

 University of Groningen

NQTHM proving sequential programs
Hesselink, Wim H.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1994). NQTHM proving sequential programs. In EPRINTS-BOOK-TITLE University of
Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/20357b4d-a335-4927-8df1-19c9fbe56596

NQTHM proving sequential programsWim H. Hesselink1 (whh148), September 26, 1996Dept. of Mathematics and Computing ScienceRijksuniversiteit GroningenPostbox 800, 9700 AV GroningenThe NetherlandsAbstract. This is a presentation of the application of the theorem prover NQTHM of Boyerand Moore to correctness proofs of imperative programs in the style of programming method-ology. Predicates and programs are represented syntactically. The interpretation is based onNQTHM's interpreter eval$. A library is constructed for the interpretation and proofs of while{programs, possibly with array modi�cation. Linear search and a regrouping algorithm for arraysare provided as examples.1 IntroductionThe purpose of this paper is to show how the theorem prover NQTHM of Boyer and Moore,cf. [2], can be used to certify correctness proofs of sequential programs, as developed accordingto the guidelines of programming methodology, cf. [4, 9, 12].The sequential programming language used is as simple as possible. It only contains assign-ment, conditional choice, while{repetition, and sequential composition. It has no nondetermin-istic constructs. Its expression level, however, contains all NQTHM expressions and is thereforevery powerful. We have omitted variable declarations and type restrictions, since the veri�ca-tions associated can be delegated to compilers. We use the expression level to deal with arrays.So we do not provide separate array primitives at the command level.One of the key concepts in programming methodology is partial correctness of a command swith respect to precondition p and postcondition q. This means that, if the initial state satis�es pand command s terminates, the �nal state satis�es q. Such a speci�cation is called a Hoare tripleand is usually written fpg s fqg . Since the theorem prover NQTHM uses the syntax of Lisp,we shall use the notation (hoare p s q) instead. Here, the predicates p and q are argumentsof the function hoare. Since NQTHM does not allow higher order functions, the predicates andcommands are represented syntactically, i.e., by explicit value terms in the NQTHM logic. Theseterms are interpreted by means of NQTHM's interpreter eval$. The programming language isde�ned by means of an operational semantics. The rules of the so-called axiomatic semantics areproved mechanically. They include both partial and total correctness.In this way an NQTHM library is constructed that can be used for correctness proofs ofmany while{programs. The library and its use heavily depend on the way NQTHM treats andinterprets explicit value terms. Part of this paper therefore is a kind of tutorial for explicit valueterms and their interpretation. Other aspects of NQTHM will be treated more casually. Wemay occasionally simplify the truth about NQTHM slightly. The real sources for NQTHM arethe handbook [2] and the excerpts in [3].The library �le can be obtained from ftp.cs.rug.nl, see Section 10.1.1 The choice for NQTHMProgram derivation often requires the development of small special-purpose mathematical the-ories. It follows that a mechanical program prover must be powerful enough to deal with such1email: wim@cs.rug.nl 1

theories and hence must contain a general-purpose theorem prover. General purpose theoremprovers have been constructed in various avors, so there is no need to construct a new one. Thechoice of a theorem prover is diÆcult. There are various criteria and it is hard to get unbiasedassessments of the provers. See [14]. Let us mention the following aspects:1. The language of the prover, its exibility and its expressive power.2. Theorem-proving capabilities: available decision procedures and heuristics, execution speedin case no user interaction is needed.3. Certi�cation: what kind of correctness certi�cate is created? Is the certi�cate easy tointerpret? Is it possible to create false certi�cates?4. Interactivity: what means are available to guide the prover to its goal? How easy is it tointerpret the output of the prover when it does not reach the goal?5. Availability, stability, trustworthiness, support, etc . . .In our opinion, the theorem prover NQTHM scores high on the points 2, 3, and 5. Its scoreon point 1 is disputed. It is argued that NQTHM's assertion language has a rigid syntax, isweakly typed, and is not very expressive. NQTHM is capable, however, of proving theoremsabout the \interpretation of quotations of terms". This is a powerful mechanism that can beused to construct bounded or unbounded quanti�cations.With respect to point 4, NQTHM must be guided by somewhat implicit means, e.g., theorder of the hypotheses of a lemma inuences the applicability of the lemma. This is the pricefor NQTHM's heuristic power: it uses the hypotheses to �nd adequate instantiations. NQTHMcan be guided by means of a hint to use or not to use speci�ed facts known to it. NQTHM missestactics and tacticals to specify a complete proof of a lemma, such as are available in, e.g., HOL,cf. [7].We regard NQTHM's output in case of failure as quite informative, but it is importantto stress that the user must understand NQTHM's language to interpret this output and tounderstand how this output has been inuenced by the input. We regard it therefore as uselessto provide a more exible input language by constructing a preprocessor for NQTHM (even incombination with a postprocessor).In conclusion, we have chosen for NQTHM because of its strong theorem proving capabilitiesand in spite of a certain lack of elegance.1.2 Ways to use a prover to reason about programsAs indicated above, we have chosen to use an existing reliable and powerful theorem prover asa starting point. There are many ways of adapting an existing tool to construct a proof checkerfor a given language, see [17]. One approach is to use the existing tool as a subroutine to anewly constructed proof checker. This approach is used in the TLA [13] proof checker where theLarch Prover (LP) [6] is used as a back-end theorem prover [5]. It is also possible to encapsulatethe prover by providing a special purpose interface, i.e. a parser/unparser which translates theprogramming logic into the logic of the prover and vice versa. This is the way the durationcalculus proof assistent of [17] is built on top of the Prototype Veri�cation System (PVS) of [16].It is also possible to express the semantics of the programming language directly in the languageof the prover, as is done for instance by Hooman [11], who also uses the theorem prover PVS.Other projects have used HOL in the same way, eg. [8, 1].We have chosen not to hide or encapsulate the prover. There are two reasons. Firstly, theuser must be able to guide the prover. In our view, this requires the user to have knowledge andexperience with the prover and its language. We expect that an encapsulation could work nicelyfor simple problems, but become a hindrance when the proof is harder.2

A second argument against hiding is that we expect the proof system to yield a certi�cateof validity. If the prover is accepted as sound, an input �le that leads to a complete proof maybe regarded as a certi�cate,{ at least if the proof obligations are adequate and complete, andthe axioms introduced are valid. When the prover is encapsulated in a new tool, however, thesoundness of the combination is questionable again.We have therefore chosen to work directly with the prover. The question then comes up howto represent programs and speci�cations of programs. As mentioned above, Hooman [11] uses asemantic encoding. For example, on p. 30, he encodesr:= r - y ; z:= z + 1as the functionseq(assign(r, LAMBDA s: val(s)(r) - val(s)(y)),assign(z, LAMBDA s: val(s)(z) + 1)) .In [1], almost the same representation is used, but function val is not needed.Of course, such an encoding can be generated mechanically by some preprocessor, but thenthe soundness of the preprocessor is a new proof obligation. We therefore prefer to use a syntacticencoding of the program. Below we propose an imperative programming language in which theabove fragment is written as'((put r (difference r y))(put z (plus z 1))) .This is much closer to an actual programming language. In particular, the state variable s, thefunctions val and seq, and the lambda abstraction have been removed. In a simple program,the semantic overhead may be acceptable, but in larger programs it can soon be unmanageable.In [10], we had a program of 32 elementary commands. We therefore chose for a syntacticrepresentation of the program. Yet we used a semantic representation of the speci�cation. Infact, the syntactic layer was added in the last stages of the project since we regarded an earliersemantic description of the program as unsatisfactory. The mixture of syntax and semantics inthe proof obligations of [10] is not quite elegant.In the present paper it is our purpose to develop proof methods that follow as close as possiblethe well established ways of programming methodology. These ways consist of syntactic manip-ulations of predicates, but at some level a translation from syntax to semantics is necessary. Inorder to treat interesting programs and speci�cations we need syntactic representations of allfunctions and operators that are being used. It is cumbersome and error{prone to use ad{hocsyntactic representations. Therefore, it is important that the theorem prover itself has the possi-bility for syntactic treatment of terms with an associated semantic interpretation. The theoremprover NQTHM o�ers this facility in its function eval$. This function interprets quotations ofterms with respect to a given list that associates values to variables that occur in the terms.The mixture of terms and quotations of terms has some similarity with aspects of higher orderfunctions. In fact, we also use the syntactic level for the introduction of universal quanti�cation.1.3 Working with NQTHMIn this subsection we briey sketch how to work with NQTHM. We refer to the Handbook [2]for more information.The interaction with NQTHM is a dialogue in which the user submits de�nitions and lemmasto the prover and the prover ideally answers by accepting the de�nitions and proving the lemmas.In this way a data base of known facts (rewrite rules) is built. In practice the user often submits alemma the prover cannot prove (often because it is not valid). In that case, the user must try anddiagnose the failure by inspecting NQTHM's output. It may be helpful to submit an auxiliarylemma �rst, or to instruct NQTHM that some de�nition must (or must not) be unfolded.3

NQTHM is deterministic and it only backtracks when it starts a proof by induction. There-fore the search path of NQTHM is very important. This path can be inuenced, implicitly orexplicitly, by many decisions of the user. For example, as mentioned above, the order of thehypotheses of a lemma may inuence the way the lemma can be used as a rewrite rule later. Wegive an example of this in the discussion of Lemma (8) in Section 5.The library we have created consists of a number of de�nitions and lemmas that NQTHMcan prove without user intervention. This leads to a data base, which can be used as a startingpoint to prove the correctness of while{programs. A second �le consists of correctness proofsof three simple while{programs. Here again no user interaction is needed. If the reader wantsto experiment, they can slightly modify the programs or the proofs and see where and how theprover may fail.1.4 Overview of the paperSection 2 describes some aspects of NQTHM in relation to the concept of state for the imperativeprograms. In Section 3, we describe the list concepts of NQTHM and the interpretation ofquotations of terms. In Section 4, we introduce the programming language and the weakestpreconditions for straight-line programs. Hoare triples for the speci�cation of commands areintroduced in Section 5. Termination and total correctness of commands is treated in Section 6.In Section 7, we give an NQTHM correctness proof of a version of linear search. The primitivesfor arrays and array modi�cation are described in Section 8. Section 9 contains a correctnessproof for a nontrivial array-modifying algorithm. Finally, Section 10 contains a short descriptionof the NQTHM library �les which have been constructed and which are available for inspection.The appendix contains the complete �le for the proof of the array-modifying program.1.5 NQTHM notationMany proofs published by Boyer, Moore, and their associates (eg. [15]) rephrase de�nitionsand lemmas into more traditional notation to make it more broadly accessible. Since we wantto explain how NQTHM can be used to verify proofs, we cannot do so. Actually, it is ourexperience, eg. while reading [15] with a group of non{users of NQTHM, that rendering intomore traditional notation frequently raises questions that can only be answered by discussion ofthe NQTHM notation. Finally, this paper relies on the interpretation of quotations of terms forwhich a more traditional notation could be utterly confusing.2 Representation and modi�cation of the stateFirst, very briey, some aspects of NQTHM's language and logic. NQTHM's language is a dialectof pure LISP. In particular, all operators are pre�x functions. The application of a function fn ontwo arguments x and y is denoted (fn x y). Function cons is the operator for pair formation.The functions car and cdr yield the �rst and second component of a pair, respectively. In orderto enter list structures deeper, there are abbreviation functions like caar, cadr, cdaar, etc.,de�ned as the composition of functions car or cdr for every a or d, respectively. For example,(cdaar x) = (cdr (car (car x))) .NQTHM's truth values are (true) and (false), which can be abbreviated to t and f. Themost fundamental logical operator is \if", characterized by the axioms(0) x = f) (if x y z) = z ,x 6= f) (if x y z) = y . 4

In fact, NQTHM is weakly typed and its functions are almost always total: when x is not a truthvalue, the term (if x y z) is wellde�ned and equal to y.The operational semantics of an imperative programming language requires the concept ofstate. The state of a computer program determines the values of all program variables. So it canbe represented by a list of pairs where each pair consists of a variable and the associated value.In NQTHM, such a list is called an association list. The function that retrieves the �rst valuewith given key is de�ned by(lookup key x)= (if (nlistp x) 0(if (equal key (caar x)) (cdar x)(lookup key (cdr x)))) .The �rst line says that (lookup key x) = 0 if x is not a list, or rather, if it is empty whenregarded as a list. If x is a nonempty list of key-value pairs, the �rst pair is (car x) and the�rst key is (car (car x)), abbreviated (caar x). The corresponding value is (cdr (car x)),abbreviated (cdar x). If key di�ers from (caar x), function lookup is called recursively onthe tail of list x, denoted by (cdr x).Our library begins with the de�nition of a function to modify the state. This function iscalled putassoc, and is given by(putassoc var w x)= (if (nlistp x) (cons (cons var w) nil)(if (equal var (caar x))(cons (cons var w) (cdr x))(cons (car x) (putassoc var w (cdr x))))) .If x represents the empty list, the �rst line speci�es that the result is an association list with(cons var w) as its only element. Otherwise, the �rst key-value pair with key equal to var getsthe new value w. After these de�nitions NQTHM easily proves the crucial identity(1) (lookup key (putassoc var w x))= (if (equal key var) w(lookup key x)) .3 Lists, interpretation and explicit value termsAs shown above, the operator for pair formation is cons. This operator is used repeatedly in thecreation of lists. Long expressions with repeated cons's are abbreviated in NQTHM by means ofthe symbols list* and list in the following way:(list* x) = x ,(list* x ... z) = (cons x (list* ... z)) ,(list x ... z) = (list* x ... z nil) .For example, we have(list* a b c) = (cons a (cons b c)) ,(list) = nil ,(list m n) = (cons m (cons n nil)) .In the terms of NQTHM, words are used as function symbols when preceeded by an openparenthesis and as free variables otherwise. We also need word constants, so-called literal atomsor litatoms. Such a constant is represented by a quote followed by the word and is regarded asa quotation of the word. For example, the term (equal 'm 'n) equals (false), whereas the5

term (equal m 'n) contains the free variable m that may (or may not) be equal to the litatom'n. NQTHM's interpretation mechanism is built upon the function apply$ which interprets alitatom as the corresponding function symbol (if the latter is known to the system). Functionapply$ takes two arguments. The �rst argument should be a quotation of a known functionsymbol. The second argument is regarded as the list of arguments of the function. For example,apply$ satis�es(apply$ 'plus (list m n)) = (plus m n) .The function eval$ interprets quotations of terms. It uses apply$ for the interpretation oflitatoms in a functional position and it uses lookup and an association list for the interpretationof litatoms in a variable position. For example,(eval$ t '(plus '5 v) x)= (apply$ 'plus (list 5 (lookup 'v x)))= (plus 5 (lookup 'v x)) .Before going into the details of eval$ (and its �rst argument t), we have to discuss abbreviations,quotations and quotes.Above we introduced a number of abbreviations which are available and which are useful forclarity and conciseness. For example, the symbols t, f, caar, cdar, list*, list, etc., all serveas (or in) abbreviations. In order to form quotations of terms, one has to be able to \expand"abbreviations. Somewhat surprizingly, the unabbreviated term for a natural number like 5 is '5.Similarly, nil is only an abbreviation of the litatom 'nil.A quotation of a term is obtained by putting a quote before the unabbreviated term. Itfollows that '(plus '5 v) is a quotation of (plus 5 v) since '5 is the unabbreviated form of5. Similarly, '(cons v 'nil) is a quotation of (cons v nil) since 'nil is the unabbreviatedform of nil.Quotes are not only used for the quotation of terms. More generally, they serve in thedenotation of explicit value terms. We sketch this denotation mechanism briey. There are thefollowing rules. For any object phi, the notation 'phi is a shorthand for (quote phi). Under aquote, no rewriting is allowed, apart from replacing 'phi by (quote phi). Quotes can be movedinward and outward by the distribution laws(2) '(phi ... psi) = (list 'phi ... 'psi) ,'(phi ... psi . chi) = (list* 'phi ... 'psi 'chi) .For example, we have'(a '7 . c) = (list* 'a ''7 'c) = (cons 'a (cons ''7 'c)) ,'((v . 5) (w . 7)) = (list (cons 'v '5) (cons 'w '7)) ,(car '(plus '5 v)) = (car (list 'plus ''5 'v)) = 'plus ,''5 = '(quote 5) = (list 'quote '5) ,(cadr ''5) = '5 .Notice that '5 = 5, as an abbreviation, but ''5 6= '5. This does not lead to a contradictionsince rewriting under a quote is not allowed.We now turn to the function eval$. The idea is to make a function ev such that, if u isthe quotation of a term, (ev u x) yields the value of u where all variables in u get values fromthe association list x. For a litatom, ev yields the value associated (by x). Every other nonlistis interpreted as itself. A term of the form (list 'quote y) is interpreted as y. A term like(list 'fn y z) is interpreted by(ev (list 'fn y z) x)= (apply$ 'fn (ev y x) (ev z x)) ,6

that is, as the application of function fn on the interpretation of the arguments. This is realizedby the de�nition(ev u x)= (if (litatom u) (lookup u x)(if (nlistp u) u(if (equal (car u) 'quote) (cadr u)(apply$ (car u) (evlist (cdr u) x))))) ,where function evlist interprets its �rst argument as a list of quotations of terms and appliesev to each of them, with respect to association list x. Function evlist is thus given by(evlist u x)= (if (nlistp u) nil(cons (ev (car u) x)(evlist (cdr u) x))) .NQTHM does not allow mutual recursion, however. The reason for this will be given in thediscussion of Formula (3) in the next section. Therefore, the above de�nitions are combined inone function eval$ and the choice between ev and evlist is encoded by means of a ag:(eval$ flag u x)= (if (equal flag 'list)(if (nlistp u) nil(cons (eval$ t (car u) x)(eval$ 'list (cdr u) x)))(if (litatom u) (lookup u x)(if (nlistp u) u(if (equal (car u) 'quote) (cadr u)(apply$ (car u)(eval$ 'list (cdr u) x)))))))Here t (= (true)) serves as an arbitrary term that di�ers from the litatom 'list. After thisde�nition, the functions ev and evlist can be de�ned by(ev u x) = (eval$ t u x) ,(evlist u x) = (eval$ 'list u x) .Terms intended to be interpreted by eval$ will be called syntactic terms .4 Assignment, substitution, and commandsWe come back to the construction of the imperative programming language. We now provideassignments to modify the state by means of the function putassoc of Section 2. The assignmentv := E for a program variable v and an expression E requires the interpretation of the expressionE in the current state and the assignment of the value delivered to v. We therefore de�ne(modify var exp x)= (putassoc var (eval$ t exp x) x) .In the axiomatic semantics, the weakest precondition of postcondition Q under assignmentv := E is obtained from Q by substituting E for v. More generally, the value of an expressionQ in the modi�ed state is the value of Q0 in the original state, where Q0 is obtained fromQ by substituting E for v. In order to formulate and prove this fact, we de�ne substitution.Substitution requires the same kind of mutual recursion as eval$. So we de�ne7

(substitute flag var exp u)= (if (equal flag 'list)(if (nlistp u) nil(cons (substitute t var exp (car u))(substitute 'list var exp (cdr u))))(if (nlistp u)(if (and (equal var u)(litatom var))exp u)(if (equal (car u) 'quote) u(cons (car u)(substitute 'list var exp (cdr u))))))Notice that function substitute acts on syntactic terms: its parameter u and its result are bothintended to be interpreted by eval$.Now, NQTHM is able to prove the following generalization of the assertion suggested above:(3) (eval$ flag u (modify var exp x))= (eval$ flag (substitute flag var exp u) x) .This theorem illustrates why NQTHM has no mutual recursion. In fact, if eval$ were replacedby ev and evlist and substitute were replaced by analogous functions subst and sublist,the theorem would consist of two versions, one for ev and subst and the other for evlist andsublist. In the proof of either version, however, the other version would be needed in theinduction hypothesis.We now de�ne a command interpreter exe for a small imperative language. The languageconsists of structured commands. It has assignment, conditional choice, repetition, and sequentialcomposition. Function exe takes three arguments and yields the new state. Its main argumentsare a command cmd, which is analysed as a list, and an argument x, regarded as the old state.We use an integer argument n as a bound for the number of repetitions, roughly speaking. Ifthis bound is violated or the initial state is (false), function exe delivers (false).Function exe does not modify the state if the command is not a list. If (car cmd) is not alist, it is expected to be one of the key words 'put, 'if, 'while. Then cmd is an assignment, aconditional choice, or a repetition, respectively. In other cases, function exe yields (false). If(car cmd) is a list, cmd is regarded as the sequential composition of commands (car cmd) and(cdr cmd). Accordingly, the de�nition is(exe n cmd x)= (if (or (zerop n) (not x)) f(if (nlistp cmd) x(if (nlistp (car cmd))(if (equal (car cmd) 'put)(modify (cadr cmd) (caddr cmd) x)(if (equal (car cmd) 'if)(if (eval$ t (cadr cmd) x)(exe n (caddr cmd) x)(exe n (cadddr cmd) x))(if (equal (car cmd) 'while)(if (eval$ t (cadr cmd) x)(exe (sub1 n) cmd(exe n (caddr cmd) x))x)f)))(exe n (cdr cmd) (exe n (car cmd) x))))) .8

See Section 2 for the symbols caddr and cadddr.NQTHM only allows recursive de�nitions that can be guaranteed to terminate. The recursivede�nitions of lookup, putassoc, eval$, and substitute are justi�ed by the observation thatthe recursive calls use (car x) or (cdr x) instead of parameter x and that (listp x) impliesthat (car x) and (cdr x) are both smaller than x. NQTHM provides this argument itself.In the case of function exe, however, NQTHM does not �nd an obviously decreasing measure.NQTHM accepts the de�nition of exe, when the user provides the measure \sum of n and thesize of cmd".Example. To show the applicability of this command interpreter, we give an encoding of thefollowing linear search program for �nding a value y in a bounded array a, that begins at index0 and has #a elements.k := 0 ; m := # a; while k < m do if a[k] = y then m:=k else k:=k+1 fi od .This program is claimed to establish the postcondition(4) (m = #a _ a[m] = y) ^ (0 � i < m) a[i] 6= y) .We now assume that length is the encoding of # and that (sub k a) yields the k'th elementof array a (see Section 8 for implementations of length and sub). Then this program can beencoded in the explicit value term(5) (prog)= '(((put k 0) (put m (length a)))(while (lessp k m)(if (equal (sub k a) y)(put m k)(put k (add1 k))))) .Notice that the two initial assignments have been grouped together. This is not necessary, butmerely convenient for the correctness proof in Section 7 below. (End of example)We now construct the weakest precondition wp0 for commands without iteration. We do notexclude iterative commands but, in that case, we let the function yield the stronger precondition(false). So the function must satisfy(wp0 (list 'put var exp) q) = (substitute t var exp q) ,(wp0 (list 'if b c d) q) = (list 'if b (wp0 c q) (wp0 d q)) ,(wp0 (list 'while b s) q) = '(false) .In this way, we get(wp0 cmd q)= (if (nlistp cmd) q(if (nlistp (car cmd))(if (equal (car cmd) 'put)(substitute t (cadr cmd) (caddr cmd) q)(if (equal (car cmd) 'if)(list 'if(cadr cmd)(wp0 (caddr cmd) q)(wp0 (cadddr cmd) q))'(false)))(wp0 (car cmd)(wp0 (cdr cmd) q)))) .9

The state x = f serves for nontermination. We therefore de�ne two special functions evf andevt for the interpretation of preconditions and postconditions under total and partial correctness.The de�nition is based on the special nature of NQTHM's untyped \if", see Formula (0).(evf q x) = (if x (ev q x) f) ,(evt q x) = (if x (ev q x) t) .The following lemma shows that, indeed, function wp0 yields a suÆcient precondition for totalcorrectness:(6) (implies (and (not (zerop n))(evf (wp0 cmd q) x))(evf q (exe n cmd x))) .The result for partial correctness follows:(implies (evt (wp0 cmd q) x)(evt q (exe n cmd x))) .The function wp0 is not useful for while{commands like (prog). In order to remove this de�ciency,we shall develop an apparatus to deal with structured programs in a structured way.5 Speci�cation of commandsSpeci�cation of commands requires universal quanti�cation. In fact, we have to express that, forevery state that satis�es the precondition, the command does not terminate or terminates in astate that satis�es the postcondition. This can be expressed in NQTHM by taking the state asa free variable in a theorem. This way of expressing is not suÆcient, however, when we need thespeci�cation as an assumption of some theorem. We therefore use a method to express universalquanti�cation by means of witness functions characterized by axioms. This method goes backto Hilbert.In order to express that a predicate p holds for all states, we postulate the existence of afunction witness such that, if p does not hold in all states, it does not hold in the state (witnessp), | or equivalently, if p holds in (witness p), it holds in all states. This introduction of anunspeci�ed function with a characterizing property is done by announcing(dcl witness (p)) ,(add-axiom hilbert :(implies (eval$ t p (witness p))(eval$ t p x))) .Notice that the dcl{command only tells the prover that witness is a function of one argument.This implies, e.g.,(implies (equal p q)(equal (witness p) (witness q))) .This form of universal quanti�cation is mainly used to express that some predicate impliesanother predicate in all states. We therefore construct a function stronger, such that (strongerp q) says that p implies q in all states:(7) (evalimplies p q x)= (eval$ t (list 'implies p q) x)) ,(stronger (p q)= (evalimplies p q (witness (list 'implies p q)))) .10

Now NQTHM can be guided to prove:(implies (and (stronger p q)(eval$ t p x))(eval$ t q x)) .Remark. Function evalimplies can easily be eliminated. Its introduction here is useful, sinceit will enable us to design more helpful rewrite lemmas for the prover. See the end of Section 7.(End of remark)In order to get a feeling for the applicability of the axiom the reader is advised to prove thelemmas: (implies (and (stronger q r)(stronger p q))(stronger p r)) ,(stronger (list 'and q r) q) ,(implies (and (stronger p q)(stronger p r))(stronger p (list 'and q r))) .In these examples, predicate (list 'and q r) is the conjunction of the predicates q and r. Thispredicate must be distinguished from '(and q r), which equals (list 'and 'q 'r).It is useful at this point to introduce NQTHM's backquote convention, which allows thealternative notation`(and ,q ,r) = (list 'and q r) .In other words, the backquote serves as the quote, but has the additional rule that `,phi equalsphi for every term phi.We now introduce a function hoare such that (hoare p s q) expresses the partial correctnessfpg s fqg of command s for precondition p and postcondition q, as explained in Section 1. Sowe want to have(hoare p s q) � (8 x; n :: (evt p x)) (evt q (exe n s x))) .Again using Hilbert's idea, we express this equivalence by postulating the existence of two witnessfunctions xwit and nwit that, depending on the parameters p, s, and q, yield a counterexampleto the quanti�ed expression if such a counterexample exists. The unspeci�ed functions xwit andnwit are introduced to NQTHM by the declarations(dcl xwit (p s q)) ,(dcl nwit (p s q)) .We then de�ne and postulate(hoare p s q)= (implies (evt p (xwit p s q))(evt q (exe (nwit p s q) s (xwit p s q)))) ,(add-axiom hoare-implies :(implies (and (hoare p s q)(evt p x))(evt q (exe n s x)))) .11

One of the �rst things one may want to prove about Hoare triples, is strengthening of theprecondition: if predicate p0 is stronger than precondition p, then (hoare p s q) implies(hoare p0 s q). So the next step consists of proving the rules for strengthening of precon-dition and weakening of postcondition.(implies (and (hoare p s q)(stronger p0 p))(hoare p0 s q)) ,(implies (and (hoare p s q)(stronger q q0))(hoare p s q0)) .The link between Hoare triples and weakest preconditions consists of(implies (stronger p (wp0 s q))(hoare p s q)) .The composition rule for Hoare triples has the form(8) (implies (and (listp s0)(hoare p s0 r)(hoare r s1 q))(hoare p (cons s0 s1) q)) .The condition (listp s0) is necessary here, because function exe only yields sequential com-position when s0 is a list (like, e.g., '(put k (add1 k))).A subtle point is the order of the premisses in (8). These premisses contain a free variable r.In every application of the lemma the prover will try to �nd an instantiation of r that matchesthe �rst premiss in which r occurs. In our experience, the present order often yields a betterheuristic than when the premisses have been reversed.Hoare triples are especially useful for repetitions, since they allow a discussion of partialcorrectness separated from the issue of termination. Hoare's repetition rule isfb ^ jg s fjg implies fjg while b do s od f:b ^ jg ;here predicate j is called the invariant of the repetition. Indeed, we have guided NQTHM toprove:(9) (implies (hoare `(and ,b ,j) s j)(hoare j `(while ,b ,s)`(and (not ,b) ,j))) .In this term, NQTHM's backquote convention becomes handy.6 Termination and total correctnessHoare triples only specify partial correctness. We also want to be able to specify and provetermination of programs. For this purpose, we introduce a function termination, such that(termination p s) expresses that command s terminates for all states x that satisfy p. SinceNQTHM regards all values 6= f as true, this can be formalized by(10) (termination p s) � (8 x :: (evf p x)) (9 n :: (exe n s x))) .This equivalence (�) is split into a forward implication ()) and a backward implication (().Since the domain of n is nonempty, the forward implication is equivalent to12

(8 x :: (9 n :: (termination p s) ^ (evf p x)) (exe n s x))) .This can be expressed by means of a so{called Skolem function for n that depends on p, s, and x.Since n only occurs in the term (exe n s x), which is independent of p, we omit the argumentp. We choose the name time for the Skolem function and thus declare and postulate(dcl termination (p s)) ,(dcl time (s x)) ,(add-axiom termination-implies :(implies (and (termination p s)(evf p x))(exe (time s x) s x))) .The backward implication of (10) can be rewritten in the following way:(8 x :: ((evf p x)) (9 n :: (exe n s x))))) (termination p s)� fimplication and De Morgang(9 x :: ((evf p x) ^ (8 n :: :(exe n s x)))) _ (termination p s)� fthe domains of x and n are nonemptyg(9 x :: (8 n :: ((evf p x) ^ :(exe n s x)) _ (termination p s)))� fimplicationg(9 x :: (8 n :: ((exe n s x) _ :(evf p x))) (termination p s))) .We therefore introduce a Skolem function nterm for x and postulate(dcl nterm (p s)) ,(add-axiom termination-implied :(implies (or (exe n s (nterm p s))(not (evf p (nterm p s))))(termination p s))) .Function termination has been introduced in this way in order to be able to de�ne total cor-rectness as the conjunction of partial correctness and termination. So we de�ne(defn dijkstra (p s q)(and (hoare p s q)(termination p s))) .Now it is easy to prove the wp0-rule:(11) (implies (stronger p (wp0 s q))(dijkstra p s q)) .The repetition rule for total correctness (cf. [4, 9]) requires an invariant j as in Hoare's repetitionrule, but it also requires termination of the loop body s under precondition b^j, and it requiresa variant function vf that decreases in each step of the loop body s.Indeed, with some work, we were able to guide NQTHM to prove the variation of (9) for totalcorrectness:(implies (and (notoccurs 'list v (list j b vf))(notoccursp v s)(dijkstra `(and ,b ,j) s j)(hoare `(and (equal ,vf ,v) (and ,b ,j))s `(lessp ,vf ,v)))(dijkstra j `(while ,b ,s)`(and (not ,b) ,j))) .13

The �rst premiss says that v is a litatom that does not occur in the list of the terms j, b, and vf.The second premiss says that v also does not occur in the body s of the repetition. The thirdpremiss says that s terminates and keeps j invariant. In view of the �rst two premisses, the lastpremiss implies that state function vf decreases when s is executed under precondition b ^ j.We next formulated and proved more powerful theorems in which an initialization is used toestablish the invariant and in which a �nalization may be used to establish a postcondition. Theversion without �nalization reads:(12) (implies (and (notoccurs 'list v (list j b vf)) ; 1(notoccursp v s) ; 2(dijkstra `(and ,b ,j) s j) ; 3(hoare `(and (equal ,vf ,v) (and ,b ,j))s `(lessp ,vf ,v)) ; 4(dijkstra p init j) ; 5(stronger `(and (not ,b) ,j) q) ; 6(listp init)) ; 7(dijkstra p̀(,init (while ,b ,s))q)) .The premisses of this theorem have been numbered for future reference. The order of the pre-misses is chosen in such a way that NQTHM, when it considers to apply the theorem, �rstsearches for instantiations for v, j, and vf for which the �rst premiss has been established. Inthis way, NQTHM can be told which variable symbol, invariant, and variant function the userhas in mind for the proof of the repetition.7 The linear search programIn this section, we sketch the NQTHM proof of the linear search program (prog) given in (5).Postcondition (4) is translated into:(q1)= '(and (or (equal m (length a))(equal (sub m a) y))(implies (and (numberp i)(lessp i m))(not (equal (sub i a) y)))) .The aim is to prove(dijkstra '(true) (prog) (q1)) .Unfortunately, this speci�cation is also satis�ed by the program'((put m 0)(put y (sub 0 a))) .In order to disallow such erratic solutions we have to specify and prove that the program variablesn, a, and y are not written and that the logical variable i is neither written nor read. Since theprogram is represented syntactically, this is quite easy. We let NQTHM prove:(and (notoccursp 'i (prog))(notwritten 'a (prog))(notwritten 'y (prog))) ,14

where notwritten veri�es that its �rst argument does not occur as the �rst argument of a 'putcommand in the second argument.In order to discuss parts of the program, we de�ne(init1) = '((put k 0) (put m (length a))) ,(b1) = '(lessp k m) ,(s1) = '(if (equal (sub k a) y)(put m k)(put k (add1 k))) ,and let NQTHM prove(prog) = `(,(init1) (while ,(b1) ,(s1))) .We then introduce an invariant:(j1)= '(and (or (equal m (length a))(equal (sub m a) y))(and (implies (and (numberp i)(lessp i k))(not (equal (sub i a) y)))(numberp k))) .It may be mentioned here that NQTHM's function and may have more than two arguments, butthat eval$ is more rigid and interprets and as a function symbol with two arguments. Hencethe repeated occurrence of and in (j1).In order to apply Formula (12), we then let NQTHM prove, for an arbitrary state x, thatthe invariant is initialized, that the invariant together with the negation of the guard implies thepostcondition, and that (j1) is indeed an invariant:(13) (evalimplies '(true) (wp0 (init1) (j1)) x) ,(14) (evalimplies `(and (not ,(b1)) ,(j1)) (q1) x) ,(15) (evalimplies `(and ,(b1) ,(j1))(wp0 (s1) (j1))x) .We then de�ne a variant function vf1 and use a litatom 'v to show that vf1 decreases and that'v does not occur in vf1.(vf1) = '(difference m k) ,(16) (evalimplies `(and (equal ,(vf1) v) (and ,(b1) ,(j1)))(wp0 (s1) (list 'lessp (vf1) 'v))x) .(17) (and (notoccurs 'list 'v (list (j1) (b1) (vf1)))(notoccursp 'v (s1))) .Now all pieces are collected. Since NQTHM must not unfold the de�nitions of the constantsinvolved, we disable all of them. After that, NQTHM can immediately prove:(18) (dijkstra '(true) (prog) (q1)) .Formula (17) is used by NQTHM to determine adequate instantiations for j, b, vf, and v, suchthat the premisses 1 and 2 of (12) hold. The third premiss of (12) is obtained from (15), togetherwith the de�nition of stronger and Formula (11). The premisses 4, 5, and 6 of (12) are provedin the same way from (16), (13), and (14). The last premiss only requires a syntactic check.15

Remark. We introduced function evalimplies in (7) in order to be able to use lemmas like (13),(14), (15), (16). If function evalimplies is eliminated, and function stronger and these lemmasare formulated with the unfolding of evalimplies, the prover does not �nd these lemmas forthe proof of (18). (End of remark)8 Arrays and array modi�cationArrays are modelled as lists with a constant length. We de�ne a subscription function sub forthe inspection of an array element and an update function upd for the modi�cation of an arrayelement. Inspection outside of the array yields f. Modi�cation outside of the array has no e�ect.We use NQTHM's arithmetic functions add1 and sub1, which increment and decrement with 1.The four relevant de�nitions are:(sub i a)= (if (or (nlistp a)(not (numberp i)))f(if (equal i 0) (car a)(sub (sub1 i) (cdr a))))) ,(upd i w a)= (if (or (nlistp a)(not (numberp i)))a(if (equal i 0) (cons w (cdr a))(cons (car a) (upd (sub1 i) w (cdr a)))))) ,(length a)= (if (nlistp a) 0 (add1 (length (cdr a))))) ,(card v x)= (if (nlistp x) 0(if (equal v (car x))(add1 (card v (cdr x)))(card v (cdr x))))) .The �rst crucial relation between these de�nitions is:(19) (sub i (upd j w a))= (if (and (equal i j)(numberp i)(lessp i (length a)))w(sub i a)) .This lemma should be compared with formula (1).We provide a function swap for the interchange of array elements:(swap i j x)= (upd i (sub j x) (upd j (sub i x) x)) .It is easy to prove that the functions upd and swap do not change the length of the array.In order to formulate and prove that the modi�ed array has the same \bag" of elements asthe original one, we use function card, which counts the occurrences of an element in an array.16

We then let NQTHM prove that, under reasonable circumstances, function swap does not changethe number of occurrences:(20) (implies (and (numberp i)(lessp i (length x))(numberp j)(lessp j (length x)))(equal (card v (swap i j x))(card v x))) .9 RegroupingOne of the simplest array modifying problems is that of regrouping the elements of an array insuch a way that all elements of the �rst part of the array satisfy some given criterion whereasall elements of the second part do not. We let the criterion be given by some function cri.The task is to determine a value p and to permute the array, in such a way that the �rstp elements of the array satisfy cri and that the remaining elements do not. We postulate theinvariance of (card w a) = g for arbitrary speci�cation constants w and g to express that thebag of elements of array a does not change. In this way, we arrive at the following formalspeci�cation. The problem is to determine a command T that satis�esvar p : integer ;f(card w a) = ggTf(card w a) = g ^ 0 � p � #a^ (8 i : 0 � i < p : cri(a[i]))^ (8 i : p � i < #a : : cri(a[i]))g ,with the additional requirement that w and g must not occur in command T .The invariant is found by splitting the program variable p into two variables p and q withthe invariantJ : (card w a) = g ^ 0 � p � q � #a^ (8 i : 0 � i < p : cri(a[i]))^ (8 i : q � i < #a : : cri(a[i])) .We introduce the guard B : p < q . It is easy to see that the postcondition follows from :B^J .In view of the precondition, it is also easy to initialize the invariant: it suÆces to takep := 0 ; q := #a .In the repetition, we decrease the di�erence q�p while preserving the invariant. This is done byif cri(a[p]) then p := p+ 1else q := q� 1; if cri(a[q]) thena := (swap p q a); p := p+ 1�� .We now turn to the NQTHM encoding of the program and its proof. We assume that afunction cri of one argument is given. The encodings of the postcondition and the invariantrequire some representation of the universal quanti�cations involved. We have chosen to do thisby means of the functions de�ned in 17

(acri p a)= (if (zerop p) t(and (acri (sub1 p) a)(cri (sub (sub1 p) a)))) ,(anocri (q a)= (if (lessp q (length a))(and (anocri (add1 q) a)(not (cri (sub q a))))t) .For NQTHM, the de�nition of anocri is not obviously well-founded, but NQTHM can acceptthis de�nition when we suggest to take the di�erence #a� q as measure.Now the precondition (p2), the postcondition (q2), the guard (b2), and the invariant (j2)are de�ned by(p2) = '(equal g (card w a)) ,(q2) = `(and ,(p2)(and (numberp p)(and (leq p (length a))(and (acri p a) (anocri p a))))) ,(b2) = '(lessp p q)) ,(j2) = `(and ,(p2)(and (numberp p)(and (leq p q)(and (numberp q)(and (leq q (length a))(and (acri p a)(anocri q a))))))) .The �nalization is proved in(evalimplies `(and (not ,(b2)) ,(j2)) (q2) x) .The initialization is de�ned and proved in(defn init2 () '((put p 0) (put q (length a))))(prove-lemma initialize2 (rewrite)(evalimplies (p2) (wp0 (init2) (j2)) x)((expand (anocri (length (cdr (assoc 'a x)))(cdr (assoc 'a x))))))Here, we have given the de�nition and the lemma in the NQTHM syntax, to show the hint wehad to give to the prover. In this hint, the term (cdr (assoc 'a x)) equals (lookup 'a x),i.e., the value of variable 'a in state x. The hint is needed, since it is not obvious to the proverthat (anocri (length a) a) holds.The body of the repetition is de�ned in(s2) = '(if (cri (sub p a))(put p (add1 p))((put q (sub1 q))(if (cri (sub q a))((put a (swap p q a))(put p (add1 p)))))) .18

With respect to the second occurrence of if here, we use that a command of the form `(if ,b ,s)is interpreted by exe as skip when guard b is false (just like Pascal).The analogue of (15) requires three lemmas. The �rst and the second one state that thequanti�cations remain valid when the array is swapped outside of the range of the quanti�cation.In the second case, we had to tell NQTHM the right induction hypothesis.Many human provers might have overlooked the third lemma: if (s2) is executed with pre-condition q = p+1, the guards in (s2) ensure that p � q remains valid. This is only obvious toNQTHM, when we have given it the lemma subtlety, which it proves without problem.(prove-lemma swap-out-safe-pos (rewrite)(implies (and (acri p a)(leq p i) (leq p j)(numberp i)(numberp j)(leq i (length a))(leq j (length a)))(acri p (swap i j a)))) ;(prove-lemma swap-out-safe-neg (rewrite)(implies (and (anocri q a)(lessp i q) (lessp j q)(numberp i)(numberp j)(leq q (length a)))(anocri q (swap i j a)))((induct (anocri q a)))) ;(prove-lemma subtlety (rewrite)(implies (and (lessp p q)(numberp p)(lessp (sub1 (sub1 q)) p))(equal (sub1 q) p))) .After these preparations the remainder of the input to the prover is just like the linear searchcase. For the interested reader, the full input to the prover is given in the appendix.10 Description of the library �lesThe main library �le constructed is called \hoare.events". It supports a slightly bigger pro-gramming language than indicated in Section 4. In fact, the language also contains a case{statement of the form(case exp (a0 s0) ... (an sn)) .The meaning of this command is si if ai is the �rst constant equal to the value of expressionexp. If exp di�ers from all constants ai, the case statement is equivalent to skip.An interesting lemma in the library is one that allows the elimination of a speci�cationconstant v from the precondition of a Hoare triple, according to(implies (and (notoccurs t v q)(notoccursp v s)(hoare p s q))(hoare (substitute t v exp p) s q)) .19

Notice that the expression exp is interpreted in the initial state of command s and that thereare no conditions on the variables that occur in exp. This lemma is often used in programmingmethodology to justify the introduction of speci�cation constants in an annotated proof.A second library �le, called \hoare-ex.events", contains three simple example applications:the correctness of an exponentiation program, and the two example programs treated in thispaper. The �les can be obtained by anonymous ftp from ftp.cs.rug.nl, in the directory/pub/boyer-moore.References[1] R.J.R. Back, J. von Wright: Re�nement concepts formalized in higher order logic. Report�Abo Akademi Ser. A, 85, 1989.[2] R.S. Boyer, J S. Moore: A Computational Logic Handbook. Academic Press, Boston etc.,1988.[3] R.S. Boyer, J S. Moore: A Computational Logic Handbook, Authorized Excerpts from aProposed Second Edition, to be obtained by ftp from Computational Logic Inc. Informationavailable at nqthm-request@cli.com.[4] E.W. Dijkstra: A discipline of programming. Prentice{Hall 1976.[5] U. Engberg, P. Gr�nning, L. Lamport: Mechanical veri�cation of concurrent systems withTLA. In Computer Aided Veri�cation. Springer Verlag 1992, LNCS 663.[6] S.J. Garland, J.V. Guttag: LP: the Larch Prover. In E. Lusk, R. Overbeek (eds.): 9thConferenence on automated deduction (CADE). Springer Verlag 1988, LNCS 310, pp. 748{749.[7] M.J.C. Gordon, T.F. Melham (eds.): Introduction to HOL: A theorem proving environmentfor higher order logic. Cambridge University Press, Cambridge, UK, 1993.[8] M.J.C. Gordon: Mechanizing programming logics in higher-order logic. In G. Birtwistle,P.A. Subrahmanyam (eds.): Current trends in hardware veri�cation and theorem proving .Springer Verlag 1989, pp. 387{439.[9] D. Gries: The science of programming. Springer V. 1981.[10] W.H. Hesselink: Wait-free linearization with a mechanical proof. Submitted.[11] J. Hooman: Correctness of real time systems by construction. In: H. Langmaack, W.-P. de Roever, J. Vytopil (eds.): Formal Techniques in real-time and fault-tolerant Systems .Springer Verlag 1994. LNCS 863. pp. 19{40.[12] A. Kaldewaij: Programming: the Derivation of Algrithms. Prentice Hall International,1990.[13] L. Lamport: The temporal logic of actions. Research Report 79, DEC, SRC, December1991.[14] P.A. Lindsey: A survey of mechanical support for formal reasoning. Software EngineeringJournal, January 1988, 3{27.[15] J Moore: A formal model of asynchronous communication and its use in mechanicallyverifying a biphase mark protocol. Formals Aspects of Computing 6 (1994) 60{91.20

[16] S. Owre, N. Shankar, J.M. Rushby: User Guide for the PVS Speci�cation and Veri�cationSystem, Language, and Proof Checker (Beta Release). CSL, SRI International, Menlo Park,CA, February 1993 (three volumes).[17] J.U. Skakkeb�k, N. Shankar: A duration calculus proof checker: using PVS as a semanticframework. SRI, CSL Tech. Report, December 1993.AppendixBelow follows the complete input to the prover for the correctness proof described in Section9. The hints of the form do-not-induct are superuous. During the design phase these hintsserve to terminate a failing proof attempt. After each lemma, we give the time triple reportedby NQTHM. The �rst number is the number of seconds spent for input of the lemma, the secondnumber the number of seconds spent for the proof, the third number is the number of secondsspent printing information to the user. The numbers given here were obtained on a HP 9000-735.(note-lib "hoare") ; load the library.; file to be obtained from ftp.cs.rug.nl, in pub/boyer-moore.(defn cri (x) (lessp 100 x)) ; just some boolean function(disable cri)(defn p2 () '(equal g (card w a)))(defn acri (p a)(if (zerop p) t(and (acri (sub1 p) a)(cri (sub (sub1 p) a)))))(defn anocri (q a)(if (lessp q (length a))(and (anocri (add1 q) a)(not (cri (sub q a))))t)((lessp (difference (length a) q)))) ; a decreasing measure(defn q2 ()`(and ,(p2)(and (numberp p)(and (leq p (length a))(and (acri p a) (anocri p a))))))(defn b2 () '(lessp p q))(defn j2 ()`(and ,(p2)(and (numberp p)(and (leq p q)(and (numberp q)(and (leq q (length a))(and (acri p a)(anocri q a))))))))21

(prove-lemma finalize2 (rewrite)(evalimplies `(and (not ,(b2)) ,(j2)) (q2) x)) ; [0.0 0.1 0.1](defn init2 () '((put p 0) (put q (length a))))(prove-lemma initialize2 (rewrite)(evalimplies (p2) (wp0 (init2) (j2)) x)((expand (anocri (length (cdr (assoc 'a x)))(cdr (assoc 'a x)))))) ; [0.0 0.1 0.0](defn s2 ()'(if (cri (sub p a))(put p (add1 p))((put q (sub1 q))(if (cri (sub q a))((put a (swap p q a))(put p (add1 p)))))))(prove-lemma swap-out-safe-pos (rewrite)(implies (and (acri p a)(leq p i) (leq p j)(numberp i)(numberp j)(leq i (length a))(leq j (length a)))(acri p (swap i j a)))) ; [0.0 0.2 0.2](prove-lemma swap-out-safe-neg (rewrite)(implies (and (anocri q a)(lessp i q) (lessp j q)(numberp i)(numberp j)(leq q (length a)))(anocri q (swap i j a)))((induct (anocri q a)))) ; [0.0 1.6 0.5](prove-lemma subtlety (rewrite)(implies (and (lessp p q)(numberp p)(lessp (sub1 (sub1 q)) p))(equal (sub1 q) p))) ; [0.0 0.0 0.0](prove-lemma invariant-j2-s2 (rewrite)(evalimplies `(and ,(b2) ,(j2))(wp0 (s2) (j2))x)((do-not-induct t))) ; [0.0 1.5 0.4](defn vf2 () '(difference q p)) 22

(prove-lemma vf2-decreases (rewrite)(evalimplies `(and (equal ,(vf2) v) (and ,(b2) ,(j2)))(wp0 (s2) `(lessp ,(vf2) v))x)) ; [0.0 0.7 0.4](prove-lemma notoccurs2-v (rewrite)(and (notoccurs 'list 'v (list (j2) (b2) (vf2)))(notoccursp 'v (s2)))) ; [0.0 0.0 0.0](defn prog2 () `(,(init2) (while ,(b2) ,(s2))))(prove-lemma honesty ()(and (notoccursp 'w (prog2))(notoccursp 'g (prog2)))) ; [0.0 0.0 0.0](disable-theory (init2 *1*init2 j2 *1*j2 s2 *1*s2b2 *1*b2 p2 *1*p2 vf2 *1*vf2 q2 *1*q2))(prove-lemma dijkstra-prog2 (rewrite)(dijkstra (p2) (prog2) (q2))) ; [0.0 0.1 0.0]After the de�nition of prog2, its value can be given by NQTHM's execution environment r-loop.Below we give a dialogue with the r-loop in which the program is asked, followed by an executionof the program for a given array. The star � is the prompt of the r-loop.* (prog2)'(((PUT P 0) (PUT Q (LENGTH A)))(WHILE (LESSP P Q)(IF (CRI (SUB P A))(PUT P (ADD1 P))((PUT Q (SUB1 Q))(IF (CRI (SUB Q A))((PUT A (SWAP P Q A))(PUT P (ADD1 P))))))))* (exe 9 (prog2) '((a . (1 2 3 103 146 3 109 5 118 4))))'((A 118 109 146 103 3 3 2 5 1 4)(P . 4)(Q . 4))

23

