
 

 

 University of Groningen

WAIT-FREE LINEARIZATION WITH AN ASSERTIONAL PROOF
Hesselink, Wim H.

Published in:
Distributed computing

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1994). WAIT-FREE LINEARIZATION WITH AN ASSERTIONAL PROOF. Distributed
computing, 8(2), 65-80.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-12-2022

https://research.rug.nl/en/publications/986968c8-b115-4c28-8744-687afb0b815d


Distrib Comput (1994) 8:65-80 

DOSSB B@S D 
�9 Springer-Verlag 1994 

Wait-free linearization with an assertional proof 
Wim H. Hesselink 

Rijksuniversiteit Groningen, Department of Computing Science, P.O. Box 800, NL-9700 AV Groningen, The Netherlands 

Received: December 1991/Accepted: April 1994 

and correctness of algorithms, 

W i m  H.  Hesselink received his 
Ph.D. in mathematics from the Uni- 
versity of Utrecht in 1975. After ten 
years of research in algebraic groups 
he turned to computer science. Since 
1985 he has been an associate profes- 
sor with the Department of Comput- 
ing Science at the University of 
Groningen. In 1986/1987 he was on 
sabbatical leave with the Depart- 
ment of Computer Sciences of the 
University of Texas at Austin. His 
research interests include aspects 
and modalities of nondeterminacy, 
predicate transformation semantics, 
distributed programming, design 
and mechanical theorem proving. 

Summary Given a sequential implementation of an arbit- 
rary data object, a wait-free, linearizable concurrent imple- 
mentat ion is constructed with space complexity quadratic 
in the number  of processes. If processes do not concurrent- 
ly invoke, the amortized time complexity of the invoca- 
tions is independent of the number  of processes. The worst 
case time complexity is linear in the number  of processes. 
The construction is based on a compare&swap register. 
The correctness is proved by means of invariants and 
stability properties. Since it concerns memory  reallocation 
by concurrent processes in a fault-tolerant setting, this 
proof  is highly nontrivial. 
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Invariant  Stability - Space complexity - Time com- 
plexity 

Introduction 

Background 

A concurrent data object is a data structure shared by 
concurrent processes. The object must behave as if the 
invocations are processed in some sequential order. This 
requirement is formalized in the concept of linearizability 
(see [7], we come back to this in Sect. 2). Traditionally, 
linearizability is achieved by means of operations that 

temporarily block the progress of some processes. The 
disadvantage of such operations is that if a process is 
delayed (or stopped) other processes are delayed as well. 

Therefore, recently, the concept of wait-free implemen- 
tations has been proposed. A wait-free implementation of 
the concurrent data object is one in which every process 
completes its invocation in a bounded number  of atomic 
actions, regardless of the actions and the execution speeds 
of the other processes, see [4] and [5]. 

Of course, the concept of wait-free implementation 
only makes sense if there are no atomic actions that can be 
blocked (e.g. semaphores and synchronous communica- 
tions). We therefore assume that the processes do not 
contain actions that can be blocked. The processes are not 
assumed to make progress. A wait-free implementation is 
fault-tolerant in the sense that, if some process stops 
executing, the invocations of other processes are not 
affected. 

One of the simplest concurrent data objects is the 
atomic read-write register: a shared variable, say x, with 
the only atomic actions x := u and z := x, for some private 
variables u and z. It  has been shown by Herlihy [5] that 
atomic read-write registers are not sufficient to construct 
wait-free implementations of interesting data objects. No-  
tice that we use the convention that shared program vari- 
ables are in typewriter font. Constants, private program 
variables, parameters and mathematical  variables are in 
math-italic. 

For  variables of arbitrary types we assume safety, in 
the sense that any read operation not concurrent with 
a modifying write operation obtains the most recently 
written value, that concurrent non-modifying write opera- 
tions do not interfere, and that concurrent modifying write 
operations of the same value do not interfere with each 
other (see Sect. 1 for more details). We assume that read 
and write operations of integers and booleans are atomic. 

The read-write register can be compared with the con- 
sensus object (cf. [3]). This is a shared variable, say x, with 
an atomic read action u := x and an atomic setting action 

(0) < i f x = O t h e n x : = u f i )  

where 0 is some constant of the same type as x, and where 
u is a private variable as before. If  x 4= O, command (0) is 
equivalent to skip. There is also an atomic reset action 
x := O. Consensus objects are also called logical variables 
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or permanents, see e.g. [12] Sect. 1.4. A slightly more 
powerful object is the compare&swap register. This is 
a shared variable x with atomic read actions z := x and an 
atomic setting action 

(1) ( i f x = u t h e n x : = v f i )  

where z, u and v are private variables, cf. [5] p. 135. 
Herlihy [4] and Plotkin [14] have shown that walt- 

free implementations of arbitrary data objects can be con- 
structed by means of atomic read-write registers-together 
with consensus objects. Let n be the number of processes. 
The implementation of [14] requires memory of order n 2 

and has a worst-case time complexity of order n 3. The 
implementation of [5] requires memory of order n 3, has 
a worst-case time complexity of order n 2 and, moreover, 
requires unbounded integers. The latter requirement is 
a serious drawback, since unbounded integers are seldom 
available in hardware. 

In [6], Herlihy presents a construction based on 
a compare&swap register with memory of order n 2 and 
worst-case time complexity of order n 2. For  all three im- 
plementations, the outline provided is rather sketchy. This 
makes it hard to prove or to refute their correctness. 

Contributions 

In this paper, we present a wait-free implementation of an 
arbitrary data object that requires memory of order n 2 and 
that has a worst-case time complexity of order n. The 
implementation requires a compare&swap register, just as 
in [6]. 

Since a compare&swap register is a stronger primitive 
than a consensus object, the complexity of our algorithm 
can only be compared with the algorithm of [6]. Our 
algorithm has the same space complexity (n 2) and a better 
time complexity (order n). If there is only one active pro- 
cess, the amortized time complexity is constant, i.e., inde- 
pendent of the number of processes. 

For  us, however, the main interest of these algorithms 
is not increased efficiency, but to learn how to develop 
such an algorithm together with a complete proof of cor- 
rectness. This is especially important since the combina- 
tion of concurrency with memory reallocation is very 
delicate, cf. [9]. In fact, even though a previous version of 
our algorithm had a careful operational "proof", the 
search for an assertional proof uncovered a delicate gap in 
the argument (see Sect. 7). 

Technically, our algorithm is a modification of the 
algorithm of [5]. Each process transverses the linked list of 
invocations in a more greedy way than in [5]. This implies 
that a delayed process needs only constant space to per- 
form its actions without disturbing the data structure. The 
data structure to support delayed processes can therefore 
be smaller than in [5]. For  reasons of simplicity, we as- 
sume that the data object is deterministic. Herlihy [5] 
avoids this assumption by means of a second family of 
consensus objects. 

Plan of the paper 

In Sect. 1, we present our programming notations and 
discuss the granularity of the commands. In Sect. 2, we 

introduce data objects and concurrent linearizable impIe- 
mentations of data objects_ As a stepping stone for the 
algorithm, we present in Sect. 3 an easier algorithm that 
uses an atomic action with a larger grain of atomicity than 
compare&swap registers. 

Sections 4, 5 and 6 form the heart of the paper. Here 
the program is developed in a top down fashion. So, m 
Sect. 4, we give the actions on the main shared variables 
and we prove linearizability under assumption of six in- 
variants. In Sect. 5, the abstract algorithm is extended with 
private computations and with communication by means 
of other shared variables. The resulting program is shown 
to satisfy a set of roughly twenty invariants, which imply 
the six mvariants mentioned above. In Sect. 6, the program 
is made wait-free. For this purpose an additional shared 
variable is introduced with two new invariants. 

The complexity of the proof is cumbersome but, in our 
view, not out of proportion. In fact, the program uses 
a pointer structure in bounded memory, and even proofs 
of sequential programs with pointers are usually complic- 
ated. In a sequential program, the invariants would occur 
as preconditions of specific commands. Here they are 
discussed globally since other processes are concurrently 
active. 

In Sect. 7, we discuss points of the program where 
a seemingly innocent modification would be disastrous. 
Section 8 contains a comparison of our program with 
Herlihy's program in [5]. We give an explicit interpreta- 
tion of the memory management suggested in [5]. In Sect. 
9, we briefly discuss the complexity of our algorithm. 

Our presentation is deliberately rather technical and 
formal. We refer to [5] and [6] for the intuition and 
motivation underlying the algorithms and also for exten- 
sive overviews of related work, 

1 Programming notations and concepts 

We use the infix operator . . . .  for subscription of arrays, 
For  example, nx.g is the g'th element of array nx. The 
other programming notations used are variations of welP 
known constructs of Pascal: 

i f . . .  t h e n . . ,  fi 
w h i l e . . ,  do . . .  od 
for e a c h . . ,  d o . . .  od. 

In particular, the if then fi construct means skip if the guard 
is false. 

We assume that all shared variables are safe in the. 
following sense. Any read operation not concurrent with 
a modifying write operation obtains the most recently 
written value. Concurrent non-modifying write operations 
do not interfere. Concurrent modifying write operations of 
the same value do not interfere with each other. We as- 
sume that write operations o f  integers and booleans are 
atomic. For other types; a modifying write operation is 
non-atomic in the sense that any concurrent operation 
(apart from a write of the same value) leads to unpredict: 
able results. A command is made atomic by enclosing it in 
angled brackets ( a n d ) ,  cf: [1] Chapter 6. 

We use an assertional method to  prove the correct- 
ness of our concurrent programs. Most assertions are 



predicates on the state of the shared variables. We also 
need predicates concerning the flow of control of the 
processes, cf. [10] and [11]. We write P in C to indicate 
that process P is executing the possibly composite com- 
mand C. More precisely, it means that P has completed the 
last command before C and has not yet completed C. In 
particular, for a composition (C; D) we always have 

P i n C ; D  - P i n C V P i n D .  

Another relevant example is a composition like 

if B then C fi; D. 

Here, evaluation of guard B by process P establishes the 
disjunction 

( B A ( P i n  C)) V (T B A (P in D)). 

Unconditional entering or exiting of blocks is not regarded 
as a separate action, but (for example) the last action of 
a while-loop is the test that yields the negation of the 
guard. Location predicates like P in C can be eliminated 
by introducing ghost variables or auxiliary variables, cf. 
[1]. Our reasons for using location predicates are dis- 
cussed at the end of Sect. 5, see also [113 p. 290. 

We say that a predicate I is invariant if I holds initially 
and remains valid during every execution sequence of the 
system of processes. For  predicates X and Y, we say that 
"X is stable while Y" if there is an invariant I such that 
every atomic action C of each of the processes satisfies the 
Hoare triple {X A I A Y } C {X}. For  an expression E, we 
say that "E is constant while Y" if E = v is stable while 
Y for every value v. Notice that, for a predicate X, the 
assertion " X  is constant while Y" is stronger than "X is 
stable while Y ", for it also implies that " 7  X is stable while 

We say that a predicate X is not threatened by a com- 
mand C, if it is easy to see that {X} C {X} holds. In many 
cases the reason is that C is an assignment to a variable 
that does not occur in X. 

2 Data objects and concurrency 

A data object is a tuple (X, U, Z, Xo, R)  where X is the 
state space of the object, Xo ~ X is the initial state, U is the 
input space (the set of invocations), Z is the output space 
(the set of result values) and R _c U x X x X x Z is the 
transition relation. If the object is invoked with invocation 
u in state x it may go into state y and return the output z if 
and only if (u, x, y, z)  ~ R. 

In this paper, every object is supposed to be total and 
deterministic, in the sense that in every state every invoca- 
tion allows precisely one new state and precisely one 
result: for every pair (x, u) with x e X and u e U, there is 
precisely one pair (y, z)  with (u, x, y, z)  e R. The require- 
ment of totality (the existence of a resulting pair (y, z)  for 
every pair (x, u))  formalizes the assumption that no op- 
eration can be blocked. Determinacy is postulated for the 
sake of simplicity of the algorithm. This assumption is 
essential for the present algorithm, but a variation of the 
algorithm that avoids this assumption is in preparation. 
Herlihy [5] avoids the assumption of determinacy by 
means of a second family of consensus objects. 
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Example. The compare&swap register introduced in Sect. 
0 can be formalized as follows. Let X be the type of 
variable x, i.e., its set of values. The action to read x is 
denoted read; it does not modify x and yields the value 
z = x. An invocation of instruction (1): 

( i f x  = u then x :=  v fi) 

with values u and v is denoted as a pair (u , v ) ;  this 
invocation may or may not modify x; the instruction 
always yields the value ok. We therefore take 
Z = X + {ok}, the disjoint union of the set X with the 
singleton set {ok}, and U = {read} + X 2 where 2 2 is 
the set of the pairs (u, v) with u,v ~ X .  Relation R is 
defined by 

(read, x , y , z )  e R  - y = x A z = x ,  

( ( u , v ) , x , y , z ) ~ R  =- 

z = o k  A ((x = u  A y = v) V (x 4= u A y = x)). 

It is easy to verify that indeed relation R is total and 
deterministic. [] 

We assume that there are n processes, represented by 

type process = 0 . .  n - 1. 

A concurrent implementation of a data object 
(X,  U, Z, Xo, R)  is a procedure that, conceptually, acts on 
some global program variable x of type X and that could 
be specified by 

proc apply (in P:process, u: U; out z : Z )  
{pre x = w, post (u, w , x , z )  e R}. 

Here, w is a logical variable that stands for the value o f x  in 
the precondition. Process P calls procedure apply in the 
form apply (P, u, z) for the treatment of invocation u with 
result z. So P and u are input parameters and z is a result 
parameter. 

All processes may call apply concurrently and repeat- 
edly. The data object itself is passive; the subcommands of 
apply are executed by the invoking process. Yet the imple- 
mentation is required to be linearizable, in the sense that 
each call of apply appears to take effect instantaneously at 
some point between the invocation and the response. Lin- 
earizability implies that processes appear to be interleaved 
at the granularity of complete operations and that the 
order of non-overlapping operations is preserved. See [7] 
for a detailed exposition. 

The implementation (i.e., procedure apply) is called 
wait-free if it does not contain operations that can be 
blocked and if there is a number N such that every call 
apply(P, u, z) terminates after at most N atomic actions of 
process P, independently of concurrent calls of apply by 
other processes. 

In order to formulate a concrete proof obligation that 
implies linearizability we proceed as follows. Since the 
object is deterministic, the current state and the output are 
functions of the sequence of invocations that have been 
treated. Let U* be the set of sequences of invocation 
values. Let e be the empty sequence. For  ~ ~ U* and u ~ U, 
let (e;u) be the sequence obtained by postfixing c~ with 
the singleton u. The current state and the output are 
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determined by functions e:U* -+ X and f : ( U * \ { e } )  --+ Z. 
These functions satisfy 

(2) e(e) = Xo (the initial state), 

(u, e(e), e(~; u),f(e; u)> ~ R 

for all c~ ~ U* and u e U. 
We need to distinguish invocations of different pro- 

cesses. We do this by tagging and therefore introduce the 
cartesian product V =  U xproeess, with as elements 
tagged invocations <u, P )  with u ~ U and P ~ process. Let 
V* be the set of sequences of tagged invocations. For  
a sequence a e V*, let dr(a) ~ U* be obtained by deletion of 
the tags. For  a process P, let allP ~ V* be the subsequence 
of a of the invocations tagged with P. Since the tags P of 
o-IIP are irrelevant, we define a lP  = dt(a I[ P)E U*. 

We define a * P e V* as the shortest prefix of a that 
contains al[P. We define a e = d t ( a * P )  eU*. So, if 
alp  q= e, then at, is the shortest prefix of dr(a) that contains 
the last invocation of P. In particular, 01P is a subsequence 
of ap. After these preparations we can formulate a concrete 
proof obligation. 

The implementation of the data object is linearizable if 
one can construct a ghost variable a:V*, initially a = e, 
that satisfies 
(CL0) whenever process P is not invoking, alP is the 
sequence of invocation values of P in the order of sub- 
mission; 
(CL1) whenever P is not invoking and alP 4 = g, thenf(ae)  
is the latest result obtained by P. 

In fact, these conditions imply that a is some lineariz- 
ation of the operations that refines the partial order of the 
nonoverlapping operations. If a[P +- ~ then ae is the se- 
quence of invocations up to and including the latest invo- 
cation of P; therefore that invocation must have yielded 
resultf(ap). Notice that we have no conditions on the state 
since the state is not observable. 

3 I m p l e m e n t i n g  an arbitrary object  

We now turn to the development of a wait-free con- 
current implementation of an arbitrary data object 
( X, U, Z, Xo, R ). This concurrent implementation is based 
on a given local implementation 

locapply(in u : U, x : X; out y : X ,  z : Z)  

which given u and x establishes <u, x, y, z)  ~ R. The need 
for the two additional state parameters will become clear 
below. 

The implementation of apply must be such that the 
object behaves linearizable, but the calls of locapply are 
not supposed to be atomic actions. These calls are re- 
garded as read actions of the input arguments, followed by 
write actions into the output arguments: In the implemen- 
tation in Sect. 4, we shall use that all arguments are safe 
registers. Determinacy of locapply will imply that the pos- 
sibly concurrent write actions write the same value. 

Our first implementations of the data object are based 
on atomic commands with a larger grain of atomicity than 
compare&swap registers. These implementations serve to 
give the reader a feeling for the problems associated with 

delayed processes, which by their delayed actions may 
interfere with other processes and disturb the data struc- 
ture. The main issue is to separate the local computation of 
locapply from the interaction between the processes. The 
second point is that we on!y use bounded menaory, linear 
in the number of processes. We begin using a global 
declaration 

var x : X  {initially x = xo}. 

It is of course correct but not satisfactory to encapsulate 
locapply atomically: 

proc apply (in P :process, u : U; out z : Z); 
][ (locappIy (u, x, x, z) 

(< <,,,P>}>]I. 
Here, the action on ghost variable a is given between curly 
brackets. 

The next step is to introduce local variables for the 
results of locapply and a test to ensure that the executing 
process has not been delayed. For  this purpose we intro- 
duce a sequence counter equal to the length of a, We thus 
need the additional global declaration 

var sq:integer {initially sq = 0}. 

We first consider the tentative implementation, in which 
the guard h = sq serves to ensure that a has not been 
modified in the mean time: 

proe app ly  (in P : process, u: U; out z: Z); 
var h : integer; wait: boolean 
; w , y : X ;  t:Z; 
I[ wait:= true 
; while wait do 

h : = s q ;  ( w : = x >  
; locapply (u, w,y, t) 
; ( i f  h = s q  then 

x : =  y; sq := sq + 1 
{; ~ :-- (a; (u, P>)} 
;z := t; wait := false fi} 

od ]l. 

Here it is not enough that x is a safe register, since the read 
action of x can be disturbed by a write action of some 
other process. Therefore, the read action w := x has been 
made atomic. 

In this implementation, process P can be overtaken 
indefinitely while executing infinitely many commands in 
its repetition. So this implementation is not wait-free. 
Since other processes must not be blocked, the only 
remedy is that other processes are forced to execute P's 
invocation. For  this purpose a shared  data structure is 
introduced that can contain the invocation and result 
values of all processes, as well as booleans to indicate 
which processes are waiting. We therefore extend the 
global declarations with 

var i n v o :  array process of U 
; r e s u :  array process of Z 
; wait: array process of boolean; 
init ial ly (VP :: ~wai t .P) .  

The most recent invocation value ofprocess P is located in 
invo.P. The corresponding result is delivered in resu.  P. 
The condition wai t .P  indicates that the invocation of 
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process P is waiting to be treated. In order to get bounded 
delay, we ensure that the invocation of process Q is treated 
by every process when (Q = sq mod n) A wait. Q holds. 
Since this condition depends on more than one shared 
variable, it requires careful programming. A correct solu- 
tion is given in program (3). 

(3) proc apply (in P:process, u:U; out z:Z); 
var h : integer; Q : process 
; v:U; w,y:X;  t:Z; 
I[ ( invo.  P :=  u); wait .  P :=  true 
; h:= sq 
; while wai t .P  do 

B0: Q:= h m o d n  
;BI: i f - l w a i t . Q  then Q:= P fi 
;B2: <v:= invo.Q> 
;B3: (w:= x> 
; B4: locapply (v, w, y, t) 
; B5: ( i f  h = sq then 

x : = y ; s q : = s q +  1 
{;a:= (o; 
; resu .Q:=  t; wait. Q := false fi> 

;B6: h:= sq 
od 

; z:= r e su .P  ]l. 

Linearizability of (3) can be proved by showing that 
o- satisfies the conditions (CL0) and (CL1) of Sect. 2. This is 
done as follows. Let C0 be the composite command on the 
first line of the body of (3). Let C1 denote the composition 
of h := sq with the subsequent while-loop. We write u. P to 
denote parameter u of process P. It is easy to see that we 
have the invariant: 

(HO) wai t .P  ~ P in C1 A invo.P = u.P. 

In (3), the tests wai t .P  and wait .Q are placed after the 
assignment h := sq, so that h = sq implies that process 
(2 has not been treated in the mean time. More precisely, if 
we write B i ~ j  to denote the composition B i ; . . .  ; Bj, the 
program satisfies the local invariants 

P i n B 0 ~ 5  A h = s q  ~ wait .  P, 
P i n B 2 ~ 5 A h = s q  ~ wait .  Q, 
P i n B 3 ~ 5 A h = s q  ~ v = i n v o .  Q, 
P i n B 4 ~ 5  A h = s q  ~ w = x ,  
P i n B 5  ~ ( v , w , y , t )  e R .  

Let/~. P be the sequence of invocations of process P in the 
order of submission. Using (H0), formula (2) and the local 
invariants, one can prove the invariants: 

(H1) --](P in CO V wait .P) ~ fl.P = alP, 
(H2) P in CO V wai t .P  ~ fi.P = ((alP); u.P), 
(H3) x = e(dt(a)), 
(H4) a lP  = e V P in CO V wai t .P  V resu .P  =f(ap).  

Condition (CL0) of Sect. 2 requires tha t /? .P  = a [ P  when 
P is not invoking. Therefore, (CL0) follows from (H0) and 
(H1). Condition (CL1) follows from (H0) and (H4). The 
invariants (H2) and (H3) are used in the proofs of (H1) and 
(H4). The details are left to the reader. 

As a preparation for the next program, we give an 
indication why program (3) is wait-free. During every 
execution of the body of the repetition, variable sq is 

incremented at least once. If wait. P holds when sq mod n 
becomes P, then wai t .P  becomes false during the first 
execution of that body with h equal to the new value of sq. 
Therefore, the loop of apply of process P terminates after 
at most n + 1 executions of its body by process P. 

In this implementation safe registers are not enough. 
Therefore, reading and writing of x and elements of invo 
have been made atomic. Another disadvantage of this 
program is that it needs unbounded integers. This can be 
eliminated by taking sq and h modulo m for some integer 
m > n. Then the guard of B5 has to be replaced by 
h = sq A wait .  P. The additional conjunct wai t .P  ensures 
that sq does not make a full circle. The main disadvantage 
of (3), however, is the big atomic command B5. It involves 
four shared variables (x, sq, vesu. Q and wait. Q) and three 
private ones (h, y and t). The solution to be presented in the 
next section will remedy all these points. 

4 The abstract implementation 

In this section we begin the development of our main 
algorithm, which is a variation of the solution of Herlihy 
[5]. The crucial atomic actions are compare&swap actions 
on pointers to memory cells. 

Since we want to present the algorithm together with 
a complete proof of correctness, the algorithm is developed 
in steps. We use five levels of invariants. The top level 
consists of the proof obligations (CL0), (CL1) of lineariza- 
bility, cf. Sect. 2. The next level consists of invariants (J0), 
(J1) and (J2) of a first abstract implementation. These 
invariants imply (CL0) and (CL1). The predicates (J0), (J1) 
and 02) are proved to be invariant under assumption of 
invariants (P0) through (P5). 

The predicates (P) are reformulated and strengthened 
to get more convenient predicates (Q0) through (Q8). Two 
additional predicates (Q9) and (Q10) are introduced to 
guarantee safety of the non-atomic shared variables. The 
steps from level (Q) via levels (P) and (J) upto level (CL) are 
treated in this section. The separation of levels is also 
useful to eliminate ghost variable a. In fact, a only occurs 
in the predicates (CL) and (J). 

In Sect. 5, the abstract implementation is refined to 
a more concrete implementation, which has invariants (L0) 
through (L16). An easy verification will show that the 
invariants (L) imply the invariants (Q). The proof of invari- 
ance of (L0) through (L16) is cumbersome. The result of 
this step is a linearizable implementation that is not yet 
wait-free. It may be mentioned that in Sects. 4 and 5, we 
also use a family of "easy" invariants (K0) through (K5). 

The implementation of Sect. 5 still has some nondeter- 
minacy. In Sect. 6, part of this nondeterminacy is resolved 
in such a way that the implementation becomes wait-free. 
For this purpose, the data structure is extended slightly. 
The proof that the implementation is wait-free requires 
two additional invariants and some stability results. 

We now turn to the abstract implementation. We first 
discuss the design of the data structure. The first remarks 
to be made apply equally well to the implementation of 
Sect. 3. 

We need a shared data structure that contains a cur- 
rent state and that can contain invocation and result 
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values for all n processes. All processes are concurrently 
active to compute the next state and the corresponding 
result. Processes can be delayed and the activity of a de- 
layed process must not damage the shared data structure. 
So we have to choose between the alternatives: 

(a) when a process modifies shared data, it does this in an 
atomic action that contains a test to ensure that it is not 
delayed, 
(b) the shared data structure admits actions of delayed 
processes. 

Implementat ion (3) is an elaboration of choice (a). It seems, 
however, that choice (a) is not adequate if a smaller grain 
of atomicity is required. So we turn to choice (b). 

If a delayed process is allowed to compute the next 
state and result for some outdated state and invocation, 
the program may need as many as 2. n state variables and 
every process may need n invocation variables and n result 
variables. Since it is not known which processes are de- 
layed and for how long, the state variables, the invocation 
variables and the result variables cannot be ordered in 
cyclic buffers. 

Following Herlihy [5], we therefore group together 
invocation, next state and corresponding result in one 
"cell". The cell of the current state is equipped with 
a pointer that may point to the next cell. In other words, 
the consecutive states of the object are represented by the 
state components of a linked list of cells. Since a process 
must be able to test whether its invocation has been 
treated, every cell gets a boolean variable to indicate that 
the invocation is still waiting to be treated. 

Since memory usage must be kept explicit we use 
ordinary arrays instead of the pointer facilities of Pascal or 
C. Now an array of records is the same as a system of 
arrays. The latter description is preferred here, since it 
gives cleaner code and cleaner formulae. So the linked list 
is represented by 

type address = 0 . . .  upb {upb to be chosen later}; 

var nx:  array address of address 

; st: array address of X 

; inv: array address of U 

; res:  array address of Z 

; wa:  array address of boolean; 
initially (Vk e address : : -n wa.  k). 

The type address is a subrange of the integers. An element 
k ~ address is called a (memory) address. For  given address 
k, the tuple 

(nx.k ,  st.k, inv.k, res .k ,  w a . k )  

is regarded as the cell at address k. The value nx .k  is the 
next address, i.e., points to the next cell. The value 0 e ad- 
dress is used as a nil pointer. The boolean wa .k  indicates 
whether some invocation is waiting at address k. 

To announce its invocations, each process P is pro- 
vided with a variable a. P of type address (a. P corresponds 
to announce[P] of reference [5]). We thus have the addi- 
tional declaration 

var a:  array process of  address. 

Once instantiated, the element inv.(a.  P) holds the latest 
invocation value of process P. The value of a . P  can be 
read by all processes, but written only by process P. 

For  the purpose of linearization we introduce a shared 
variable g as the address of the current state of the object, 
according to the declaration 

var g: address; 
initially s t .g  - xo A n x . g  = 0. 

Just as in program (3), the interaction between the 
processes and the common data structure requires a pre- 
lude in which the process places its invocation value in the 
common data structure, a working phase m which the 
process participates in the treatment of the current invoca- 
tions and a postlude in which the process obtains the result 
of its invocation. We thus assume that procedure apply has 
the form 

(4t proc apply (in P:  process, u : U: out z : Z); 
I[ co, c1 
: z := res . (a .P)  ][, 

where C0 is the prelude and C1 is the working phase. 
As a first precaution against interference, we give each 

process P its own pool of addresses, cf. [5]. We fix a natu- 
ral number  m to be determined later and let addr.P be the 
subrange of address given by 

(5) k s a d d r . P  = m x P < k G m x { P , - l ~ .  

Since the processes have numbers from 0 through n l, it 
follows that we can take upb = m xn.  Notice that 
0 ~ addr.P for all P. We assume that a . P  e addr.P holds 
initially. 

In command CO, process P places its invocation value 
u at some address a . P  in its own pool and announces the 
invocation by setting wa . la .P)  to true. Since. as soon as 
wa.  (a. P) holds, other processes may use the cell at a. P, the 
initialisation n_x . (a .P) : -0  had better be placed before 
setting wa.(a.P).  We therefore refine command CO in (4) 
by 

(6) CO: I[ choose a . P  e addr. P 
; E: [ [ inv. (a .P) :=  u; nx . ( a .P ) :=  0 

; wa.(a. P) := true ]1 ]1. 

The inner brackets [[ and ]I serve to indicate the extent of 
command E. No atomicity is intended. 

In the design of C 1 we introduce several subcommands 
with names that are chosen in such a way that they can be 
kept in later refinements. For  the moment  we only assume 
that command C1 is refined by 

(7) CI: while w a . ( a . P )  do DD od, 

where command DD does not modify the arrays a and invo 
Moreover, we assume that the only modifications o f w a  in 
DD are 

D5: w a . i : -  false, 

where i is a private variable of P of type address and i + 0. 
We introduce the convention that the parameter  u and 

private variables h, i . . . .  of process Q are denoted by 
u. Q, h. Q, i. Q . . . . .  whenever convenient. If  no additional 
process name is provided, a private variable belongs to 



process P. In all invariants and postulates to be presented, 
we quantify universally over addresses k and processes P, 
Q and T. Now we can prove 

Lemma O. (a) a.Q is constant while -q(Q in CO). 
(b) The program has the invariants 
(K0) a.Q ~ addr.Q, 
(K1) k~  addr.Q A wa.k 

k = a.Q A Q in C1 A inv.k = u.Q. 

Proof (a) The choice of a. Q in CO of process Q is the only 
modification of a. Q. 

(b) Condition (K0) is invariant since, by assumption, it 
holds initially and it is preserved by each choice of a. Q in 
CO of process Q. Condition (K1) is invariant, since wa. k is 

false initially and wa. k can only be made true by process 
Q in E with k = a.Q. By this action, process Q enters C1. 
Process Q has set m y .  k = u. Q in E. Since k q~ addr.P for 
all other processes P, by (K0), inv.k is not modified by 
other processes. Process Q cannot leave C1 while wa.k  
holds. Consequently, a.Q and inv.k are not modified 
while wa.  k remains valid. [] 

Remark. Often, we only need the following consequence of 
(K0) and (K1): 

(Kla) wa.(a.Q) ~ Q in C1. 

We now proceed by constructing the ghost variable 
O- in such a way that condition (CL0) holds. We first 
introduce, for every process Q, a ghost variable ft. Q of type 
U* to stand for the sequence of invocation values of 
process Q in the order of submission. So, initially ft. Q = ~. 
Whenever process Q enters CO, variable ft. Q is modified by 
~.Q:= (p.Q; u.Q). 

We strengthen condition (CL0) to 

(J0) if Q in CO V wa.(a.Q) 
then fi.Q = ((o-[Q); u.Q) 
else ft. Q = O-1Q ft. 

Indeed, (CL0) follows from (J0) since, if Q is not invoking, 
Q is not in c o  and ~wa . ( a .Q)  because of (Kla). Also 
notice that the then-part only applies when Q is in apply so 
that u. Q is well-defined. 

Predicate (J0) holds initially since initially the guard of 
(J0) is false and both fl.Q and O- are initially empty. When 
Q enters CO, predicate (J0) is preserved since at that point 
ft. Q is extended with u.Q. When Q leaves CO, predicate (J0) 
is preserved since at that point wa.(a.Q) is made true. 
Predicate (J0) is not yet preserved when some process 
P executes D5 with i.P = a.Q. We therefore extend com- 
mand D5 with a modification of the ghost variable O-, i.e., 
we replace D5 by 

D5': ( i f w a . i  then O-:= (o-; (inv./,  pown.i)) fi 
; wa. i  :=false}, 

where pown.i is the unique process T with i e  addr.T. 
Process T exists since 0 < i < upb. It is unique because of 
the disjunctivity of the sets addr.T. Now Lemma 0(b) 
implies that D5' replaces O-[Tby (o-IT; u.T) and keeps O-[Q 
constant for Q 4= T. Since, moreover, i = a .T by (K1) and 
i + a.Q for (2 :# T, by (K0), it follows that D5' preserves 
(J0). In view of Lemma 0(a), this shows that (J0) is invariant 
and, hence, (CL0) is invariant. 
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The variables st .k and res .k are intended to hold 
a new object state and a new result corresponding to a new 
invocation at inv. k. Since the invocation at inv. k is only 
new, i.e., waiting for (completion of) treatment, if wa.k 
holds, we postulate 

(8) st .k and res. k are constant while ~ wa. k. 

We now strengthen condition (CL1) to the invariant 

(Jl) alQ = ~ v Q in CO V wa.(a.Q) v res.(a.Q) =f(o-Q). 

Indeed, (CL1) follows from (J1), (Kla) and (8): if Q is not 
invoking and O-[Q + e then (J1) and (Kla) imply that 
res.(a.Q) =f(o-Q). Moreover, Q has submitted some invo- 
cation and, hence, has obtained some result. Now (8) and 
(Kla) imply that res.(a.Q) still holds the latest result 
obtained by Q. 

In order to establish the invariance of (J1), we have to 
use formula (2) that defines funct ionfby means of relation 
R and function e. The computation off(o-Q) requires the 
value of the state of the object and must be accompanied 
by a computation of the next state of the object. As 
announced above, we use g as the address of the current 
state of the object and nx .g  as the address of the next state. 
One might regard e(dt(o-)) as the current state of the object, 
but O- is modified in command D5' which does not modify 
g. Therefore, instead of s t .g  = e(dt(o-)), we propose the 
invariant 

(J2) if nx. g = 0 V wa.(nx.g) 
then st .g = e(dt(o-)) 
else st.(nx.g) = e(dt(o-)) ft. 

In order to preserve (J1) and (J2), we postulate that D5' of 
P only modifies O- under specific circumstances, viz., 

(P0) P i n D 5 ' A w a . i  
nx.g  = i :# 0 A (inv./, st.g, st./, res.i} ~ R. 

It follows that, if execution of D5' of P modifies wa. i  
and T=pown. i ,  the execution has the precondition 
st .g = e(dt(o-)) by (J2). In view of (P0) and formula (2), this 
precondition also satisfies 

s t . / =  e(dt(o-); inv./) A res . i  =f(dt(o-); inv./). 

Since D5' then replaces dr(o-) by (dr(o-); inv./), this execu- 
tion establishes 

st.i = e(dt (o-)) Ares .  i = f(dt(o-)). 

Since i =  a .T and the postcondition has O-r = dr(o-), this 
implies that D5' preserves (J1) for Q = T. For Q :t= T, the 
value % is not modified and, by (K0), wa.(a. Q) also re- 
mains constant; therefore (J1) is also preserved for Q + T. 
Since nx .g  = i =t= 0 and the postcondition has -qwa.i,  it 
also follows that D5' preserves (J2). 

Condition (J1) holds initially because of O- -- e. Condi- 
tion (J2) holds initially because of n x . g =  0 and 
st .g = Xo = e(e). By Lemma 0 (a), modification of array 
a does not falsify (J1). Also, modification o fwa  in CO does 
not falsify (J1). By (8), modification of res does not falsify 
(J1). Therefore (J1) is invariant. 

With respect to (J2), we still have to take care of the 
modifications of g, nx, wa and st. We first treat modifica- 
tion of g. After D5', one might expect the update g := nx. g 
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Since both g and r,_x are shared variables, such an update 
could be done by all processes (even concurrently), Since it 
must be done precisely once, we give each process a private 
variable h of type address that serves as a possibly out- 
dated copy of g and we let g be modified only by the 
compare&swap action 

D6: ( i f g  = h then g:=  i f i ) .  

We postulate 

(P1) P i n D 6  A g = h  

nx . g  = i d= O A ~ w a . i  A n_x.i = O. 

This postulate guarantees that D6 preserves (J2). For, it 
implies that g is only modified if the guard of (J2) is false, 
that g becomes nx .g  and that the guard of 02) becomes 
true. 

By postulate (P0), effective execution of D5' presupposes 
nx .g  :~ 0. We therefore introduce some assignment to 
nx.g. To avoid the usage of two shared variables in one 
command, we prefer an assignment to nx. h. Since it might 
violate (J2) if nx. h ~: 0, we propose the consensus action 

D2: ( if  nx.h  = 0 then nx .h :=  i fi}, 

with the postulate 

(P2) P i n D 2 A n x . h = 0  ~ i + 0 A w a . i ,  

In fact, it is easy to see that (P2) implies that D2 preserves 
02). 

Remark. Although it is not necessary, it is natural also to 
postulate 

(P2') P i n D 2 A n x . h = 0  ~ g = h .  

This predicate will indeed be preserved, see (L6) below. [] 

In order to guarantee that the assignments to nx and 
wa in region E preserve (J2), it is sufficient to postulate 
invariant validity of 

(P3) P i n e  ~ a .Pr  nx.g}. 

We now come to the central computation. Since h is 
supposed to be a private copy of g, postulate (P0) suggests 
that command DD should contain command D4 given by 

D4: locapply (inv./, st.h, st./, res.i). 

Since this command threatens postulate (8) for k = i, we 
postulate 

(P4) P i n D 4 A ~ w a , i  
(inv./, st.h, st./, res . i )  ~ R. 

Now, indeed, since locapply is specified by R and relation 
R is deterministic, postulate (P4) implies that D4 does not 
violate (8). Since st and res will not be modified by other 
commands, we may henceforth regard (8) as a corollary of 
(P4). 

Command D4 also threatens the invariance of (J2) by 
modifying st .g or st.(nx.g). Therefore, we postulate in- 
variant validity of 

(P5) - lwa .g .  

Using (8) and (P5), one can easily verify that D4 preserves 
02). This shows that (J2) is an invariant. 

The results obtained until now can be summarized in 

Theorem 0. Assume that the only actions in DD on the 
shared variables wa, g, nx, st, res, a, inv are D2, D4, D5' 
and D6. Assume invariant validity of the postulates (P0)I 
through (P5). Then (CL0) and (CL1) are invariants. 

It remains to guarantee the postulates (P0) through 
(P5). Since they do not involve the ghost variables a and 
/3. Q, we may forget about these ghost variables and thus, 
henceforward, argue about command D5 instead of D5'. 

In order to get indications for the treatment of the 
variables, we reformulate the postulates (P) and strengthen 
them slightly. We first compile a list of new postulates (Q) 
and then verify that its conjunction implies all postulates 
(P). In view of (P0), (P1) and (P2), we postulate 

(Q0) P i n D 2 ,  D4, D5, D6 ~ i=~0, and 

(Q1) P in 04, 05, 06 =~ i = n x . h .  

In order to get (P2), we also require 

(Q2) P i n D 2 A n x . h = 0  ~ wa.i. 

In view of command D4 and postulates (P0) and (P4), we 
postulate 

(Q3) ( P i n D 4 A ~ w a . i )  V P i n D 5  
(inv./,  st.h, st./, res . i )  ~ R. 

In order to get (P0)from (Q3), we also require 

(Q4) P i n D 4 , D 5 A w a . i  ~ h = g .  

Here, the possibility P in D4 is added for usage in Theorem 
1 below. 

In view of command D5 and postulate (P1), we 
postulate 

(Q5) P in D6 ~ -nwa.i.  

In order to get nx. i  = 0 in (P1), we require 

(Q6) nx .g  = 0 V nx.(nx;g) = 0. 

Postulates (P5) and (P3) are repeated as 

(Q7) -n wa.g, 
(Q8) P in E ~ a .Pr  nx.g}. 

In fact, (P0) follows from (Q0), (Q1), (Q3) and (Q4). 
Postulate (P1) follows from (Q0), (Q1), (Q5) and (Q6), 
Postulate (P2) follows from (Q0) and (Q2). Postulate (P3) 
is (Q8). Postulate (P4) follows fl'om (Q3). Postulate (P5) is 
(Q7). 

Since the non-atomic shared variables inv, st, res are 
only assumed to be safe, we also postulate 

(Q9) P in D4 A Q in E ~ a.Q r {h.P, nx.(h.P)}, 
(Q10) P in D4 ~ - lwa .h .  

Now we can prove 

Theorem 1. Assume that the only actions in DD on the 
shared variables wa, g, nx, st, res, a, inv are D2, D4, D5 and 
D6. Assume invariant validity of the postulates (Q0) up to 
(Q10). Then the implementation of the data object is lineariz2 
able. Moreover, the read and write operations of the safe 
variables inv,k, st.k and res.k do not destructively inter- 
fere. 



Proof. The first assertion follows from Theorem 0 and the 
fact that the predicates (Q0) through (Q10) imply the 
predicates (P0) through (P5). 

With respect to interference, we have to consider com- 
mand D4 and the write action of inv  in E and the final read 
action of res. We begin with D4. If two processes concur- 
rently execute D4 there are two possibilities of interference. 
It may be that one of the processes, say P, is writing into 
a variable that is being read by the other process, say Q. 
Then i .P = h.Q. By (Q10), we then have ~wa . (h .Q)  and 
hence ~ wa.(i. P). By (8), this implies that P's write opera- 
tion into st.(i.P) is nonmodifying. Since st.(i.P) is a safe 
variable, this is a harmless interference. 

The other possibility is that P and Q are both writing 
into the same variables. We then have i .P = i.Q. If 
~ w a . ( i . P )  then (8) implies that both write actions are 
nonmodifying and the interference is harmless. If wa.(i. P) 
then predicate (Q4) implies that h .P  = g = h.Q. Then the 
determinacy of locapply implies that P and Q are writing 
the same values in st.(i.P) and res.(i.P). Since these vari- 
ables are safe, this is a harmless interference. 

Interference between D4 and E is precluded by (Q9) 
and (Q 1). Interference between different processes in E is 
precluded by invariant (K0) and the disjointness of the sets 
addr.P. Finally, interference could occur between some 
process P in D4 and Q's final read action z := res.(a.  Q). In 
that case, i .P  = a. Q and (Kla) implies - lwa . ( a .  Q). There- 
fore, command D4 of P does not modify res.(a.Q). Again 
the interference is harmless. []  

5 A sound implementation in quadratic space 

In this section we provide a concrete program that satisfies 
the postulates (Q). More precisely, we extend the program 
such that values are assigned to the local variables h and i, 
and that the nondeterminate choice o f a . P  in CO is guided. 
This is done in such a way that the postulates (Q0) up to 
(Q10) can be proved and that in a later stage progress can 
be ascertained. 

In this section, several design choices are made to 
preclude specific harmful scenarios. It is only after all 
choices have been made that we can provide a long list of 
invariants and prove the absence of harmful scenarios. 

As announced earlier, we use h as a local copy of g, 
which may be outdated. We therefore begin command DD 
with h := g. Since process P enters DD with wa.(a.P),  
postulate (Q2) may suggest to let command D2 be preced- 
ed by an assignment i:= a.P.  In this way, we get the 
tentative refinement of DD by 

DD: [[ h : = g ; i : = a . P  
; D2: ( i f  nx .h  = 0 then nx .h :=  i fi) 
; D3: i:= nx .h  
; D4: locapply (inv.i, st.h, st./, res. i)  
; D5: wa. i  := false 
; D6: ( i f  g = h then g :=  i fi) ][. 

Command D3 is introduced to establish (Q1) in the case 
that D2 does not modify nx.h. The choice i:= a .P  in 
combination with D2, however, raises the possibility of 
individual starvation: there is no way to guarantee that 
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P ever establishes n x .g  = a.P. We therefore allow other 
processes to establish this predicate. For  the moment, we 
only introduce nondeterminacy. In Sect. 6, we show how 
this nondeterminacy is used (and eliminated) to guarantee 
bounded delay. Thus, i:= a. P is replaced by 

DO: [[choose r~process;  i:= a.T]l. 

Now the consequent wa. i  of condition (Q2) is in danger. 
We therefore provide a second option by introducing 

DI: i f ~ w a . i  then i:= a .P  ft. 

This, however, does not yet guarantee (Q2), for two rea- 
sons. Firstly, some other process may have set wa.(a.P)  to 
false after P entered its loop body DD. Secondly, even after 
execution of D1, some process may set wa. i  to false. For 
the moment, we only treat the first objection by introduc- 
ing an additional test on wa. (a. P). In this way we come to 
the (still tentative) refinement 

DD: I[- h:= g; D]I. 

where D is given by 

(9) D: if w a . ( a . P )  then 
D0: [[ehoose T ~ process; i := a. T] [ 

;DI:  i f - n w a . i  then i:= a .P  fi 
;D2: ( i f  roz.h = 0 then n x .h :=  i fi) 
;D3: i:= nx.h  
;D4: locapply (inv.i, st.h, st.i, res.  i) 
;D5: wa. i :=  false 
;D6: ( i f  g = h then g : =  i fi) 
ft. 

In order to guarantee (Q9), the processes need to commun- 
icate the values of h. For  this purpose we introduce 

vat b: array process of address, 

with the intention that b .P  = h whenever P is in D. The 
value of b .P  can be read by all processes, but modified 
only by process P. We do not want an assignment b. P := g, 
since it would refer to two shared variables at the same 
time. The sequential separation h := g; b . P  := h introduces 
the danger that some process Q reads b.P,  before process 
P sets b .P  and subsequently enters D with a value h :# g 
(entering with h = g is harmless if(Q8) holds). This danger 
is precluded by providing a test h = g to guard command 
D. In this way we arrive at the refinement of DD given by 

(10) DD: i [ h : = g ; b . P : = h  
; if h = g then D fill,  

where D is given by (9) above. We shall show that C1 as 
refined by (7), (10) and (9) indeed satisfies the aims set for 
this section. As indicated above, the tests h = g and 
wa.(a.P)  are both necessary. In Sect. 7, we shall show that 
it is not even allowed to reverse the order of the two tests. 

Analogously to the convention in Sect. 3, we write 
D i ~ j  to denote a composition D i ; . . .  ;Dj. From the pro- 
gram text together with invariant (K0) and formula (5) we 
easily get that the following predicates are invariant: 

(K2) P i n D  ~ h . P = b . P ,  
(K3) P i n D l ~ 2  ~ i . P + O .  



74 

We still have to refine the choice of a .P  in command 
C0 in such a way that (Q8) and (Q9) can be proved. For  
this purpose, each process P is equipped with a persistent 
private variable s.P to stand for the set of addresses 
currently not available for a.P,  according to the declar- 
ation 

var s.P: set of address; 
initially s.P = (address\addr.P)w{g, a.P}. 

Command CO is refined by 

(11) CO: I[ if s.P = address then A fi 
; choose a .P  s address\s.P 
; E: 1[ inv. (a . P) := u 

; nx . (a .P) :=  0 
; wa.(a.P) := true 
;; s.P:= s.Pw{a.P}]] ]1, 

where command A establishes the postcondition s.P 4= 
address. Then the choice of a .P  in the complement 
address\s.P is certainly possible and is easily imple- 
mented, say by a linear search. 

Since we want that C0 as given in (11) is a refinement of 
CO of (6), we need the postulate 

(Ql l )  address\s.P c_ addr.P. 

The postulates (Q8) and (Q9) may now suggest the 
postulates 

(Q12) {g, nx.g} ~ s.P, 
(Q13) P i n D A ~ ( Q i n A )  

{h.P, nx.(h.P)} ___ s.Q. 

The assignment to s .P in command E of (11) is introduced 
for the preservation of (Q12). In fact, as soon as wa.(a.P)  is 
made true, some process may establish nx .g  = a .P  by 
performing D2. 

Command A in (11) is refined by 

(12) A: 1[ s.P:=(address\addr.P)u{g,a.P} 
; for each T ~ process with T ~= P do 

i:= b .T  
; s .P:=s.Pw{i ,  nx.i} od][. 

So, after its renewed initialization in A, variable s. P is only 
made larger. This implies that we have the invariant 

(K4) address\addr.P ~_ s.P. 

Invariant (K4) clearly implies postulate (Qll).  
In the first command of A, the value of g is put into s. P 

in view of postulate (Q12). The decision to put a .P  into 
s.P, instead of nx.g, is motivated by the fact a .P  is not 
modified by other processes, whereas nx .g  uses two highly 
vulnerable shared variables. The fact that a. P can be used 
here will follow from the invariant (L14) presented below. 

The for-loop of A is intended to establish (Q13). In the 
postcondition of the for-loop, the set s.P clearly contains 
at most 2 x n elements of addr.P. It now follows from 
(5) that, if we take m > 2 x n, command A establishes 
s.P 4 = address, as required. We prefer a choice like 
m = 4 x n, see Sect. 9. This implies upb = 4 x n 2 and thus 
justifies the expression quadratic space in the title of this 
section. 

The assignment to s.P in command E of (11) is disjoint 
from the actions of the processes Q = P, in the sense of [1] 
Sect. 5.1. By the atomicity rule ( [ i ]  Theorem 6.26), we may 
therefore regard the last two statements of region E as 
a single atomic statement. This is indicated by means of 
the symbol "'; ;". It is not a restriction on the implementa- 
tion. but only a convenience for the proof (otherwise 
a ghost variable s'.P must be introduced to stand for 
s .Pu{a .P}  at the point of ";:". It is easy to see that. after 
these preparations, the program satisfies the invariant 

(K5) P i n E  - a . P ~ s . P .  

It is clear that (K5), (Q12) and (Q13) imply (Q8) and (Q9). 

Remark. For the elegance of the program one might prefer 
to replace s by its complement, which is a subset of addr. P. 
We have not done so, since the present version is more 
convenient for the proof that is to be given. [B 

We now claim that program (4) with C0 refined by (11) 
and (12), and C1 refined by (7), (10) and (9) satisfies the 
invariants (Q0) through (Q13). 

In the proof of this claim, we use the invariants (K0) 
through (K5) obtained above and a new list of invariants 
(L) to be presented now. Since we shall prove invariance 
under actions of P, the invariants (L) use Q and T as 
process names. Since we have to go through the list several 
times, the invariants are numbered consecutively. Each 
invariant is motivated either as being needed for some of 
the postulates (Q) or for the preservation of one of the 
other invariants. In either case, the motivation is not 
meant as a proof but merely as an announcement. 

In view of invariant (K3) and the contents of command 
D3, the postulates IQ0) and (Q1) are replaced by 

(L0) Q in D 3 ~ 6  ~ nx.th.Q) = O. 
(L1) Q in D 4 ~ 6  ~ nx.(h.Q) = i.Q. 

Postulate (Q2) is repeated as 

(L2) Q in D2 A nx.(h.Q) = 0 ~ wa.(i.Q). 

In order to preserve (L2) under D1, we also introduce 

(L3) Q i n D 0 ~ l A n x . ( h . Q ) = 0  ~ wa.(a.Q). 

Since process Q enters region D only if h. Q = g, some 
invariants mention region D. Since i. Q is modified in D, 
these invariants do not use i.Q. The first case is invariant 
(L4), which in conjunction with (L0) and (L1) implies (Q3): 

(L4) Q in D A nx.(h.Q) = k 4:0 A (--nwa.k V Q in D5) 

(inv.k,  st.(h.Q), st.k, r e s . k )  e R. 

In order to preserve (L4) when process Q enters region D, 
we postulate 

(L5) n x . g = k + 0 A - l w a . k  

(inv.k,  st.g, st.k, r e s .k )  ~ R. 

In view of (L0) and (L1), postulate (Q4) combined with the 
optional postulate (P2') is replaced by the contraposition: 

(L6) Q i n D A h . Q + g  
nx.(h.Q) + 0 A ~wa.(nx.(h .Q)) .  



Postulate (Q10) is strengthened to 

(L7) Q in D ~ -qwa.(h.Q). 

Postulates (Q5), (QT) and (Q6) are repeated as 

(LS) Q in D6 ~ -lwa.(i.Q), 
(L9) ~wa .g ,  
(L10) nx.g = 0 V nx.(roz.g) = 0. 

In order to keep (L10) invariant under D2, and in view of 
(L2), we postulate 

(Lll) wa.k => nx.k =0.  

In order to preserve (Lll), we need 

(L12) Q in E0 ~ nx.(a.Q) = 0, 

where E0 is the final subcommand of E in (11) that consists 
of the assignments to wa and s. 

The last part of the list consists of the invariants of 
memory management. Postulate (Q12) is repeated as 

(L13) {g, nx.g} c s.Q. 

In order to preserve (L13) in the first command of A, we 
need (as announced above): 

(L14) nx.g(~addr.Q V nx.g  = a.Q V Q in E V wa.(a.Q). 

For treatment of (Q 13), we first define a location predicate. 
If T + Q, we write Q done T to denote that process Q is not 
in command A of (12) or has treated process T in the 
for-loop of command A. Now (Q13) is strengthened to 

(L15) QdoneTATinD 
{h.T, nx.(h.T)} ~ s.Q. 

In order to preserve (L15), we also need 

(L16) Q a t T A T i n D  
i.Q = h.T V {h.T, nx.(h.T)} ___ s.Q, 

where Q at T is used to denote that Q is in A, has executed 
i:= b.T in its for-loop and has not yet completed the 
subsequent assignment of s.Q. 

This concludes the list of invariants (L). Before proving 
that these predicates are invariants of the program, we 
show that they imply the predicates (Q). 

Well, (Q0) follows from (K3), (L0) and (L1); (Q 1) is (L1); 
(Q2) is (L2); (Q3) follows from (L0), (L1) and (L4); (Q4) 
follows from (L1) and (L6); (Q5) is (L8); (Q6) is (L10); (Q7) 
is (L9). As noticed above, (Q8) and (Q9) follow from (K5), 
(Q12) and (Q13), and (Qll)  follows from (K4). Finally, 
(Q10) follows from (L7); (Q12) is (L13); (Q13) follows from 
(L15). 

Since the processes are tightly coupled, the proof that 
the predicates (L0) through (L16) are invariants of the 
algorithm is a huge case analysis. In each of the cases, 
a small argument is sufficient. We first treat some of the 
commands separately. 

Lemma 1. Command D2 of process P preserves the predi- 
cates (L0) through (L16). 

Proof If an_x.(h.P) + 0 in the precondition of D2, then D2 
is equivalent to skip. Since P enters D3 this action only 
threatens predicate (L0) for Q := P; it preserves this predi- 
cate since the consequent holds. 
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Otherwise we have nx.(h.P) = 0 in the precondition. 
By (L2) and (L6), it follows that the precondition satisfies 
h.P = g and wa.(i.P). Therefore D2 only sets nx.g to i.P 
while P enters D3. Predicate (L0) for Q := P is preserved 
because of (K3). If Q is a process in D4 ~ 6 with 
nx.(h.Q) = i.Q then i.Q ~= 0 by (L0), so that D2 of P does 
not modify nx.(h.Q). Therefore, (L1) is preserved. The 
predicates (L2), (L3), (L6), (L7), (LS) and (L9) are not 
threatened. Because of wa.(i.P), the predicates (L4) and 
(L5) are not threatened either. 

Since wa.(i.P) implies nx.(i.P) = 0 by (Lt 1), predicate 
(L 10) is preserved. Since nx. g is set, preservation of (L 11) 
follows from (L9). By (K5) and (L13), a.Q + g for all Q in 
E0; therefore D2 preserves (L12). 

Because of (K4), command 02 threatens (L13), (L15) 
and (L16) only for process Q with i.P ~ addr.Q. Then 
wa.(i.P) implies i.P = a.Q and Q in C1 by (K1), so that 
i . P e s . Q  by (K5). Therefore (El3), (L15) and (L16) are 
preserved. 

Since D2 only modifies nx.h, it only threatens (L14) if 
h.P = g. If i .P ~ addr.Q it establishes the first disjunct of 
(L14). Otherwise, wa.(i.P) implies i .P = a.Q by (KI), so 
that the second disjunct of (L14) is made true. Therefore, 
(L14) is preserved. [] 

Lernma 2. Commands D3, D4 and D5 of process P preserve 
the predicates (L0) through (L16). 

Proof Command D3 clearly preserves (L1) for Q := P and 
does not threaten other predicates of the list. 

Command D4 can only modify s t . /and res.i. There- 
fore, only (L4) and (L5) are threatened. By determinacy of 
relation R as specification of locapply, it follows from (L0), 
(L 1) and (L4) that D4 can only modify st. i and res. i if wa.i 
holds. So we may assume wa.i. Because of (L7), predicate 
(L4) is threatened only for processes Q in D5 with 
nx.(h.Q) = i.P. Then h.Q = g = h.P by (L6) and (L1). 
Therefore, D4 establishes the consequent of (L4) for such 
Q. This proves that D4 preserves (L4). Since the antecedent 
of (L5) yields ~wa .k ,  predicate (L9) implies that (L5) is 
preserved. 

Command D5 only threatens (L2), (L3), (L4), (L5) and 
(L14) by setting--n wa.i, and (L8) for Q := P by entering D6. 
We first notice that (L0), (L1) and (L6) imply 

P in D5 A wa.(i.P) ~ h.P = g A nx .g  = i.P :~ O. 

Command D5 threatens (L2) and (L3) only for processes 
Q with nx.(h.Q) = 0. Then (L6) implies h.Q = g, contra- 
dicting nx. g 4: 0. This proves that (L2) and (L3) are preser- 
ved. Since D5 only makes wa.(i. P)false, predicate (L4) is 
threatened only for processes Q in D with nx.(h.Q) = i.P. 
From wa.(i. P) and (L6) follows h. Q = g = h.P. Therefore, 
preservation of (L4) for Q follows from (IA) for Q := P. It 
follows from h.P = g and (L4) for Q:= P that (L5) is 
preserved. If the fourth disjunct of (L14) is falsified the 
second disjunct remains valid. So (L14) is preserved. 

Predicate (L8) for Q := P is preserved since 05 estab- 
lishes the consequent. [] 

Lemma 3. Command D6 of process P preserves the predi- 
cates (L0) through (L16). 
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Proof If h .P # g, command D6 is equivalent to skip and 
preserves all predicates of the list. So, we assume that 
h.P = g in the precondition. By (L0), (L1), (LS) and (L10), 
the precondition then satisfies 

H: h.P = g A n x . g =  i.P # O 

A '-7wa.(i.P) A nx.(i.P) = O. 

Then D6 sets g to i.P. Since nx.(i.P) = 0 r addr.Q, predi- 
cate (L14) is preserved. In view of H, the only other 
predicates threatened are (L6) and (L13). If D6 threatens 
(L6) for process Q, it is because h.Q = g holds in the 
precondition and is made false by D6. Since predicate 
H together with h.Q = g implies 

n x . ( h . Q ) ,  0 A -] wa.(nx.(h.Q)), 

predicate (L6) is preserved for all Q. 
I fh .P = g, command D6 replaces g by nx .g  and nx .g  

by 0. Since Oes.Q by (K4), this implies that (L13) is 
preserved. [] 

Lemma 4. All commands of CO of process P preserve the 
predicates (L0) through (L16). 

Proof It is clear that command A of process P only 
threatens (L13), (L15) and (L16) for Q:= P. The first 
assignment to s.P in A only threatens (L13). By (L14) 
and (K1), its precondition satisfies nx.g~addr.P or 
nx .g  = a.P. Therefore, (L13) is preserved. 

The assignment to i when P treats process T in its 
for-loop only threatens (L16), and only if Tis in D. By (K2), 
the assignment to i has postcondition i. P = h. T, so that 
(L16) is preserved. The subsequent assignment to s.P does 
not make s.P smaller; it therefore only threatens (L15) for 
(2 := P; it preserves (LI5) because of (L16). The choice of 
a .P  only threatens (L14) for Q:= P. This predicate is 
preserved since P enters E. 

For the discussion of the commands of P in E, we first 
observe that (K5), (L13) and (El5) imply 

a .P  r {g, nx.g} 
A (VT:T in D" a.P (i {h.T, nx.(h.T)}). 

The assignment to inv.(a.P) only threatens (L4) and (L5). 
Preservation of (L4) follows from a .P  # nx.(h.r) when 
T is in D. Preservation of (L5) follows from a. P # nx. g. 

The assignment nx.(a .P) := 0 sets an element of nx  
equal to 0 and coincides with entering E0. Since a .P  # g 
and a. P # h. T for all T in D, the only predicate threatened 
is (L12) for Q := P. This predicate is preserved since the 
consequent is established. 

Command E0 is the pair of assignments to wa.(a. P) 
and s.P. It coincides with leaving E and entering C1. It 
therefore only threatens (L6), (L7), (L8), (L9) and (L11) by 
modifying wa and (L13), (L15) and (L16) for Q := P by 
modifying s.P. 

Preservation of (L6) and (L7) follows from 
a.P # nx.(h.Q) and a .P  # h.Q for Q in D. Preservation of 
(LS) follows from (L1) and a .P  # nx.(h.Q) for (2 in O. 
Predicate (L9) is preserved since a. P =t = g. Preservation of 
(Lll)  follows from (L12). Since s.P is only made bigger 
(L13), (L15) and (L16) for Q:= P are preserved. [] 

Theorem 2. Program (4) with C1 and CO refined according 
to (7), (9), (10), (11) and (12) has the invarlams (L0) through 
(L16). It is a linearizable implementation of the data object. 
Moreover, the read and write operations of the safe variables 
inv. k, st. k and res. k do not destructively interfere. 

Proof Since Theorem 1 applies, it remains to prove that 
(L0) through (LI6) are invanants. 

Initially, all elements of wa are false and g ~ s. Q and 
n x . g -  0 and 0 r addr.Q and 0 ~ s.Q. This proves the 
initial validity of (L5), (L9), (L10), (Lll), (L13)and (L14). 
The other predicates hold initially since no process is 
active. 

It remains to verify that all commands of the program 
preserve the predicates. Command CO preserves the predi- 
cates because of Lemma 4. Passing the guard of C], and 
the assignments to h. P and b. P do not threaten any of the 
predicates. 

We come to the point where process P enters D by 
passing the test h = g. Then P in D becomes true. The only 
predicates that are threatened by this action, are (L4), (L6) 
and (L7) for Q := P, and ILl5) and (L16) for T:= P. Preser- 
vation of (L4) follows from h.P = g and (L5). Since P 
enters O only if h.P = g, preservation of (L6) is clear. 
Preservation of (L7) follows from h.P = g and IL9t. Pres- 
ervation of (L15) and (L16) for T:= P follows from 
h..P - g and (L13). 

We now consider command D. It is clear that passing 
the test wa.(a.P) preserves (L3) for Q := P and does not 
threaten the other mvariants. Command DO does not 
threaten any of the predicates (L0) through (Lt6). By (L3) 
for Q := P, command D1 preserves (L2~ for Q := P. It does 
not threaten the other invarlants. 

The commands D2, D3, D4, D5 and D6 are treated in 
Lemmas 1, 2 and 3. Finally, none of the predicates (LO) 
through (L16) are threatened by the action of exiting D or 
exiting the repetition, or by the final assignment to z. [] 

Remarks. In the predicates and the proofs, the location 
predicates like P in O and Q art P can be eliminated by 
introducing ghost variables. For example, one can intro- 
duce an integer ghost variable r private to process P such 
that always 0 < t < 9 and 

P i n D  = t>=l, 
P i n D 0  = t = 2 ,  
P i n D 1  = t = 3 ,  etc. 

Then a positive outcome of the test h = g guarding D must 
be accompanied by a simultaneous assignment t := 1. 
A positive outcome of the subsequent test wa.(a.P) must 
be accompanied by t := 2; a negative outcome by t := O. 
This could be encoded by 

( if wa.(a.P) then t:= 2); D0; . .  ; D6 
else t:= 0) ft. 

If the test in D1 finds -Twa.i, the assignment i:= a .P  is 
accompanied by t := 4. If it finds wa.i, the assignment 
t := 4 is executed instantaneously. So the important tests in 
the program must be accompanied by simultaneous as- 
signments to t. Since the program gets cluttered with 
assignments to ghost variables, we prefer to use location 
predicates whenever possible. 
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In this section we use a variation of the classical 
method of Owicki and Gries [13] in the style of Lamport  
and Schneider ([10], [11]). Previous versions of the proof 
used several shortcuts. Indeed, the invariants (L3), (LS), 
(L12), (L16) are so local, that it is a pity that we have to 
mention them. The shortcuts have been eliminated, how- 
ever, since they increased the complexity of the argument 
without decreasing the size. 

6 The program is made wait-free 

We first give a result that can be interpreted as progress of 
the system as a whole. 

Lemma 5. During every execution of the body of C1 by 
process P while wa.(a .P)  remains true, variable g is modified 
at least once. 

Proof The body of C1 begins with h:= g. If wa.(a .P)  
remains true and g is not modified before D6, it follows 
from the text of(9) and (10) that D6 is executed with h = g. 
Then (L0), (L1) and (L10) imply that i 4= g and hence that 
command D6 modifies g. []  

We now have to guarantee some kind of fairness in the 
choice of T in DO, see (9). Since it is never known which 
process is executing, it seems likely that fairness must be 
guaranteed by means of shared data. Following Herlihy 
[5], we (conceptually) add a process number to the state of 
the object. At every state transition of the object the 
process number is incremented by one modulo n. The 
process number at the old state indicates the process T to 
be chosen in D0. Compare program (3). So we additionally 
declare 

vat seq: array address of process, 

and we replace the commands DO and D4 in D by 

(13) DO': i:= a.(seq.h), 
D4': [[ locapply (inv./, st.h, st./, res. i)  

; seq. i := (seq.h + 1) mod n]l. 

It is clear that this yields a refinement of command D of (9). 
The element seq.k can be regarded as an additional com- 
ponent of the state st.k. So we consider an extended state 
space X' = X x p r o c e s s  and an extended relation 
R' ~_ U x X'  x X'  x Z given by 

(u, <x, Q>, (y, T>, z> ~ R' 
-= ( u , x , y , z ) ~ R A T = ( Q + l ) m o d n .  

Relation R' is also total and deterministic. Since D4' is the 
analogue of D4 for the extended state and relation, (L5) 
and (L4) give rise to the additional invariants 

(L17) n x . g = k + 0 A ~ w a . k  
seq.k = (seq.g + 1) mod n, 

(L18) Q i n D A n x . ( h . Q ) = k = ~ 0 A ( ~ w a . k V Q i n D 5 )  
seq.k = (seq.(h.Q) + 1) rood n. 

Lemma 6. The following stability properties hold: 
(SO) seq.g is constant while g is constant, 
(S1) whenever g is modified, seq.g is incremented by one 
modulo n, 

(S2) -nwa.(a .Q) is stable while ~ ( Q  in C0), 
(S3) h.Q + g is stable while (Q in D). 

Proof It follows from (L0), (L1) and (L18) that secl.k is 
modified only by process P when k = nx.(h.P) and wa.k 
holds. By (L6) and (L10) we then have h.P = g and 
k = roz.g 4: g. This proves (SO). Property (S1) follows from 
(L0), (L1), (L8) and (L17). 

Property ($2) is only threatened by the assignment 
wa. (a. P):= true in E, and only if a. P = a.Q. By invariant 
(K0) and the disjointness of the sets addr.Q, the equality 
a .P  = a.Q implies P = Q and hence Q in CO. This proves 
($2). 

It is clear that h. Q is constant while Q in D. Therefore 
($3) is only threatened by modification of g, say by com- 
mand D6 of some process P. This command threatens 
($3) only ifg = h.P and i.P = h.Q 4: gin the precondition. 
By (L0), (L1) and (L6), it follows that n x .g  = i.P ,t = 0 
and n x . ( n x . g ) =  nx. (h .Q)+ O, contradicting (L10). This 
proves ($3). [] 

The proof that the program is wait-free relies on the 
r61e of the sequence number in command DO'. In the 
following result, we need a new location predicate: we 
write P in D1T to indicate that P is in the then-part of 
command D1. In other words, the test ~ w a . i  has been 
executed and has yielded true and the subsequent assign- 
ment to i has not yet been executed (this exceptional region 
D1T was found to be needed in our verification by means 
of the theorem prover N Q TH M,  see [8]). 

Lemma 7. For a fixed process P, let predicate X be given by 

X: seq.g = P 
nx .g  e {0, a.P} 

A (VQ: Q i n D l ~ 6 A h . Q = g  
: i.Q = a .P  A ~ (Q in D1T)). 

(a) Every modification of g establishes X. 
(b) X is stable while wa.(a.P). 

Proof (a) By postulate (P1), every modification of g has 
postcondition n x .g  = 0. It follows from ($3) that every 
modification of g has postconditions h. Q # g for all Q in 
D. These predicates imply X. 

(b) Now let X A wa.(a.P)  hold in the precondition of 
some command. We have to show that the command does 
not invalidate X. By (Kla), process P is in C1, so that a .P  
is constant. By part (a), any modification of g does not 
invalidate X. So we assume that g is constant. By (SO), this 
implies that seq.g is constant. 

If roz.g gets a new value # 0, this is done by some 
process Q in D2 with h.Q = g and hence ioQ = a.P by X. 
So, this does not invalidate X. If seq.g = P and some 
process Q with h.Q = g enters D1 by executing DO, it sets 
i.Q := a .P  and therefore does not invalidate X. If Q with 
i.Q = a .P  executes the test of D1 then wa.(a.P)  implies 
that Q does not enter D1T and hence does not invalidate 
X. Finally, if some process Q with h. Q = g executes D3, 
then (L0) implies l ax .g +  0, so that X implies 
nx.(h.Q) = nx .g  = a.P.  Therefore, D3 does not invalidate 
X. []  

We are ready to prove our main result. 



78 

Theorem 3. Program (4) with CO refined according to (11) 
and (12) and C1 refined according to (7), (9) and (10) with DO 
and D4 replaced by DO' and D4' of (13) is linearizable and 
wait-free. 

Proof Since we have refined the program of Sect. 5, The- 
orem 2 implies that the implementation is linearizable. It 
remains to prove that the implementation is wait-free: 
apply of process P terminates after a bounded number of 
steps of process P. In view of the program text, it suffices to 
prove that the loop C1 of process P terminates after 
a bounded number of steps of P. Since wa.(a.P)  is the 
guard of this loop, it follows from (S2) that it suffices to 
prove that wa.(a .P)  becomes false after a bounded num- 
ber of steps of P. 

It follows from Lemma 5 and (SO) and (S1) in Lemma 6, 
that, if wa.(a. P) remains true, after at most n executions of 
the body of C1 of P, variable g gets a value with seq. g = P. 

Now assume that wa.(a.P)  still holds and that g gets 
a new value with seq.g = P. By Lemma 7, the modifica- 
tion of g establishes predicate X. Since seq.g = P, it fol- 
lows from X that the next modification of g will establish 
g = a . P  and then (Lg) implies that -qwa.(a .P)  has been 
established. Then, by ($2), command C1 of P terminates 
within a bounded number of steps of P. In this way, we see 
that the loop C1 of P terminates after at most n + 1 
executions of its body. [] 

Remark. It follows from postulate (P4) that command D4 
may be replaced by if wa. i  then D4 ft. This can be advant- 
ageous for the performance of the system if calls of locapply 
require extensive data transfer or computation. 

7 Discussion of the design 

Some aspects of our solution are delicate. For  instance, in 
a previous version of this paper we claimed that, after the 
assignment b . P : =  h, the order of the tests h = g and 
wa.(a.P) was irrelevant. The following scenario shows 
that a reverse order of testing leads to incorrectness. So, 
here, process P first tests wa.(a.P)  and then h.P = g. 

We assume n > 2. We let P and Q be two different 
processes and assume that seq.g -- P - 2 (modulo n) ini- 
tially. The scenario begins with process Q calling apply and 
treating its own invocation. We then have g = kl ~ addr.Q 
and kl ~ {b.P, nx.(b.P)} and seq.g = P - 1 (modulo n). 
Then P calls apply, chooses a .P  = ka, sets wa.k3 and 
h .P :=  kl. Then Q calls apply again and treats its own 
invocation. We then have g = k2 =t = k~ and seq.g = P. 
Then Q calls apply again. It executes A and chooses 
a.Q = lq. This is possible since kl ~ {b.P, nx.(b.P)}. Then 
P sets b . P : =  h.P and verifies that wa.(a.P)  holds. Then 
Q enters Cl and sets n_x.g:= a .P (  = k3) since seq.g = P. 
Process Q treats the invocation of P, sets --nwa.(a.P) and 
sets g:= k 3. Again Q enters the loop. Since k~ contains the 
only waiting invocation, Q sets nx.k3 := kl and treats its 
own invocation at k~ and sets g := kl. Then P verifies that 
h .P = g holds. It finds no waiting invocation and sets 
i.P := a .P  ( = k3). It then treats its own invocation for the 
second time. In this way, P's invocation is treated twice. 
Notice that condition (P2) is violated. 

Another seemingly innocent modification is as follows. 
One might be tempted to replace command A by 

A': 1[ s:= address\addr.P 
; for each T e  process do 

i : = b . T  
; s:=su{i ,  nx.i} od 3[. 

This is incorrect, for it allows the following scenario that 
violates (P0). We assume n > 3. Let P, Q and T be three 
different processes. 

The scenario begins in a situation where g = k~ and 
seq.kl = Q while process Q has completed CO with 
a.Q = k2 e addr.Q. Process T in  CI. sets nx. lq  := k2, treats 
the invocation of Q and sets wa.k  2 :=false. Command/ )6  
of T is delayed, so that g remains kl. Process Q evaluates 
wa.(a.Q), skips its repetition, terminates the invocation. 
begins a new invocation and begins A'. It makes s. Q the 
complement of addr.Q. In its for-loop of A', process 
Q treats process P before T. After it has treated P, process 
P enters C1, sets h.P := g ( = kl) and subsequently enters 
region D with h.P = k~, to recalculate the contents of 
address k2. 

Now process T executes D6 so that g --- k2. Then T ex- 
ecutes the body of C1 once more and treats some invoca- 
tion, so that g = k3 + k2. Then T enters the body of C1 
again and sets b. T:= k3. Then Q resumes its for-loop in A' 
Then s. Q need not contain k2. Therefore Q can choose 
a. Q := k2. It then sets wa. (a. Q). Then process P continues, 
executes D5 and sets ~wa. (a .Q) .  In this way, the new 
invocation of Q is destroyed before treatment. The call 
apply (Q) terminates and. erroneously, yields the result of 
the previous call. Notice that process P violates postulate 
(PO). 

8 Comparison with Her|ihy's program 

Program (4) is a variation of F ig  14 of [SJ. For  conveni- 
ence of the reader, we give an interpretation of that pro- 
gram in our notation. 

The array seq now is an array of unbounded integers, 
Compare&swap register g and  array wa are not used. The 
equation seq.k = 0 is used as an encoding of wa.k. The 
program uses additional arrays 

var pre: array address of address 
; ent: array address of integer, 

and an initialization with, for an arbitrary address ko a= 0 
and for all processes P and addresses k, 

st.ko = xo A nx.ko = 0 
A b . P = k o A s e q . k > 0  
A(k~=ko - c n t . k = 0 ) .  

Our program variable g is encoded in the array b. The 
program is given in (14). 

(14) proe apply (in P; process, u: U; out z :Z); 
I E free (P, u) 
; for Q ~ process with Q +- P do 

if seq.(b.P) < seq.(b.Q) 
then b. P := b. Q fi od 

; while seq.(a.P) = 0 do thread (P) od 



; b . P : =  a .P  
; release (P) 
; z := res . (a .P)  ]l, 

where procedure thread is given by 

proc thread (in P:process); 
var h, i : address; 
1[ h:= b . P  
; i:= a.(seq.h mod n) 
; i f s e q . i # O t h e n i : = a . P f i  
; ( i f  nx .h  = 0 then nx .h :=  i fi) 
; i : = r z x . h  
; tocapply (inv. i, st. h, st.i, res .  i) 
; p re . i :=  h 
; seq. i := seq. h + 1 
; b . P : =  i ][. 

We gather that one of the methods for memory manage- 
ment mentioned in [5] consists of procedures f ree  and 
release as given by 

proc free (in Q:process,  u:U); 
vat j :  address; 
![ choosej e addr .Q with ent. j  = 0 
; nx . j  := O; inv. j  := u 
; cnt . j :=  n + 1; seq. j :=  0 
; a . Q : = j  ]l, 

proe release (in Q : process); 
vat j :  address; i : 0 . .  n + 1; 
I[ j : = a . Q ; i : = n + l  
; while i # 0 do 

j :=  pre . j ;  i:= i -- 1 
; ( c n t . j  := cnt. j  -- 1 > 
od ]1. 

In view of procedure release, the initialization of the linked 
list requires some care. One solution is to start with 
pre.ko = ko and cnt.k0 = �89 x (n + 1) x (n + 2). 

The main difference between our program and (14) is 
that in our program the assignment h := g is inside of 
repetition C1, so that h jumps repeatedly to the estimate of 
the current address. The corresponding commands of (14) 
are the for-loop that updates b. P before the repetition and 
the updating b. P := i in thread. This has the effect that b. P 
starts at an estimate of the current address and sub- 
sequently traverses the list. Therefore, our program may be 
regarded as a greedy version of (14). 

The assignment h := g in (10) is simpler, but program 
(14) has a simpler repetition, since b .P  simply traverses the 
!inked list. Our program requires the compare&swap reg- 
ister g, see D6. Program (14) only requires the consensus 
objects nx.k. It seems that the conditional updates o f b . P  
in the for-loop of (14) need not be atomic and may be 
expressed as 

I[- i:= b.Q 
; if seq.(b.P) < seq.i  then 

i:= b.Q; b . P : =  i fi ]l. 

In (14), the final update b .P  := a .P  is a forward jump in 
the linked list. We regard this as a superfluous, but harm- 
less optimization. In our program, one could introduce 
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a corresponding command after C1, but that would have 
to be an atomic conditional update like 

( i f  nx . (a .P)  = 0 then g:= a .P  fi). 

Another striking difference between our program and 
(14) is that the memory management of (14) uses a release 
loop backward through the linked list, after the main 
repetition, whereas in (11) and (12) the current state is 
sufficient to find a free address. In fact, in our program, 
array b is only used for the memory management, whereas 
in (14) it is only used to replace or implement our 
compare&swap register g. 

In program (14), the sequence numbers must be un- 
bounded integers, since they are used in the initial for-loop 
for updating b.P. Finally, as argued in [5] Sect. 4.2, pro- 
gram (14) requires upb = m x n with m = n 2. 

We do not yet have a proof of (14). We have the 
impression that (14) (if correct) is just as difficult to prove 
correct as our more greedy program. 

9 Complexity 

The measure of space complexity is the number of memory 
addresses needed for all processes together. The measure 
of time complexity is the maximal number of steps one 
process has to perform for one invocation to be treated. In 
both cases the parameter is n, the number of processes. For  
the space complexity, the local computation of locapply 
gives a linear contribution, since it is performed by 
each process. For  the time complexity it is regarded as 
a constant. 

It is easy to see that the memory space required is 
proportional to the size of address, which is upb = m x n. 
Here we use that each set s . P  only requires m booleans 
because of (K4). As mentioned in the discussion of region 
A of (12), we need m > 2 x n. In order to get a better time 
complexity, we choose m with 3 x n < m _<_ 6 x n. Then the 
space complexity is quadratic. 

The time complexity of command A is proportional to 
n. The worst case time complexity of the choice of a .P  in 
CO is proportional to m, and hence to n as well. As proved 
in Sect. 6, the loop C1 terminates after at most n + 1 
executions of its body. Therefore, the worst case time 
complexity of apply is of order n. 

Since m > 3 x n, command A establishes 

# ( a d d r e s s \  s .P)  = > m - 2 x n > n. 

Therefore, command A is executed at most once in n calls 
of apply. This implies that the amortized contribution of 
command A to the time complexity is constant. The choice 
of a .P  in CO can be implemented by a linear search in 
addr.P.  Then it need not require more than constant time 
in amortized sense. If process P is the only active process, it 
executes the body of loop C1 just once. This implies that, if 
process P is the only active process, the time complexity of 
apply is constant in amortized sense. 

The space complexity of Herlihy's program (see (14)) is 
cubic, cf. [5], since it requires upb = n 3. The time complex- 
ity of (14) is quadratic since the search space for f ree  (P) has 
size m = n 2. It must be mentioned, however, that this is not 
a fair comparison, since the program in [5] does not need 
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a compare&swap register. The program in [6] has quad- 
ratic time complexity and quadratic space complexity. We 
cannot give a detailed comparison with [6], since that 
paper is based on completely different ideas. 

10 Concluding remarks 

Inspired by Herlihy's program in [5], we designed a vari- 
ation based on a compare&swap register, in which the 
memory management  looked simpler and turned out at 
least to be cheaper. Correctness of our program could only 
be achieved by searching alternately for stable predicates 
and refuting scenarios. In an earlier version, we had an 
operational argument for the invariance of (L13) and 
(L 15). When the referees were not convinced, a reexamina- 
tion uncovered a bug in the program (see the first part  of 
Sect. 7) and lead to an explosion of invariants. The under- 
standing gained in this way enabled us to construct the 
abstract program of Section 4 and finally to provide a for- 
mal proof. 

In the program, the processes are so tightly coupled 
and the invariants are so unwieldy that we do not use the 
standard separation between proof outlines for the pro- 
cesses and interference freedom, as exposed in [1]. Instead 
of this, we use global invariants with location predicates. 
Indeed, we found it to be more convenient to consider, for 
every separate action, the list of all invariants than to 
consider, for every separate invariant, the list of all actions. 
This approach is inspired by U N I T Y  of [2]. 

Since there are more than twenty simple commands 
and more than twenty invariants, the proof  requires 
more than 400 verifications. The present proof  is suffi- 
ciently detailed that it can be verified by means of a proof  
checker. In fact, in [8], we report on a mechanical verifica- 
tion of a program with an even smaller grain of atomicity. 
Every implementation of course must be tested, but the 
scenarios of Sect. 7 are so unlikely that postitive results of 
testing must not increase our confidence. In fact, experi- 
ence shows that in this area assertional methods are indis- 
pensable. 

There are several directions open for future research. 
Firstly, it would be interesting to prove Herlihy's program, 
say in the version (14). Secondly, it may be possible to 
eliminate the compare&swap register g from our program, 
without introducing unbounded integers. Thirdly, the as- 
sumption that relation R and procedure locapply are 

deterministic should be removed, without introducing 
structured consensus variables. In fact, current research 
suggests that this can be done even without increasing the 
computational  complexity, Finally, one could wish to 
bring the space complexity of the p rog ram down from 
quadratic to linear. 
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