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Abstract. The molecular structure of Jacobsen epoxidation catalyst N,N’-di(3-t-
butyl-5-methyl salicylidene)cyclohexanediamine manganese(III)chloride·MeCN 1 
is determined by single crystal X-ray and UV-Vis analysis. The epoxidation of 
dihydronaphthalene and dimethylchromene with amorphous and crystalline catalyst 
gave comparable enantiomeric excesses of 69 % and 92 % respectively. 

Currently much effort is devoted to the 
development of new (enantio-)selective catalytic 
oxidations1,2,3 and functional mimics for 
monooxygenases.4 A major breakthrough in 
enantioselective epoxidation of unfunctionalized 
olefins was reported by Jacobsen and co-workers5 
employing manganese(III) salen complexes as chiral 
catalysts. The highest enantioselectivities are 
generally observed with Mn(III) complexes based on 
C2-symmetric trans-1,2-diaminocyclohexane salen 
ligands. 

A mechanism to account for the often 
excellent π-face selectivity has been proposed, 
involving a side on approach of a cis-alkene opposite 
to the bulky t-butyl groups in 1 (figure 1).6 This 
mechanism has been extended to cinnamate esters and 
is substantiated with experiments to elucidate steric 
and electronic effects.7 The supposed steric effect of 
the doubly equatorial connected cyclohexane unit, 
responsible for the high enantioselectivity, is 
remarkable. Structural information to substantiate 
these stereodirecting effects and to gain insight into 
the subtle factors that govern enantioselectivity, is 
highly warranted. 

 
Fig. 1 

We wish to report the crystal and molecular structure 
of N,N’-di(3-t-butyl-5-methylsalicylidene)cyclo 
hexanediamine manganese(III)chloride·MeCN 1 
(figure 1), which to the best of our knowledge is the 
first structural characterization of this type of 
epoxidation catalyst. 

Compound 1 was synthesized analogously to 
literature procedure from (1R,2R)-cyclohexane 
diamine.8 Recrystallization of 1 from acetonitrile 
afforded black crystals,9 suitable for X-ray 
determination.10 

Fig. 2: ORTEP view of the molecular structure of N,N’-di(3-t-butyl-
5-methylsalicylidene)cyclohexanediamine manganese (III) chloride· 
MeCN 1. (Thermal ellipsoids are at the 50% probability level) 
Selected bond distances (Å) and bond angles (°) are as follows: 
Mn(1)-Cl(1) 2.390(2), Mn(1)-O(1) 1.871(5), Mn(1)-O(2) 1.853(5), 
Mn(1)-N(1) 2.017(5), Mn(1)-N(2) 1.959(6), Cl(1)-Mn(1)-O(1) 
99.22(16), Cl(1)-Mn(1)-O(2) 103.07(16), Cl(1)-Mn(1)-N(1) 
100.68(15), Cl(1)-Mn(1)-(N2) 94.58(15), O(1)-Mn(1)-O(2) 90.1(2), 
O(1)-Mn(1)-N(1) 90.1(2), O(1)-Mn(1)-N(2) 165.2(2), O(2)-Mn(1)-
N(1) 155.9(2), O(2)-Mn(1)-N(2) 92.0(2), N(1)-Mn(1)-N(2) 82.0, 
Dihedral angle between both aromatic rings 169.0(3)°. 

The unit cell contains two independent 
molecules of 5-coordinated Mn(III). The structure of 
1 (figure 2) can be described as square pyramidal 
with  manganese  0.315(1)Å11  oriented  out  of  plane 
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formed by O1, O2, N1 and N2 of the salen unit, 
towards the axially coordinating chloride ion. The 
Mn-O (1.871(5)Å and 1.853(5)Å) and Mn-N 
(2.017(5)Å and 1.959(6)Å) distances are normal for 
high spin manganese(III) complexes.12 The distance 
between manganese and chlorine (2.390(2)) also is 
normal for chloride coordinated to manganese(III).12a 
The two acetonitrile molecules which are incorporated 
in the unit cell are not coordinated to the manganese 
but fill lattice space not occupied by the two residues. 

If the catalyst is examined in a side view (see 
figure 3), it is seen that the molecule is almost planar 
(the dihedral angle between both aromatic rings being 
169.0(3)°), except for the axially coordinating 
chlorine and the ortho-positioned t-butyl groups. 
Although the steric hindrance for substrate approach 
from the di-t-butyl face (fig 3b) can be understood, 
the steric effect of the cyclohexane moiety (figure 3a) 
appears not to be very large. In fact, the main steric 
interaction of the cyclohexane ring seems to be the 
interference of an approaching alkene with the axial 
H6 or H1. However, complex 1 might upon formation 
of the salenMn(IV)=O complex, which is supposed 
to   be the catalytically active species, undergo a 
change in geometry in which steric factors are more 
pronounced. Furthermore, it should be noted that the 
slight twist in the Mn-salen unit also could be of 
importance in the oxygen transfer step. 

 
 a. 

 
b. 
Fig. 3: Side view from the cyclohexane (a) and the di-t-butylsalen 
(b) sides of 1 (PLUTO). 

To obtain further information about the 
nature of 1 in solution and the occurrence of an 
oxygen transfer mechanism an UV-Vis study was 
undertaken. UV measurements (figure 4) for catalyst 
1 show no significant change if the catalyst is stirred 
in CH2Cl2 (figure 4a) or in a biphase system 
(CH2Cl2/H2O: pH= 12.5, figure 4b). In both cases 
the colour of the organic layer is orange, and maxima 
are found at λ = 323 and 440 nm. When the aqueous 
layer is changed to domestic bleach (Piek; ± 0.84 M 
NaOCl; for epoxidation conditions the domestic 
bleach is diluted to 0.60 M by 0.05 M Na2HPO4 and 
set to pH = 11.3),  the  colour  is  changed  to  a  faded 

yellow, and the spectrum shows a bathochromic shift 
(figure 4c). This indicates the formation of an 
oxygenated complex. Analogy with a proposed 
structure for the bisnaphthyl propylenediamine 
bridged manganese perchlorate complex suggests the 
formation of a Mn2(O)OH-species.13 More appropriate 
is the formation of a manganese oxo complex, as is 
postulated by Jacobsen and co-workers as the 
catalytically active species.6,7 When Ph3P is added to 
the CH2Cl2-layer of oxidized 1, the color changes 
back to orange, and the UV-Vis spectrum of 1 (figure 
4d) shows regeneration of catalyst 1. This sequence 
has been extended to 4 cycles, indicating the 
reversibility of oxygenation (using NaOCl) and 
deoxygenation (using PPh3). 

 
Fig. 4: a. catalyst 1 in CH2Cl2; b. catalyst 1 in H2O (pH = 
12.5)/CH2Cl2; c. after stirring with bleach; d. after addition of 
PPh3 to c. 

Epoxidation of dihydronaphthalene (1 mol % 
of 1; aq. NaOCl) resulted in the formation of the 
corresponding epoxide in 36 % yield (e.e. 69 %).14 
When dihydronaphthalene is used a range of side 
products is observed, including naphthalene, 1-
naphthol and α-tetralone, due to allylic or benzylic 
oxidation. Using dimethylchromene, in which both 
activated positions are blocked, the corresponding 
epoxide was isolated in 87 % yield (e.e. 92 %).15 
These results confirm that the structurally 
characterized complex 1 is indeed an enantioselective 
epoxidation catalyst. 

In conclusion, we have determined the 
molecular structure of a (R,R)-cyclohexane- diamine 
based salen Mn(III) complex 1, being a highly 
selective (69 - 92 % e.e.) Jacobsen epoxidation 
catalyst. The X-ray analysis shows an almost planar 
molecule, pointing to subtle steric (and electronic) 
effects, responsible for a remarkable high selectivity 
in these epoxidations. UV-Vis spectroscopy has 
demonstrated the reversible oxygenation-
deoxygenation of 1. 
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