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Abstract 
A previously obtained method of balancing for stable 

nonlinear systems is extended to unstable nonlinear sys- 
tems. The similarity invariants obtained by the concept of 
LQG balancing for an unstable linear system can also be 
obtained by considering a past and future energy function 
of the system. By considering a past and future energy 
function for an unstable nonlinear system, the concept of 
these similarity invariants for linear systems is extended 
to nonlinear systems. Furthermore the relation of this 
balancing method with the previously obtained method 
of balancing the coprime factorization of an unstable non- 
linear system is considered. Both methods are introduced 
with the aim of using it as a tool for model reduction. 

Keywords: balancing, nonlinear systems, Hamilton- 
Jacobi-Bellman equations, model reduction. 

1 Introduction 
Balancing is a well known subject in system theory. It started 

with a paper of Moore, [9], in 1981, where balancing for stable 
linear systems is introduced with the aim of using it as a tool for 
model reduction. The input and output energy of a system play 
an important role in this set up. Balancing for unstable linear 
systems has been treated by [6]. In this paper LQG balancing is 
introduced. LQG balancing can be used as a tool for model re- 
duction of unstable linear systems and their LQG compensators. 
Furthermore, balancing of the coprime factorization of an unsta- 
ble linear system is introduced in (81 and [l l] ,  where in [ll] the 
relation with LQG balancing is given. Balancing for linear sys- 
tems and the relation between LQG balancing and balancing of 
the coprime factorization is treated from another point of view 
by Weiland in [18]. 

Recently, balancing for stable nonlinear systems has been in- 
troduced in [14]. It is an extension of the idea of balancing for 
linear systems in the sense that the input and output energy of 
the nonlinear system are important to decide whether or not a 
state component is important for the model and may be deleted 
to obtain the reduced-order system. An extension of this method 
to unstable nonlinear systems by considering the normalized right 
coprime factorization of a nonlinear system can be found in [15]. 
This matches with the concept of balancing the coprime factor- 
ization of an unstable linear system as mentioned before. 

In this paper we also consider unstable nonlinear systems, but 
now we propose a method to balance these systems based on a 
certain future and past energy function of the system, replacing 
the input and output energy functions which are important for 
balancing of a stable system. In the case of an unstable linear 
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system this method is the same as LQG balancing, which can be 
found in [6], [12] and [18]. Furthermore, we consider the relation 
with balancing of the normalized coprime factorization from [15]. 

In section 2 we give a brief review on LQG balancing and co- 
prime balancing for linear systems. Section 3 contains a review 
on balancing for stable nonlinear systems and balancing of the 
coprime factorization of nonlinear systems. In section 4 we define 
HJB (Hamilton-Jacobi-Belhnan) balancing and the HJB singu- 
lar value functions. We propose a procedure to bring a nonlinear 
system into HJB balanced form, which is related to the procedure 
to balance stable nonlinear systems. Furthermore we study the 
relation of HJB balancing with balancing of the coprime factor- 
ization. Finally in section 5 we give some conclusions. 

Throughout this paper we will use a fairly standard notation. 
We denote by xTx or 11 x the squared norm of a vector x E R". 
We say that U : (-00~0) -+ R" is in L2(-00,0) if J!, 11 ~ ( t )  11' 
dt < 00. By e(r) we denote the row-vector of partial derivatives 
of a differentiable function L : R" -+ R. Furthermore we denote 
by x(t2) = ( ~ ( t ~ , t ~ , x 1 , u )  the solution on time tz of the system 
i = f(r) + g(z)u with initial condition z(t1) = x1 and input 
U : [ t l , t 2 ]  + R". 

2 Review for linear systems 

2.1 LQG-balancing 
LQG-balancing for linear systems has been introduced in [6], and 
in [12] this concept is developed further. The set of invariants 
defined in these two papers are treated from another point of 
view in [18]. First we will give a review of the formulation of [6] 
and [12]. LQG compensation is formulated for a minimal state- 
space system 

x = Ax + Bu + Bd, y = Cx + v (1) 

where U E R", x E R", y E RP and d and v are Gaussian white 
noise processes with covariance functions 16(t - T ) .  The criterion 

J = E ( lim 5; 1 T  ( x T C T C x  + uTu)dt) 
T-rm 

is required to be minimized and the corresponding optimal com- 
pensator is given by 

i = Az + Bu + SCT(y - CZ), . U = -BTPz  (3) 

where S is the stabilizing solution (i.e. u ( A  - SCTC) c C-) to 
the Filter Algebraic Riccati Equation (FARE) 

AS + SAT + BBT - SCTCS = 0 (4) 

and P is the stabilizing solution (i.e. u ( A  - B B T P )  c C-) to 
the control algebraic Riccati equation (CARE) 

ATP + P A  + CTC - P B B T P  = 0 (5) 



Theorem 2.1 ([6, 121) The eigenvalues of PS are similarity in- 
variants and there exists a state space representation where 

0 
M : =  p = s = i'c ... pn) (6) 

with p 1  2 . . . 2 p, > 0.  This is called a LQG balanced represen- 
tation. 

In [6] and (121, it is argued that if p k  >> pk+l, then the state 
components z1 up to xk are more difficult both to control and to 
filter than xk+l  up to x, and a synthesis based only on 11, .., xk 

probably retains the stability and sensitivity properties of the 
system. If we assume system (1) is LQG balanced, then the 
reduced order system is 

X = Allx + B1u + Bid y = C1x + v (7) 

where the entries of A11 form the first k columns and rows of A, 
the entries of B1 are the first k rows of B and the entries of C1 
are the first k columns of C. 

Theorem 2.2 ([4 121) If (A11,B1,C1) is minimal the reduced 
order system (7) is LQG balanced again and the optimal compen- 
sator for system (7) is the reduced order optimal compensator of 
the full order system (1). 

The original idea of balancing for stable linear systems, intro- 
duced in [9], considers the Hankel singular values which are a 
measure of the importance of a state component. This is based 
on the input energy which is necessary to reach this state com- 
ponent and the output energy which is generated by this state 
component. A similar kind of reasoning, using a different pair of 
energy functions, can be used to achieve the similarity invariants 
pi ,  i = 1, ..,n, as above, see [18]. For this we consider a minimal 
system 

X = A X + B U ,  ~ = C X  (8) 

where U E R", z E R" and y E RP (N.B.: no noise is entering the 
system). We define the following energy functions 

z(-m) = 0,z(O) = 2 0  

m 

K+(zo)  := E min L*(o,m) f J, (I1 Y ( t )  1 1 2  + II u( t )  IlW 
.(CO) = O , r ( O )  = 2% 

K-(xo )  will be called the past energy and K+(zo) the future 
energy of the system in the state xo. 

Theorem 2.3 ([lt?]) K - ( x )  = !jxTS-'z and K + ( z )  = i zTPz ,  
where S and P are the stabilizing solutions of respectively (4) and 
(5). 

For the LQG balanced representation from Theorem 2.1 the past 
and future energy function are respectively K-(zo) = !jzTM-'zo 
and K+(xo)  = i x z M x o ,  where M is diagonal. Then the impor- 
tance of the state j. = (0. .  . 0 z; 0 . .  . O )  in terms of past and 
future energy can be measured by the similarity invariant p ; .  
For large p ,  the influence of the state Z on the future energy is 
large while the influence on the past energy is small. Hence if 
pk >> p k f l ,  the state components Zk+l  to zn are not important 
from this energy point of view and can be removed to reduce the 
number of state components of the model. 

2.2 Balancing of the coprime representation 
In [8] and [ll] balancing of the coprime representation of a lin- 
ear system is dealt with. Here we will give a very brief review 
of this subject. Consider the following system which is a state 
representation of the so called Graph operator of system (8) 

C 
j. = ( A  - BBTP)z + Bw, (e> = ( - B T P )  z + (;) U (9) 

with w a (fictitious) input variable and P is the stabilizing solu- 
tion to ( 5 ) .  This Graph operator is representing the normalized 
right coprime factorization of system (8), see [8]. The Hankel 
singular values of system (9) (for a definition of Hankel singular 
values see i.e. [2]) are called the Graph Hankel singular values of 
system (8), and have the following property 

Theorem 2.4 ([& 111) The Graph Hankelsingular values of sys- 
tem (8) are strictly less than one. 

Now denote the Graph Hankel singular values by T,, i = 1, .., n, 
and assume 7 1  2 . . . 2 7,. The relation between T;, i = 1, ..,n, 
and the similarity invariants p;, i = l,..,n, of Theorem 2.1 is 
given by the following theorem: 

Theorem 2.5 ([ l l ,  181) p; = ~ i ( 1  - ~,?)-i for i = 1, .., n. 
In particular, this means that the reduced model that is obtained 
by model reduction based on the concept of balancing the normal- 
ized right coprime factorization will be the same as the reduced 
model that is obtained by model reduction based on the concept 
of LQG balancing. 

3 Review for nonlinear systems 
3.1 Balancing for stable nonlinear systems 
Balancing for stable nonlinear systems is dealt with in [14]. As 
in the linear case, this is a method based on the input energy 
that is necessary to reach a state and the output energy that 
is generated by this state. We will give a brief review on this 
subject in this section. 

Consider a smooth, i.e., C", nonlinear system of the form 

j. = f (z) + g(Z)u, y = h ( x )  (10) 
where U = (u1 ,..,U,,,) E R", y = ( y l  ,.., y p )  E RP and r = 
( ~ 1 ,  ..,z,,) are local coordinates for a smooth state space man- 
ifold denoted by M. Throughout we assume that the system has 
an equilibrium. Without loss of generality we take this equilib- 
rium in 0, i.e. f (0) = 0 and we also take h(0)  = 0. 

Definition 3.1 The controllability and observability function of 
a nonlinear system are defined as 

respectively 

&,(do) = 1 Im 11 y ( t )  (I2 dt,  z(0) = xo, u( t )  = 0 (12) 
2 0  

The value of the controllability function at 10 is the minimum 
amount of control energy required to reach the state xo and the 
value of the observability function at zo is the amount of output 
energy generated by 5 0 .  These functions do not necessarily exist 
(i.e. are finite), in particular, Lo can be infinite if the system is 
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unstable and if xo can not be reached from 0, then by convention 
L,(zo) will be infinite. We throughout assume L, and Lo are 
finite on some neighborhood W of 0. Also, for the rest of this 
paper we assume L, and Lo are smooth functions of x. 

Theorem 3.2 ([14]) I f  f ( x )  is asymptotically stable on a neigh- 
borhood W of 0, then for  all x E W ,  L,(x) is the unique smooth 
solution of the following Hamilton-Jacobi equation: 

$ ( x ) f ( x )  + ZhT(x )h (x )  1 = 0, Lo(0)  = 0 

Furthermore for  all x E W ,  Lc(x )  is the unique smooth solution 
of the following Hamilton-Jacobi equation: 

satisfying -( f (x)+ g(x)gT(s)-(x))  aTL, is asymptotically stable ax 
on W .  

Remark 3.3 ([14]) L, and Lo are non-negative. 

Theorem 3.4 ([14]) Assume f is asymptotically stable on W 
and (14) has a smooth solution zc on W .  Then Ec(xo)  > 0 for  
zo E W ,  IO # 0, if and only if -(f(z) + g ( x ) g T ( z ) q ( x ) )  is 
asymptotically stable on W .  

For the following definition see e.g. [13]. 

Definition 3.5 The system (10) is reachable from $0 if for any 
f E M there exists a f 2. 0 and input U such that f = cp(f, O , q ,  U). 

The system (10) is zero-state observable if any trajectory where 
u(t)  O , y ( t )  zz 0 implies s(t) E 0, i.e., h(cp(t,O,z,O)) = 0, 
t 2 O + Cptt, O,x,  0) = 0, t 2 0, for all x E M. 

The following theorem is closely related to some results in [4] and 
[13]. For the proof, see [14]. 

Theorem 3.6 Assume f (x) is asymptotically stable on a neigh- 
borhood W of 0. If the system (10) is zero-state observable and 
(13) has on W the smooth solution Lo, then L,(xo) > 0, Vxo E 
w, I o  # 0. 
Now we consider nonlinear systems of the form (10) with con- 
trollability and observability function L, respectively Lo as in 
definition 3.1, and with the following standing assumptions: 

1. f (x) is asymptotically stable on a neighborhood Y of 0 
2. the system is zero-state observable on Y 
3. L and L,  are smooth and finite on Y 
4. L ( 0 )  > 0 and L ( 0 )  > 0 a% a2L 

a x 2  8x2 
To balance the nonlinear system we first need the following lemma: 

Lemma 3.7 ([ld]) There exists a coordinate transformation x = 
I$(3), $(O) = 0, such that L, (x )  in the new coordinates f = 
I$-l(x) is  of the form L,(I$( f ) )  = ifTf. Furthermore we can 
write Lo($) in the new coordinates f = I$-I(x) as L0(q5(f))  = 
$tTM(f)E where M(0)  = !&(O), with M ( f )  a n x n symmetric 
matrix with entries which are smooth functions o f f .  

Theorem 3.8 ([ld]) Consider system (10) and assume there ex- 
ists a neighborhood V of 0 where the number of distinct eigenva6 
ues of M ( f )  is constant for  f E V .  Then there ezists a neighbor- 
hood U of 0 and a coordinate transformation I = +(z ) ,  +(O) = 0, 
such that L , ( z )  in the new coordinates z E W := +-l(U) is of 
the following form: 

1 
2 

L,(z) := Lc($(z ) )  = - 2 z  

while in the new coordinates Lo is of the following form: 

where q ( z )  2 ... 2 T,(Z) are smooth functions of z, called the 
singular value functions. 

Remark 3.9 For a linear system the singular value functions 
~ i ,  i = 1, ..,n are constant and are equal to the squared Hankel 
singular values. 

The form of the controllability and observability function in (15) 
and (16) is not yet entirely balanced.. For that we need another 
additional coordinate transformation. We take as transforma- 
tion 2; = qi(zi) := q ( 0 ,  ..,O,z;,O, ..O)*z;, i = 1 ,  ..,n and hence 

. . . qn(zn)) OF Z f W := q(W). Define 
L,(Z) := LC(q-'(2)) and Lo(z) := L0(q- ' ( i ) ) .  Then (15) and 
(16) become respectively: 

= q(z) :? (ql(21) 

where for i = 1, ..,n we have oi(2;) = ~ i ( 0 ,  ..,O,q;'(zi),O, ..,O)t 
andw;(z) = u i (&) - l~ ; (q - l (Z ) ) .  It followsthat L,(O,..,O,zi,O,..,O) 
= i~?~izai(2;)-' and i o ( O ,  .., O,.ti,O, ..,O) = !&ui(Z,) for i = 1, .., n. 
We call a nonlinear system balanced if it has a controllability and 
observability function of the form of respectively (17) and (18). 
This means that we can balance system (10) by a coordinate 
transformation of the form x = ~ ( 2 )  := +(q-'(z)) where + is as 
in Theorem 3.8. 

3.2 Balancing of the coprime factorization 
If the nonlinear system is not stable, we can consider the nor- 
malized right coprime factorization of a nonlinear system, and 
apply the theory of section 3.1 to the normalized right coprime 
representation, see (151. We will give a brief review. Consider a 
system of the form (lo),  i.e. 

X = f (z) + g(x)U, Y = h ( i )  (19) 

with the same properties as (10) and let the system be zero-state 
observable. For the normalized right coprime representation of 
this system we consider the following Hamilton-Jacobi-Bellman 
equation (known from optimal control theory): 

with V(0) = 0. Assume (20) has a smooth proper positive definite 
solution V. Then the following system is a representation of the 
normalized right coprime factorization of system (19) (see for 
details (151) 
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In the linear case this is the state space representation of the 
Graph operator (see section 2.2). The following lemmas are re- 
lated to results from e.g. [7]: 

Lemma 3.10 (‘151) System (21) is zero-state observable. 

Lemma 3.11 ([15]) Let V be a smooth positive definite solution 
to the Hamilton-Jacobi-Bellman equation (20), then x = f ( x )  - 
g ( z ) g ( x ) T g ( x )  is locally asymptotically stable. If V is proper, 
then x = f ( z ) - g ( z ) g ( z ) T z ( z )  is globally asymptotically stable. 

From [15] we know that the observability function Lo of system 
(21) is well defined and is the smooth positive definite solution 
of (20)) hence 1, = V .  Additionally let us assume that the 
controllability function L, of system (21) is smooth and finite, 
then L, fulfills 

a2 ( )(f - s ( M z ) T q Q ( z ) )  + f%(.)s(.)s(z)Te = 0 (22) 

satisfying -( j ( z )  + g ( z ) g ( z ) T w ( z ) )  is asymptotically sta- 
ble. To apply the theory of section 3.1 we also assume that 
s ( 0 )  > 0 and a ( 0 )  > 0. We can apply Theorem 3.8 to 
the system (21) and we call the singular value functions of this 
system the Graph singular value functions of the original system 
(19). The following result can be compared with Theorem 2.4 for 
linear systems. 

Theorem 3.12 ([15]) Lo I L,. . 
In particular, this implies that the Graph singular value functions 
i ; ( z ) ,  i = 1, .., n, of a nonlinear system satisfy i i (0 ,  .., O,x;, 0, .., 0) 
5 1 for i = 1,  ..,n. 

4 Balancing for unstable nonlinear 
systems 

4.1 The HJB balanced form 
For closed loop balancing we first follow the idea of [18] which 
has been treated briefly in section 2.1. Consider the system (10) 

We assume the system is zero-state observable. First we define 
the following energy functions (see also section 2.1): 

Definition 4.1 The past and future energy function of a non- 
linear system are defined as 

respectively 

z(m) = O , z ( O )  = 20 

We assume that K - ( x 0 )  and K+(zo) are smooth and finite. From 
optimal control theory we know that K+ is the smooth non- 
negative solution to the Hamilton-Jacobi-Bellman equation (20) 
from section 3.2. K+ is minimized by U = - g ( z ) T q ( x ) .  

Theorem 4.2 K+ is the smooth non-negative solution to the fol- 
lowing Hamilton-Jawbi-Bellman equation: 

=(z)f(x) aK+ - i T ( z ) g ( z ) g ( x ) T v ( x )  + i h T ( z ) h ( x )  = 0 (26) 

with K+(O) = 0 andsatisfying f ( z ) - g ( z ) g ( z ) T v ( z )  is asymp- 
totically stable. Furthermore, K -  is the smooth non-negative so- 
lution to the following Hamilton-Jawbi-Bellman equation: 

E ( z ) f ( z )  + f ~ ( z ) g ( z ) g * ( z ) ~ ( z )  - f h ( z ) = h ( z )  = 0 (27) 

with K- (0 )  = 0 and satisfying -(f(z) 4- g ( x ) g ( z ) T v ( z ) )  is 
asymptotically stable. 

Remark 4.3 The existence of a smooth solution of (26) satisfy- 
ing the condition on asymptotic stability, is equivalent with the 
existence of K+. The same is valid for (27) and K - ,  see cf. [7]. 

Theorem 4.4 Assume (26) has a smooth proper solution K on 
W .  Then K ( z o )  > 0 for  xo E W ,  xo # 0 ,  if and only if 
j ( x ) - g ( z ) g ( z ) T F ( x )  is asymptotically stable on W .  Similarly, 
assume (27) has a smooth propersolution K on W ,  then K ( x 0 )  > 
0 for zo E W ,  zo # 0 ,  if and only if -( f ( x )  + g ( z ) g ( z ) T z ( z ) )  
is asymptotically stable on W .  

Proof Assume K > 0, then f ( x )  - g ( z ) g ( z ) T F ( x )  1s ‘ asymp- 
totically stable on W by Lemma 3.11. 
Now assume f(z) - g(x)g(z )T%(s)  is asymptotically stable on 
W .  By Theorem 4.2 we know that K = K+ on W ,  where K+ is 
the future energy function of system (23). 

Furthermore we know from optimal control theory that the min- 
imum is taken for U = - g ( z ) T w ( x ) .  Hence 

Now let xo # 0. If g ( x ) g ( z ) g ( x ) T v ( z )  + h ( x ) T h ( z )  = 0 for 
0 5 t < 00 then ~ ( t )  = 0 and h ( z ( t ) )  = 0, for all t ,  0 5 t < 00. 

But by the zero-state observability of system (23) this means that 
z ( t )  = 0 for all 0 5 t < 00 and this contradicts xo # 0. Hence 

The second part of the theorem can be proven by using the same 
type of arguments. 

Now we consider nonlinear systems of the form (23) with future 
and past energy function respectively Kf and K -  smooth func- 
tions as in definition 4.1, with the following assumptions: 

1. Kf and K -  are finite on some neighborhood Y of 0 

3. the system is zero-state observable on Y 

K+(zo) > 0, VZO E W ,  zo # 0. 

2. b ( 0 )  zK+ > 0 and s ( 0 )  > 0 

Similar to Lemma 3.7 and Theorem 3.8 we can bring K+ and K -  
into a special form: 

Lemma 4.5 There exists a coordinate transformation z = cp(5), 
cp(0) = 0,  such that K - ( z )  in the new coordinates 5 = cp-’(x) is 
of the form K-(cp(g)) = 3iT?. Furthermore we can write Kf(z) 
in the new coordinates i = cp-’(x) in the form K+(cp(S)) = 
fZTN(?)5 with N(0)  = w(O), where N ( S )  is a n x n symmet- 
ric matrix with entries which are smooth functions of 5 .  

Proof This follows the proof of Lemma 3.7. 

Theorem 4.6 Consider system (23) and assume there exists a 
neighborhood V of 0 where the number of distinct eigenvahes 
of N ( 5 )  is constant for 5 E V .  On a neighborhood U of zero 
there exists a coordinate transformation x = 7(z), ~ ( 0 )  = 0, such 
that K - ( z )  in the new coordinates z E W := y l ( U )  is of the 
following form: 
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(28) 
1 
2 

while in the new coordinates K +  is of the following form: 

k-(z) := K - ( r ( z ) )  = -zTz 

1 U l ( 4  

O ) (29) ( 0 ..* ( 2 )  

k+(z) := K+(r(z ) )  = -zT 
2 

where u1(z) 2 ... 2 un(z) are smooth functions of I, called the 
HJB singular value functions (HJB stands for Hamilton- Jambi- 
Bellman). 

Proof This follows the proof of Theorem 3.8. 

Remark 4.7 For linear systems the HJB singular value func- 
tions vi, i = l , . . , n  are constant and are equal to the squared 
similarity invariants of Theorem 2.1. 

Like in section 3.1 the form of the past and future energy function 
in (28) and (29) is not yet entirely the form we want. For that we 
need an additional coordinate transformation. We take as smooth 
transformation Ei = ( i ( ~ i )  := ui(O, ..,o, zi, 0, ..o)+zi,i = I ,  ..,n 
and hence Z = ( ( I )  := ( ( ~ ( z I )  . . . &(In)) O! 2 E W := ((W). 
Define R-(Z) := k-((-'(?)) and R+(.Z) := K+((-'(Z)). Then 
(28) and (29) become respectively: 

) Z (30) 
P l ( W  

( 0 -.. pn(zn)-' 
R-(z) = -ET 

2 

O )i (31) ( 0 ... & ( E )  

h ( Z )  
E+(?) = -ET 

2 

where for i = 1 ,.., n, pi(Ei) = ui(0 ,.., O,(r'(zi),O ,.., 0)) and 
Gi = pi(Zi)-'ui((-'(z)). It follows that R-(O,..,O,~i,O,..,O) = 

In terms of the past and future energy we can infer from ui((-' (E)) 
> ui+l((-'(Z)) that the state component Ei is more important 
than the state component Zi+1 on W. We call a nonlinear sys- 
tem HJB balanced if it has a past and future energy function 

E.Z?pi(Zi)-' and R+(O, ..,O, Z i , O ,  ..,O) = $ Z ; P ~ ( E ; )  for i = 1, .., n.  

over the input triple (zo, U(.), v(.)), which corresponds uniquely 
with an input pair ( 5 0 ,  U(.)), when the observations y ( . )  are given, 
see [3]. Wo(r0) is a real-valued function representing the initial 
costs, with Wo(0) = 0. Let i ( t )  E R" be a deterministic estimate 
of the state at  timet, t 2 0, given the observations y ( ~ ) ,  0 5 T 5 
t (i.e. i ( t )  is the endpoint of the state trajectory of an input pair 
( i o , Q ( . ) )  that is minimizing the energy functional (33) based on 
the observations). Let WO generate a non-degenerate estimate 
2(0), i.e. d e t ( w ( i ( 0 ) ) )  # 0, then for small t 2 0 and for z 
near i ( 0 )  we will have d e t ( s ( t ,  z)) # 0. Now the dynamics of 
the deterministic estimate i ( t )  is given by (see [3]): 

ji! = f(i) + g(i)u + (G(t, q-' (y(t) - h(i)) (34) 

where W(t,  z) is a smooth solution of the Mortensen equation: 

(35) 
g + h b ) Y ( t )  + g m  + 3%g(+(4Tq 
-ih(z)Th(z) = 0, 

W(0, .) = WO(.), and V is the smooth positive solution of the 
Hamilton-Jacobi-Bellman equation (26): 

E;(.,f(.> - )~(4s(+(.)=%(.) + 3hT(z)h(.) = 0 (36) 

V(0) = 0. Based on separation principles, this motivates to 
consider the nonlinear compensator U = -g(i)TG(i) together 
with (34). If system (32) is linear, then (34) is equal to the 
compensator (3) of section 2.1. In that case (=(t,z))-' is con- 
stant, i.e. is equal to the matrix S that is the stabilizing solution 
of equation (4) (the FARE). This results directly from (35), see 
[3]. For general nonlinear systems equation (35) does not have a 
solution such that s(t, z) is independent of the time t. Never- 
theless we observe that equation (27) is part of the equation (35). 
It follows that for y ( t )  z 0 for all -cm < t 5 0, W(t , z )  = K - ( z )  
is a smooth solution of (35). In this case we can obtain the HJB 
singular value functions from the solutions W and V of the equa- 
tions (35) and (36) as is done above for respectively K +  and K - ,  
and then the HJB singular value functions are a measure for the 
difficulties both to control and filter the corresponding state com- 
ponent. 

Like in the linear case, we can use HJB-balancing for model re- 
duction. The HJB singular value functions are a measure for the 
importance of a state component in terms of the past and future 
energy functions and, as we argued above, in a less strong sense 
they are a measure for the difficulties both to control and filter a 
state component. 

respectively of the form (30) &d (31). This means that we can 
bring system (23) in a HJB balanced form by a coordinate trans- 
formation of the form z = a(E) := -y((-l(z)) where 7 is as in 
Theorem 4.6. For a linear system this means that the system 
i! in the LQG balanced form, since then R-(Z) = iZTS-'Z and 
K+(r )  = iZTPZ with P = S = M as in Theorem 2.1. 

For linear systems HJB balancing is the same as LQG balancing. 
However, the formulation of LQG balancing for linear systems 
can not be extended easily to nonlinear systems. This is never- 
theless an interesting problem to consider. The usual stochastic 
formulation of the LQG problem seems not to be the right for- 
mulation of this problem for nonlinear systems. However, there 
exists a deterministic formulation of the LQG problem, which is 
equivalent to the stochastic formulation, and which has been ex- 
tended to nonlinear systems, see Hijab [3]. Consider the following 
system: 

i: = f(z) + g(s)u, ~(0) 10, = h ( s )  + v (32) 

where U is the noise that enters the system. We want to minimize 
the following energy functional: 

4.2 The relation with balancing of the co- 
prime representation 

In section 2.2 we discussed balancing of the coprime representa- 
tion of a linear system. We also gave the relation between the 
Graph Hankel singular values, ~ i ,  i = 1, .., n, and the similar- 
ity invariants pi, i = 1, .., n, which gives the relation between 
LQG-balancing and balancing of the normalized right coprime 
representation. For nonlinear systems we will find a similar rela- 
tion. 

Consider a system of the form (23) and assume the assumptions 1 
to 3 from section 4.1 are fulfilled. Now we consider the Hamilton- 
Jacobi-Bellman equations (26) and (27), which have as smooth 
solutions the future and past energy function K +  and K - .  Fur- 
thermore consider the equations (20) and (22) which have as so- 
lution the observability respectively controllability function, E ,  
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and L, of system (21), which is representing the normalized right 
coprime factorization of the original system (23). 

Theorem 4.8 The solutions of (2O)-and (22) are related to the 
solutions of (26) and (27) b y  K+ = Lo and K -  = z, - 1,. 
Proof Obviously (20) and (26) are the same equations and hence 
K+ = E , .  From (22) we obtain: 

q x )  ’3X f (z)  + f W ( z ) g ( z ) g ( z ) T q + ( z )  
-L& 2 ( x )s(49(4T%+) = 0 

If we subtract (20) from this, we obtain: 

%!&l(z)f(z) + f V ( z ) g ( z ) g ( z ) T W ( z )  
- ih ( z )Th(x )  = 0 

and hence K -  = L, - Lo. 

Corollary 4.9 L J z )  < L,(z) for  z # 0. 

To find the relation between the HJB singular value functions 
and the Graph singular value functions, we assume that the rep- 
resentation of the normalized right coprime factorization (21) of 
system (23) has the form such that the observability and control- 
lability function for x E U are of the following form: 

where the ?;(z)’s are the Graph singular value functions as de- 
fined in section 3.2. From Corollary 4.9 we obtain that for i = 
1, .., n, ?;(O, .., 0, z;, 0, .., 0) < 1. Furthermore we assume that for 
z E U, with U a neighborhood of 0, the transformation which is 
necessary to bring the system in the form of Theorem 4.6, is z = 
~ ( z ) ,  ~ ( 0 )  = 0, for z E H! := 7 ( U ) .  Hence K - ( z )  := K-(y-’(z))  
is of the form (28) and K - ( z )  := K+(y-’(z)) is of the form (29) 
where the u;(z)’s are the HJB singular value functions. 

Theorem 4.10 There ezists a neighborhood U of 0 such that b y  
the coordinate transformation = ~ ( z )  for all z E W = y(U): 

i = 1, .., n 5 ( Y 1 ( Z ) )  

1 - ?;(-p(z))’  v;(z) = 

Proof Since ?i(O, .., 0, I;, 0, .., 0) < 1, i = 1, .., n, and by continu- 
ity, there exists a neighborhood U of 0 such that ?,(E) < 1 for 
all x E U. By the forms of the observability and controllability 
functions we infer that K+ and K -  are of the following form: 

O 1. ( ... 

1 - Tn(.) O i. i 0 . ’ .  

?I ( X I  

K + ( z )  = -zT 
2 

?n(X) 

1 - ? l ( X )  

K - ( z )  = -zT 
2 

It follows that the coordinate transformation necessary to bring 
K -  and K+ in the form of respectively (28) and (29) is given 
by z; = y;(z) := (1 - ?,(z))iz,, i = l , . . ,n and z = y(z) = 
(n (z ) ,  . “(z)) for z E y ( U )  = W .  This proves the theorem. 

From this theorem it is clear that ? l ( ~ - l ( z ) )  2 . . . 2 ?,,(y-l(z)) 
is equivalent with u1(z) 2 . . . 2 un(z) .  Furthermore the form 
of the transformation z = ~ ( z )  in the proof of Theorem 4.10 is 
such that Zk = 0 is equivalent with zb=O and hence if we want 

to reduce the order of the original model based on these singu- 
lar value functions, HJB-balancing and balancing of the coprime 
representation for z E U both result in the same reduced order 
model. 

5 Conclusion 
We introduced a procedure to balance unstable nonlinear sys- 

tems. The method, called HJB balancing, is an extension of a 
method to balance unstable linear systems, since we considered 
the past and the future energy of the system. The procedure 
based on the past and future energy functions is in the linear 
case equivalent to LQG balancing, while for nonlinear systems 
in general this does not hold. Furthermore, we gave a relation 
between HJB balancing and balancing of the normalized right 
coprime representation of an unstabIe nonlinear system. 
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