

 University of Groningen

Visualization of Minkowski operations by computer graphics techniques
Roerdink, J.B.T.M.; Blaauwgeers, G.S.M.

Published in:
MATHEMATICAL MORPHOLOGY AND ITS APPLICATIONS TO IMAGE PROCESSING

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Roerdink, J. B. T. M., & Blaauwgeers, G. S. M. (1994). Visualization of Minkowski operations by computer
graphics techniques. In J. Serra, & P. Soille (Eds.), MATHEMATICAL MORPHOLOGY AND ITS
APPLICATIONS TO IMAGE PROCESSING (pp. 289-296). (COMPUTATIONAL IMAGING AND VISION;
Vol. 2). University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/d8b4101a-6119-4c55-b930-9d9f0d9394ae

Visualization of Minkowski Operations by computer graphics techniques �J.B.T.M. Roerdink & G.S.M. BlaauwgeersDept. of Mathematics and Computing Science, University of GroningenP.O. Box 800, 9700 AV Groningen, The NetherlandsTel. +31-50-3633931; Fax +31-50-3633800; Email: roe@cs.rug.nlAbstractWe consider the problem of visualizing 3D objects de�ned as a Minkowski addition or subtractionof elementary objects. It is shown that such visualizations can be obtained by using techniques fromcomputer graphics such as ray tracing and Constructive Solid Geometry. Applications of the method arefound in solid modelling and shape description.1 IntroductionThe problem of visualizing 3D objects de�ned as a Minkowski addition or subtraction of elementary objects| referred to as Minkowski objects below | is not a trivial one. Even when the elementary objects are verysimple, such as spheres, boxes, cylinders, etc., the composite objects can become very complicated higherorder surfaces with not even an explicit functional or parametric representation.To overcome these problems, we use here techniques from computer graphics to visualize these objects.The basis is the ray tracing technique, which is an established method in computer graphics to visualize3D objects by simulating the physical processes of ray propagation, re
ection and transmission [1,4]. Tovisualize composite objects, the ray tracing technique uses Constructive Solid Geometry (CSG) methods, inwhich it is possible to ray trace objects formed by elementary set Operations, such as union, intersectionand set di�erence (called CSG objects from now on) [5].Using this as a starting point, we establish a mapping between 3D Minkowski objects and objects de�nedin terms of CSG Operations, which can subsequently be visualized by the standard ray tracing technique. Inparticular, we use a basic set of elementary shapes, and derive a decomposition of a Minkowski sum of anynumber of objects chosen from the basic set, into CSG objects. Even for a small set of elementary shapes thenumber of decomposition rules can become very large, so we use a number of preprocessing steps to reducethis number. Various examples of 3D visualizations will be shown.The method we present here may be regarded as an extension of the sweep representations in solidmodelling [1,4]. A sweep is an object created by moving another object along a curve in space. Simpleexamples are translational sweeps de�ned by a 2D area swept along linear path normal to its plane, orgeneralized cylinders where the path is curved.Applications of the technique presented here are twofold: �rst, it may be used as an extension of the stand-ard CSG methods in computer graphics. Second, we mention the area of morphological image processing,where the basic image transforms | dilations and erosions | are based upon the Minkowski operations [3,6]. Visualization of the results of such operations on 3D images might be a useful research tool. Also innshape description and solid modeling the use of Minkowski operations has already proved to be fruitful, seee.g. Ghosh [2].�In: Mathematical Morphology and its Applications to Image Processing, J. Serra and P. Soille (eds.), Kluwer, 1994, pp.289-296. Postscript version obtainable at http://www.cs.rug.nl/~roe/1

22 PreliminariesIn this section we �rst present the basics of ray tracing and Constructive Solid Geometry, followed by thede�nition of Minkowski Operations.2.1 Ray tracingRay tracing is a technique for image synthesis: creating 2-D pictures of a 3-D world. The �rst step insimulating such an image will be a projection of the scene on the screen. We assume we only have one eyethrough which we look at the screen. The location of the eye in the 3-D world is referred to as the eyeposition. In front of the eye we place the screen, and behind it we build the scene from which we want togenerate an image. The color of a pixel on the screen is determined by all light rays | emitted by one ormore light sources | that strike that pixel and the average color of all these rays is assigned to it.Since many of the rays emitted from the light source(s) never hit the screen, one uses backward raytracing: for every pixel on the screen, we follow back the light ray from the eye through the given pixel, andsee where it �rst hits an object. The intersection point thus found in principle determines the color at thepixel. From this intersection point, a line (called a shadow ray) is traced towards every light source in thescene. When such a line intersects an object in front of the light, the point lies in the shadow of this object,unless the object is (partially) transparent, and the rays of that light source play no role in the color of thepixel. Otherwise the amount of light (of each color component) that is re
ected is calculated and averagedwith the colors of the rays coming from other light sources. The amount of light that is re
ected dependson the angle between the normal vector at the intersection point on the surface of the object, and the lineconnecting it with the light source. But this is not the only light that strikes the object. As a result ofre
ection it is possible that rays strike the object via an indirect path. This part must also be accountedfor. The standard way to achieve this, is by pretending that the eye is moved to the intersection point,and starting the whole process from there again. In this way we can implement the ray tracing techniquerecursively. For objects which are both transparent and re
ective, we also have to �nd the colors of thelight it transmits and re
ects: such light arrived along re
ection or transmission rays, whose directions aredetermined by the laws of (specular or di�use) re
ection and transmission (Snell's law). Finally we includean ambient term, to account for di�use light arriving via indirect paths.2.1.1 Ray/Quadric intersectionA general class of objects which are relatively simple to intersect with a ray are the quadrics: cylinders, cones,ellipsoids, paraboloids, hyperboloids, spheres, planes, etc. For reasons of e�ciency, such simple objects areoften given their own intersection routines.A general quadric is given by the equation(x y z 1)0BB@ A B C DB E F GC F H ID G I J 1CCA0BB@ xyz1 1CCA = 0 (1)This expression is equivalent to the equation F (x; y; z) = 0, withF (x; y; z) = Ax2 + 2Bxy + 2Cxz + 2Dx+ Ey2 + 2Fyz + 2Gy +Hz2 + 2Iz + J (2)We use the parametric ray representationR(t) = 0@ X0Y0Z0 1A+ t0@ RxRyRz 1A ; t > 0 (3)Substituting (3) into (1) and solving for t yields a quadratic formula at2 + bt + c = 0 with the following

3coe�cients a = AR2x + ER2y +HR2z + 2(BRxRy +CRxRz + FRyRz)b = 2(AX0Rx +B(X0Ry +RxY0) +C(X0Rz + RxZ0) +DRx+EY0Ry + F (Y0Rz + RyZ0) +GRy +HZ0RZ + IRz)c = AX20 +EY 20 +HZ20 + 2(BX0Y0 + CX0Z0 +DX0+FY0Z0 +GY0 + IZ0) + J (4)Solving for t we �nd t0;1 = �b�pb2 � 4ac2a (5)If a 6= 0 we have to check the discriminant (d = b2 � 4ac). If d < 0, no intersection takes place. Otherwisecalculate t0 and possibly t1, if needed. The smallest positive value of t is used to calculate the closestintersection point. If a = 0, then the solution is simplyt = �cb (6)When t has been computed, we have to check that it has a value greater than 0. If not, the point ofintersection lies behind our eye, and does not contribute to the image. If t has a value greater than 0 theintersection point ip is calculated by substituting t in equation (3).2.2 Constructive Solid GeometryIn order to compute the intersection point of a ray and an object, we need a mathematical description ofthe ray and the object. However, we generally do not have such a description of all the objects. To solvethis problem, a technique called constructive solid geometry (CSG) has been developed. In CSG, simpleprimitives (like polygons) are combined by means of set operators. A composite object can be representedas a binary tree where each node contains a set operation and two child nodes, which may also be compositesolids. The leaves of this tree are primitive objects such as quadrics or polygons. Evaluation of set operationsusually reduces to classi�cation whether a point p lies on the inside or outside of the composite object. Weadopt the convention that the eye is positioned outside every object. The rules for classi�cation are givenin the table below. operator left right compositeUnion IN IN ININ OUT INOUT IN INOUT OUT OUTIntersection IN IN ININ OUT OUTOUT IN OUTOUT OUT OUTDi�erence IN IN OUTIN OUT INOUT IN OUTOUT OUT OUT2.3 Minkowski operatorsThe classical Minkowski addition and subtraction for subsets X;A of Rn are given byX � A = [a2AXa; (7)X 	 A = = \a2AX�a; (8)

4where Xa = �a(X) = fx+ a : x 2 Xg;is the translate of X over the vector a 2 Rn, x+ y is the sum of x and y, and �x the re
ection of x. It canbe shown that X � A = fh 2 Rn : A_h * Xg; (9)where A_ = f�a : a 2 Ag is the re
ection of A and A * B (A `hits' B) is a general notation for A \B 6= ;.3 Visualization of 3D Minkowski objects3.1 TerminologyBefore describing the process of transforming 3D Minkowski objects into objects which are de�ned in termsof CSG operations and therefore can be visualized via standard ray tracing techniques, we shall present someterminology.In order to de�ne Minkowski operations, one must possess a basic set of primitive shapes, referred toas primary Minkowski primitives. We restrict ourselves here to a set consisting of the following elementarygeometric objects: point, xline, yline, zline, xdisc, ydisc, zdisc, sphere. Here an xline is a line segmentin the x-direction, and an xdisc is a disc with thickness zero in the plane through the origin with normalin the x-direction, etc. This type of primitives has the property of being (Minkowski-)irreducible, i.e. nodecomposition of a primary Minkowski primitive in a �nite number of shapes, di�erent from this primitive,exists such that applying Minkowski summation to these shapes will result in this primitive. All Minkowskiprimitives are solid objects.As with the ordinary boolean set operators union, intersection and di�erence, one can de�ne terms |referred to as Minkowski terms| consisting of multiple operands (primary Minkowski primitives) separatedby Minkowski operators (� or).Processing Minkowski terms may lead to new Minkowski objects, which can be regarded as elementaryfor further calculations, although they are (Minkowski-)reducible. These new Minkowski objects are basicintermediate results in the reduction process; decomposing them would complicate further reduction opera-tions quite a lot. We refer to this kind of Minkowski primitives as secondary Minkowski primitives. Examplesof these primitives are rectangles, blocks, cylinders, toroidal discs (discs of which the edge consists of theouter half of a torus, a bit like a discus) and a cyclohedron (the Minkowski sum of two perpendicular
atdiscs).Our goal is to decompose 3D Minkowski objects | de�ned as Minkowski terms | into elementary objects,representing the original shape by means of CSG, that can be visualized through ray tracing techniques.These objects, which can be considered elementary for the ray tracing technique, will be referred to asray tracing primitives. Examples of such ray tracing primitives are: blocks, spheres, cylinders, tori, andpolycircles.It should be mentioned that it is possible to de�ne 3DMinkowski objects that cannot be visualized throughstandard ray tracing techniques, simply because they constitute of complicated, higher-degree surfaces forwhich no intersectionroutines are provided. These surfaces will be considered "intractable". Take for examplethe Minkowski sum of three perpendicular
at circular discs, which results in a die-shaped object. Even if anequation for its surface can be found, it will most certainly be of a degree higher than seven, so ray/surfaceintersection can probably not be evaluated, using existing ray tracers which usually handle at most quarticsurfaces. This is for example the case with the ray tracer "POV-Ray" which we used to generate the picturesin this paper.3.2 Decomposition of Minkowski termsWhen both Minkowski plus and Minkowski minus operators are allowed in Minkowski terms, the reductionprocess can be very complicated. Even for our small set ofMinkowski primitives, the number of decompositionrules will then become enormous. Because Minkowski plus operations have, in comparison to Minkowskiminus operations, more desirable properties such as associativity, commutativity and distributivity, dealing

5
Figure 1: Visualization of theMinkowski sum of a circle and asphere, a torus. Figure 2: Visualization of theMinkowski sum of two perpendi-cular circles, a polycircle.with just Minkowski sums will be the least di�cult. In this paper only the decomposition of Minkowski sumswill be discussed in depth.Let us consider Minkowski sums of the formA1 � A2 � : : :�An (10)where each Aj is chosen from the set of primary Minkowski primitives. Such sums may be of a simple form,such as xline � yline, leading to a zrectangle, which is a rectangle with normal in the z-direction. TheMinkowski sum of a circle and a sphere leads to torus, which in fact is a quartic (fourth order surface), shownin Fig. 1. The Minkowski sum of two orthogonal circles leads to a somewhat unfamiliar object which we calla polycircle, which is also quartic, shown in Fig. 2. A derivation for the equation of this surface is given inthe appendix. Notice that a polycircle, being a quartic surface, is a ray tracing primitive.Now our goal is to decompose sums of the form (10) into a union of objects Bj, where each Bj is an objectwhich can be visualized by standard ray tracing techniques. The union of the Bj 's can then be handled byusing CSG Operations, as explained above. For this reason we refer to the Bj as ray tracing primitives.In order to do so, we must eliminate the Minkowski operations in the Minkowski term. We can do this byrecursively replacing every combinationA�B within a Minkowski sum by a union of primary and secondaryMinkowski primitives, a result we obtain by geometric analysis. This analysis has to be done by hand sincea computer does not have knowledge of shapes at a meta level, at least not with the kind of representationwe are using here. For example the Minkowski sum of a
at disc and line segment perpendicular to thatdisc results in a cylinder. A computer cannot come to this conclusion unless we supply this information.It is however not impossible to letting the computer �gure out some of the shapes that can arise during areduction of a Minkowski term, but this would mean that shape information would have to be included forevery Minkowski primitive, which would seriously complicate implementation of objects and the process ofdecomposing a Minkowski term. So the former alternative is the most workable.Thus, the purpose is to derive a list of replacement rules for every possible Minkowski sum of twoMinkowski primitives. With these rules and using useful properties of the �-operator like commutativity,associativity and distributivity over union, every Minkowski sum term can be reduced to a set of objects,which united, represent the whole Minkowski sum.Minkowski addition of two primary Minkowski primitives of the same type will yield a primitive of thesame type. For example, the Minkowski addition of two spheres results in a (bigger) sphere. This impliesthat the number of secondary Minkowski primitives is �nite. Because of the commutativity of Minkowskiaddition operands may be exchanged. Thus given a Minkowski term of arbitrary length, we may grouptogether operands of the same type and then, using the associativity of the Minkowski addition, reduceevery group to precisely one element of the same type as the elements in the group. Doing so, the numberof secondary Minkowski primitives can be at most the cardinality of the power set over the set of primary

6Minkowski primitives. In fact the set of secondary Minkowski primitives that can arise with the currentset of primary Minkowski primitives consists of thirteen objects: xrectangle, yrectangle, zrectangle, block,xcylinder, ycylinder, zcylinder, xdiscus, ydiscus, zdiscus, xcyclohedron, ycyclohedron, zcyclohedron.3.3 Representation of Minkowski primitivesIn order to understand the reduction formulas we mentioned above one must have some notion of therepresentation of the primary and secondary Minkowski primitives. They are represented in the followingway, starting with primary Minkowski primitives:point(x; y; z) : a point with coordinates (x; y; z).xline(x; y; z; lx) : a line starting at (x; y; z) and ending at (x+ lx; y; z).yline(x; y; z; lx) : a line starting at (x; y; z) and ending at (x; y + ly; z).zline(x; y; z; lz) : a line starting at (x; y; z) and ending at (x; y; z + lz).xdisk(rx) : a
at disc in the Y Z-plane with center at the origin and radius rx.ydisk(ry) : a
at disc in the XZ-plane with center at the origin and radius ry.zdisk(rz) : a
at disc in the XY -plane with center at the origin and radius rz.sphere(r) : a sphere with center at the origin and radius r.During the process of decomposition of Minkowski terms, all kinds of secondary Minkowski primitives canarise, which can be used in consecutive reductions. These secondary Minkowski primitives are representedin a similar way, that is:xrectangle(x; y; z; ly; lz) : a
at rectangle parallel to the Y Z-plane with lower left corner at(x; y; z) and upper right corner (x; y + ly; z + lz).yrectangle(x; y; z; lx; lz) : a
at rectangle parallel to the XZ-plane with lower left corner at(x; y; z) and upper right corner (x+ lx; y; z + lz).zrectangle(x; y; z; lx; ly) : a
at rectangle parallel to the XY -plane with lower left corner at(x; y; z) and upper right corner (x+ lx; y + ly; z).block(x; y; z; lx; ly; lz) : a rectangular block with lower left foremost corner (x; y; z) andupper right hindmost corner at (x+ lx; y + ly; z + lz).xcylinder(x; y; z; r; lx) : the cylinder with axis xline(x; y; z; lx) and radius r.ycylinder(x; y; z; r; ly) : the cylinder with axis yline(x; y; z; ly) and radius r.zcylinder(x; y; z; r; lz) : the cylinder with axis zline(x; y; z; lz) and radius r.xdiscus(x; y; z; rr; rd) : the object obtained by the Minkowski addition of a xdisc withradius rd and a sphere with radius rr, centered at (x; y; z).ydiscus(x; y; z; rr; rd) : the object obtained by the Minkowski addition of a ydisc withradius rd and a sphere with radius rr, centered at (x; y; z).zdiscus(x; y; z; rr; rd) : the object obtained by the Minkowski addition of a zdisc withradius rd and a sphere with radius rr, centered at (x; y; z).xcyclohedron(x; y; z; ry; rz) : the object obtained by the Minkowski addition of a ydisc withradius ry and a zdisc with radius rz, centered at (x; y; z).ycyclohedron(x; y; z; rx; rz) : the object obtained by the Minkowski addition of a xdisc withradius rx and a zdisc with radius rz, centered at (x; y; z).zcyclohedron(x; y; z; rx; ry) : the object obtained by the Minkowski addition of a xdisc withradius rx and a ydisc with radius ry, centered at (x; y; z).In Fig. 3 and Fig. 4 a discus and a cyclohedron are depicted.

7
Figure 3: Visualization of theMinkowski sum of a
at disc anda sphere, (a discus). Figure 4: Visualization of theMinkowski sum of two perpendic-ular
at discs, (a cyclohedron).3.4 Reduction to CSG objectsThere are a total of 21 primary and secondary Minkowski primitives. This means that there are 21 x 21 =441 di�erent combinations possible for the Minkowski addition. Because of commutativity this number canimmediately be reduced to 21 + (441 - 21)/2 = 231 combinations. This still is an awful lot. So we shall tryto decrease this number.One of the �rst things we notice is that several combinations may lead to the same result. For example,xcylinder � ycylinder= xdisc � xline � ydisc � yline= xline � yline � xdisc � ydisc= zrectangle � zcyclohedronThis phenomenon arises in combinations where at least one of the operands is a secondary Minkowskiprimitive. To exclude this kind of non-uniqueness, sorting the primary Minkowski primitives in a Minkowskiterm of any length in a speci�c order before carrying out the reduction process does the trick. For examplethe following order is very suitable: point, xline, yline, zline, xdisc, ydisc, zdisc, sphere. Thismethod has another advantage, namely that operands of the same type are grouped together and reductionof a Minkowski addition of primary primitives of the same type is quite simple. Doing so we end up with atmost eight di�erent primitives in the term to be reduced. Lots of combinations will be excluded this way,reducing their number by a factor of more than two.Next, using distributivity, we can recursively reduce left-to-right the reordered Minkowski term. Yet, thisway of reducing terms appears not to be the most e�cient. First of all redundant sets may arise in the unionof ray tracing primitives. For example consider,yline � zline � xdisc � ydisc 7�!xrectangle � xdisc � ydisc 7�!(4 xdiscs [2 xrectangles) � ydisc 7�!4 zcyclohedra [4 ycylinders [2 blocksThe result consists of 4 zcyclohedra, 4 ycylinders and 2 blocks, located at a di�erent positions of course, seeFig. 5. The result nevertheless could be composed with 4 zcyclohedra, 2 ycylinders and 2 blocks. So 4 - 2 =2 super
uous ycylinders are being created using the method described above.Another drawback of this method is that intermediate results can arise consisting of a union of severalprimitives, so that in a successive Minkowski addition the primitive at the right has to be distributed overthis union of primitives. This causes a whole new series of Minkowski additions to be calculated, from which

8the results must be united afterwards. This way of reducing Minkowski sums would thus be attended witha lot of overhead.To overcome these di�culties we use a divide-and-conquer strategy. First we split up the set of primaryMinkowski primitives into two groups. In the �rst group we put the line primitives plus the point primitive. Inthe second group we put the disc primitives and the sphere primitive. After reordering the initial Minkowskiterm so primitives of the same type are put together and then reduced easily, we divide the resultingprimitives over the two groups and make reductions for both groups separately. The reason for this is thatreduction of a group results in at most one primitive (none, if the group is contains no primitives at all).The last step is then to reduce the outcome of the reductions of both groups.Using this technique of regrouping, we have cut down the number of reduction formulas to 114, avoidingredundant sets and much overhead in the reduction process. So again we reduced the number of necessaryformulas with 50%.3.5 Reduction formulasMinkowski terms are being reduced using a list of reduction formulas we have to determine by hand. Considerfor example the following Minkowski sum:point(a0,b0,c0) � ydisc(a1,b1,c1,r1) � sphere(a2,b2,c2,r2)� xline(a3,b3,c3,l3) � zline(a4,b4,c4,l4)As mentioned before points and lines are put in a separate group as are discs and spheres. For the groupof points and lines we conform to the following reduction order: point, xline, yline, zline. So �rst wereduce point(x1,y1,z1) and xline(a3,b3,c3,l3). Next we perform a reduction of the previous result incombination with zline(a4,b4,c4,l4). To carry out these reductions the following reduction formulas arerequired:point (x1; y1; z1) � xline (x2; y2; z2; l) 7�! xline (x1+ x2; y1 + y2; z1 + z2; l)xline (x1; y1; z1; lx) � yline (x2; y2; z2; ly) 7�! zrectangle (x1+ x2; y1 + y2; z1 + z2; lx; ly)For the group of discs and spheres we conform to following reduction order: xdisc, ydisc, zdisc,sphere. In this example however the reduction order is of no importance, since only one reduction has tobe performed, namely that of ydisc(a1,b1,c1,r1) and \vbsphere(a2,b2,c2,r2)|, demanding the followingreduction formula:ydisc (x1; y1; z1; ry) � sphere (x2; y2; z2; r) 7�! ydiscus (x1+ x2; y1 + y2; z1 + z2; r; ry)Next we have to reduce the results of both groups. This is the most involved part of the reductionprocess. We have to reduce a yrectangle and a ydiscus, which leads to an object that can be viewed as aunion of several secondary Minkowski primitives, to be obtained by using the following reduction formula:yrectangle (x1; y1; z1; lx; lz) � ydiscus (x2; y2; z2; rr; rd) 7�!ydiscus (x1+ x2; y1 + y2; z1 + z2; rr; rd) [ydiscus (x1+ x2 + lx; y1 + y2; z1 + z2; rr; rd) [ydiscus (x1+ x2; y1 + y2; z1 + z2 + lz; rr; rd) [ydiscus (x1+ x2 + lx; y1 + y2; z1 + z2 + lz; rr; rd) [xcylinder(x1+ x2; y1 + y2; z1 + z2� rd; rr; lx) [xcylinder(x1+ x2; y1 + y2; z1 + z2 + lz + rd; rr; lx) [zcylinder(x1+ x2� rd; y1 + y2; z1 + z2; rr; lz) [zcylinder(x1+ x2 + lx+ rd; y1 + y2; z1 + z2; rr; lz) [block(x1 + x2� rd; y1 + y2; z1 + z2; lx+ 2 � rd; 2 � rr; lz) [block(x1 + x2; y1 + y2; z1 + z2� rd; lx; 2 � rr; lz + 2 � rd)

9A convenient way of illustrating this formula is by drawing a sketch in outline of the object we get asa result of a Minkowski sum. Primitives that lie completely inside a resulting object are excluded. As anexample we demonstrate in Fig. 5 a sketch of the Minkowski term we discussed above.The last step is to translate the acquired list of Minkowski primitives into correct input code for a speci�cray tracer, with which these primitives can be visualized. After that we can view the result of the reducedMinkowski sum, using the obtained code as input for ray tracing.
Figure 5: Sketch in outline of a Minkowski sum of a point, a xline, a yline,a ydisc and a sphere, from which the various primitives can be derived.3.6 OptimizationsUp to this point we need 114 reduction formulas to cover the decomposition of all Minkowski sums wecan possibly make, given the present set of primary Minkowski primitives. Although we have establisheda diminution of more than half the number of reduction formulas so far, we still have to cope with a largenumber of them. Reductions may produce several Minkowski primitives, that all have to be provided for inthe eventual implementation. So we are talking about hundreds of programming rules here. It is obviousthat the more we can curtail this number the more concise (and faster) the implementation will be. So letus investigate possibilities to achieve this.The �rst optimization we could make is to postpone reductions involving point primitives. Since Min-kowski addition with points comes down to shift operations we e�ectuate these not until the �nal stepin the process of decomposition: the translation of the Minkowski primitives into ray tracer primitives.This modi�cation bears several advantages. First of all, the number of required formulas is lessened by 21(the total number of Minkowski primitives). Secondly, most ray tracers o�er the possibility of translatingcompounded objects, which makes the implementation of the shift operation pretty simple: just adding therequired translation statement satis�es. Thirdly, many occurrences of "x1 + x2" in the reduction formulascan be left out. As a result of this, the primary Minkowski primitives xline, yline and zline will alwayshave the origin as a starting point in appearances in the optimized set of reduction formulas, so that infact they are super
uous. This gives rise to the next optimization step: omission of the coordinates of thestarting point in the representation of the line primitives.So far the right-hand side of the reduction formulas could contain Minkowski primitives that do notbelong to the set of ray tracer primitives: disci and cyclohedra. These objects should be regarded as solid,convex shapes. In order to produce ray tracer primitives for them, the following additional reductions haveto be performed:

10xcyclohedron (x; y; z; ry; rz) 7�! xpolycircle (x; y; z; ry; rz) [ycylinder (x; y� rz; z; ry; 2 � rz) [zcylinder (x; y; z� ry; rz; 2 � ry)ycyclohedron (x; y; z; rx; rz) 7�! ypolycircle (x; y; z; rx; rz) [xcylinder (x� rz; y; z; rx; 2 � rz) [zcylinder (x; y; z� rx; rz; 2 � rx)zcyclohedron (x; y; z; rx; ry) 7�! zpolycircle (x; y; z; rx; ry) [xcylinder (x� ry; y; z; rx; 2 � ry) [ycylinder (x; y� rx; z; ry; 2 � rx)xdiscus (x; y; z; rr; rs) 7�! xtorus (x; y; z; rr; rs) [xcylinder (x� rr; y; z; rs; 2 � rr)ydiscus (x; y; z; rr; rs) 7�! ytorus (x; y; z; rr; rs) [ycylinder (x; y� rr; z; rs; 2 � rr)zdiscus (x; y; z; rr; rs) 7�! ztorus (x; y; z; rr; rs) [zcylinder (x; y; z� rr; rs; 2 � rr)A third optimization is to insert unions of ray tracer primitives instead of disci and cyclohedra. This waywe are able to prevent the generation of redundant cylinders. Consider for example the Minkowski additionof a xline and a xdiscus, resulting in the union of two parallel disci and a xcylinder in between. Whenthe two disci are converted to ray tracer primitives, each of them will become the union of a torus anda xcylinder. Both newly created xcylinders share the same longitudinal axis and the cylindrical spacein between lies completely interior to the embracing xcylinder we already had. It is preferable to replacethose two xcylinders by a longer version that contains them both plus the space in between. This willreduce the number of cylinders to be traced by the ray tracer (time saving).Finally we present a fourth adaptation which will reduce the number of reduction formulas drastically.Many ray tracer primitives exist in three variants (x, y, and z), that di�er only in orientation. Reductionformulas involving primitives of a certain variant show much resemblance with the reduction formulas in-volving the other two remaining variants. For all three variants the same sort of primitives are produced,just di�ering from each other in orientation. We can exploit this by transforming all akin reduction formulasto one particular variant, applying an inverse transformation to the set of produced ray tracer primitives toget the right rotational forms. This entails primitives to be rotated over right angles, which will not causeproblems as the set of all tractable Minkowski primitives is closed under right angle rotations. What weneed at thisp[oint is the following theorem which is given without proof.Theorem 1 (Invariance of Minkowski addition under linear transformations) For every linear trans-formation R of IR3 the following property holds:A �B = R�1(R(A) �R(B)) (11)This property is most meaningful when applied to the reduction of the results of both groups of primitives(the �rst group being the one of all "straight" primitives and the second the one of all "curved" ones). Weselected the x-variant as the standard case.The purpose of rotating is to obtain just one basic reduction formula instead of three we had tillnow. When the operands of a Minkowski are turned such that one of them is always of the x-type, theother one can take on all of the three variants. So which of the groups is the most eligible for the elim-ination of rotated versions? Well, the group with the group with straight primitives (lines, rectanglesand blocks) will be reduced from 7 to 3. The group of curved primitives (circular discs, disci, cyclo-hedra and spheres) on the other hand will be reduced from 10 to 4, so this one is the most appropriate(4/10 < 3/7 !). An attendant advantage with the usage of this group for the elimination of rotation ana-logies is that it makes no di�erence in which direction a primitive is rotated: turned over right angles,

11irrespective of the direction, the same object is obtained. So just one direction needs to be considered, redu-cing the number of required rotation formulas by half. One associated e�ect is that this approach may causethe reference location of lines, rectangles and blocks to be altered as a result of rotating operations. Insteadof the origin another point, of which one of its coordinates is negative, may be the new reference location.This is caused by the fact that these objects are not rotated about their centers. One way of solving thisproblem could be to make the reference location of these objects their center. But a major disadvantageof this approach would be that we would have to adjust many reduction formulas, causing them to be lessclear. Besides that we would be obliged to make calculations with half lengths, which can be a burden. Abetter solution would be to simply perform a shift operation when this problem appears before executingthe reduction of the Minkowski addition. After the reduction the acquired ray tracer primitives must beshifted back over the same distance (no more then one coordinate can be negative !). Here we make use ofthe translation invariance property of Minkowski addition. Eliminating rotation analogies from the groupof curved primitives, our list of reduction formulas may contain only reductions on the primitives xdisc,xdiscus, xcyclohedron and sphere when any of these type of primitives is involved.Finally one small optimization remains. Sometimes it is possible to apply elimination of rotation analo-gies to the set of "straight" primitives. This is the case if the necessary rotation leaves the "curved" primitiveunchanged, for example in reductions of Minkowski additions with spheres. This could also be the case incombinations with disci and cyclohedra, but it appears that in this case rotated versions will alreadyhave been eliminated in the elimination process described before. So only in combinations with spheres it isrequired to reduce rotated versions of straight primitives. So another elimination of four reduction formulasis gained. Applying all optimizations described so far, we obtain a list of just 44 reduction formulas.The rotation of Minkowski primitives requires extra transformations to be carried out, for which we haveto contrive formulas like:block (0; 0; 0; lx; ly; lz) 7�!y�axis+�=2 block (0; 0;�lx; lz; ly; 0)For all lines, rectangles, blocks, discs, disci and cyclohedra rotation formulas about both the y-axis and thez-axis must be derived. After reducing a Minkowski addition with a rotated primitive, the obtained raytracer primitives are to be rotated back, requiring formulas like:block (x; y; z; lx; ly; lz) 7�!y�axis��=2 block (�z � lz; y; x; lz; ly; lx)These kind of rotation formulas must are needed for the following ray tracer primitives: all rectangles, block,xdisc, xtorus, all cylinders and sphere (because its center need not be the origin) about the y-axis as well asthe z-axis.3.7 Minkowski SubtractionMinkowski subtraction lacks, in contrast with Minkowski addition, some very useful properties like asso-ciativity, commutativity and certain forms of distributivity. This make Minkowski subtraction a lot moredi�cult to implement, because conjuring with parentheses, permutations and distributions is not allowed.On top of that we have that Minkowski subtraction leads to manymore secondary Minkowski primitives thanis the case when just Minkowski sums are allowed. For all combinations of Minkowski primitives reductionformulas must be derived. When both Minkowski addition and subtraction are allowed, it is not even certainthat the number of secondary primitives is �nite in all cases, let alone the number of reduction formulas thatwould be required to cover all combinations. If no restriction are being made concerning the de�nition ofMinkowski terms, then the decomposition will hardly be feasible.Another problem is that many of the secondary Minkowski primitives can become so complex that thecorresponding ray tracer primitives won't be tractable (read: traceable). So the use of Minkowski subtractionin Minkowski terms will only be meaningful in a limited number of cases.

12

Figure 6: Legs and blade of the table are modelled by Minkowski sums.3.8 ImplementationTo implement the method a preprocessor routine was developed which takes a scene description as input. Thisdescription contains: positions of light sources and objects; descriptions of the composite objects in termsof unions, intersections, or Minkowski sums of elementary objects; and also, properties of the elementaryobjects (re
ection and transmission coe�cients, smoothness parameters). Also some texture may be appliedto the surface of the objects to give more shape clues.Output of the preprocessor is a �le in which the Minkowski Operations have been replaced by a unionof CSG objects, using the reduction process sketched above. This �le is then itself used as input �le for anordinary ray tracer.As an example Fig. 6 shows a scene of table on a
oor where the legs of the table have been modelledby Minkowski sums. The legs are described by a Minkowski sum which appears in the description �le in thefollowing form: $ xline(5) <+> zline(5) <+> yline(100) <+> ydisc(2) $.This is in fact the Minkowski addition of a oblong block and a
at, horizontal disc. The table-top is de�nedby the following Minkowski sum:$ ydisk(60) <+> sphere(5) <+> point(120 105 100) $,resulting in a thin cylinder with a round edge, translated over a vector (120; 105; 100). The $-signs delimita Minkowski sum in the input �le. The symbol <+> represents the �-operator. Forall objects the originis their reference location and in between the parentheses the accessory measurement is denoted. Duringpreprocessing these Minkowski de�nitions are translated into proper ray tracer code.Preprocessors for the ray tracers "DKBTrace v. 2.12" and POV-Ray v. 1.0 were developed. The picturesin this paper have been ray traced with "POV-Ray v. 1.0", an excellent ray tracer which o�ers many advancedfeatures.

134 SummaryThough ray tracing is an ideal technique for the calculation of the well-known boolean set operations union,intersection and di�erence, the computation of Minkowski set operations using ray tracing techniques is nota trivial matter.In this article we outlined a method of decomposing Minkowski set operations to sets of elementaryobjects, that can be visualized through ray tracing techniques, representing their objective by means ofConstructive Solid Geometry. To bring about the decomposition of Minkowski terms we contrived a seriesof reduction formulas, endeavouring to keep their number as low as possible and keeping the result of thevarious reductions compact.It appeared that the decomposition of Minkowski sums is quite feasible, because for Minkowski addi-tion many pleasant properties hold, like commutativity, associativity, distributivity over union, translationinvariance and invariance under linear transformations, thus keeping the number of reduction formulas low.To implement the method a preprocessor routine was developed which takes a scene description as inputand delivers an output �le in which the Minkowski Operations have been replaced by a union of CSG objects.This �le is then itself used as input �le for an ordinary ray tracer.Some remarks about extensions of this method are in order. First, when the use of Minkowski subtrac-tion is permitted in Minkowski terms also, then the decomposition of these terms is a lot more complicated,requiring a huge number of reduction formulas and yielding a much larger variety of primitive ray tracerobjects, whether tractable or not. If no conditions are prescribed concerning the form Minkowski subtrac-tions may adopt in Minkowski terms, then implementing the decomposition process will be too laboriousand practically impossible. Besides that the results can only partially be visualized by means of ray tracing.Secondly, one may wonder to hat extent we can adapt this method in order to handle Minkowski sums ofarbitrary objects. So far we have chosen to consider only a well-de�ned class of primitive objects, the Min-kowski sums of which can be decomposed into ray tracer objects. In fact what we would need for arbitraryobjects is a direct method to derive the intersection equations of a Minkowski sum from the equations of theindividual objects. Perhaps similar methods used for sweep representations can be adapted to our situation[4Ch.3]. A minimum requirement still is that the opearnds of the Minkowski sum themselves are describedin terms of an explicit mathematical equation.5 References[1] Foley, J. D., Dam, A. V. and Feiner, S. K., Computer Graphics : Principles and Practice. Reading, MA,Addison Wesley, 1990.[2] Ghosh, P. K., \A mathematical model for shape description using Minkowski operators," Comp. Vis.Graph. Im. Proc., 44, pp. 239{269, 1988.[3] Giardina, C. R. and Dougherty, E. R., Morphological Methods in Image and Signal Processing. Engle-wood Cli�s, NJ, Prentice-Hall, 1988.[4] Glassner, A. S., Ed., An Introduction to Ray Tracing: Academic Press, New York, 1989.[5] Roth, S., \Ray casting for modeling solids," Comp. Graph. Im. Proc., 18, pp. 109{144, 1982.[6] Serra, J., Image Analysis and Mathematical Morphology. Academic Press, New York, 1982.

14AppendixDerivation of the surface equation of a XPOLYCIRCLE :(u,v,0)(x,y,z)XY Z ; rz; ryFigure 7: Sketch of two perpendicular circles.Consider the Minkowski sum of a circle with radius rz in the X � Y -plane and a circle with radius ryin the X � Z-plane. To compute this sum we move the origin of the second circle to each point (u; v; 0) ofthe �rst circle. Let a typical point of the surface so generated be denoted by (x; y; z), see Fig. 7. Then thefollowing relations hold: u2 + v2 = r2z(x� u)2 + (y � v)2 + z2 = r2yy = vEliminating v and rewriting the second equation this becomesu2 = r2z � y22xu = x2 � y2 + z2 + r2z � r2yNow square the second equation and eliminate u by using the �rst one. Then there results the equation4x2(r2z � y2) = (x2 � y2 + z2 + r2z � r2y)2; (12)which in standard form of a quartic becomesx4 + y4 + z4 + 2x2y2 + 2x2z2 � 2y2z2 + �2(r2y + r2z)x2 + 2(r2y � r2z)y2 � 2(r2y � r2z)z2 + (r2y � r2z)2 = 0:

