!, a?}
for some a ~ A and behavior equal to (a! • a?)* i.e., first sending and then receiving. The
system trans(A) is the shuffle (or parallel composition) of all these discrete event systems.
trans(A) denotes the transmission of events from alphabet A: its task set equals all se-
quences in which for each event from A its sending part and its receiving part occurs equally
often and alternatingly (first sending, then receiving). So

co in ! • c o i n ? • co f f e e ! • co in ! • co in? • c o f f e e ?

belongs to the task set of t r a n s ({ c o i n , c o f f e e }) but

co in ! • co in? • c o f f e e ?

c o i n ! " c o i n ! • c o f f e e ! • c o i n ? " c o i n ?

do not (the first one, however, does belong to the behavior).

DEFINITION 4.3. The directed connection of P and R is denoted by P tt R and defined only
i f o P O oR = iP n iR = 0 b y

P II R -- e? ! II trans(aP n aR)II R ? !

EXAMPLE 4.4. For our vending machine example (with Vthe vending machine and P the
person) we find

tP?! = (co in ! • c o f f e e ?) *

tV?! = (co in? • c o f f e e !) *

t (t r a n s ({ c o i n , c o f f e e })) = ((c o i n ! • co in?)* , (co f f ee ! • co f fee?)*) ,

which results in

t(P ~ V) = (co in ! • co in? • c o f f e e ! " c o f f e e ?) * .

In trans we have modeled that each output should first be followed by the corresponding
input before that output may occur again (no insertion of a next coin if the previous one
is not yet accepted), trans(A) is in fact some buffer: it may hold precisely one output event
for each event in A (it is in fact a one place buffer for each event, see Example 3.3). It
models b o u n d e d d e l a y (each output should first be followed by the correspoonding input
before it may occur again) and o v e r t a k i n g (different outputs are not necessarily followed
by the corresponding inputs in the same order).

trans can also be defined in such a way that more outputs may take place before a cor-
responding input has occurred. If the number of occurrences of outputs that has not yet
been received is infinite we speak of u n b o u n d e d d e l a y . In that case trans is defined using

276 REIN SMEDINGA

~ A) = {a : a E A : ({a!, a?}, { x : x E {a!, a?}* A (qy : y <_ x : y N a ! >_ yNa?) :x})} .

An operator in trace theory exists that takes care of this unbounded delay. It is the ag-

glutinate and can be found in Van de Snepscheut [1985]. Its disadvantage is its difficulty
and (more important) it loses some important properties (regularity for example), which
makes the operator unusable in state-space form.

5. State graph representation

As stated before, more representations exists for behavior and task set. In this section we will
give an informal introduction to one possibility of representing discrete event systems as
defined in this paper. For a much more detailed introduction we refer to Smedinga [1992a, b].

A well-known representation is using (finite) state automatons (Hopcrofl and Ullman
[1979]). As long as a system is realistic (prefix-closed behavior and each task a behavior)
such automations can be used here. If we also want to have a automaton-like representa-
tion for GDESs we have to use extended automatons, using two kinds of final states:

DEFINITION 5.1. A state graph is defined by G = (A, Q, 8, q, B, T) with

A alphabet, finite set of symbols
Q state set, possibly infinite
8: Q x A -~ Q state transition function
q E Q initial state
B c Q behavior states
T c_ Q task states

A state in Q \ (B U T) is called a nonstate.

The transition function 6 defines paths through the graphs, i.e., 6(p, a) is the state, reach-
able from state p if event a occurs. We suppose 6 is a total function, i.e., defined for all
pairs (p, a) E Q × A. The function 6 can be extended, which results in the closure of
6, given by 6*: Q x A* --* Q and defined by

~*(p, ~) = p,

~(p, ax) = ~*(6(p, a), x).

If 6*(q, x) E B the trace x belongs to the behavior of P and if 6*(q, x) E T the trace x
belongs to the task set. Thus, a graph G represents the system

gds(G) = (A, {x : 6*(q, x) E B : x} , {x : 3*(q, x) E T : x}) .

A minimal graph representation of a system P can be found by collecting all equivalence
classes of P according to the equivalence relation

x E y = (vz : xz E bP = yz E bP A xz E tP = yz E tR).

LOCKED DISCRETE EVENT SYSTEMS 277

An equivalence class [x] = {y : x E y : y} of x is said to be a state in B if x E b P and
said to be a state in T if x E tP. This is an extension of the well-known way of finding
an automaton, given some expression, e.g., see Hopcroft and Ullman [1979]. We refer to
Smedinga [1992b] for more details.

EXAMPLE 5.1. Consider the following, unrealistic system:

P = ({a, b}, (aalab), (a)).

The following equivalence classes can be found:

p0 = [d = {d ,

Pl = [al = {a},

P2 = [aal = {aa, ab},

P3 = [b] = {a, b}* \ (p o U Pl U P2),

In Figure 1 the corresponding graph G = ({a, b}, {P0, Pl, P2, P3}, 6, Po, {P2}, {Pl})
is shown. In the diagram the initial state is denoted by an extra small arrow.

5.L State graph for the connection

Once state graphs for P and R are given, we can construct a state graph for P 11 R. The
state graph for P II R is just the cartesian product of the state graphs of P and R.

DEFINITION 5.2. Given Gi = (Ai, Qi, 6i, qi, Bi, T/) (i = 1, 2) we define the product graph
of G1 and G2 by

prod(G1, G2) -- (A l (J A2, Q1 × Q2, 6, (ql , q2), B1 x B2, /'1 × T2),

o ©
B \ T B n T

Q \ (B U T) T \ B

2 o

a

a,b

Figure 1. Left: displaying of different states; right: system from Example 5.1.

a,b

3

278 REIN SMEDINGA

where

(- (61(pj, a), P2)
6((pl, P2), a) = -~ (Pl, 62(P2, a))

(._ (6I(Pl, a), ~32(P2 , a))

if a E AI\A 2,
if a E A2X, At,
i f a ~A 1 fq A2.

It should be clear that p rod(Q, G2) represents gds(G1) [[gds(G2).
For computing a state graph for P FA we need to implement alphabet restriction on state

graphs. To get a state graph for P FA, given a state graph for P, we can simply replace
every transition labeled with a symbol not in A by a transition labeled with e. However,
in this way the result is a nondeterministic state graph. Standard techniques exists to get
a deterministic state graph. In our extended version we have

DEFINITION 5.3. A nondeterministic state graph and = (A, Q, "y, q, B, T)nd is defined with
A, Q, q, B, and T as in Definition 5.2 and

7: Q x (A U {e}) ~ 2 Q

the state transition map.

Again, y can be extended to paths in the state graph (giving the closure Y*)- Such a path
also consists of c-transitions. Each path starting in q and ending in a state in B (T respec-
tively) (possibly using some e-transitions) represents a behavior (task respectively). An
nd-graph can be made deterministic using the following extended st~mdard technique:

det(Gnd) = (A, 2 0, 6, q, /~, 7),

where (for r ~ 2 Q)

b(r, a) = U 7*(p, a),
per

= 7*(q, e),

= { r : r N B ~ O : r } ,

T = { r : r M T ¢ O : r } .

Notice that each state in det(Gnd) is a set of states of Gnd-
The above construction is a generalization of the well-known construction to find the

deterministic equivalent of a nondeterministic automaton. Apart from unreachable states,
each state in det(Gnd) is the set of states that can be reached from another set by doing
zero or more e-moves, followed by one normal move, followed by zero or more e-moves.
Notice that the above construction also holds for graphs with infinitely many states.

LOCKED DISCRETE EVENT SYSTEMS 279

It should be clear that det(Gnd) represents the same system as and but is not determin-
istic. This leads to a way of finding a state graph for the external connection defined by
P]VR = (P [IR) [(aP + aR), given state graphs G1 for P and G2 for R. First compute
prod(G> G2) using definition 5.2, then replace every transition in this state graph labeled
with an event not in aP + aR by e and compute, using the above construction, the deter-
ministic equivalent.

EXAMPLE 5.2. Consider the state graphs as given in Figure 2a, b. The connection is given
in Figure 2c. Notice that this state graph is not minimal: all nonstates can be replaced by
one nonstate. We also have computed the external connection, see Figure 2d, using this
minimized graph and made this state graph deterministic again, see Figure 2e. In this last
figure, only the reachable states are given. Notice that P and R are one-place buffers and
their external connection is a two-place buffer.

5.2. Regular systems

We say a system P is regular if there exists a finite state graph representation gds(P) for
it. It is easily seen that if the state graphs for P and R have a finite number of states, so
do the constructed state graphs for P]I R, P rA, and P]FR, meaning that i f P and R are
regular, so are P II R, P FA, and P~ rR.

6. Locked systems

Our definition of a discrete event system makes it easy to define the notion of lock. Each
behavior of P from which it is impossible to complete a task is part of the locked behavior.
A system P is said to be locked if no task can be completed any more.

DEFINITION 6.1. For a discrete event system P we define its set of locked traces, denoted
by lock(P), by

lock(P) = {x : x E bP A (Vy : y e (aP)* : xy ~ tP) : x}.

A discrete event system P is lock-free if lock(P) = 0.
The set of locked traces consists of those behaviors that cannot be completed. Therefore,

the locked traces are those traces that are in bP and not in pref(tP), so:

PROPERTY 6.1.

lock(P) = bP\pref(tP) .

EXAMPLE 6.1. Reconsider Example 4.1. Then we have

lock(P II R) = {ad}.

280 REIN SMEDINGA

a

b \ /o
a,b

-(~)-

T O

\

c\ /b
b,c

-(b)-

a

b
cl c b

/ \
a @ b @ o ®

b
¢

• • ~ 0

a \
a, b, c

-(c)-

/

~,c \ o, cj

C

\

E a , ~

~ 0 ~ •

a a

-(d)- -(e)-

Figure 2. Graphs for Example 5.2: (a) state graph GI; (b) state graph G2; (c) product graph of Gl and G2; (d)
nondeterministic graph for external connection of gds(G1) and gds(G2); (e) its deterministic equivalent,

LOCKED DISCRETE EVENT SYSTEMS 281

So the connection of P and R may lock, i.e., if first the common event a occurs and next
P performs event d then P has completed a task but R has not. The only remaining possibil-
ity for R is to perform c but P does not allow this. The connection is locked.

In fact, the set lock(P) as defined above, contains two ldnds of locked behavior. A system
can deadlock (unable to perform a next event in some behavior that is not a completed
task); e.g.,

deadlock(P) = { x : x E b P A x ¢ t P : (Va : a E aP : x a f~ bP) : x } ,

or it can livetock (a next event is always possible, although a completed task will never
be reached); e.g.,

livelock(P) = {x : x E bP A
(Vy : y E (aP)*
: xy ¢ tP A (3a : a E aP : xya E b P)) : x} .

Notice that

deadlock(P) ~ lock(P),

iivelock(P) _ lock(P).

Our definition includes both cases and also all behavior that can only result in deadlock,
but is itself not yet deadlocked.

The term deadlock corresponds to the accepted meaning of the word in computing science:
A system is deadlocked if it is impossible to continue. The term livelock is perhaps less
common. It does not mean that certain subbehavior can be repeated for ever and ever, but
in addition that, although there is no deadlock, no task can be completed.

In Kaldewaij [1988] an alternative definition of (dead)lock is given, saying that a connec-
tion of systems has the property to (dead)lock if one of the subsystems has that property:
In that case no controller can be found to give a (dead)lock-free connection. In our approach
a connection of systems has the possibility to (dead)lock if it is possible to reach a behavior
in that connection from which no task can be completed. Even if each of the subsystems
has the possibility to lock then the connection can be lock-free!

It is possible to get rid of the lock by adding a second system as is shown in the following
example.

EXAMPLE 6.2. Consider

P = ({a , b, c, d}, pref(adtabc), (abc)).

Then lock(P) = {ad}. If we connect this system with R = ({b, d}, (b)) we find the connection

P II R = ({a, b, c, dl, (abc))

that is free of lock. Notice that R = ({b}, (b)) leads to P II R = P so ({b}, (b)) does
not remove the lock.

282 REIN SMEDINGA

7. Lock-free subsystems

It is straightforward to find the greatest subsystem of some given system P that is free of
lock. It simply is the system

(aP, bP M pref(tP), tP f7 bP) .

Just delete all behavior that does not lead to a completed task and delete all tasks that have
no proper behavior leading to that task.

8. Lock-free connect ions

We claim that, if some arbitrary P and R have (in connection) the possibility of lock, we
can construct a subsystem, say S, of R such that loek(P [1 S) = 0, where S c_ R. Of course,
the system empty will always satisfy. However, we are searching for the largest possible S.

Notice that we do not impose any restrictions on the alphabets of P and R. In most cases,
however, R controls P by using a subset of the events of P. The theory below assumes aP
and aR to be arbitrary.

EXAMPLE 8.1. First, notice that S itself need not be lock-free in order to obtain a lock free
connection with P, Consider P and S given by

P = ({a, b, c}, pref(ab), (a)),

S = ({a, b, c}, pref(ac), (a)).

Then

P [I s : <{a , b, c} , pref(a), (a))

is lock-free, but neither one of P and S is.

In the sequel we try to find an algorithm that deletes some traces from the behavior and
task set of a discrete system in order to get a lock-free connection with a second system.

Simply deleting traces from the behavior and task set may lead to a system that is no
longer a DES. Therefore, we introduce an operator on GDESs to get the so called DES
interior of it, the greatest subsystem that is a real DES, i.e., satisfies the properties of hav-
ing a prefix-closed behavior and a task set that is part of the behavior.

DEFINITION 8.1. I f P is some GDES we define the DES interior of P, denoted by des(P), by

des(P) = (aP, {x : x E bP A (¥y : y _< x : y E b P) : x } ,
{ x : x E t P A (Vy :y_< x : y E bP) : x }) .

LOCKED DISCRETE EVENT SYSTEMS 283

I f P is a discrete event system and Tis some set of traces over alphabet aP, then we define
P without T as the system

• P k \ T = d e s (P \ T),

where P \ T = (aP, bPkT, tP\T).

Notice that P \ \ T is a well-defined DES, i,e., has a prefix-closed behavior and each
completed task is also a behavior.

EXAMPLE 8.2. I f P = ({a, b, d}, pref(Iblaba), (alaba)) and T = {ab}, then we find

e \ T = ({a, b, d}, (elalb]aba), (alaba)),

e \ \ T = ({a, b, d}, (elatb), a).

If P itself is a well-defined DES (i.e., with prefix-closed behavior and each task a behavior),
we can define the operator P \ \ T directly, without using the DES interior, by

P \k T = (aP , bPk(T(aP)*) , tRX(T(aP)*)).

It should be clear that this definition is equivalent to the previous one: instead of deleting
the traces from T and creating holes in the trace sets (which are removed by computing
the DES interior afterwards), you can also delete all traces form Ttogether with all their
extensions.

EXAMPLE 8.2. (cont.)

Z(ae)* = (ab(alblcO*) -- {ab, aba, abd, abaa, abab, . . . } .

Deleting this trace set from bP and tP directly gives the same result.

EXAMPLE 8.3. Simply deleting all locked traces from one of the systems P and R using
this new operator will not be enough to find a subsystem of R that has a lock-free connec-
tion with P Consider

P = ({a, b, c}, (acataaba)),

Then we have

P t[R = ({a, b, c}, pref(aablaca), (aca)),

so loek(P]I R) = {aa, aab}. Computing

s = R \ \ lock(P ll R) FaR

R = ({a}, (alaa)).

284 REIN SMEDINGA

results in S = ({a}, (a), 0) and

P]I S = ({a, b, c,}, pref(ac), 0) ,

which is, again, not free of lock.

From now on we assume that we have well-defined DESs P and R and are searching
for the greatest subsystem of R that has a lock-free connection with P.

Our claim is that the following operator leads to the greatest possible lock-free subsystem:

L(P, R) = e \ \ lock(P II R) taR.

Starting with R 0 = R we can compute R i + 1 = L(P, Ri) and so find a chain of Ri's. We
claim that the operator L has a fixpoint and that this fixpoint is the subsystem of R we
are looking for.

The first property says that each iteration reduces the resulting subsystem and gives an
important property of lock.

PROPERTY 8.1

(a) L(P, R) G R.
(b) lock(P It R) FaR c_ bR.

If the fixpoint exists it leads to a lock-free connection with P:

PROPERTY 8.2

lock(P II S) = 0 ~ L(P, S) = S.

Proof

L(P, S) = S

= des(S\lock(P tl S)FaS) = S [definition of operator L]

= lock(P II s) Fag = 0 [lock(e II s) FaX c_ bSl.

LEMMA 8.1

(L(P, S) = S A S c R) = S c L(P, R).

Proof

bS _ b(R \ \ lock(P II R) JaR)

= bS G bR\(lock(P I[R) ~aR)(aR)* [second definition of \ \]

LOCKED DISCRETE EVENT SYSTEMS 285

= (Vy, Z " y ~ lock(P II R) A Z ~ (aR)* " (3' raR)z ~ bS) [S _ R]

= (vy, z • y ~ b(P II R) A y E lock(P tI R) A z ~ (aR)* • (y raR)z ~ bS)
[lock(P) c_ bP]

= (vy, z - y e b(P II R) : z ~ (aR)* v (y~aR)z ~ b S v y ¢ lock(P II R)) [trading[

= (vy ° y ~ b (P II R) : (Vz :: z ~ (aR)* v ~, ~aR)z ~ bS v y ~ lock(P I] R)))
[nesting]

= (vy : y ~ b (P t[R) : y ¢ lock(P I1 R)) v (vz :: z¢ (aR)* v 0 ' FaR)z ¢ bS)
[distribution of V over V]

= vy • y ~ b(P [[R) • y ¢ lock(P tt R)) V -~(3z "" z ~ (aR)* A (y ~aR)z E bS)
[deMorgan]

= (Vy ' y E b(P II R) A (az :: z (aR)* A FaR)z bS) " y ¢ lock(P II R))
[trading]

= (vy • y 6 b (P II R) A y FaR E bS : y ~ lock(P II R)) [bS is prefix closed]

= (Vy " y ~ b (P H 8) : (3w :: yw ~ t (P II R)))
IS ~ R, and definitions of I[and lock]

= (v y ' y ~ b(P H s) " (3 w : : y w E t(P [t s))) [s _ R]

= true [(P II S) is lock free]

On the other hand:

tS ~ t(R \ \ lock(P li R) FaR)

= tS c_ t (R\(lock(P 1[R) ~aR)(aR)* [second definition of \ \]

¢:- tS c_ tR A tS ~ bS [above result and R is a DES]

= true [S _ R and S is a DES[.

This combines to S c_ R \ \ lock(P H R) taR. Notice that we have used here that the behav-
ior of both S and R is prefix-closed and each task is a behavior.

286 REIN SMEDINGA

We define the following set of classes of DESs:

/I~= { L) : R ~ L) A (¥ S : S E L) : L (P , S) E 7.))

^(VrU: _c V : n S ~ V) : V}.
s~ c~i

The set

{S: S c_ R : S} E cb

is not empty because

(a) R ~ {S: S c_ R ' S }
(b) (vS : S E R : L(P, S) c_ R) (see Property 8.1 (a)).
(c) (V ~ : ~ c {S: S_c R : S} : r isErS c R).

Next, we define the intersection of all L) from • to be the set ~):

We now have that this ~) is also a member of the class ~:

PROPERTY 8.3

(a) R E ~.
(b) (v S : S E ~) L(P, S) ~ ~)).
(c) (V cb/: c~ c_ ~) - n s~ ~, s ~ ~)).

Proof

(a) true

= (V L) : L) fi ,1~ : R E L)) [definition of if]

= R E n L).

(b) S~ ~J

= S ~ I'~ 7) [definition of ~)]

= (v V : V ~ @ : S ~ V)

L O C K E D D I S C R E T E E V E N T SYSTEMS 287

= (vL~: 7_)E ~ 5 . L (P , S) E V)

= L (P , S) E n v

= L(P, S) E ~) [definition of ~)]

(c) ~ __ b)

: n [d e f i n i t i o n of b)]
V~cb

= (v V : D~E,I,. : ~ _ c ~)

SE cff

- - A s i A v
SE qi "OE~

= 0 S E ~ [definition of ~] .
SE ~)

Now define

A(P, e) = A s.
SE ~)

[definition of qs, second property of g)]

[definition of ~b, third property of L)]

Then we have that A(P, R) is a fixpoint of the operator L.

PROPERTY 8.4

A(P, R) = L(P, A(P, R)).

Proof. By construction of L we have L(P, A(P, R)) c_ A(P, R); see Property 8.1. Moreover,

A(P, R) = N
SE

A(P, R) E ~ [see Property 8.3(c) with q/ = ~[

L(P, A(P, R)) E ~) [see Property 8.3(b)].

288 REIN SMEDINGA

Hence,

A(P, R)

= N S [definition]

(a) R E L),

(b) T E L)

= S _ T c_ R [definition of L)]

= S c_ L(P, T) c_ R [Lenuna 8.1 with L(P, S) = S and L(P, T) G T]

= L(P, T) ~ L).

(c) c~ c_ V

= (VT: TE ~ " T E L))

= r-~ TE L).
TE~/

(a), (b), and (c) lead to L) E if, and hence, by definition of ~), that ~0 c_ L). Now we have

A(P, R)

= N s [definition]
SE gO

E ~ [Property 30(c)with Cb/ = ?g)]

_ 7.) [above].

So A(P, R) E L); that is, S c_ A(P, R) c R, so A(P, R) is the biggest one.

SE gO

G L(P, A(P, R)) [L(P, A(P, R)) E ~)].

The fixpoint A(P, R) leads to a lock-free connection.

LEMMA 8.2

lock(P 11 A(P, e)) = 0.

Proof. From Property 8.2 with S = A(P, R) and property 8.4.

Moreover, we have that A(P, R) is the greatest fixpoint, so it is the first one to be reached
while computing the chain R i.

LEMMA 8.3

(S = L(P, S) A S c R) = S c A(P,R) .

Proof. Let L) = {T : S c T ~ R : T}, then we have

LOCKED DISCRETE EVENT SYSTEMS 289

We now have proved the following theorem.

THEOREM 8.1. A(P, R) is the largest system contained in R for which the connection with
P is free of lock.

EXAMPLE 8.4. If the fixpoint is empty, no subsystem of R can be found such that the con-
nection with P is free of lock. Consider P and R from Example 8.3. Then

R o = R,

R 1 = ({a}, (alaa)X(aabtaa)) = ({a}, (a)),

Ra = ({a}, (a)k(alac)) = ({a}, 0>,

and, indeed, no nonempty subsystem of R can be found with a lock-free connection (just
try every possible subsystem of R).

8.1. Deadlock-free connections

Actually, we can prove the same for the deadlock case, Use

A(P ,R) = ['~ Ri with ~ R°
R,

i ~ Ri Ri-1 \ \ deadlock(P II Ri-1) [aR, i = 1, 2,

Then we have

THEOREM 8.2. A(P, R) is the largest system contained in R for which the connection with
P is free of deadlock.

9. Effectively computable

Using the state graphs defined earlier, we are able to compute A(P, R) effectively. It re-
mains to find the set lock(P) of some given P using state graphs and to compute P \ \ T
for some system P and trace set T using a state graph representation of P and T.

9.1. Finding locked states"

I f x ~ lock(P) then the state/~*(q, x), in some state graph G representing P, has the prop-
erty that no path, starting in this state ever reaches a task state. Such states can easily be
found by using the reversed graph of G, i.e., with all transitions reversed. In this graph
each state that is reachable from a task state is a state in the original graph from which

290 REIN SMEDINGA

a task state can be reached. Each behavior state that cannot be reached from a task state
in the reversed graph, therefore, is a locked state in the original graph.

Once we have found the locked states we can construct a graph that represents the system
{aP, lock(P), lock(P)) by changing all states in nonstates and all locked states in behavior
and task states.

EXAMPLE 9.1. Consider the system P with representation as given in Figure 3 (left). In
the figure we have omitted all transitions going to the only nonstate of the representation.
The right part of the figure shows the reversed graph. From the task state 9 only the states
1 and 2 can be reached. This means that the states 3, 4, 5, 6, 7, and 8 are locked states.
lock(P) can now be represented using the left graph of the figure, where states 1, 2, and
9 are made nonstates and states 3, 4, 5, 6, 7, and 8 are made behavior and task states.

9. 2. The minus graph

The following algorithm can be used to compute P \ \ T, given graph G1 for P and G2
for T.

DEFINITION 9.1. Associated with two state graphs G~ = (A, Q1, 61, qb B~, T1) and G2 =
(A, Q2, (32, q2, B2, T2) we define the minus graph min(G 1, G2) by

(A, {(ql, q2)}, 1, (qb q2), 0, 0) if q2 E 7"2,

(A, QI x Q2, (3, (ql, q2), B1 x (Q2\B2), T 1 x (Q2\T2)) otherwise,

where, for Pl E S1, P2 E $2, and a ~ A, d is defined by

6((p~, P2), a) = (dl(pl, a), dz(p2, a)).

© © , © d

4

b

b

@, "@ @ (9"
C

b

e , o ©
C

@

@

@

-©

Figure 3. State graph of system for Examle 9.1 (left) and its reverse graph (right).

LOCKED DISCRETE EVENT SYSTEMS 291

Again we use a cartesian product of two graphs, but this time behavior and task states are
constructed differently. It should be clear that the graph min(Gb G2) represents P \ \ T.

EXAMPLE 9.2. Suppose P and R are given as in Figure 4a, b. The product graph, represent-
ing the connection, can be found in Figure 3 (left). From the previous example and the
above construction we find a graph for loek(P II R) by making the states 1, 2, and 9 in

-(~)-

b

.+Q

-(b)-

£

b

© ++ +
C

\ O a O d i.- 1+

+
b @--+©~ ©
C

e e d

b © , @ , + •

• a ~ O d @

b ~ ÷

@ © ©
[c t

e e d

b

¢

-(c)- - (d) -

"0 a O d @

¢

- (e) - -(f)-

Figure 4. Graphs for Example 9+2: (a) state graph lbr system P; Oo) state graph for system R; (c) state graph
for loek(P II R); (d) nondeterrrfinistic state graph for iock(P I1 R) [~aR: (e) deterministic graph for Iock(P]] R) [aR;
(f) graph for R \\ Ioek(P 1] R) jaR.

292 REIN SMEDINGA

this graph nonstates and making the other states behavior and task states (Figure 4c). Next,
we replace every symbol not in aR by e to get an nd-graph for lock(P II R) FaR (Figure
4d). The deterministic equivalent of this graph can be found in Figure 4e. The minus graph
of the graphs of R and the last graph results in graph as displayed in Figure 4f, represent-
ing R \ \ lock(P II R) FaR.

10. A comparison with other approaches

Also in the framework of Ramadge and Wonham there exists theory in finding so-called
nonblocking supervisors, i.e., a supervisor that not only leads to the desired behavior but
also to a lock-free connection (see Li and Wonham [1988] and Ramadge and Wbnham [1989]).

The nonblocking property is an extra demand on the supervisor. In our approach lock-
free (or nonblocking) is a demand on its own. Given some plant P we can construct a
controller R that leads in connection with P to a lock-free system. Our approach is more
general than finding a nonblocking supervisor because (a) no restrictions are put on the
system P that should be controlled (we only need that P has a realistic interpretation, i.e.,
pref(bP) = bP and tP ~ bP), especially no modeling of the behavior in some way is
necessary (no automatons), and (b) getting a lock-free connection is a demand on its own
(and not part of another control problem like with the nonblocking supervisor).

The method discussed above can also be used as a second step in case a controller has
to be found such that the connection of controller and plant meets certain constraints (for
example, P [[R should be within certain minimal and maximal behaviors). First controller
R can be computed such that the constraints are met (without worrying about lock) and
afterwards from R a new controller can be derived that also leads to a lock-free connection.
If the connection still satisfies the needed constraints we have found a solution, if not,
no solution is possible (provided the original controller R was as large as possible). In
Smedinga [1991] more can be found about this approach.

Our approach leads to a number of related problems, for example we might try to find
(in some sense) the minimum set of events that have to be controlled (i.e., the minimum
set aR) to get a lock-free connection.

11. An example

We end with an illustration of the results. Reconsider the system of the farmer, wolf, goat,
and cabbage, the following events are possible:

f farmer goes to other side alone
w farmer takes wolf to other side
g farmer takes goat to other side
c farmer takes cabbage to other side
e one thing is eaten by another

We give the behavior and task set of this system by using the graph of Figure 5. The states,
the system can be in, can be denoted by (ijkl) with i, j , k, 1 = 1, 2, where i is the position

LOCKED DISCRETE EVENT SYSTEMS 293

F

e

@ - f @

® -".®

"@
I,
It

Figure 5. Behavior of farmer system.

of the wolf, j the position of the goat, k the position of the cabbage, l the position of the
farmer, where 0 means on this side of the river and 1 means on the other side. For example
state (1011) means that wolf, cabbage, and farmer are on the other side and the goat is
on this side of the river. After one thing is eaten the positions are not important anymore
(the farmer simply did not succeed), so the state after eating is denoted by (err). In the
figure we omit the nonstates and every transition going to it.

We start in state (1111), i.e., on the other side of the river. According to the puzzle the
farmer should bring wolf, goat, and cabbage to this side of the river, i.e., a legal ending
is in state (0000). Each behavior, starting in (1111) and ending in (0000) therefore is a
task of the system.

In Figure 5 all possible behaviors of the farmer system are denoted. Notice that it is
possible to reach state (0000) from each other state, except from state (err). All behavior
ending in (err) therefore is locked behavior. We want to get rid of this behavior by controlling

294 REIN SMEDINGA

the behavior of the farmer, i.e., control events w, g, c, and f i n such a way that it becomes
impossible to lock (notice that occurrence of e is the only possibility for lock). Event e
cannot be controlled so we cannot give a controller that simply forbids event e to happen.

In this example we are free to chose system R from which we compute the largest sub-
system that leads to a lock-free controller. Because we want to have a minimal restrictive
controller we start with a system r that is as large as possible:

R = <{f, w, g, c} , (f lw lg l c)*> .

In general, this is the way to get a minimal restrictive controller: start with the largest one
that is possible, i.e., the most general controller that can be found and use the above theory
to compute the largest subsystem of it with the required properties. In this way we impose
as less restrictions on the original system P as possible, ending up with a system with as
much freedom as is possible provided no lock can occur any more (see Smedinga [1991]).

Now we compute A(P, R). A computer program, using algorithms based on the state
graph representations as presented before, is used to compute the sequence Ri, resulting
in R1 = A(P, R). Computing the connection P II R1 leads to the system as is displayed
in Figure 6. The event e never occurs; there is no danger of lock.

""@ , : @ @

,,<
t 9

@

@ @

Figure 6. Controlled behavior of farmer system.

: @

LOCKED DISCRETE EVENT SYSTEMS 295

If we do not consider unnecessary loops, in fact two possible behaviors result:

gfwgcfg,
gfcgwfg,

which are precisely the two possible solutions of the puzzle.
It is even possible to consider only events f, w, and c to be controllable, thus e and g

to be uncontrollable. The fixpoint found while starting with

R0 = <{f, w, c}, (f lwlc)*>

is given in Figure Z This controller leads to the same connection as the previous one,
again, P ti R1 is given by, Figure 6. It is surprising that the system is controllable, event
when event g is uncontrollable: the goat can jump into the boat whenever he wishes and
is able to (e.g., if the farmer decides to go alone to the other side it is possible that, just
before he leaves, the goat jumps into the boat). The controller in Figure 7 forbids all moves
that may lead to the occurrence of event e taking into account the free moving of the goat.
It is left to the reader to verify that the connection of P and this controller indeed leads
to the desired behavior.

f ~ ~

© c © . ©

© c © c ©

©
Figure 7. A second controller.

296 REIN SMEDINGA

12. Conclusions

In this article we have defined discrete event systems using perhaps the simplest possible
definition. In spite of its simplicity it allows to model connection of systems. Even asyn-
chronous connection can be modeled. Also (dead)lock of one or more systems can easily
be defined and useful theorems about lock-free connections can be derived. Once more
we want to emphasize that the systems under consideration need not be regular. All derived
properties are also valid for nonregular systems. In fact, we do not impose any restrictions
on the systems. If, however, the systems are regular, we can use algorithms on state graphs
to compute the lock-free controller effectively.

Starting with a controller R that is as general as possible (i.e., complete with respect
to its alphabet) leads to a fixpoint that has minimal restrictions on the resulting lock-free
connection. In Smedinga [1991] this idea is discussed in more detail.

The method developed for finding the greatest subsystem that leads to a lock-free con-
nection can also be used if some controller R needs to be computed in order to have a
connection P II R that meets certain criteria and is free of lock. Such controllers can be
found by first looking only at the criteria and compute the greatest controller that is satis-
factory. Second, we can compute the greatest subsystem of this controller such that the
connection is free of lock. For example, the problem of computing a controller such that
the behavior of the connection lies between a minimal and a maximal behavior, can be
solved this way, see Smedinga [1991].

We modeled discrete event systems using triples consisting of alphabet, behavior set and
task set. In this way it was possible to define the notion lock on one single system. It also
gives the possibility to define unrealistic systems (GDESs). Such unrealistic systems are
used in this article to model separate traces (the set lock(P) for example). GDESs also
play a crucial role when a controller R is to be found such that the external connection
P ~ F R needs certain requirements. This last problem can be solved using the so called
reflection operator, which returns an unrealistic system, but nevertheless, leads to the greatest
desired controller R such that Lt c_ p ~ F R __C_ L2; see Smedinga [1992b].

References

Hoare, C.A.R., 1985. Communicating Sequential Processes. Englewood Cliffs, NJ: Prentice Hall.
Hopcroft, J.E., and Ullman, J.D., 1979. Introduction to Automata Theory, lJanguages, and Computation. Reading,

MA: Addison-Wesley.
Kaldewaij, A., 1988. A formalism for concurrent processes. Ph.D. thesis, Department of mathematics and com-

puting science, Eindhoven University of Technology.
Li, Yong, and Wonham, W.M., 1988. Deadlock issues in supervisory control of discrete event systems. Proc.

1988 Conf. Information Science and Systems, Princeton University, Princeton, NJ.
Milner, R., 1980. A Calculus for Communicating Systems. Lecture Notes in Computer Science, vol. 92.

Springer-Verlag.
Peterson, J.L., 1981. Petri Net Theory and the modelling of Systems. Englewood Cliffs, NJ: Prentice-Hall.
Ramadge, EJ., and Wonham, W.M., 1987. Supervisory control of a class of discrete event processes. SIAM J.

Control Optim., 25(1), See also Systems Control Group report 8515, Department of Electrical Engineering,
University of Toronto.

Ramadge, EJ., and Wonham, W.M., 1989. The control of discrete event systems. Proc. 1EEE, 77(1).

LOCKED DISCRETE EVENT SYSTEMS 297

Smedinga, R., 1988. Using trace theory to model discrete events. In Discrete Event Systems: Models andApplica-
tions, Varaiya, P. and Kurzhanski, A.B. (eds.) Lecture Notes in Control and Information Science, No. 103,
Springer-Verlag. Workshop Sopron, Hungary, IIASA.

Smedinga, R., 1989. Control of discrete events. Ph.D. thesis, University of Groningen.
Smediniga, R., 1991. An effective way to undo a discrete event system of its (dead)lock. Preprints Proc. IFAC

Symp. Design Methods for Control Systems, Ziirich.
Smedinga, R., 1992a. Discrete event systems. Course notes, Department of Computing Science, University of

Groningen.
Smedinga, R., 1992b. The reflection operator in discrete event systems. Technical report CS9201, Department

of Computing Science, University of Groningen.
van de Snepscheut, J.L.A., 1985. Trace Theory and VLSIDesign. Lecture Notes in Computer Science, vol. 200,

Springer-Verlag.
Udding, J.T., 1984. Classification and composition of delay-insensitive circuits. Ph.D. thesis, Department of Math-

ematics and Computing Science, Eindhoven University of Technology.

