

 University of Groningen

WAIT-FREE LINEARIZATION WITH AN ASSERTIONAL PROOF
Hesselink, Wim H.

Published in:
Distributed computing

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1994

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1994). WAIT-FREE LINEARIZATION WITH AN ASSERTIONAL PROOF. Distributed
computing, 8(2), 65-80.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 28-12-2022

https://research.rug.nl/en/publications/986968c8-b115-4c28-8744-687afb0b815d

Distrib Comput (1994) 8:65-80

DOSSB B@S D
�9 Springer-Verlag 1994

Wait-free linearization with an assertional proof
Wim H. Hesselink

Rijksuniversiteit Groningen, Department of Computing Science, P.O. Box 800, NL-9700 AV Groningen, The Netherlands

Received: December 1991/Accepted: April 1994

and correctness of algorithms,

W i m H. Hesselink received his
Ph.D. in mathematics from the Uni-
versity of Utrecht in 1975. After ten
years of research in algebraic groups
he turned to computer science. Since
1985 he has been an associate profes-
sor with the Department of Comput-
ing Science at the University of
Groningen. In 1986/1987 he was on
sabbatical leave with the Depart-
ment of Computer Sciences of the
University of Texas at Austin. His
research interests include aspects
and modalities of nondeterminacy,
predicate transformation semantics,
distributed programming, design
and mechanical theorem proving.

Summary Given a sequential implementation of an arbit-
rary data object, a wait-free, linearizable concurrent imple-
mentat ion is constructed with space complexity quadratic
in the number of processes. If processes do not concurrent-
ly invoke, the amortized time complexity of the invoca-
tions is independent of the number of processes. The worst
case time complexity is linear in the number of processes.
The construction is based on a compare&swap register.
The correctness is proved by means of invariants and
stability properties. Since it concerns memory reallocation
by concurrent processes in a fault-tolerant setting, this
proof is highly nontrivial.

Key words: Linearizable - Concurrent data object - Con-
sensus - Wait-free - Memory management - Correctness

Invariant Stability - Space complexity - Time com-
plexity

Introduction

Background

A concurrent data object is a data structure shared by
concurrent processes. The object must behave as if the
invocations are processed in some sequential order. This
requirement is formalized in the concept of linearizability
(see [7], we come back to this in Sect. 2). Traditionally,
linearizability is achieved by means of operations that

temporarily block the progress of some processes. The
disadvantage of such operations is that if a process is
delayed (or stopped) other processes are delayed as well.

Therefore, recently, the concept of wait-free implemen-
tations has been proposed. A wait-free implementation of
the concurrent data object is one in which every process
completes its invocation in a bounded number of atomic
actions, regardless of the actions and the execution speeds
of the other processes, see [4] and [5].

Of course, the concept of wait-free implementation
only makes sense if there are no atomic actions that can be
blocked (e.g. semaphores and synchronous communica-
tions). We therefore assume that the processes do not
contain actions that can be blocked. The processes are not
assumed to make progress. A wait-free implementation is
fault-tolerant in the sense that, if some process stops
executing, the invocations of other processes are not
affected.

One of the simplest concurrent data objects is the
atomic read-write register: a shared variable, say x, with
the only atomic actions x := u and z := x, for some private
variables u and z. It has been shown by Herlihy [5] that
atomic read-write registers are not sufficient to construct
wait-free implementations of interesting data objects. No-
tice that we use the convention that shared program vari-
ables are in typewriter font. Constants, private program
variables, parameters and mathematical variables are in
math-italic.

For variables of arbitrary types we assume safety, in
the sense that any read operation not concurrent with
a modifying write operation obtains the most recently
written value, that concurrent non-modifying write opera-
tions do not interfere, and that concurrent modifying write
operations of the same value do not interfere with each
other (see Sect. 1 for more details). We assume that read
and write operations of integers and booleans are atomic.

The read-write register can be compared with the con-
sensus object (cf. [3]). This is a shared variable, say x, with
an atomic read action u := x and an atomic setting action

(0) < i f x = O t h e n x : = u f i)

where 0 is some constant of the same type as x, and where
u is a private variable as before. If x 4= O, command (0) is
equivalent to skip. There is also an atomic reset action
x := O. Consensus objects are also called logical variables

66

or permanents, see e.g. [12] Sect. 1.4. A slightly more
powerful object is the compare&swap register. This is
a shared variable x with atomic read actions z := x and an
atomic setting action

(1) (i f x = u t h e n x : = v f i)

where z, u and v are private variables, cf. [5] p. 135.
Herlihy [4] and Plotkin [14] have shown that walt-

free implementations of arbitrary data objects can be con-
structed by means of atomic read-write registers-together
with consensus objects. Let n be the number of processes.
The implementation of [14] requires memory of order n 2

and has a worst-case time complexity of order n 3. The
implementation of [5] requires memory of order n 3, has
a worst-case time complexity of order n 2 and, moreover,
requires unbounded integers. The latter requirement is
a serious drawback, since unbounded integers are seldom
available in hardware.

In [6], Herlihy presents a construction based on
a compare&swap register with memory of order n 2 and
worst-case time complexity of order n 2. For all three im-
plementations, the outline provided is rather sketchy. This
makes it hard to prove or to refute their correctness.

Contributions

In this paper, we present a wait-free implementation of an
arbitrary data object that requires memory of order n 2 and
that has a worst-case time complexity of order n. The
implementation requires a compare&swap register, just as
in [6].

Since a compare&swap register is a stronger primitive
than a consensus object, the complexity of our algorithm
can only be compared with the algorithm of [6]. Our
algorithm has the same space complexity (n 2) and a better
time complexity (order n). If there is only one active pro-
cess, the amortized time complexity is constant, i.e., inde-
pendent of the number of processes.

For us, however, the main interest of these algorithms
is not increased efficiency, but to learn how to develop
such an algorithm together with a complete proof of cor-
rectness. This is especially important since the combina-
tion of concurrency with memory reallocation is very
delicate, cf. [9]. In fact, even though a previous version of
our algorithm had a careful operational "proof", the
search for an assertional proof uncovered a delicate gap in
the argument (see Sect. 7).

Technically, our algorithm is a modification of the
algorithm of [5]. Each process transverses the linked list of
invocations in a more greedy way than in [5]. This implies
that a delayed process needs only constant space to per-
form its actions without disturbing the data structure. The
data structure to support delayed processes can therefore
be smaller than in [5]. For reasons of simplicity, we as-
sume that the data object is deterministic. Herlihy [5]
avoids this assumption by means of a second family of
consensus objects.

Plan of the paper

In Sect. 1, we present our programming notations and
discuss the granularity of the commands. In Sect. 2, we

introduce data objects and concurrent linearizable impIe-
mentations of data objects_ As a stepping stone for the
algorithm, we present in Sect. 3 an easier algorithm that
uses an atomic action with a larger grain of atomicity than
compare&swap registers.

Sections 4, 5 and 6 form the heart of the paper. Here
the program is developed in a top down fashion. So, m
Sect. 4, we give the actions on the main shared variables
and we prove linearizability under assumption of six in-
variants. In Sect. 5, the abstract algorithm is extended with
private computations and with communication by means
of other shared variables. The resulting program is shown
to satisfy a set of roughly twenty invariants, which imply
the six mvariants mentioned above. In Sect. 6, the program
is made wait-free. For this purpose an additional shared
variable is introduced with two new invariants.

The complexity of the proof is cumbersome but, in our
view, not out of proportion. In fact, the program uses
a pointer structure in bounded memory, and even proofs
of sequential programs with pointers are usually complic-
ated. In a sequential program, the invariants would occur
as preconditions of specific commands. Here they are
discussed globally since other processes are concurrently
active.

In Sect. 7, we discuss points of the program where
a seemingly innocent modification would be disastrous.
Section 8 contains a comparison of our program with
Herlihy's program in [5]. We give an explicit interpreta-
tion of the memory management suggested in [5]. In Sect.
9, we briefly discuss the complexity of our algorithm.

Our presentation is deliberately rather technical and
formal. We refer to [5] and [6] for the intuition and
motivation underlying the algorithms and also for exten-
sive overviews of related work,

1 Programming notations and concepts

We use the infix operator for subscription of arrays,
For example, nx.g is the g'th element of array nx. The
other programming notations used are variations of welP
known constructs of Pascal:

i f . . . t h e n . . , fi
w h i l e . . , do . . . od
for e a c h . . , d o . . . od.

In particular, the if then fi construct means skip if the guard
is false.

We assume that all shared variables are safe in the.
following sense. Any read operation not concurrent with
a modifying write operation obtains the most recently
written value. Concurrent non-modifying write operations
do not interfere. Concurrent modifying write operations of
the same value do not interfere with each other. We as-
sume that write operations o f integers and booleans are
atomic. For other types; a modifying write operation is
non-atomic in the sense that any concurrent operation
(apart from a write of the same value) leads to unpredict:
able results. A command is made atomic by enclosing it in
angled brackets (a n d) , cf: [1] Chapter 6.

We use an assertional method to prove the correct-
ness of our concurrent programs. Most assertions are

predicates on the state of the shared variables. We also
need predicates concerning the flow of control of the
processes, cf. [10] and [11]. We write P in C to indicate
that process P is executing the possibly composite com-
mand C. More precisely, it means that P has completed the
last command before C and has not yet completed C. In
particular, for a composition (C; D) we always have

P i n C ; D - P i n C V P i n D .

Another relevant example is a composition like

if B then C fi; D.

Here, evaluation of guard B by process P establishes the
disjunction

(B A (P i n C)) V (T B A (P in D)).

Unconditional entering or exiting of blocks is not regarded
as a separate action, but (for example) the last action of
a while-loop is the test that yields the negation of the
guard. Location predicates like P in C can be eliminated
by introducing ghost variables or auxiliary variables, cf.
[1]. Our reasons for using location predicates are dis-
cussed at the end of Sect. 5, see also [113 p. 290.

We say that a predicate I is invariant if I holds initially
and remains valid during every execution sequence of the
system of processes. For predicates X and Y, we say that
"X is stable while Y" if there is an invariant I such that
every atomic action C of each of the processes satisfies the
Hoare triple {X A I A Y } C {X}. For an expression E, we
say that "E is constant while Y" if E = v is stable while
Y for every value v. Notice that, for a predicate X, the
assertion " X is constant while Y" is stronger than "X is
stable while Y ", for it also implies that " 7 X is stable while

We say that a predicate X is not threatened by a com-
mand C, if it is easy to see that {X} C {X} holds. In many
cases the reason is that C is an assignment to a variable
that does not occur in X.

2 Data objects and concurrency

A data object is a tuple (X, U, Z, Xo, R) where X is the
state space of the object, Xo ~ X is the initial state, U is the
input space (the set of invocations), Z is the output space
(the set of result values) and R _c U x X x X x Z is the
transition relation. If the object is invoked with invocation
u in state x it may go into state y and return the output z if
and only if (u, x, y, z) ~ R.

In this paper, every object is supposed to be total and
deterministic, in the sense that in every state every invoca-
tion allows precisely one new state and precisely one
result: for every pair (x, u) with x e X and u e U, there is
precisely one pair (y, z) with (u, x, y, z) e R. The require-
ment of totality (the existence of a resulting pair (y, z) for
every pair (x, u)) formalizes the assumption that no op-
eration can be blocked. Determinacy is postulated for the
sake of simplicity of the algorithm. This assumption is
essential for the present algorithm, but a variation of the
algorithm that avoids this assumption is in preparation.
Herlihy [5] avoids the assumption of determinacy by
means of a second family of consensus objects.

67

Example. The compare&swap register introduced in Sect.
0 can be formalized as follows. Let X be the type of
variable x, i.e., its set of values. The action to read x is
denoted read; it does not modify x and yields the value
z = x. An invocation of instruction (1):

(i f x = u then x := v fi)

with values u and v is denoted as a pair (u , v) ; this
invocation may or may not modify x; the instruction
always yields the value ok. We therefore take
Z = X + {ok}, the disjoint union of the set X with the
singleton set {ok}, and U = {read} + X 2 where 2 2 is
the set of the pairs (u, v) with u,v ~ X . Relation R is
defined by

(read, x , y , z) e R - y = x A z = x ,

((u , v) , x , y , z) ~ R =-

z = o k A ((x = u A y = v) V (x 4= u A y = x)).

It is easy to verify that indeed relation R is total and
deterministic. []

We assume that there are n processes, represented by

type process = 0 . . n - 1.

A concurrent implementation of a data object
(X, U, Z, Xo, R) is a procedure that, conceptually, acts on
some global program variable x of type X and that could
be specified by

proc apply (in P:process, u: U; out z : Z)
{pre x = w, post (u, w , x , z) e R}.

Here, w is a logical variable that stands for the value o f x in
the precondition. Process P calls procedure apply in the
form apply (P, u, z) for the treatment of invocation u with
result z. So P and u are input parameters and z is a result
parameter.

All processes may call apply concurrently and repeat-
edly. The data object itself is passive; the subcommands of
apply are executed by the invoking process. Yet the imple-
mentation is required to be linearizable, in the sense that
each call of apply appears to take effect instantaneously at
some point between the invocation and the response. Lin-
earizability implies that processes appear to be interleaved
at the granularity of complete operations and that the
order of non-overlapping operations is preserved. See [7]
for a detailed exposition.

The implementation (i.e., procedure apply) is called
wait-free if it does not contain operations that can be
blocked and if there is a number N such that every call
apply(P, u, z) terminates after at most N atomic actions of
process P, independently of concurrent calls of apply by
other processes.

In order to formulate a concrete proof obligation that
implies linearizability we proceed as follows. Since the
object is deterministic, the current state and the output are
functions of the sequence of invocations that have been
treated. Let U* be the set of sequences of invocation
values. Let e be the empty sequence. For ~ ~ U* and u ~ U,
let (e;u) be the sequence obtained by postfixing c~ with
the singleton u. The current state and the output are

68

determined by functions e:U* -+ X and f : (U * \ { e }) --+ Z.
These functions satisfy

(2) e(e) = Xo (the initial state),

(u, e(e), e(~; u),f(e; u)> ~ R

for all c~ ~ U* and u e U.
We need to distinguish invocations of different pro-

cesses. We do this by tagging and therefore introduce the
cartesian product V = U xproeess, with as elements
tagged invocations <u, P) with u ~ U and P ~ process. Let
V* be the set of sequences of tagged invocations. For
a sequence a e V*, let dr(a) ~ U* be obtained by deletion of
the tags. For a process P, let allP ~ V* be the subsequence
of a of the invocations tagged with P. Since the tags P of
o-IIP are irrelevant, we define a lP = dt(a I[P)E U*.

We define a * P e V* as the shortest prefix of a that
contains al[P. We define a e = d t (a * P) eU*. So, if
alp q= e, then at, is the shortest prefix of dr(a) that contains
the last invocation of P. In particular, 01P is a subsequence
of ap. After these preparations we can formulate a concrete
proof obligation.

The implementation of the data object is linearizable if
one can construct a ghost variable a:V*, initially a = e,
that satisfies
(CL0) whenever process P is not invoking, alP is the
sequence of invocation values of P in the order of sub-
mission;
(CL1) whenever P is not invoking and alP 4 = g, thenf(ae)
is the latest result obtained by P.

In fact, these conditions imply that a is some lineariz-
ation of the operations that refines the partial order of the
nonoverlapping operations. If a[P +- ~ then ae is the se-
quence of invocations up to and including the latest invo-
cation of P; therefore that invocation must have yielded
resultf(ap). Notice that we have no conditions on the state
since the state is not observable.

3 I m p l e m e n t i n g an arbitrary object

We now turn to the development of a wait-free con-
current implementation of an arbitrary data object
(X, U, Z, Xo, R). This concurrent implementation is based
on a given local implementation

locapply(in u : U, x : X; out y : X , z : Z)

which given u and x establishes <u, x, y, z) ~ R. The need
for the two additional state parameters will become clear
below.

The implementation of apply must be such that the
object behaves linearizable, but the calls of locapply are
not supposed to be atomic actions. These calls are re-
garded as read actions of the input arguments, followed by
write actions into the output arguments: In the implemen-
tation in Sect. 4, we shall use that all arguments are safe
registers. Determinacy of locapply will imply that the pos-
sibly concurrent write actions write the same value.

Our first implementations of the data object are based
on atomic commands with a larger grain of atomicity than
compare&swap registers. These implementations serve to
give the reader a feeling for the problems associated with

delayed processes, which by their delayed actions may
interfere with other processes and disturb the data struc-
ture. The main issue is to separate the local computation of
locapply from the interaction between the processes. The
second point is that we on!y use bounded menaory, linear
in the number of processes. We begin using a global
declaration

var x : X {initially x = xo}.

It is of course correct but not satisfactory to encapsulate
locapply atomically:

proc apply (in P :process, u : U; out z : Z);
][(locappIy (u, x, x, z)

(< <,,,P>}>]I.
Here, the action on ghost variable a is given between curly
brackets.

The next step is to introduce local variables for the
results of locapply and a test to ensure that the executing
process has not been delayed. For this purpose we intro-
duce a sequence counter equal to the length of a, We thus
need the additional global declaration

var sq:integer {initially sq = 0}.

We first consider the tentative implementation, in which
the guard h = sq serves to ensure that a has not been
modified in the mean time:

proe app ly (in P : process, u: U; out z: Z);
var h : integer; wait: boolean
; w , y : X ; t:Z;
I[wait:= true
; while wait do

h : = s q ; (w : = x >
; locapply (u, w,y, t)
; (i f h = s q then

x : = y; sq := sq + 1
{; ~ :-- (a; (u, P>)}
;z := t; wait := false fi}

od]l.

Here it is not enough that x is a safe register, since the read
action of x can be disturbed by a write action of some
other process. Therefore, the read action w := x has been
made atomic.

In this implementation, process P can be overtaken
indefinitely while executing infinitely many commands in
its repetition. So this implementation is not wait-free.
Since other processes must not be blocked, the only
remedy is that other processes are forced to execute P's
invocation. For this purpose a shared data structure is
introduced that can contain the invocation and result
values of all processes, as well as booleans to indicate
which processes are waiting. We therefore extend the
global declarations with

var i n v o : array process of U
; r e s u : array process of Z
; wait: array process of boolean;
init ial ly (VP :: ~wai t .P) .

The most recent invocation value ofprocess P is located in
invo.P. The corresponding result is delivered in resu. P.
The condition wai t .P indicates that the invocation of

69

process P is waiting to be treated. In order to get bounded
delay, we ensure that the invocation of process Q is treated
by every process when (Q = sq mod n) A wait. Q holds.
Since this condition depends on more than one shared
variable, it requires careful programming. A correct solu-
tion is given in program (3).

(3) proc apply (in P:process, u:U; out z:Z);
var h : integer; Q : process
; v:U; w,y:X; t:Z;
I[(invo. P := u); wait . P := true
; h:= sq
; while wai t .P do

B0: Q:= h m o d n
;BI: i f - l w a i t . Q then Q:= P fi
;B2: <v:= invo.Q>
;B3: (w:= x>
; B4: locapply (v, w, y, t)
; B5: (i f h = sq then

x : = y ; s q : = s q + 1
{;a:= (o;
; resu .Q:= t; wait. Q := false fi>

;B6: h:= sq
od

; z:= r e su .P]l.

Linearizability of (3) can be proved by showing that
o- satisfies the conditions (CL0) and (CL1) of Sect. 2. This is
done as follows. Let C0 be the composite command on the
first line of the body of (3). Let C1 denote the composition
of h := sq with the subsequent while-loop. We write u. P to
denote parameter u of process P. It is easy to see that we
have the invariant:

(HO) wai t .P ~ P in C1 A invo.P = u.P.

In (3), the tests wai t .P and wait .Q are placed after the
assignment h := sq, so that h = sq implies that process
(2 has not been treated in the mean time. More precisely, if
we write B i ~ j to denote the composition B i ; . . . ; Bj, the
program satisfies the local invariants

P i n B 0 ~ 5 A h = s q ~ wait . P,
P i n B 2 ~ 5 A h = s q ~ wait . Q,
P i n B 3 ~ 5 A h = s q ~ v = i n v o . Q,
P i n B 4 ~ 5 A h = s q ~ w = x ,
P i n B 5 ~ (v , w , y , t) e R .

Let/~. P be the sequence of invocations of process P in the
order of submission. Using (H0), formula (2) and the local
invariants, one can prove the invariants:

(H1) --](P in CO V wait .P) ~ fl.P = alP,
(H2) P in CO V wai t .P ~ fi.P = ((alP); u.P),
(H3) x = e(dt(a)),
(H4) a lP = e V P in CO V wai t .P V resu .P =f(ap).

Condition (CL0) of Sect. 2 requires tha t /? .P = a [P when
P is not invoking. Therefore, (CL0) follows from (H0) and
(H1). Condition (CL1) follows from (H0) and (H4). The
invariants (H2) and (H3) are used in the proofs of (H1) and
(H4). The details are left to the reader.

As a preparation for the next program, we give an
indication why program (3) is wait-free. During every
execution of the body of the repetition, variable sq is

incremented at least once. If wait. P holds when sq mod n
becomes P, then wai t .P becomes false during the first
execution of that body with h equal to the new value of sq.
Therefore, the loop of apply of process P terminates after
at most n + 1 executions of its body by process P.

In this implementation safe registers are not enough.
Therefore, reading and writing of x and elements of invo
have been made atomic. Another disadvantage of this
program is that it needs unbounded integers. This can be
eliminated by taking sq and h modulo m for some integer
m > n. Then the guard of B5 has to be replaced by
h = sq A wait . P. The additional conjunct wai t .P ensures
that sq does not make a full circle. The main disadvantage
of (3), however, is the big atomic command B5. It involves
four shared variables (x, sq, vesu. Q and wait. Q) and three
private ones (h, y and t). The solution to be presented in the
next section will remedy all these points.

4 The abstract implementation

In this section we begin the development of our main
algorithm, which is a variation of the solution of Herlihy
[5]. The crucial atomic actions are compare&swap actions
on pointers to memory cells.

Since we want to present the algorithm together with
a complete proof of correctness, the algorithm is developed
in steps. We use five levels of invariants. The top level
consists of the proof obligations (CL0), (CL1) of lineariza-
bility, cf. Sect. 2. The next level consists of invariants (J0),
(J1) and (J2) of a first abstract implementation. These
invariants imply (CL0) and (CL1). The predicates (J0), (J1)
and 02) are proved to be invariant under assumption of
invariants (P0) through (P5).

The predicates (P) are reformulated and strengthened
to get more convenient predicates (Q0) through (Q8). Two
additional predicates (Q9) and (Q10) are introduced to
guarantee safety of the non-atomic shared variables. The
steps from level (Q) via levels (P) and (J) upto level (CL) are
treated in this section. The separation of levels is also
useful to eliminate ghost variable a. In fact, a only occurs
in the predicates (CL) and (J).

In Sect. 5, the abstract implementation is refined to
a more concrete implementation, which has invariants (L0)
through (L16). An easy verification will show that the
invariants (L) imply the invariants (Q). The proof of invari-
ance of (L0) through (L16) is cumbersome. The result of
this step is a linearizable implementation that is not yet
wait-free. It may be mentioned that in Sects. 4 and 5, we
also use a family of "easy" invariants (K0) through (K5).

The implementation of Sect. 5 still has some nondeter-
minacy. In Sect. 6, part of this nondeterminacy is resolved
in such a way that the implementation becomes wait-free.
For this purpose, the data structure is extended slightly.
The proof that the implementation is wait-free requires
two additional invariants and some stability results.

We now turn to the abstract implementation. We first
discuss the design of the data structure. The first remarks
to be made apply equally well to the implementation of
Sect. 3.

We need a shared data structure that contains a cur-
rent state and that can contain invocation and result

70

values for all n processes. All processes are concurrently
active to compute the next state and the corresponding
result. Processes can be delayed and the activity of a de-
layed process must not damage the shared data structure.
So we have to choose between the alternatives:

(a) when a process modifies shared data, it does this in an
atomic action that contains a test to ensure that it is not
delayed,
(b) the shared data structure admits actions of delayed
processes.

Implementat ion (3) is an elaboration of choice (a). It seems,
however, that choice (a) is not adequate if a smaller grain
of atomicity is required. So we turn to choice (b).

If a delayed process is allowed to compute the next
state and result for some outdated state and invocation,
the program may need as many as 2. n state variables and
every process may need n invocation variables and n result
variables. Since it is not known which processes are de-
layed and for how long, the state variables, the invocation
variables and the result variables cannot be ordered in
cyclic buffers.

Following Herlihy [5], we therefore group together
invocation, next state and corresponding result in one
"cell". The cell of the current state is equipped with
a pointer that may point to the next cell. In other words,
the consecutive states of the object are represented by the
state components of a linked list of cells. Since a process
must be able to test whether its invocation has been
treated, every cell gets a boolean variable to indicate that
the invocation is still waiting to be treated.

Since memory usage must be kept explicit we use
ordinary arrays instead of the pointer facilities of Pascal or
C. Now an array of records is the same as a system of
arrays. The latter description is preferred here, since it
gives cleaner code and cleaner formulae. So the linked list
is represented by

type address = 0 . . . upb {upb to be chosen later};

var nx: array address of address

; st: array address of X

; inv: array address of U

; res: array address of Z

; wa: array address of boolean;
initially (Vk e address : : -n wa. k).

The type address is a subrange of the integers. An element
k ~ address is called a (memory) address. For given address
k, the tuple

(nx.k , st.k, inv.k, res .k , w a . k)

is regarded as the cell at address k. The value nx .k is the
next address, i.e., points to the next cell. The value 0 e ad-
dress is used as a nil pointer. The boolean wa .k indicates
whether some invocation is waiting at address k.

To announce its invocations, each process P is pro-
vided with a variable a. P of type address (a. P corresponds
to announce[P] of reference [5]). We thus have the addi-
tional declaration

var a: array process of address.

Once instantiated, the element inv.(a. P) holds the latest
invocation value of process P. The value of a . P can be
read by all processes, but written only by process P.

For the purpose of linearization we introduce a shared
variable g as the address of the current state of the object,
according to the declaration

var g: address;
initially s t .g - xo A n x . g = 0.

Just as in program (3), the interaction between the
processes and the common data structure requires a pre-
lude in which the process places its invocation value in the
common data structure, a working phase m which the
process participates in the treatment of the current invoca-
tions and a postlude in which the process obtains the result
of its invocation. We thus assume that procedure apply has
the form

(4t proc apply (in P: process, u : U: out z : Z);
I[co, c1
: z := res . (a .P)][,

where C0 is the prelude and C1 is the working phase.
As a first precaution against interference, we give each

process P its own pool of addresses, cf. [5]. We fix a natu-
ral number m to be determined later and let addr.P be the
subrange of address given by

(5) k s a d d r . P = m x P < k G m x { P , - l ~ .

Since the processes have numbers from 0 through n l, it
follows that we can take upb = m xn. Notice that
0 ~ addr.P for all P. We assume that a . P e addr.P holds
initially.

In command CO, process P places its invocation value
u at some address a . P in its own pool and announces the
invocation by setting wa . la .P) to true. Since. as soon as
wa. (a. P) holds, other processes may use the cell at a. P, the
initialisation n_x . (a .P) : -0 had better be placed before
setting wa.(a.P). We therefore refine command CO in (4)
by

(6) CO: I[choose a . P e addr. P
; E: [[inv. (a .P) := u; nx . (a .P) := 0

; wa.(a. P) := true]1]1.

The inner brackets [[and]I serve to indicate the extent of
command E. No atomicity is intended.

In the design of C 1 we introduce several subcommands
with names that are chosen in such a way that they can be
kept in later refinements. For the moment we only assume
that command C1 is refined by

(7) CI: while w a . (a . P) do DD od,

where command DD does not modify the arrays a and invo
Moreover, we assume that the only modifications o f w a in
DD are

D5: w a . i : - false,

where i is a private variable of P of type address and i + 0.
We introduce the convention that the parameter u and

private variables h, i of process Q are denoted by
u. Q, h. Q, i. Q whenever convenient. If no additional
process name is provided, a private variable belongs to

process P. In all invariants and postulates to be presented,
we quantify universally over addresses k and processes P,
Q and T. Now we can prove

Lemma O. (a) a.Q is constant while -q(Q in CO).
(b) The program has the invariants
(K0) a.Q ~ addr.Q,
(K1) k~ addr.Q A wa.k

k = a.Q A Q in C1 A inv.k = u.Q.

Proof (a) The choice of a. Q in CO of process Q is the only
modification of a. Q.

(b) Condition (K0) is invariant since, by assumption, it
holds initially and it is preserved by each choice of a. Q in
CO of process Q. Condition (K1) is invariant, since wa. k is

false initially and wa. k can only be made true by process
Q in E with k = a.Q. By this action, process Q enters C1.
Process Q has set m y . k = u. Q in E. Since k q~ addr.P for
all other processes P, by (K0), inv.k is not modified by
other processes. Process Q cannot leave C1 while wa.k
holds. Consequently, a.Q and inv.k are not modified
while wa. k remains valid. []

Remark. Often, we only need the following consequence of
(K0) and (K1):

(Kla) wa.(a.Q) ~ Q in C1.

We now proceed by constructing the ghost variable
O- in such a way that condition (CL0) holds. We first
introduce, for every process Q, a ghost variable ft. Q of type
U* to stand for the sequence of invocation values of
process Q in the order of submission. So, initially ft. Q = ~.
Whenever process Q enters CO, variable ft. Q is modified by
~.Q:= (p.Q; u.Q).

We strengthen condition (CL0) to

(J0) if Q in CO V wa.(a.Q)
then fi.Q = ((o-[Q); u.Q)
else ft. Q = O-1Q ft.

Indeed, (CL0) follows from (J0) since, if Q is not invoking,
Q is not in c o and ~wa . (a .Q) because of (Kla). Also
notice that the then-part only applies when Q is in apply so
that u. Q is well-defined.

Predicate (J0) holds initially since initially the guard of
(J0) is false and both fl.Q and O- are initially empty. When
Q enters CO, predicate (J0) is preserved since at that point
ft. Q is extended with u.Q. When Q leaves CO, predicate (J0)
is preserved since at that point wa.(a.Q) is made true.
Predicate (J0) is not yet preserved when some process
P executes D5 with i.P = a.Q. We therefore extend com-
mand D5 with a modification of the ghost variable O-, i.e.,
we replace D5 by

D5': (i f w a . i then O-:= (o-; (inv./, pown.i)) fi
; wa. i :=false},

where pown.i is the unique process T with i e addr.T.
Process T exists since 0 < i < upb. It is unique because of
the disjunctivity of the sets addr.T. Now Lemma 0(b)
implies that D5' replaces O-[Tby (o-IT; u.T) and keeps O-[Q
constant for Q 4= T. Since, moreover, i = a .T by (K1) and
i + a.Q for (2 :# T, by (K0), it follows that D5' preserves
(J0). In view of Lemma 0(a), this shows that (J0) is invariant
and, hence, (CL0) is invariant.

71

The variables st .k and res .k are intended to hold
a new object state and a new result corresponding to a new
invocation at inv. k. Since the invocation at inv. k is only
new, i.e., waiting for (completion of) treatment, if wa.k
holds, we postulate

(8) st .k and res. k are constant while ~ wa. k.

We now strengthen condition (CL1) to the invariant

(Jl) alQ = ~ v Q in CO V wa.(a.Q) v res.(a.Q) =f(o-Q).

Indeed, (CL1) follows from (J1), (Kla) and (8): if Q is not
invoking and O-[Q + e then (J1) and (Kla) imply that
res.(a.Q) =f(o-Q). Moreover, Q has submitted some invo-
cation and, hence, has obtained some result. Now (8) and
(Kla) imply that res.(a.Q) still holds the latest result
obtained by Q.

In order to establish the invariance of (J1), we have to
use formula (2) that defines funct ionfby means of relation
R and function e. The computation off(o-Q) requires the
value of the state of the object and must be accompanied
by a computation of the next state of the object. As
announced above, we use g as the address of the current
state of the object and nx .g as the address of the next state.
One might regard e(dt(o-)) as the current state of the object,
but O- is modified in command D5' which does not modify
g. Therefore, instead of s t .g = e(dt(o-)), we propose the
invariant

(J2) if nx. g = 0 V wa.(nx.g)
then st .g = e(dt(o-))
else st.(nx.g) = e(dt(o-)) ft.

In order to preserve (J1) and (J2), we postulate that D5' of
P only modifies O- under specific circumstances, viz.,

(P0) P i n D 5 ' A w a . i
nx.g = i :# 0 A (inv./, st.g, st./, res.i} ~ R.

It follows that, if execution of D5' of P modifies wa. i
and T=pown. i , the execution has the precondition
st .g = e(dt(o-)) by (J2). In view of (P0) and formula (2), this
precondition also satisfies

s t . / = e(dt(o-); inv./) A res . i =f(dt(o-); inv./).

Since D5' then replaces dr(o-) by (dr(o-); inv./), this execu-
tion establishes

st.i = e(dt (o-)) Ares . i = f(dt(o-)).

Since i = a .T and the postcondition has O-r = dr(o-), this
implies that D5' preserves (J1) for Q = T. For Q :t= T, the
value % is not modified and, by (K0), wa.(a. Q) also re-
mains constant; therefore (J1) is also preserved for Q + T.
Since nx .g = i =t= 0 and the postcondition has -qwa.i, it
also follows that D5' preserves (J2).

Condition (J1) holds initially because of O- -- e. Condi-
tion (J2) holds initially because of n x . g = 0 and
st .g = Xo = e(e). By Lemma 0 (a), modification of array
a does not falsify (J1). Also, modification o fwa in CO does
not falsify (J1). By (8), modification of res does not falsify
(J1). Therefore (J1) is invariant.

With respect to (J2), we still have to take care of the
modifications of g, nx, wa and st. We first treat modifica-
tion of g. After D5', one might expect the update g := nx. g

72

Since both g and r,_x are shared variables, such an update
could be done by all processes (even concurrently), Since it
must be done precisely once, we give each process a private
variable h of type address that serves as a possibly out-
dated copy of g and we let g be modified only by the
compare&swap action

D6: (i f g = h then g:= i f i) .

We postulate

(P1) P i n D 6 A g = h

nx . g = i d= O A ~ w a . i A n_x.i = O.

This postulate guarantees that D6 preserves (J2). For, it
implies that g is only modified if the guard of (J2) is false,
that g becomes nx .g and that the guard of 02) becomes
true.

By postulate (P0), effective execution of D5' presupposes
nx .g :~ 0. We therefore introduce some assignment to
nx.g. To avoid the usage of two shared variables in one
command, we prefer an assignment to nx. h. Since it might
violate (J2) if nx. h ~: 0, we propose the consensus action

D2: (if nx.h = 0 then nx .h := i fi},

with the postulate

(P2) P i n D 2 A n x . h = 0 ~ i + 0 A w a . i ,

In fact, it is easy to see that (P2) implies that D2 preserves
02).

Remark. Although it is not necessary, it is natural also to
postulate

(P2') P i n D 2 A n x . h = 0 ~ g = h .

This predicate will indeed be preserved, see (L6) below. []

In order to guarantee that the assignments to nx and
wa in region E preserve (J2), it is sufficient to postulate
invariant validity of

(P3) P i n e ~ a .Pr nx.g}.

We now come to the central computation. Since h is
supposed to be a private copy of g, postulate (P0) suggests
that command DD should contain command D4 given by

D4: locapply (inv./, st.h, st./, res.i).

Since this command threatens postulate (8) for k = i, we
postulate

(P4) P i n D 4 A ~ w a , i
(inv./, st.h, st./, res . i) ~ R.

Now, indeed, since locapply is specified by R and relation
R is deterministic, postulate (P4) implies that D4 does not
violate (8). Since st and res will not be modified by other
commands, we may henceforth regard (8) as a corollary of
(P4).

Command D4 also threatens the invariance of (J2) by
modifying st .g or st.(nx.g). Therefore, we postulate in-
variant validity of

(P5) - lwa .g .

Using (8) and (P5), one can easily verify that D4 preserves
02). This shows that (J2) is an invariant.

The results obtained until now can be summarized in

Theorem 0. Assume that the only actions in DD on the
shared variables wa, g, nx, st, res, a, inv are D2, D4, D5'
and D6. Assume invariant validity of the postulates (P0)I
through (P5). Then (CL0) and (CL1) are invariants.

It remains to guarantee the postulates (P0) through
(P5). Since they do not involve the ghost variables a and
/3. Q, we may forget about these ghost variables and thus,
henceforward, argue about command D5 instead of D5'.

In order to get indications for the treatment of the
variables, we reformulate the postulates (P) and strengthen
them slightly. We first compile a list of new postulates (Q)
and then verify that its conjunction implies all postulates
(P). In view of (P0), (P1) and (P2), we postulate

(Q0) P i n D 2 , D4, D5, D6 ~ i=~0, and

(Q1) P in 04, 05, 06 =~ i = n x . h .

In order to get (P2), we also require

(Q2) P i n D 2 A n x . h = 0 ~ wa.i.

In view of command D4 and postulates (P0) and (P4), we
postulate

(Q3) (P i n D 4 A ~ w a . i) V P i n D 5
(inv./, st.h, st./, res . i) ~ R.

In order to get (P0)from (Q3), we also require

(Q4) P i n D 4 , D 5 A w a . i ~ h = g .

Here, the possibility P in D4 is added for usage in Theorem
1 below.

In view of command D5 and postulate (P1), we
postulate

(Q5) P in D6 ~ -nwa.i.

In order to get nx. i = 0 in (P1), we require

(Q6) nx .g = 0 V nx.(nx;g) = 0.

Postulates (P5) and (P3) are repeated as

(Q7) -n wa.g,
(Q8) P in E ~ a .Pr nx.g}.

In fact, (P0) follows from (Q0), (Q1), (Q3) and (Q4).
Postulate (P1) follows from (Q0), (Q1), (Q5) and (Q6),
Postulate (P2) follows from (Q0) and (Q2). Postulate (P3)
is (Q8). Postulate (P4) follows fl'om (Q3). Postulate (P5) is
(Q7).

Since the non-atomic shared variables inv, st, res are
only assumed to be safe, we also postulate

(Q9) P in D4 A Q in E ~ a.Q r {h.P, nx.(h.P)},
(Q10) P in D4 ~ - lwa .h .

Now we can prove

Theorem 1. Assume that the only actions in DD on the
shared variables wa, g, nx, st, res, a, inv are D2, D4, D5 and
D6. Assume invariant validity of the postulates (Q0) up to
(Q10). Then the implementation of the data object is lineariz2
able. Moreover, the read and write operations of the safe
variables inv,k, st.k and res.k do not destructively inter-
fere.

Proof. The first assertion follows from Theorem 0 and the
fact that the predicates (Q0) through (Q10) imply the
predicates (P0) through (P5).

With respect to interference, we have to consider com-
mand D4 and the write action of inv in E and the final read
action of res. We begin with D4. If two processes concur-
rently execute D4 there are two possibilities of interference.
It may be that one of the processes, say P, is writing into
a variable that is being read by the other process, say Q.
Then i .P = h.Q. By (Q10), we then have ~wa . (h .Q) and
hence ~ wa.(i. P). By (8), this implies that P's write opera-
tion into st.(i.P) is nonmodifying. Since st.(i.P) is a safe
variable, this is a harmless interference.

The other possibility is that P and Q are both writing
into the same variables. We then have i .P = i.Q. If
~ w a . (i . P) then (8) implies that both write actions are
nonmodifying and the interference is harmless. If wa.(i. P)
then predicate (Q4) implies that h .P = g = h.Q. Then the
determinacy of locapply implies that P and Q are writing
the same values in st.(i.P) and res.(i.P). Since these vari-
ables are safe, this is a harmless interference.

Interference between D4 and E is precluded by (Q9)
and (Q 1). Interference between different processes in E is
precluded by invariant (K0) and the disjointness of the sets
addr.P. Finally, interference could occur between some
process P in D4 and Q's final read action z := res.(a. Q). In
that case, i .P = a. Q and (Kla) implies - lwa . (a . Q). There-
fore, command D4 of P does not modify res.(a.Q). Again
the interference is harmless. []

5 A sound implementation in quadratic space

In this section we provide a concrete program that satisfies
the postulates (Q). More precisely, we extend the program
such that values are assigned to the local variables h and i,
and that the nondeterminate choice o f a . P in CO is guided.
This is done in such a way that the postulates (Q0) up to
(Q10) can be proved and that in a later stage progress can
be ascertained.

In this section, several design choices are made to
preclude specific harmful scenarios. It is only after all
choices have been made that we can provide a long list of
invariants and prove the absence of harmful scenarios.

As announced earlier, we use h as a local copy of g,
which may be outdated. We therefore begin command DD
with h := g. Since process P enters DD with wa.(a.P),
postulate (Q2) may suggest to let command D2 be preced-
ed by an assignment i:= a.P. In this way, we get the
tentative refinement of DD by

DD: [[h : = g ; i : = a . P
; D2: (i f nx .h = 0 then nx .h := i fi)
; D3: i:= nx .h
; D4: locapply (inv.i, st.h, st./, res. i)
; D5: wa. i := false
; D6: (i f g = h then g := i fi)][.

Command D3 is introduced to establish (Q1) in the case
that D2 does not modify nx.h. The choice i:= a .P in
combination with D2, however, raises the possibility of
individual starvation: there is no way to guarantee that

73

P ever establishes n x .g = a.P. We therefore allow other
processes to establish this predicate. For the moment, we
only introduce nondeterminacy. In Sect. 6, we show how
this nondeterminacy is used (and eliminated) to guarantee
bounded delay. Thus, i:= a. P is replaced by

DO: [[choose r~process; i:= a.T]l.

Now the consequent wa. i of condition (Q2) is in danger.
We therefore provide a second option by introducing

DI: i f ~ w a . i then i:= a .P ft.

This, however, does not yet guarantee (Q2), for two rea-
sons. Firstly, some other process may have set wa.(a.P) to
false after P entered its loop body DD. Secondly, even after
execution of D1, some process may set wa. i to false. For
the moment, we only treat the first objection by introduc-
ing an additional test on wa. (a. P). In this way we come to
the (still tentative) refinement

DD: I[- h:= g; D]I.

where D is given by

(9) D: if w a . (a . P) then
D0: [[ehoose T ~ process; i := a. T] [

;DI: i f - n w a . i then i:= a .P fi
;D2: (i f roz.h = 0 then n x .h := i fi)
;D3: i:= nx.h
;D4: locapply (inv.i, st.h, st.i, res. i)
;D5: wa. i := false
;D6: (i f g = h then g : = i fi)
ft.

In order to guarantee (Q9), the processes need to commun-
icate the values of h. For this purpose we introduce

vat b: array process of address,

with the intention that b .P = h whenever P is in D. The
value of b .P can be read by all processes, but modified
only by process P. We do not want an assignment b. P := g,
since it would refer to two shared variables at the same
time. The sequential separation h := g; b . P := h introduces
the danger that some process Q reads b.P, before process
P sets b .P and subsequently enters D with a value h :# g
(entering with h = g is harmless if(Q8) holds). This danger
is precluded by providing a test h = g to guard command
D. In this way we arrive at the refinement of DD given by

(10) DD: i [h : = g ; b . P : = h
; if h = g then D fill,

where D is given by (9) above. We shall show that C1 as
refined by (7), (10) and (9) indeed satisfies the aims set for
this section. As indicated above, the tests h = g and
wa.(a.P) are both necessary. In Sect. 7, we shall show that
it is not even allowed to reverse the order of the two tests.

Analogously to the convention in Sect. 3, we write
D i ~ j to denote a composition D i ; . . . ;Dj. From the pro-
gram text together with invariant (K0) and formula (5) we
easily get that the following predicates are invariant:

(K2) P i n D ~ h . P = b . P ,
(K3) P i n D l ~ 2 ~ i . P + O .

74

We still have to refine the choice of a .P in command
C0 in such a way that (Q8) and (Q9) can be proved. For
this purpose, each process P is equipped with a persistent
private variable s.P to stand for the set of addresses
currently not available for a.P, according to the declar-
ation

var s.P: set of address;
initially s.P = (address\addr.P)w{g, a.P}.

Command CO is refined by

(11) CO: I[if s.P = address then A fi
; choose a .P s address\s.P
; E: 1[inv. (a . P) := u

; nx . (a .P) := 0
; wa.(a.P) := true
;; s.P:= s.Pw{a.P}]]]1,

where command A establishes the postcondition s.P 4=
address. Then the choice of a .P in the complement
address\s.P is certainly possible and is easily imple-
mented, say by a linear search.

Since we want that C0 as given in (11) is a refinement of
CO of (6), we need the postulate

(Ql l) address\s.P c_ addr.P.

The postulates (Q8) and (Q9) may now suggest the
postulates

(Q12) {g, nx.g} ~ s.P,
(Q13) P i n D A ~ (Q i n A)

{h.P, nx.(h.P)} ___ s.Q.

The assignment to s .P in command E of (11) is introduced
for the preservation of (Q12). In fact, as soon as wa.(a.P) is
made true, some process may establish nx .g = a .P by
performing D2.

Command A in (11) is refined by

(12) A: 1[s.P:=(address\addr.P)u{g,a.P}
; for each T ~ process with T ~= P do

i:= b .T
; s .P:=s.Pw{i , nx.i} od][.

So, after its renewed initialization in A, variable s. P is only
made larger. This implies that we have the invariant

(K4) address\addr.P ~_ s.P.

Invariant (K4) clearly implies postulate (Qll).
In the first command of A, the value of g is put into s. P

in view of postulate (Q12). The decision to put a .P into
s.P, instead of nx.g, is motivated by the fact a .P is not
modified by other processes, whereas nx .g uses two highly
vulnerable shared variables. The fact that a. P can be used
here will follow from the invariant (L14) presented below.

The for-loop of A is intended to establish (Q13). In the
postcondition of the for-loop, the set s.P clearly contains
at most 2 x n elements of addr.P. It now follows from
(5) that, if we take m > 2 x n, command A establishes
s.P 4 = address, as required. We prefer a choice like
m = 4 x n, see Sect. 9. This implies upb = 4 x n 2 and thus
justifies the expression quadratic space in the title of this
section.

The assignment to s.P in command E of (11) is disjoint
from the actions of the processes Q = P, in the sense of [1]
Sect. 5.1. By the atomicity rule ([i] Theorem 6.26), we may
therefore regard the last two statements of region E as
a single atomic statement. This is indicated by means of
the symbol "'; ;". It is not a restriction on the implementa-
tion. but only a convenience for the proof (otherwise
a ghost variable s'.P must be introduced to stand for
s .Pu{a .P} at the point of ";:". It is easy to see that. after
these preparations, the program satisfies the invariant

(K5) P i n E - a . P ~ s . P .

It is clear that (K5), (Q12) and (Q13) imply (Q8) and (Q9).

Remark. For the elegance of the program one might prefer
to replace s by its complement, which is a subset of addr. P.
We have not done so, since the present version is more
convenient for the proof that is to be given. [B

We now claim that program (4) with C0 refined by (11)
and (12), and C1 refined by (7), (10) and (9) satisfies the
invariants (Q0) through (Q13).

In the proof of this claim, we use the invariants (K0)
through (K5) obtained above and a new list of invariants
(L) to be presented now. Since we shall prove invariance
under actions of P, the invariants (L) use Q and T as
process names. Since we have to go through the list several
times, the invariants are numbered consecutively. Each
invariant is motivated either as being needed for some of
the postulates (Q) or for the preservation of one of the
other invariants. In either case, the motivation is not
meant as a proof but merely as an announcement.

In view of invariant (K3) and the contents of command
D3, the postulates IQ0) and (Q1) are replaced by

(L0) Q in D 3 ~ 6 ~ nx.th.Q) = O.
(L1) Q in D 4 ~ 6 ~ nx.(h.Q) = i.Q.

Postulate (Q2) is repeated as

(L2) Q in D2 A nx.(h.Q) = 0 ~ wa.(i.Q).

In order to preserve (L2) under D1, we also introduce

(L3) Q i n D 0 ~ l A n x . (h . Q) = 0 ~ wa.(a.Q).

Since process Q enters region D only if h. Q = g, some
invariants mention region D. Since i. Q is modified in D,
these invariants do not use i.Q. The first case is invariant
(L4), which in conjunction with (L0) and (L1) implies (Q3):

(L4) Q in D A nx.(h.Q) = k 4:0 A (--nwa.k V Q in D5)

(inv.k, st.(h.Q), st.k, r e s . k) e R.

In order to preserve (L4) when process Q enters region D,
we postulate

(L5) n x . g = k + 0 A - l w a . k

(inv.k, st.g, st.k, r e s .k) ~ R.

In view of (L0) and (L1), postulate (Q4) combined with the
optional postulate (P2') is replaced by the contraposition:

(L6) Q i n D A h . Q + g
nx.(h.Q) + 0 A ~wa.(nx.(h .Q)) .

Postulate (Q10) is strengthened to

(L7) Q in D ~ -qwa.(h.Q).

Postulates (Q5), (QT) and (Q6) are repeated as

(LS) Q in D6 ~ -lwa.(i.Q),
(L9) ~wa .g ,
(L10) nx.g = 0 V nx.(roz.g) = 0.

In order to keep (L10) invariant under D2, and in view of
(L2), we postulate

(Lll) wa.k => nx.k =0.

In order to preserve (Lll), we need

(L12) Q in E0 ~ nx.(a.Q) = 0,

where E0 is the final subcommand of E in (11) that consists
of the assignments to wa and s.

The last part of the list consists of the invariants of
memory management. Postulate (Q12) is repeated as

(L13) {g, nx.g} c s.Q.

In order to preserve (L13) in the first command of A, we
need (as announced above):

(L14) nx.g(~addr.Q V nx.g = a.Q V Q in E V wa.(a.Q).

For treatment of (Q 13), we first define a location predicate.
If T + Q, we write Q done T to denote that process Q is not
in command A of (12) or has treated process T in the
for-loop of command A. Now (Q13) is strengthened to

(L15) QdoneTATinD
{h.T, nx.(h.T)} ~ s.Q.

In order to preserve (L15), we also need

(L16) Q a t T A T i n D
i.Q = h.T V {h.T, nx.(h.T)} ___ s.Q,

where Q at T is used to denote that Q is in A, has executed
i:= b.T in its for-loop and has not yet completed the
subsequent assignment of s.Q.

This concludes the list of invariants (L). Before proving
that these predicates are invariants of the program, we
show that they imply the predicates (Q).

Well, (Q0) follows from (K3), (L0) and (L1); (Q 1) is (L1);
(Q2) is (L2); (Q3) follows from (L0), (L1) and (L4); (Q4)
follows from (L1) and (L6); (Q5) is (L8); (Q6) is (L10); (Q7)
is (L9). As noticed above, (Q8) and (Q9) follow from (K5),
(Q12) and (Q13), and (Qll) follows from (K4). Finally,
(Q10) follows from (L7); (Q12) is (L13); (Q13) follows from
(L15).

Since the processes are tightly coupled, the proof that
the predicates (L0) through (L16) are invariants of the
algorithm is a huge case analysis. In each of the cases,
a small argument is sufficient. We first treat some of the
commands separately.

Lemma 1. Command D2 of process P preserves the predi-
cates (L0) through (L16).

Proof If an_x.(h.P) + 0 in the precondition of D2, then D2
is equivalent to skip. Since P enters D3 this action only
threatens predicate (L0) for Q := P; it preserves this predi-
cate since the consequent holds.

75

Otherwise we have nx.(h.P) = 0 in the precondition.
By (L2) and (L6), it follows that the precondition satisfies
h.P = g and wa.(i.P). Therefore D2 only sets nx.g to i.P
while P enters D3. Predicate (L0) for Q := P is preserved
because of (K3). If Q is a process in D4 ~ 6 with
nx.(h.Q) = i.Q then i.Q ~= 0 by (L0), so that D2 of P does
not modify nx.(h.Q). Therefore, (L1) is preserved. The
predicates (L2), (L3), (L6), (L7), (LS) and (L9) are not
threatened. Because of wa.(i.P), the predicates (L4) and
(L5) are not threatened either.

Since wa.(i.P) implies nx.(i.P) = 0 by (Lt 1), predicate
(L 10) is preserved. Since nx. g is set, preservation of (L 11)
follows from (L9). By (K5) and (L13), a.Q + g for all Q in
E0; therefore D2 preserves (L12).

Because of (K4), command 02 threatens (L13), (L15)
and (L16) only for process Q with i.P ~ addr.Q. Then
wa.(i.P) implies i.P = a.Q and Q in C1 by (K1), so that
i . P e s . Q by (K5). Therefore (El3), (L15) and (L16) are
preserved.

Since D2 only modifies nx.h, it only threatens (L14) if
h.P = g. If i .P ~ addr.Q it establishes the first disjunct of
(L14). Otherwise, wa.(i.P) implies i .P = a.Q by (KI), so
that the second disjunct of (L14) is made true. Therefore,
(L14) is preserved. []

Lernma 2. Commands D3, D4 and D5 of process P preserve
the predicates (L0) through (L16).

Proof Command D3 clearly preserves (L1) for Q := P and
does not threaten other predicates of the list.

Command D4 can only modify s t . /and res.i. There-
fore, only (L4) and (L5) are threatened. By determinacy of
relation R as specification of locapply, it follows from (L0),
(L 1) and (L4) that D4 can only modify st. i and res. i if wa.i
holds. So we may assume wa.i. Because of (L7), predicate
(L4) is threatened only for processes Q in D5 with
nx.(h.Q) = i.P. Then h.Q = g = h.P by (L6) and (L1).
Therefore, D4 establishes the consequent of (L4) for such
Q. This proves that D4 preserves (L4). Since the antecedent
of (L5) yields ~wa .k , predicate (L9) implies that (L5) is
preserved.

Command D5 only threatens (L2), (L3), (L4), (L5) and
(L14) by setting--n wa.i, and (L8) for Q := P by entering D6.
We first notice that (L0), (L1) and (L6) imply

P in D5 A wa.(i.P) ~ h.P = g A nx .g = i.P :~ O.

Command D5 threatens (L2) and (L3) only for processes
Q with nx.(h.Q) = 0. Then (L6) implies h.Q = g, contra-
dicting nx. g 4: 0. This proves that (L2) and (L3) are preser-
ved. Since D5 only makes wa.(i. P)false, predicate (L4) is
threatened only for processes Q in D with nx.(h.Q) = i.P.
From wa.(i. P) and (L6) follows h. Q = g = h.P. Therefore,
preservation of (L4) for Q follows from (IA) for Q := P. It
follows from h.P = g and (L4) for Q:= P that (L5) is
preserved. If the fourth disjunct of (L14) is falsified the
second disjunct remains valid. So (L14) is preserved.

Predicate (L8) for Q := P is preserved since 05 estab-
lishes the consequent. []

Lemma 3. Command D6 of process P preserves the predi-
cates (L0) through (L16).

76

Proof If h .P # g, command D6 is equivalent to skip and
preserves all predicates of the list. So, we assume that
h.P = g in the precondition. By (L0), (L1), (LS) and (L10),
the precondition then satisfies

H: h.P = g A n x . g = i.P # O

A '-7wa.(i.P) A nx.(i.P) = O.

Then D6 sets g to i.P. Since nx.(i.P) = 0 r addr.Q, predi-
cate (L14) is preserved. In view of H, the only other
predicates threatened are (L6) and (L13). If D6 threatens
(L6) for process Q, it is because h.Q = g holds in the
precondition and is made false by D6. Since predicate
H together with h.Q = g implies

n x . (h . Q) , 0 A -] wa.(nx.(h.Q)),

predicate (L6) is preserved for all Q.
I fh .P = g, command D6 replaces g by nx .g and nx .g

by 0. Since Oes.Q by (K4), this implies that (L13) is
preserved. []

Lemma 4. All commands of CO of process P preserve the
predicates (L0) through (L16).

Proof It is clear that command A of process P only
threatens (L13), (L15) and (L16) for Q:= P. The first
assignment to s.P in A only threatens (L13). By (L14)
and (K1), its precondition satisfies nx.g~addr.P or
nx .g = a.P. Therefore, (L13) is preserved.

The assignment to i when P treats process T in its
for-loop only threatens (L16), and only if Tis in D. By (K2),
the assignment to i has postcondition i. P = h. T, so that
(L16) is preserved. The subsequent assignment to s.P does
not make s.P smaller; it therefore only threatens (L15) for
(2 := P; it preserves (LI5) because of (L16). The choice of
a .P only threatens (L14) for Q:= P. This predicate is
preserved since P enters E.

For the discussion of the commands of P in E, we first
observe that (K5), (L13) and (El5) imply

a .P r {g, nx.g}
A (VT:T in D" a.P (i {h.T, nx.(h.T)}).

The assignment to inv.(a.P) only threatens (L4) and (L5).
Preservation of (L4) follows from a .P # nx.(h.r) when
T is in D. Preservation of (L5) follows from a. P # nx. g.

The assignment nx.(a .P) := 0 sets an element of nx
equal to 0 and coincides with entering E0. Since a .P # g
and a. P # h. T for all T in D, the only predicate threatened
is (L12) for Q := P. This predicate is preserved since the
consequent is established.

Command E0 is the pair of assignments to wa.(a. P)
and s.P. It coincides with leaving E and entering C1. It
therefore only threatens (L6), (L7), (L8), (L9) and (L11) by
modifying wa and (L13), (L15) and (L16) for Q := P by
modifying s.P.

Preservation of (L6) and (L7) follows from
a.P # nx.(h.Q) and a .P # h.Q for Q in D. Preservation of
(LS) follows from (L1) and a .P # nx.(h.Q) for (2 in O.
Predicate (L9) is preserved since a. P =t = g. Preservation of
(Lll) follows from (L12). Since s.P is only made bigger
(L13), (L15) and (L16) for Q:= P are preserved. []

Theorem 2. Program (4) with C1 and CO refined according
to (7), (9), (10), (11) and (12) has the invarlams (L0) through
(L16). It is a linearizable implementation of the data object.
Moreover, the read and write operations of the safe variables
inv. k, st. k and res. k do not destructively interfere.

Proof Since Theorem 1 applies, it remains to prove that
(L0) through (LI6) are invanants.

Initially, all elements of wa are false and g ~ s. Q and
n x . g - 0 and 0 r addr.Q and 0 ~ s.Q. This proves the
initial validity of (L5), (L9), (L10), (Lll), (L13)and (L14).
The other predicates hold initially since no process is
active.

It remains to verify that all commands of the program
preserve the predicates. Command CO preserves the predi-
cates because of Lemma 4. Passing the guard of C], and
the assignments to h. P and b. P do not threaten any of the
predicates.

We come to the point where process P enters D by
passing the test h = g. Then P in D becomes true. The only
predicates that are threatened by this action, are (L4), (L6)
and (L7) for Q := P, and ILl5) and (L16) for T:= P. Preser-
vation of (L4) follows from h.P = g and (L5). Since P
enters O only if h.P = g, preservation of (L6) is clear.
Preservation of (L7) follows from h.P = g and IL9t. Pres-
ervation of (L15) and (L16) for T:= P follows from
h..P - g and (L13).

We now consider command D. It is clear that passing
the test wa.(a.P) preserves (L3) for Q := P and does not
threaten the other mvariants. Command DO does not
threaten any of the predicates (L0) through (Lt6). By (L3)
for Q := P, command D1 preserves (L2~ for Q := P. It does
not threaten the other invarlants.

The commands D2, D3, D4, D5 and D6 are treated in
Lemmas 1, 2 and 3. Finally, none of the predicates (LO)
through (L16) are threatened by the action of exiting D or
exiting the repetition, or by the final assignment to z. []

Remarks. In the predicates and the proofs, the location
predicates like P in O and Q art P can be eliminated by
introducing ghost variables. For example, one can intro-
duce an integer ghost variable r private to process P such
that always 0 < t < 9 and

P i n D = t>=l,
P i n D 0 = t = 2 ,
P i n D 1 = t = 3 , etc.

Then a positive outcome of the test h = g guarding D must
be accompanied by a simultaneous assignment t := 1.
A positive outcome of the subsequent test wa.(a.P) must
be accompanied by t := 2; a negative outcome by t := O.
This could be encoded by

(if wa.(a.P) then t:= 2); D0; . . ; D6
else t:= 0) ft.

If the test in D1 finds -Twa.i, the assignment i:= a .P is
accompanied by t := 4. If it finds wa.i, the assignment
t := 4 is executed instantaneously. So the important tests in
the program must be accompanied by simultaneous as-
signments to t. Since the program gets cluttered with
assignments to ghost variables, we prefer to use location
predicates whenever possible.

77

In this section we use a variation of the classical
method of Owicki and Gries [13] in the style of Lamport
and Schneider ([10], [11]). Previous versions of the proof
used several shortcuts. Indeed, the invariants (L3), (LS),
(L12), (L16) are so local, that it is a pity that we have to
mention them. The shortcuts have been eliminated, how-
ever, since they increased the complexity of the argument
without decreasing the size.

6 The program is made wait-free

We first give a result that can be interpreted as progress of
the system as a whole.

Lemma 5. During every execution of the body of C1 by
process P while wa.(a .P) remains true, variable g is modified
at least once.

Proof The body of C1 begins with h:= g. If wa.(a .P)
remains true and g is not modified before D6, it follows
from the text of(9) and (10) that D6 is executed with h = g.
Then (L0), (L1) and (L10) imply that i 4= g and hence that
command D6 modifies g. []

We now have to guarantee some kind of fairness in the
choice of T in DO, see (9). Since it is never known which
process is executing, it seems likely that fairness must be
guaranteed by means of shared data. Following Herlihy
[5], we (conceptually) add a process number to the state of
the object. At every state transition of the object the
process number is incremented by one modulo n. The
process number at the old state indicates the process T to
be chosen in D0. Compare program (3). So we additionally
declare

vat seq: array address of process,

and we replace the commands DO and D4 in D by

(13) DO': i:= a.(seq.h),
D4': [[locapply (inv./, st.h, st./, res. i)

; seq. i := (seq.h + 1) mod n]l.

It is clear that this yields a refinement of command D of (9).
The element seq.k can be regarded as an additional com-
ponent of the state st.k. So we consider an extended state
space X' = X x p r o c e s s and an extended relation
R' ~_ U x X' x X' x Z given by

(u, <x, Q>, (y, T>, z> ~ R'
-= (u , x , y , z) ~ R A T = (Q + l) m o d n .

Relation R' is also total and deterministic. Since D4' is the
analogue of D4 for the extended state and relation, (L5)
and (L4) give rise to the additional invariants

(L17) n x . g = k + 0 A ~ w a . k
seq.k = (seq.g + 1) mod n,

(L18) Q i n D A n x . (h . Q) = k = ~ 0 A (~ w a . k V Q i n D 5)
seq.k = (seq.(h.Q) + 1) rood n.

Lemma 6. The following stability properties hold:
(SO) seq.g is constant while g is constant,
(S1) whenever g is modified, seq.g is incremented by one
modulo n,

(S2) -nwa.(a .Q) is stable while ~ (Q in C0),
(S3) h.Q + g is stable while (Q in D).

Proof It follows from (L0), (L1) and (L18) that secl.k is
modified only by process P when k = nx.(h.P) and wa.k
holds. By (L6) and (L10) we then have h.P = g and
k = roz.g 4: g. This proves (SO). Property (S1) follows from
(L0), (L1), (L8) and (L17).

Property ($2) is only threatened by the assignment
wa. (a. P):= true in E, and only if a. P = a.Q. By invariant
(K0) and the disjointness of the sets addr.Q, the equality
a .P = a.Q implies P = Q and hence Q in CO. This proves
($2).

It is clear that h. Q is constant while Q in D. Therefore
($3) is only threatened by modification of g, say by com-
mand D6 of some process P. This command threatens
($3) only ifg = h.P and i.P = h.Q 4: gin the precondition.
By (L0), (L1) and (L6), it follows that n x .g = i.P ,t = 0
and n x . (n x . g) = nx. (h .Q)+ O, contradicting (L10). This
proves ($3). []

The proof that the program is wait-free relies on the
r61e of the sequence number in command DO'. In the
following result, we need a new location predicate: we
write P in D1T to indicate that P is in the then-part of
command D1. In other words, the test ~ w a . i has been
executed and has yielded true and the subsequent assign-
ment to i has not yet been executed (this exceptional region
D1T was found to be needed in our verification by means
of the theorem prover N Q TH M, see [8]).

Lemma 7. For a fixed process P, let predicate X be given by

X: seq.g = P
nx .g e {0, a.P}

A (VQ: Q i n D l ~ 6 A h . Q = g
: i.Q = a .P A ~ (Q in D1T)).

(a) Every modification of g establishes X.
(b) X is stable while wa.(a.P).

Proof (a) By postulate (P1), every modification of g has
postcondition n x .g = 0. It follows from ($3) that every
modification of g has postconditions h. Q # g for all Q in
D. These predicates imply X.

(b) Now let X A wa.(a.P) hold in the precondition of
some command. We have to show that the command does
not invalidate X. By (Kla), process P is in C1, so that a .P
is constant. By part (a), any modification of g does not
invalidate X. So we assume that g is constant. By (SO), this
implies that seq.g is constant.

If roz.g gets a new value # 0, this is done by some
process Q in D2 with h.Q = g and hence ioQ = a.P by X.
So, this does not invalidate X. If seq.g = P and some
process Q with h.Q = g enters D1 by executing DO, it sets
i.Q := a .P and therefore does not invalidate X. If Q with
i.Q = a .P executes the test of D1 then wa.(a.P) implies
that Q does not enter D1T and hence does not invalidate
X. Finally, if some process Q with h. Q = g executes D3,
then (L0) implies l ax .g + 0, so that X implies
nx.(h.Q) = nx .g = a.P. Therefore, D3 does not invalidate
X. []

We are ready to prove our main result.

78

Theorem 3. Program (4) with CO refined according to (11)
and (12) and C1 refined according to (7), (9) and (10) with DO
and D4 replaced by DO' and D4' of (13) is linearizable and
wait-free.

Proof Since we have refined the program of Sect. 5, The-
orem 2 implies that the implementation is linearizable. It
remains to prove that the implementation is wait-free:
apply of process P terminates after a bounded number of
steps of process P. In view of the program text, it suffices to
prove that the loop C1 of process P terminates after
a bounded number of steps of P. Since wa.(a.P) is the
guard of this loop, it follows from (S2) that it suffices to
prove that wa.(a .P) becomes false after a bounded num-
ber of steps of P.

It follows from Lemma 5 and (SO) and (S1) in Lemma 6,
that, if wa.(a. P) remains true, after at most n executions of
the body of C1 of P, variable g gets a value with seq. g = P.

Now assume that wa.(a.P) still holds and that g gets
a new value with seq.g = P. By Lemma 7, the modifica-
tion of g establishes predicate X. Since seq.g = P, it fol-
lows from X that the next modification of g will establish
g = a . P and then (Lg) implies that -qwa.(a .P) has been
established. Then, by ($2), command C1 of P terminates
within a bounded number of steps of P. In this way, we see
that the loop C1 of P terminates after at most n + 1
executions of its body. []

Remark. It follows from postulate (P4) that command D4
may be replaced by if wa. i then D4 ft. This can be advant-
ageous for the performance of the system if calls of locapply
require extensive data transfer or computation.

7 Discussion of the design

Some aspects of our solution are delicate. For instance, in
a previous version of this paper we claimed that, after the
assignment b . P : = h, the order of the tests h = g and
wa.(a.P) was irrelevant. The following scenario shows
that a reverse order of testing leads to incorrectness. So,
here, process P first tests wa.(a.P) and then h.P = g.

We assume n > 2. We let P and Q be two different
processes and assume that seq.g -- P - 2 (modulo n) ini-
tially. The scenario begins with process Q calling apply and
treating its own invocation. We then have g = kl ~ addr.Q
and kl ~ {b.P, nx.(b.P)} and seq.g = P - 1 (modulo n).
Then P calls apply, chooses a .P = ka, sets wa.k3 and
h .P := kl. Then Q calls apply again and treats its own
invocation. We then have g = k2 =t = k~ and seq.g = P.
Then Q calls apply again. It executes A and chooses
a.Q = lq. This is possible since kl ~ {b.P, nx.(b.P)}. Then
P sets b . P : = h.P and verifies that wa.(a.P) holds. Then
Q enters Cl and sets n_x.g:= a .P (= k3) since seq.g = P.
Process Q treats the invocation of P, sets --nwa.(a.P) and
sets g:= k 3. Again Q enters the loop. Since k~ contains the
only waiting invocation, Q sets nx.k3 := kl and treats its
own invocation at k~ and sets g := kl. Then P verifies that
h .P = g holds. It finds no waiting invocation and sets
i.P := a .P (= k3). It then treats its own invocation for the
second time. In this way, P's invocation is treated twice.
Notice that condition (P2) is violated.

Another seemingly innocent modification is as follows.
One might be tempted to replace command A by

A': 1[s:= address\addr.P
; for each T e process do

i : = b . T
; s:=su{i , nx.i} od 3[.

This is incorrect, for it allows the following scenario that
violates (P0). We assume n > 3. Let P, Q and T be three
different processes.

The scenario begins in a situation where g = k~ and
seq.kl = Q while process Q has completed CO with
a.Q = k2 e addr.Q. Process T in CI. sets nx. lq := k2, treats
the invocation of Q and sets wa.k 2 :=false. Command/)6
of T is delayed, so that g remains kl. Process Q evaluates
wa.(a.Q), skips its repetition, terminates the invocation.
begins a new invocation and begins A'. It makes s. Q the
complement of addr.Q. In its for-loop of A', process
Q treats process P before T. After it has treated P, process
P enters C1, sets h.P := g (= kl) and subsequently enters
region D with h.P = k~, to recalculate the contents of
address k2.

Now process T executes D6 so that g --- k2. Then T ex-
ecutes the body of C1 once more and treats some invoca-
tion, so that g = k3 + k2. Then T enters the body of C1
again and sets b. T:= k3. Then Q resumes its for-loop in A'
Then s. Q need not contain k2. Therefore Q can choose
a. Q := k2. It then sets wa. (a. Q). Then process P continues,
executes D5 and sets ~wa. (a .Q) . In this way, the new
invocation of Q is destroyed before treatment. The call
apply (Q) terminates and. erroneously, yields the result of
the previous call. Notice that process P violates postulate
(PO).

8 Comparison with Her|ihy's program

Program (4) is a variation of F ig 14 of [SJ. For conveni-
ence of the reader, we give an interpretation of that pro-
gram in our notation.

The array seq now is an array of unbounded integers,
Compare&swap register g and array wa are not used. The
equation seq.k = 0 is used as an encoding of wa.k. The
program uses additional arrays

var pre: array address of address
; ent: array address of integer,

and an initialization with, for an arbitrary address ko a= 0
and for all processes P and addresses k,

st.ko = xo A nx.ko = 0
A b . P = k o A s e q . k > 0
A(k~=ko - c n t . k = 0) .

Our program variable g is encoded in the array b. The
program is given in (14).

(14) proe apply (in P; process, u: U; out z :Z);
I E free (P, u)
; for Q ~ process with Q +- P do

if seq.(b.P) < seq.(b.Q)
then b. P := b. Q fi od

; while seq.(a.P) = 0 do thread (P) od

; b . P : = a .P
; release (P)
; z := res . (a .P)]l,

where procedure thread is given by

proc thread (in P:process);
var h, i : address;
1[h:= b . P
; i:= a.(seq.h mod n)
; i f s e q . i # O t h e n i : = a . P f i
; (i f nx .h = 0 then nx .h := i fi)
; i : = r z x . h
; tocapply (inv. i, st. h, st.i, res . i)
; p re . i := h
; seq. i := seq. h + 1
; b . P : = i][.

We gather that one of the methods for memory manage-
ment mentioned in [5] consists of procedures f ree and
release as given by

proc free (in Q:process, u:U);
vat j : address;
![choosej e addr .Q with ent. j = 0
; nx . j := O; inv. j := u
; cnt . j := n + 1; seq. j := 0
; a . Q : = j]l,

proe release (in Q : process);
vat j : address; i : 0 . . n + 1;
I[j : = a . Q ; i : = n + l
; while i # 0 do

j := pre . j ; i:= i -- 1
; (c n t . j := cnt. j -- 1 >
od]1.

In view of procedure release, the initialization of the linked
list requires some care. One solution is to start with
pre.ko = ko and cnt.k0 = �89 x (n + 1) x (n + 2).

The main difference between our program and (14) is
that in our program the assignment h := g is inside of
repetition C1, so that h jumps repeatedly to the estimate of
the current address. The corresponding commands of (14)
are the for-loop that updates b. P before the repetition and
the updating b. P := i in thread. This has the effect that b. P
starts at an estimate of the current address and sub-
sequently traverses the list. Therefore, our program may be
regarded as a greedy version of (14).

The assignment h := g in (10) is simpler, but program
(14) has a simpler repetition, since b .P simply traverses the
!inked list. Our program requires the compare&swap reg-
ister g, see D6. Program (14) only requires the consensus
objects nx.k. It seems that the conditional updates o f b . P
in the for-loop of (14) need not be atomic and may be
expressed as

I[- i:= b.Q
; if seq.(b.P) < seq.i then

i:= b.Q; b . P : = i fi]l.

In (14), the final update b .P := a .P is a forward jump in
the linked list. We regard this as a superfluous, but harm-
less optimization. In our program, one could introduce

79

a corresponding command after C1, but that would have
to be an atomic conditional update like

(i f nx . (a .P) = 0 then g:= a .P fi).

Another striking difference between our program and
(14) is that the memory management of (14) uses a release
loop backward through the linked list, after the main
repetition, whereas in (11) and (12) the current state is
sufficient to find a free address. In fact, in our program,
array b is only used for the memory management, whereas
in (14) it is only used to replace or implement our
compare&swap register g.

In program (14), the sequence numbers must be un-
bounded integers, since they are used in the initial for-loop
for updating b.P. Finally, as argued in [5] Sect. 4.2, pro-
gram (14) requires upb = m x n with m = n 2.

We do not yet have a proof of (14). We have the
impression that (14) (if correct) is just as difficult to prove
correct as our more greedy program.

9 Complexity

The measure of space complexity is the number of memory
addresses needed for all processes together. The measure
of time complexity is the maximal number of steps one
process has to perform for one invocation to be treated. In
both cases the parameter is n, the number of processes. For
the space complexity, the local computation of locapply
gives a linear contribution, since it is performed by
each process. For the time complexity it is regarded as
a constant.

It is easy to see that the memory space required is
proportional to the size of address, which is upb = m x n.
Here we use that each set s . P only requires m booleans
because of (K4). As mentioned in the discussion of region
A of (12), we need m > 2 x n. In order to get a better time
complexity, we choose m with 3 x n < m _<_ 6 x n. Then the
space complexity is quadratic.

The time complexity of command A is proportional to
n. The worst case time complexity of the choice of a .P in
CO is proportional to m, and hence to n as well. As proved
in Sect. 6, the loop C1 terminates after at most n + 1
executions of its body. Therefore, the worst case time
complexity of apply is of order n.

Since m > 3 x n, command A establishes

(a d d r e s s \ s .P) = > m - 2 x n > n.

Therefore, command A is executed at most once in n calls
of apply. This implies that the amortized contribution of
command A to the time complexity is constant. The choice
of a .P in CO can be implemented by a linear search in
addr.P. Then it need not require more than constant time
in amortized sense. If process P is the only active process, it
executes the body of loop C1 just once. This implies that, if
process P is the only active process, the time complexity of
apply is constant in amortized sense.

The space complexity of Herlihy's program (see (14)) is
cubic, cf. [5], since it requires upb = n 3. The time complex-
ity of (14) is quadratic since the search space for f ree (P) has
size m = n 2. It must be mentioned, however, that this is not
a fair comparison, since the program in [5] does not need

80

a compare&swap register. The program in [6] has quad-
ratic time complexity and quadratic space complexity. We
cannot give a detailed comparison with [6], since that
paper is based on completely different ideas.

10 Concluding remarks

Inspired by Herlihy's program in [5], we designed a vari-
ation based on a compare&swap register, in which the
memory management looked simpler and turned out at
least to be cheaper. Correctness of our program could only
be achieved by searching alternately for stable predicates
and refuting scenarios. In an earlier version, we had an
operational argument for the invariance of (L13) and
(L 15). When the referees were not convinced, a reexamina-
tion uncovered a bug in the program (see the first part of
Sect. 7) and lead to an explosion of invariants. The under-
standing gained in this way enabled us to construct the
abstract program of Section 4 and finally to provide a for-
mal proof.

In the program, the processes are so tightly coupled
and the invariants are so unwieldy that we do not use the
standard separation between proof outlines for the pro-
cesses and interference freedom, as exposed in [1]. Instead
of this, we use global invariants with location predicates.
Indeed, we found it to be more convenient to consider, for
every separate action, the list of all invariants than to
consider, for every separate invariant, the list of all actions.
This approach is inspired by U N I T Y of [2].

Since there are more than twenty simple commands
and more than twenty invariants, the proof requires
more than 400 verifications. The present proof is suffi-
ciently detailed that it can be verified by means of a proof
checker. In fact, in [8], we report on a mechanical verifica-
tion of a program with an even smaller grain of atomicity.
Every implementation of course must be tested, but the
scenarios of Sect. 7 are so unlikely that postitive results of
testing must not increase our confidence. In fact, experi-
ence shows that in this area assertional methods are indis-
pensable.

There are several directions open for future research.
Firstly, it would be interesting to prove Herlihy's program,
say in the version (14). Secondly, it may be possible to
eliminate the compare&swap register g from our program,
without introducing unbounded integers. Thirdly, the as-
sumption that relation R and procedure locapply are

deterministic should be removed, without introducing
structured consensus variables. In fact, current research
suggests that this can be done even without increasing the
computational complexity, Finally, one could wish to
bring the space complexity of the p rog ram down from
quadratic to linear.

Acknowledgements. We profited from many discussions with J:E.
Jonker, R.M. Dijkstra, R. Groenboom, J.H: Jongejan, P.G. Lucassen.
We greatfully acknowledge the important contributions of one of the
referees who gave detailed comments and insisted on a complete
asscrtional proof. Among other things, he thus saved us from an
embarrassing bug.

References

1. Apt KR. Olderog E-R: Verification of sequential and concurrent
programs. Springer, New York, !991

2. Chandy KM, Misra J: Parallel program design: a Foundation.
Addison-Wesley, 1988

3. Fischer M J, Lynch NA, Paterson MS: Impossibility of distrib-
uted consensus with one faulty process. J ACM 32:374-382
(1985)

4. Herlihy MP: Impossibility and universality results for wait-free
synchronization. In: Proc 7th Annual ACM Symposium on
Principles of Distributed Computing, August 1988

5. Herlihy MP: Wait4ree synchronization. ACM Trans Program
Lang Syst 13:124149 (1991)

6. Herlihy MP: A methodology for implementing highly concur-
rent data structures. In: Second ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. SIGPLAN
Notices 25(3) 197-206 (1990)

7. Herlihy MP, Wing J: Linearizability: a correctness condition for
concurrent objects. ACM Trans Program Lang Syst 12:563-492
(1990)

8. Hesselink WH: Wait-free linearization with a mechanical prootl
Computing Science Notes Groningen CS 9306

9. Jonker JE: On-the-fly garbage collection for several mu~ators.
Distrib Comput 5:t87-199 (1992)

I0. Lamport L: The 'Hoare Logic' of concurrent programs. Acta Inf
14:21-37 (1980)

11. Lamport L, Schneider F: The "Hoare Logic" of CSP, and all
that. ACM Trans Program Lang Syst 6:281-296 (t984)

12. Misra J: Loosely-coupled processes. In: Aarts EHL, Van
Leeuwen J, Rem M (eds): Parallel architectures and languages
Europe, vol 2. Lect Notes Comput Sci, vol 506 Springer, Berlin
Heidelberg New York 1991, pp 1-26

13. Owicki S, Gries D: An axiomatic proof technique for parallel
program s. Acta Inf 6:319-340 (1976)

14. Plotkin SA: Sticky bits and universality of consensus. In:
Proceedings of the 8th ACM Symposium on Principles of
Distributed Computing 1989, pp !59-176

