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SAMPLED-DATA AND DISCRETE-TIME H2 OPTIMAL CONTROL*

H. L. TRENTELMANt AND A. A. STOORVOGEL:

Abstract. This paper deals with the sampled-data H2 optimal control problem. Given a
linear time-invariant continuous-time system, the problem of minimizing the H2 performance over
all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time H2
optimal control problem. This discrete-time H2 problem is always singular. Motivated by this, in
this paper we give a treatment of the discrete-time H2 optimal control problem in its full generality.
The results we obtain are then applied to the singular discrete-time H2 problem arising from the
sampled-data H2 problem. In particular, we give conditions for the existence of optimal sampled
data controllers. We also show that the H2 performance of a continuous-time controller can always
be recovered asymptotically by choosing the sampling period sufficiently small. Finally, we show that
the optimal sampled-data H2 performance converges to the continuous-time optimal H2 performance
as the sampling period converges to zero.

Key words, sampled-data, lifting technique, discrete-time, H2 optimal control, algebraic Riccati
equation, small sampling periods
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1. Introduction. Recently, much attention has been paid to H2 and H opti-
mal control of linear systems using sampled-data control (see [6], [7], [12], [2], [4] and
[5], [11], [10], [1], [3], [17], [21]). For a given a continuous-time plant, a sampled-data
controller consists of the cascade connection of an A/D converter, a discrete-time con-

troller, and a D/A converter. The A/D device converts the continuous-time measured
plant output into a discrete-time signal, which is used as an input for the discrete-
time controller. The discrete-time controller generates a discrete-time output signal,
which, in turn, is converted into a continuous-time signal that is used as a control
input for the continuous-time plant.

Apart from a control input and a measurement output, the plant under consid-
eration has an exogenous input and an output to be controlled. The quality of a
controller is given by the performance of the corresponding closed-loop system. This
performance measures the influence of the exogenous input on the output to be con-
trolled. In the present paper, we will take the H2 performance of the closed-loop
system as performance measure.

In contrast to the H performance of a sampled-data control system, which in
analogy with the pure continuous-time context can simply be defined as the norm
of the input/output operator between the exogenous inputs and the outputs to be
controlled, it is not clear from the outset how one should define the H2 performance
of a sampled-data control system. One definition was proposed in [6]: the H2 perfor-
mance of the closed-loop system is the number obtained by applying at each input
channel a Dirac distribution and by taking the sum of integral squares of the resulting
outputs. Of course, this definition exactly mimics the one that is common in the pure
continuous-time context.
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In our opinion, a more natural definition was given independently in [12] and [2].
In these references, the crucial observation is that the closed-loop system resulting
froth a sampled data controller, albeit time-varying, is in fact a periodic system, with
period equal to the sampling period. It is then argued that, instead of applying
impulsive inputs at time t 0, one should in fact apply these inputs at all time
instances between 0 and the sampling period and take the mean of the integral squares
of the resulting outputs. This leads to an H2 performance measure that captures the
essential features of a sampled-data closed-loop system more satisfactorily. For a

given continuous-time plant, the sampled-data H2 optimal control problem is then to
minimize the H2 performance of the closed-loop system over all internally stabilizing
sampled-data controllers with a fixed sampling period. It is the latter problem that
will be studied in this paper.

It was shown in [12] and [2] (see also [4]) that the sampled-data H2 optimal
control problem can be reduced to a pure discrete-time H2 optimal control problem
in the following way. First one defines an auxiliary time-invariant discrete-time sys-
tem (involving the parameters of the original continuous-time plant and the given
sampling period). Next, one expresses the sampled-data H2 performance in terms
of the ’normal’ H2 performance of the closed-loop system obtained by interconnect-
ing the auxiliary discrete-time system and the discrete-time controller defining the
sampled-data controller. Thus, the sampled-data H2 optimal control problem under
consideration is completely resolved once the auxiliary discrete-time H2 problem is.
This procedure makes use of the so-called lifting technique (see [20], [1], [3])

Now it turns out that the auxiliary discrete-time H problem obtained in this way
is always a singular problem: the direct feedthrough matrix from the exogenous input
to the measurement output is always equal to 0. Apart from this, in the auxiliary
discrete-time system the direct feedthrough matrix from the control input to the
output to be controlled is in general not injective. (Note that, in general, an H.
optimal control problem is called regular if the direct feedthrough matrix from the
control input to the output to be controlled is injective, and the direct feedthrough
matrix frown the exogenous input to the measurement output is surjective. If the
problem is not regular it is called singular.) In [12], this difficulty is partly removed
by introducing an additional noise on the sampled measured output signal and by
assuming the corresponding feedthrough matrix to be surjective.

In the present paper we want to consider the completely general formulation of the
sampled-data H2 problem. As a starting point we will take the auxiliary discrete-time
H2 problem derived in [12] and [2]. As noted, this problem is inherently singular. To
our best knowledge, no resolution of the discrete-time singular H2 optimal is known
in the literature. Therefore, a substantial part of this paper is devoted to a study
of the completely general discrete-time H2 problem (no assumptions on the direct
feedthrough matrices, no assumptions on the absence of zeros on the unit circle). We
will describe a complete resolution to this problem, including a characterization of
the optimal performance, and necessary and sufficient conditions for the existence of
optimal controllers. The expression for the optimal performance is different from the
one that might be expected in analogy with the continuous-time case (see [15]). Due
to the fact that the role of the imaginary axis is taken over by the unit circle, for the
discrete-time H2 performance to be finite it is no longer required that the closed-loop
transfer matrix is strictly proper. Intuitively, this enlarges the class of admissible
controllers and yields a smaller optimal performance.

We will apply our results on the discrete-time H2 optimal control problem to
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the sampled-data H2 problem by simply applying them to the auxiliary discrete-time
system derived in [12] and [2]. Our expression for the optimal sampled-data H2
performance will be an immediate consequence of these results. We will, however,
also be interested in conditions guaranteeing the existence of optimal sampled-data
controllers. Our results on the general discrete-time H2 problem give such conditions
in terms of the auxiliary discrete-time system, but we will reformulate these conditions
in terms of the original continuous-time plant. Preliminary results in that direction
were also found in [12].

Obviously, the sampled-data H2 optimal performance is a function of the sampling
period. An important question is: what happens if the sampling period tends to
zero. In particular, we will answer the following two questions. First, if we control
the original continuous-time plant by a "normal" continuous-time compensator, is
it then possible to recover this performance asymptotically by using a sampled-data
controller with sufficiently small sampling period? This question was also studied for
the H performance and for the H2 performance k la Chen and Francis in [6]. A
second, related, question that we will answer is: does the optimal sampled-data H2
performance converge to the optimal continuous-time H2 performance as the sampling
period decreases to zero?

The outline of this paper is as follows. In 2 we will define the sampled-data H2
optimal control problem and recall the main results of [12] and [2]. We will also intro-
duce some notation and recall the notions of left-invertibility and right-invertibility of
linear systems, zeros, and their most important state space interpretations. In 3 we
deal with the discrete-time H2 optimal control problem. In this section we will not
yet treat the completely general case but make some assumptions on the absence of
zeros on the unit circle. In 4, the results of 3 will be extended to derive a resolution
of the general discrete-time H2 optimal control problem. Then, in 5, we return to
the sampled-data context and apply the results of 3 and 4 to the sampled-data
H2 optimal control problem. In particular, we will derive conditions in terms of the
original continuous-time plant that guarantee the existence of optimal controllers for
the sampled-data H2 problem. Finally, in 6 we study the aforementioned questions
regarding the behavior of the (optimal) performance as the sampling period tends to
zero.

2. Problem formulation. Consider a continuous-time, linear, time-invariant,
finite-dimensional plant E. Let E have inputs d and u and outputs z and y, where d
is an exogenous input, u is a control input, z is an outputto be controlled, and y is a
measured output. We want to control E by means of sampled-data feedback control.
We take a fixed A > 0, called the sampling period. From the measured output y we
obtain a discrete-time signal {Yk} defined by Yk := (SAy), where SA denotes
the sampling operator defined by (SAy)k := y(kA). This discrete-time signal is taken
as input for a discrete-time, linear, time-invariant, finite-dimensional compensator
Fdis. The latter compensator generates a discrete-time signal {uk}, which, in

turn, yields a (piecewise constant) continuous-time input signal u for the plant by
defining u(t):-- (HA)(t), where HA is the hold operator defined by (Ht)(t):= uk

(t [kA, (k + 1)A)). This type of feedback control is depicted in Fig. 1.
If we control the system E by means of a sampled-data controller with sampling

period A, then the resulting closed-loop system will no longer be time-invariant. In
[12] and [2] the following definition of H2 performance in the context of sampled-data
control is proposed. First, it is observed that the closed-loop system resulting from a
sampled-data controller with sampling period A is always a time-varying, A-periodic
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FIG. 1.

system. Then, for A-periodic systems the notion of H2 performance is defined as
follows. Suppose we have a finite-dimensional, time-varying, A-periodic system Eper
described by

(2.1) z(t) G(t, s)d(s)ds.

It is argued in [12] and [2] that a natural way to define the H2 performance of (2.1) is

1 zx
G
T

(2.2) I]Y]perl[22 := tr (t, s)G(t, s)dt ds.

Next, if F is a sampled-data controller with sampling period A, the associated per-
formance is defined as Jr,zx (F):= lie FII, the H. performance of the (A-periodic)
closed-loop system E F. The sampled-data H2 problem is then to minimize, for a
fixed sampling period A, the performance criterion J2,A (F) over all internally stabi-
lizing sampled-data controllers F with sampling period A. It was shown in [12] and
[2] that this problem can be reduced to a discrete-time ’normal’ H2 optimal control
problem. To be specific, let the plant E be given by the equations

(2.3)
it(t) Ax(t) + Bu(t) + Ed(t)
y(t) Clx(t)
z(t) C2x(t) + Du(t)

with x(t) e IRn, u(t) e IRm, d(t) E IRr, y(t) e IRp, and z(t) IRq. It will be a standing
assumption in this paper that (A, B) is stabilizable and that (C1, A) is detectable,
both with respect to C- := {s C e s < 0}. Introduce a finite-dimensional linear
time-invariant discrete-time system

(2.4)
xk+l Axxk + B/u + EAdk
Yk Cxk
Zk "-C2,AXk -- D2,Aukwhere we define

A

A := e/xA B/ := etAdtB,
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where EA is any matrix satisfying

A

(2.5) EAE etAEETetATdt,

and where C2,A and D2,A are matrices satisfying

A

)T etA(2.6) (C.,A D2,A)T(C2,A D2,A)= etA---T(C2 D2 (C2 02)-dt.

Here we have denoted

Let denote the set of sampling periods for which either (AA, BA) is not stabilizable
or (C1, AA) is not detectable, both with respect to the open unit disc {z E C Izl < 1}.
It is well known [13], [8] that if (A,B) is stabilizable and (C1,A) is detectable, then
every bounded subset of IR+ contains only finitely many elements of A. We will
restrict ourselves to sampling periods that are not in A. The plant E is controlled
using sampled-data controllers F := HAFdisSA, with Fdis given by the equations

Wk+ Kwk + Lyk
uk Mwa + Nya

Let us denote byJ (Idis) the discrete-time H2 performance of the closed-loop system
E Fi, i.e., the value -k tr (GkG), where {Gk} denotes the pulse response of
the closed-loop system. The main result of [12] and [2] is the following:

THEOREM 2.1. Assume that A A. Then there exists a sampled-data controller
F with sampling period A such that the closed-loop system E F is internally stable.
The sampled-data controller F HAIdisSA internally stabilizes E if. and only if the
discrete-time controller ldis internally stabilizes EA. Furthermore, for every such
controller we have

1
tr ",,|CetAEE etic’, dt ds + -Jr (Fis).

We shall use this theorem as a starting point and study in this paper the discrete-
time H2 optimal control problem for the discrete-time system EA given by (2.4). This

H2 problem is inherently singular, due to the fact that the direct feedthrough matrix
from the disturbance input to the measured output is always equal to zero.

We conclude this section by introducing some notation and recalling some basic
concepts. In this paper, any given continuous-time system Ax+ Bu, y Cx+Du
or discrete-time system x+l Ax + Buk, y Cx + Du will be denoted simply
by (A, B, C, D). It will be clear from the context which interpretation we have in
mind. For any such system, the system matrix is defined as the first-order polynomial
matrix

If the underlying system is discrete-time, we will rather use the indeterminate z instead
of s. For a real rational matrix R, its normal rank, normrank R, is defined as the
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rank of R as a matrix with entries in the field of real rational functions. It is well
known that normrank R max rank R(a). A zero of the system (A, B, C, D) is any
complex number A with the property that rank P(A) < normrank P. The system
(A,B, C,D) is called left-invertible (right-invertible) if its transfer matrix G(s)
C(sI- A)-IB + D is a left-invertible (right-invertible) rational matrix. Assuming
that A E IRnn, B E IRm’, and C G IRp we have that (A, B, C, D) is left-invertible
(right-invertible) if and only if its system matrix has normal rank n + rn (n + p).

If M ]Rnn and/: is a subspace of IRn, then (M / will denote the smallest
M-invariant subspace containing/:. The largest M-invariant subspace contained in/:

will be denoted by (ElM/. In particular, given (A,B, C, D), the reachable subspace
is equal to (Alim B/ and the unobservable subspace is equal to (ker C[AI.

Given the system (A, B, C,D), we define the weakly unobservable subspace 2 to
be the smallest subspace of IRn with the property that there exists F G ]Rmn such
that (A + BF). C and (C + DF) 0 (see [14]). In addition, the controllability
subspace T of (A, B, C, D) is defined as follows:

7 := (A + BF Z N B ker D},

for any F such that (A + BF)’i) C_ V and (C + DF)) 0 (any such F yields the
same 7). It was shown in [14] that the system (A,B, C,D) is left-invertible if and
only if ker B C? ker D 0 and 12 rq B ker D 0. Note that 12 B ker D 0 if and only
if 7 0.

Finally, the set of zeros of (A, B, C, D) can be shown to be equal to a(A +
BF "1)/), for any F such that (A + BF)’I2 c_ l; and (C + DF)) 0. Here,
A + BF[;/Tt is the quotient map of A + BFI; modulo 7 (see, e.g., [19]).

3. The discrete-time H2 problem: No zeros on the unit circle. In this sec-
tion we shall consider the discrete-time H2 problem. Consider the finite-dimensional,
linear, time-invariant, discrete-time system Ydis given by the equations

XkA-1 Axk + Buk + Edk,
(3.1) Yk Clxk + Dldk

z Cx + Du

There will be no assumptions on the direct feedthrough matrices D1 and D2. In the
present section, however, we will have assumptions on the absence of system zeros
on the unit circle in the complex plane: it will be assumed that (A,B, C2,D.) and
(A, E, C1, D1) do not have zeros on the unit circle Izl 1. In the next section we will
drop these assumptions and treat the completely general case. Of course, it will be a

standing assumption that (A, B) is stabilizable and that (C1, A) is detectable, both
with respect to the open unit disc.

We will consider discrete-time controllers Fdis given by (2.8). For any internally
stabilizing controller Fdis, let Jrdis(Fdis) be its H2 performance. Denote by J* the
optimal performance, i.e., the infimum over all internally stabilizing controllers Fdis.

For a given matrix M, we will denote by M+ its Moore-Penrose inverse. The
solution of the discrete-time H2 optimal control problem centers around the following
two algebraic Riccati equations:

(3.2) P ATPA + CC2 (CD2 + ATpB)(DD2 + BTpB)+(DC2 + BTpA),

(3.3) Q AQAT + EET (AQC + EDf)(DIDf + C1QC)+(DIET + C1QAT).
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For any real symmetric matrix P, we shall denote

(3.4) DR := (DD2 + BPB) 1/2

(3.5) Cp :-= D D(2C2+BPA)

Note that, since for any matrix M >_ 0 we have (M1/2)+ (M+)1/2, we have D+pCp
(DD2 + BTPB)+(DC2 + BTPA). If, in addition, P is a real symmetric solution of
(3.2), then C,Cp AwPA-P+CC2. Note also that Dp is symmetric by definition.
Finally, since im (DC2 + BwPA) C im DR, we have DpCp DC2 + BwPA. (Note
that it is a property of the Moore-Penrose inverse that MM+ is the orthogonal
projection onto im M.)

The following is a corrected and slightly extended version of a theorem from [14].
A proof can be given along the lines of the proof of [14, Thm. 18].

THEOREM 3.1. Consider the system (A,B, C2, D2) together with the algebraic
Riccati equation (3.2). The following two statements are equivalent

(i) (A,B) is stabilizable and (A,B, C2, D2) has no zeros on the unit circle Izl
1,

(ii) Equation (3.2) has a real symmetric solution P with the following property:
there exists a matrix F such that

(3.6) la(A- BDCp + B(I- D+pDp)F)] < 1.

Furthermore, if P satisfies this condition, it is the unique real symmetric solution

of (3.2) for which this condition holds. In addition, P is positive semidefinite and is
in fact the largest real symmetric solution of (3.2).

Next we consider the dual algebraic Riccati equation (3.3). For any real symmetric
matrix Q, denote

(3.7) DQ (D1D + C1QC)1/2,

(3.8) EQ := (AQC + ED)D.
By dualizing the previous theorem, the corresponding result on the Riccati equation
(3.3) can be found:

THEOREM 3.2. Consider the system (A, E, CI DI together with the algebraic
Riccati equation (3.3). The following two statements are equivalent:

(i) (C, A) is detectable and (A, E, C, D) has no zeros on the unit circle Iz
1o

(ii) Equation (3.3) has a real symmetric solution Q with the following property:
there exists a matrix K1 such that

(3.9) I(A- EQDC + KI(I- DQD)C) < 1.

Furthermore, if Q satisfies this condition, it is the unique real symmetric solution

of (3.3) for which this condition holds. In addition, Q is positive semidefinite and is

in fact the largest real symmetric solution of (3.3).
In the remainder of this section we will always denote by P and Q the largest

real symmetric solution of (3.2) and (3.3), respectively. Now we will state the main
result of this section:

THEOREM 3.3. Consider the system (3.1). Assume that (A, B) is stabilizable and
(C,A) is detectable. Assume that (A,B, C2, D2) and (A,E, C1,D) have no zeros on
the unit circle. Then we have the following:
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(i)

(3.10) J* tr (ETPE) + tr (CpQC) tr ((DpN*DQ)(DpN*DQ)T),

where N* is defined by

(3.11) N* "= -(D+p)2(DpCpQC + BPED)(D)2.

(ii) There exists an optimal controller, i.e., an internally stabilizing controller

Fi such that JEdis (Fis) J*. One such optimal controller is given by the following
"construction"
(a) Choose a state feedback matrix F such that la(A+ BF)I < 1 and Cp +DpF O.
(b) Choose an output injection matrixG such that la(A+GC1)I < 1 and EQ+GDQ

O.
(c) Define Fi (K*,L*,M*,N*) by choosing N* given by (3.11), and by choosing

K* := A + BF + GC1 BN*CI, L* := BN* G, and M* := F- N’C1.
In the remainder of this section we shall prove this theorem. In addition to the

system -]dis, consider the system dis,P given by the equations

Xk+l-- Axk + Buk + Edk,
(3.12) Yk Cxk + Dda,

zk Cpxk + Dpuk

with P the largest real symmetric solution of the algebraic Riccati equation (3.2).
The following basic lemma can be proven by a standard completion-of-the-squares
argument:

LEMMA 3.4. For every compensator ldis (K,L, M,N) we have [’dis internally
stabilizes dis if and only if Fdis internally stabilizes -]dis,P. For any such compensator
we have

(3.13) Jdis(Fdis) tr (EPE) + 2tr (DNBPE)+ Js. (rdis).

In addition to ]dis,P we consider the system Edis,P,Q defined by

(3.14)
Xk+l Axe + Bua + EQdk,
yk Cxk + DQdk,
zk Cpxk + Dpuk

with Q the largest real symmetric solution of the dual algebraic Riccati equation (3.3).
It is clear that the H2 performance of a given compensator Fdis applied to Edis is equal
to the H2 performance of the dual compensator Fis := (KT, M, L, N) applied to
the dual system EiS. By applying Lemma 3.4 to the dual system E and the dualdis,P

compensator Fi we thus arrive at the following theorem:
THEOREM 3.5. For every compensator Fdi (K,L,M,N) we have: Fdis in-

ternally stabilizes Edis if and only if Fdis internally stabilizes :Edis,P,Q. For any such
compensator we have

JEi (Fdis) tr (ETPE) + tr (CpQC) + 2tr (DNVBPE)

+ 2tr (CpQCNDp) + JE,s.,Q (rdis).

Now note that in the above formula the first two terms do not depend on the
compensator Idis The remaining three terms do depend on the compensator. Also
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note that in the closed-loop system Edis,P,Q Fdi the direct feedthrough matrix from
the disturbance input to the output to be controlled is equal to DpNDQ. As a
consequence, Jr.a,,p,Q (Fdis) _> tr ((DpNDQ)(DpNDQ)T), with equality if and only
if the transfer matrix GP,Q,rais (z) of the closed-loop system dis,P,Q Fdis is equal to
the constant matrix DpNDQ. It thus follows immediately from Theorem 3.5 that

LEMMA 3.6. For every internally stabilizing compensator [’dis (K, L, M, N) we
have

Ja,(rdis) _> tr (ETPE) + tr (CpQC,)+ 2tr (DNTBPE)

+ 2tr (CpQCNTDp)+ tr ((DpNDQ)(DpNDQ)T),

with equality if and only if GP,Q,ris (z) DpNDQ.
This lemma shows that, in order to minimize JY]dis ([’dis) over all internally stabi-

lizing compensators, we should do the following:
(i) First minimize the quadratic matrix function

(3.15) (N) := 2tr (DNBPE)+ 2tr (CpQCNDp)

+ tr ((DpNDQ)(DpNDQ)),

yielding an optimal N*.
(ii) Next find a compensator Fis, described by the quadruple (K*, L*, M*, N*),

that is internally stabilizing and yields Gp,Q,r: (z) DpN*DQ, i.e., the closed-loop
system -dis,P,Q Fi has the constant transfer matrix DpN*DQ.
Indeed, if N* minimizes (N) and if Gp,Q,ri (z) DpN*DQ, then we have

JY]dis ([’{is) tr (ETPE) + tr (CpQC) + O(N*),

while for any internally stabilizing compensator [’dis (K, L, M, N) we have

JY]dis (rdis)> tr (EPE) + tr (CpQC) + O(N) > tr (EPE) + tr (CpQC) + O(N*).

This clearly implies that

J* tr (EPE) + tr (CpQC) + (N*)

and that

Jra (ris) J*.

We will first study the minimization of (I)(N).
LEMMA 3.7. Let ((N) be defined by (3.15). Define

R* := D(DpCpQC + BPED)D.
Then

(I)* min{(N) N IRmxp} -tr (R*R*r).

N minimizes p, i.e., (I)(N) (I)*, if and only if N is a solution to the linear equation
DpNDQ -R*. One particular solution of this linear equation is given by N*
-D+pR*D. We have (I)* -tr ((DpN*DQ)(DpN*DQ)).
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Proof. Using the facts that

ker DQ C ker (DpCpQC + BTPED),
im DR D im (DpCpQC + BTPED),

it can be shown by straightforward calculation that

q)(N) -tr (R*R*T) + tr ((DpNDQ + R*)(DpNDQ + R*)).

The equation DpNDQ -R* has a solution since ker DQ kerD kerD
ker R* and im Dp im D im DR+ Dim R*. Clearly, one particular solution is
then given by N* -D+pR*D. Finally, the expression for (I)* can be checked in a

straightforward manner.
Next we study the question whether, starting with N* above, it is possible to find

K*, L*, M* such that the resulting compensator ri (K*, L*, M*,N*) yields a

closed-loop system 2dis,P,Q I’i with constant transfer matrix DpN*DQ. We will
first prove the following lemma:

LEMMA 3.8. Assume that (A,B) is stabilizable and that (A,B, C2, D2) has no
zeros on the unit circle. Let P be the largest real symmetric solution of the algebraic
Riccati equation (3.2). There exists a matrix F such that

(i) Ia(A + BF)I < 1,
(ii) Cp nt- DpF O.

Proof. Let F1 be such that (3.6) holds, and define F -DCp+(I-D+pDp)F1.
Then (i) is satisfied. To prove (ii), note that im Cp C im DR+ im DR. Consequently,
-DpD+pCp ---Cp, which proves (ii).

We will also need the dual of this lemma, which reads as follows:
LEMMA 3.9. Assume that (C1,A) is detectable and that (A,E, C1,D1) has no

zeros on the unit circle. Let Q be the largest real symmetric solution of the dual
algebraic Riccati equation (3.3). There exists a matrix G such that

(i) la(A + GCI)I < 1,
(ii) EQ + GDQ =0.
Now we show that by suitable choice of compensator [’dis, the transfer matrix of

dis,P,Q Idis can be made equal to any constant matrix product M1/2, as long as

im Dp C im M1 and ker DQ C ker M2.
LEMMA 3.10. Consider the system (3.1). Assume that (A,B) is stabilizable

and (C1, A) is detectable. Assume that (A, B, C2, n2) and (A, E, CI, D) have no
zeros on the unit circle. Let P and Q be the largest real symmetric solution of the
algebraic Riccati equation (3.2) and (3.3), respectively. Then for any pair of matrices

M, M2 such that the product M1M2 is defined and such that im Dp c im M1 and
.ker DQ C ker M2 there exists an internally stabilizing compensator Fdis such that the

transfer matrix of Edis,g,Q x Fdis is equal to the constant MM2.
Specifically, for given M and M2 let F2 be a solution of MI DpF2 and G2

be a solution of M2 -G2DQ and take F such that the conditions in Lemma 3.8
are satisfied and G such that the conditions of Lemma 3.9 are satisfied. Then the
compensator Fdis := (K,L,M,N) with K := A + BF + GC + BF2G.C, L :=

-BF2G2 G, M := F + F.G2CI, and N := -F2G2 satisfies the requirements.

Proof. The equations of the compensator are given by (2.8). Using the specifica-
tions of K, L, M, and N given above, we find that the error ek := wk xk satisfies

ek+ (A + GC1)ek. Thus, if wo 0 and xo 0, we have xk Wk for all k. In par-
ticular, this implies that uk Fxk + F2M2wk. The output of the closed-loop system
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is then equal to zk Cpxk + Dpuk M1M2wk. This implies that the closed-loop
transfer matrix is equal to the constant matrix M1M2. Finally, the spectrum of the
closed-loop system matrix Ae is easily shown to be equal to a(A + BF) t2 a(A + GCI).
This implies that the closed-loop system is internally stable. 1

Clearly, if in this lemma we take M Dp and M2 N*DQ, we arrive at an
internally stabilizing compensator Fdi such that the closed-loop transfer matrix is
equal to the constant matrix DpN*DQ. In the formulas for the compensator as given
in the lemma, we should then take F2 I and G2 -N*. The result of Theorem
3.3 follows immediately by combining the above lemmas.

Remark 3.11. For later use we note that Lemma 3.8 also provides a resolution
of the discrete-time linear quadratic problem for the case that (A, B, C2, D2) has no
zeros on the unit circle (see also [14]). Given x+ Ax + Bu, the problem is to
minimize the cost-functional J(xo, u) := -k II(C2xk+D2ukll 2 over all inputs u {uk}
such that xk - 0. It was pointed out in [14] that for each such input u we have the
completion-of-the-squares formula J(xo, u) x"Pxo + Jp(xo, u), with Jp(xo, u) :=

-k IICpxk+Dpukll 2" Thus, if we take F satisfying (i) and (ii) of Lemma 3.8, then the
input uk Fxk leads to the optimal cost J*(xo) xPxo. Note that we could also
formulate the linear quadratic problem as a minimization over all internally stabilizing
feedback laws: minimize the cost-functional J(xo, F) := -k II(Cp + DpF)xklI 2 over
all F E ]amxn such that la(A + BF)I < 1. By the above argument, any F satisfying
(i) and (ii) of Lemma 3.8 is then optimal and the optimal cost is again given by
xPxo.

Remark 3.12. An interesting question is under what conditions the Moore-
Penrose inverse (DD2 + BTPB)+ reduces to the inverse (DD2 + BTPB)-1, equiv-
alently, under what conditions DD2 + BPB is positive definite. Using the ideas
from [14] it can be shown that if P is a positive semidefinite solution of the algebraic
Riccati equation (3.2), then DD2 + BPB > 0 if and only if (A,B, C2, D2) is a
left-invertible system. Of course, dually, if Q is a positive semidefinite solution of the
algebraic Riccati equation (3.3), then DID + CIQC > 0 if and only if the system
(A, E, C1, D1) is right-invertible. In view of this, it is perhaps more natural to call
the discrete-time H2 problem regular if (A, B, C2, D2) is a left-invertible system and
(A, E, C, D) is a right-invertible system.

4. The discrete-time H2 problem: The general case. In this section we
will extend the results of the previous section and treat the discrete-time H2 problem
in its full generality. This means that we will drop the assumption on the absence of
zeros on the unit circle that was made in the previous section. First we will prove
that also without the assumption that (A, B, C2, D2) has no zeros on the unit circle,
the Riccati equation (3.2) has a largest real symmetric solution. We will prove that
this solution can be obtained as the limit of solutions of algebraic Riccati equations
associated with suitable perturbations of the system (A, B, C2, D2).

THEOREM 4.1. If (A,B) is stabilizable, then the Riccati equation (3.2) has a
largest real symmetric solution, say P. P is positive semidefinite. We have P
lime0 Pe, where for > 0 Pe is the largest real symmetric solution of the algebraic
Riccati equation

(4.1)
APeA Pe + CC2 + 2I

-(ArPB + CD2)(DD2 + BTPB)+(BrPA + DC2) O.
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Remark 4.2. Note that (4.1) is the Riccati equation associated with the perturbed
system (A, B, I ). (Here, I denotes the n n identity matrix, and 0 denotes

the n rn zero matrix). For > 0, the perturbed system has no zeros. Consequently,
the existence of P follows from Theorem 3.1.

The idea of the proof of Theorem 4.1 is to show first that the Pe indeed converge
to some matrix P and next to show that P satisfies (3.2). The difficulty is that in the
general case we are considering, the term DD2 + BTPB need not be invertible, so
that we cannot conclude that (DD2+BTPeB)+ converges to (DD2 +BTPB)+. We
will show, however, that we can get around this difficulty by considering the so-called
linear matrix inequality. Our proof is split up in three lemmas. In the following, let
J(xo, u) be the cost-functional of the linear quadratic problem, and let J*(xo) be the
optimal cost (see Remark 3.11).

LEMMA 4.3. Let P be the largest real symmetric solution of (4.1). There exists
a real positive semidefinite matrix P such that Pe P ( 0). For all xo E IR’ we
have J*(xo) xPxo.

Proof. Let J(x0, u) := --k [[Cgxk + Dpuk[[ 2 + 2[[xk[[2, and let J(xo) be the
infimum of J(xo, u) over all u such that xk --+ O. According to Remark 3.11 we have
J(xo) xPxo. From this interpretation it follows that P is monotonically non-

increasing as $ 0. Being bounded from below by 0, this yields the existence of a limit
P. Obviously, for all > 0 we have J*(xo) <_ J;(xo) xPxo, so J*(xo) <_ xPxo.
Conversely, for all > 0 and for all u we have J(xo, u) >_ xPxo. Taking the limit
on both sides this yields J(xo, u) >_ xPxo for all u Taking the infimum over u then
yields the converse inequality.

LEMMA 4.4. P is the largest real symmetric solution of the linear matrix inequal-
ity

ATPA- P + CC2M(P) "=
DC2 + BTpA

CfD2 -t- ATPB ’ > O.
DD2 + BTPB ]

Proof. Denote the left-hand side of (4.1) by Rs(P).
matrix inequality associated with the perturbed system"

Also consider the linear

( ArpA P. + CC2 + 2IM(P DC2 + BrpA
CD2 + ATpB )DD2 + BTpB

Z O.

We have Me(Pe) >_ 0 if and only if R(Ps) >_ O. This follows from the fact that the
latter is equal to the Schur complement of DD2 + BTPB in Me(P). The Schur
complement is defined here with matrix inverse replaced by Moore-Penrose inverse.
This can be done because of the fact that

ker( TDD2 2 + BTPB) c ker(C2TD2 + ATPB)
Since R(Pe) 0, we indeed have Me(P) >_ O. Taking the limit e $ 0 then yields
M(P) >_ 0. To show that P is the largest real symmetric solution, let P1 be any real
symmetric solution of the linear matrix inequality. Using a standard completion-of-
the-squares argument then yields J(xo, u) >_ xPxo for any x0 and any u such that
xk --* O. Taking the infimum over all such u yields xPxo J*(xo) >_ xPxo. 0

Now we will show that P in fact satisfies the algebraic Riccati equation (3.2).
Denote

R(P) ATpA- P + CC2 -(CfD2 + ArPB)(DD2 + BTpB)+(DC2 + BTp).
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Again, by the fact that ker(DD2 + BTPB) C ker(CD2 + ATPB), R(P) is equal to
the Schur complement of DD2 + BPB in M(P). In particular this implies that

rank M(P) rank (DD2 + BPB) + rank R(P).

In order to prove that R(P) 0 we should therefore prove that P has the property
expressed in the following lemma:

LEMMA 4.5. rank M(P) rank (DD2 + BPB).
Proof. Let 0 and/) be matrices such that

).
Again using a standard completion-of-the-squares argument, for any initial state x0
and for any input sequence u such that xk -- 0 we have

(4.2) J(xo, u) xPxo + E IIxk + [9u112 >- xxo + 115Pxo +/)uoll 2

k

From Lemma 4.3 we have that J*xo) xPxo. In particular this implies that the
infimum of II0xo +/)uoll 2 over all u0 E IR is equal to 0. Consequently, for all xo
there exists uo E IPtm such that 0xo +/)uo 0. This implies im C im/) so

rankM(P)=rank /) )-rank/)-rank(DD2+BTPB). [1

Clearly, the proof of Theorem 4.1 follows by combining these three lemmas. The
fact that P is the largest real symmetric solution of the algebraic Riccati equation
follows by noting that any real symmetric solution is also a solution of the linear
matrix inequality and by applying Lemma 4.4.

Remark 4.6. For later use, note that by combining the above results with Re-
mark 3.11 we obtain that also for the general case the optimal cost J*(xo) of the
discrete-time linear quadratic problem associated with the system (A,B, C2, D2) is

given by J*(xo) x’Pxo, with P the largest real symmetric solution of the Riccati
equation (3.2). We will also need the dual result of Theorem 4.1, which is stated
below:

THEOREM 4.7. If (C1,A) is detectable, then the Riccati equation (3.3) has a

largest real symmetric solution, say Q. Q is positive sernidefinite. We have Q
lim0 Q, where for e > 0 Q is the largest real symmetric solution of the algebraic
Riccati equation

AQAT Q + EET + e2I
(4.3) -(AQC[ + ED:)(DID + CQeC:)+(CIQA + D1.E) O.

Now we are in a position to state the main results of this section. It turns out that
also for the discrete-time H2 problem in its full generality, so without any assumptions
on the zeros, the optimal performance J* is given by (3.10), with P and Q the largest
real symmetric solutions of the respective Riccati equations. However, in general
no optimal controller will exist. We will, however, derive necessary and sufficient
conditions for the existence of an optimal controller. Our first main result deals with
the optimal performance.

THEOREM 4.8. Consider the system (3.1). Assume that (A, B) is stabilizable and
(C1,A) is detectable. Then the optimal performance J* is given by (3.10), where P
and Q are the largest real symmetric solutions of (3.2) and (3.3), respectively.
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Proof. In addition to the system (3.1), consider its perturbation

Xk+l- Axk + Buk + (E I)vk,
(4.4) Yk Cxk + (D1 0)vk,

/

Let Jr,is (Idis) denote the H2 performance, and let J denote the optimal H perfor-
mance. Since, for > 0, neither (d, B, (cei), ())nor (A, (E I), Cl, (D1 0)) have

zeros; we can apply Theorem 3.3 to obtain

J tr ((EE + 2i)p) + tr (APA P + CC2 + 2I)Q)
-tr ((DpNDQ)(DpNDQ)),

where P and Q are the largest real symmetric solutions of (4.1) and (4.3), respec-
tively, and where Dp, N, and DQ are defined by (3.4), (3.11), and (3.7), with P
and Q replaced by P and Q. From Lemma 3.7, recall that

-tr ((DpNDQ,)(DpNDQ)T) (I)(N) min (I)(N),
N

with

(I)(N) "-2tr ( (Dol)’rNBP(E ’)) + 2tr (CpQCNrDp)

+ tr ((DpNDQ)(DpNDQ)r)
2tr (DNTBrPE)+ 2tr (QC(N(DC2 + BrPA))
+ tr ((DpNDQ)(DpNDQ)r).

Since P - P and Q - Q, we see that for every N we have Be(N) - (N) ( t 0),
where (N) is defined by (3.15). Since of course for all e > 0 we have J* _< J we
see that for all e > 0, for all N we have

J* < tr ((EEr + e2I)p) + tr ((ArPA P + CC2 + e2I)Q) + (I)(N).

Now, letting $ 0 on the left in this inequality, we find that for all N

J* _< tr (EErP) + tr ((ArpA P + CC2)Q) + ((N).

Finally, taking the minimum over all N, this yields

J* .<_ tr (EE’rp) + tr (CCpQ) tr ((DpN*DQ)(DpN*DQ)r).

.To prove the converse inequality note that by using the fact that P and Q satisfy
(3.2) and (3.3) we can apply a repeated completion-of-the-squares argument as in 3
to obtain that for any internally stabilizing compensator Fdis we have

(4.5) Jrais (rdis) >_ tr (ErpE) + tr (CpQC,) + ,(N*).

Taking the infimum over all such Fdis yields the desired inequality.
Next we will study the question: Under what conditions does there exist an

optimal controller? Again, let P and Q be the largest real symmetric solutions of
the respective Riccati equations. Define a system dis,P,Q by (3.14). Again, for any
internally stabilizing compensator Fdis (K, L, M, N) we have the inequality (4.5).
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As noted in 3, we have equality if N N* and Fdis has the property that the closed
loop system Edis,p,Q Fdis has the constant transfer matrix DpN*DQ. Of course, the
latter statement only gives a sufficient condition for a compensator to be optimal. In
the following theorem we will give necessary and sufficient conditions for optimality.
Let R* be as defined in Lemma 3.7.

THEOREM 4.9. A controller ldis is optimal if and only if dis,P,Q Fdis is
internally stable and has constant transfer matrix R*.

Proof. If Idis (t(, L, M, N) is optimal, then we have

JEdis (Fdis) tr (ErpE) + tr (CQCp) + *.

By Lemma 3.6 we also have

JEdis(Fdis) >_ tr (ETPE) + tr (CQCp) + ((N).

This clearly yields (N) *, i.e., N minimizes the function . Again by Lemma
3.6 this implies that dis,P,Q Fdis has the constant transfer matrix DpNDQ. How-
ever, since N minimizes (I), by Lemma 3.7 we have DpNDQ -R*. The converse
statement is also an immediate consequence of Lemma 3.6.

Our aim is to reformulate these conditions in terms of the original system Edit.
For any given matrix N E IRmp, consider the system EN that is obtained bydis,P,Q

Napplying to Edis,P,Q the static output feedback u Ny + v. This system Edis,P, is
described by

(4.6)
Xk+l (A + BNC1)xt + Bvk + (BND2 + EQ)dk
y Cx + Dd
zk (Cp + DpNC)xk + Dpvk

Also, for a given compensator Fdis (K,L,M,N), let Fi (K,L,M, 0) be the
compensator with direct feedthrough matrix N replaced by 0. It is clear that the
closed-loop system dis,P,q Fdis has constant transfer matrix DpNDQ if and only if
NY]’dis,P,Q Fis has transfer matrix equal to 0. Consequently, an internally stabilizing

compensator Fdis (K,L,M,N) is optimal if and only if DpNDQ -R* and
NY]dis,P,Q Fis has transfer matrix 0. In other words, in order to find necessary

and sufficient conditions for the existence of an optimal controller, we should study
the problem of disturbance decoupling with internal stability. This problem has been
studied extensively in [16]. One of the main results of[16] gives necessary and sufficient
conditions for the existence of an internally stabilizing strictly proper compensator

Fi for the system -]dis given by (3.1). We will briefly recall this result here. Given
Edis, let ]2g denote the largest subspace of ]Rn for which there exists F ]amxn such
that (A + BF)g C 2g, la(A + BF 2g)I < 1, and (C2 + D2F)2g 0. Dually, let
Sg be the smallest subspace of lRn for which there exists a matrix G ]Rnp such
that (A + GC1)Sg c qg, ]cr(A + Gel ]Rn/Sg)] < 1, and im (E + GD) C $g. It
was shown in [16, Thm. 2.4] that there exists an internally stabilizing compensator

Fi (K,L, M, 0) such that Edis Fis has transfer matrix 0 if and only if the
following conditions hold: (i) (A, B) is stabilizable and (C, A) is detectable, (ii) the
following four subspace inclusions hold: im E c 2g, Sg c ker C2, Sg c 2g, and

AS C 2.
NHere, we want to apply this result to the system dis,P,Q, with N any solution of

DpNDQ -R*. In the following, we will omit some of the details. Using the fact
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that im (Cp -" DpNC1) C im Dp, it can be shown that the subspace 9 associated
Nwith ]dis,P,Q is given by

(4.7) Vg Xg(A- BD+pCp) + (A- BD+pCp B ker DR},

where for a given matrix M, Xg(M) is the sum of the generalized eigenspaces of
M associated with its eigenvalues in Iz < 1, and where (M /:} is the smallest
M-invariant subspace contained in . It can also be shown, using the fact that
ker DQ C ker(BNDQ + EQ), that

(4.8) S9 Xb(A- EQDC1) N (C-lim DQ A- EQDCI),
where Xb(M) is the sum of the generalized eigenspaces of M associated with its
eigenvalues in Izl >_ 1 and where (1M} is the largest M-invariant subspace con-
taining . Using the fact that, from (4.7), B ker Dp C )g, it can be shown that
im (BNDQ + EQ) C V9 if and only if

(4.9) im (EQ BD+pR*) C

Using the fact that, by (4.8), 39 c C-im DQ, it can be shown that Sg c ker (Cp +
DpNC) if and only if

(4.10) ,Sg C ker (Cp R*DC).
Finally, it can be shown that (A + BNC)$g 9 if and only if

(4.11) (A- BD+pR*DC)Sg
Collecting the above facts, we then obtain the following necessary and sufficient con-
ditions for the existence of an optimal controller for the discrete-time H2 optimal
control problem associated with the system ]dis"

TttEOREM 4.10. Consider the system (3.1). Assume that (A,B) is stabilizable
and (C1,A) is detectable. Let P and Q be the largest real symmetric solution of
(3.2) and (3.3), respectively. Let g and Sg be given by (4.7) and (4.8). Then we
have: there exists an optimal controller, i.e., an internally stabilizing controller Fiis
(K*, n*, M*, Y*) such that Jd,s (Fis) g*, if and only if the four subspace inclusions
Sg C ]2g, (4.9), (4.10), and (4.11) are satisfied.

5. The sampled-data H2 problem. Now we return to the sampled-data H2
problem. Consider the continuous-time system E given by (2.3), and let A A be a
given sampling period. Let the discrete-time system EA be given by (2.4). According
to Theorem 2.1, the optimal sampled-data H2 performance J*,A is equal to

1 foZX foZX- ( ) 1tA T tAT(5.1) J,A

where Ja is the optimal discrete-time H2 performance associated with EA. Accord-
ing to Theorem 4.8, the optimal performance Ja can be found in terms of two alge-
braic Riccati equations associated with E. According to Theorem 4.10, an optimal
compensator Idis,A exists if and only if four subspace inclusions involving subspaces
associated with the system Ex are satisfied. According to Theorem 3.3, if the systems
(AA, BA, C,A,D2,A) and (AA,EA, C, 0) have no zeros on the unit circle, then an
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optimal compensator Fdis,A exists and can be calculated using the "construction" in
the statement of Theorem 3.3. The sampled-data controller F := HAFdis,ASzx is then
optimal for the sampled-data H2 problem under consideration.

In this section we study the following question: what are conditions in terms of
the original system E that guarantee that there exists an optimal compensator for
the sampled-data H2 problem? Instead of being completely general, we will study
the following question: what are necessary and sufficient conditions in terms of the
original system E such that (AA, BA, C2,A, D2,zx) and (Azx, EA, C1,0) have no zeros
on the unit circle? In the following, let T be the controllability subspace of the system
(A, B, C2, D2) (see 2). The main results of this section are the following:

THEOREM 5.1. Consider the system E. Let A > O.
(i) Let , be a zero of (AA, BA, C2,zx, D2,A), : 1. Then there exists a unob-

servable eigenvalue # of (C2, A) such that iX eA.
(ii) If (A,B, C2, D) is left-invertible, then also the converse of (i) holds: if # s

an unobservable eigenvalue of (C2, A), then ezx is a zero of (AA, Bzx,
(iii) 1 is a zero of (AA, Bzx, C.,zx, D.,zx) if and only if at least one of the following

two conditions hold:
(a) 0 is a zero of (A, B, C2, D2),
(b)

(5.2) 7 (kerC2 A}.

(iv) /f (A, B, C2, 02) is left-invertible, then 1 is a zero of (A/x, BA, C2,A, D2,A
if and only if 0 is a zero of (A, B, C2, D2).

COROLLARY 5.2. Consider the system E. Let A > O.
(i) If (C2, A) has no unobservable eigenvalues on the imaginary axis, 0 is not a

zero of (A, B, C2, D2), and T C (kerC2 A), then (AA, BA, C2,A, D2,A) has no zeros
on the unit circle.

(ii) If (A, B, C2, 02) is left-invertible, then (A/x, Bzx, C2,A, D2,A) has no zeros on
the unit circle if and only if (C2, A) has no unobservable eigenvalues on the imaginary
axis and 0 is not a zero of (A,B, C2, D2).

THEOREM 5.3. Consider the system E. Let A > O.
(i) Let ) be a zero of (AA,EA, C,0). Then there exists an uncontrollable ei-

genvalue # of (A, E) such that
(ii) /f (A,E, C1,0) is right-invertible, then also the converse of (i) holds; i.e., if

it is an uncontrollable eigenvalue of (A, E), then e"A is a zero of (AA, EA, C, 0).
COROLLARY 5.4. Consider the system E. Let A > O. If (A,E) has no un-

controllable eigenvalues on the imaginary axis, then (AA,EA, C1,0) has no zeros on
the unit circle. If, in addition, (A,E, C, O) is right-invertible, then also the converse
holds: (A/x,EA, C1,0) has no zeros on the unit circle if and only if (A,E) has no
uncontrollable eigenvalues on the imaginary axis.

Note that the conditions on E obtained in these theorems are independent of the
sampling period. In the remainder of this section we shall prove these results.

In order to study the zeros of (A, B, C2, D2) and (AA,Bzx, C2./, D2,A), consider
the system matrices of these systems. Let

( zI-Azx -BA ) p(s)._( sI-A
Pzx (z) :=

C2,zx D2,/x

Recall that .A is a zero of (Azx, BA, C2,zx, D2,A) ifand only if the rank of the complex
matrix Pzx(,) is less than the normal rank of PA (see 2). In order to find out in
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which points A this happens, we will study for A E C the subspace

l) := ker PA (/k) C 6n4"m

Clearly, for all A we have dim l; n + m- rank PA(A). Consequently, for M1 but
finitely many A we have dimP d, where

d := n + m- normrank PA.

Hence, A is a zero of (A, BA, C2,A, D2,A) if and only if dim > d. In the following
lemma we will calculate for each A the subspace , its dimension dim Y, and the
number d. Denote the unobservable subspace (ker C2 A} by . Define a subspace
W as follows:

(5.3) := B- ker D2.

LEMMA 5.5. For every C, 1 we have

(5.4) Y=(ffzW)ker( AI-A B ),

(5.5) dimF dim + dimW dim((AI AA) + BAW).

For all but finitely many we have dimP d dim W, equivalently, normrank P
n + m- dim W. In addition we have

(g.6) Vl ker C D

ro4 we wi first prove (g.4). We know (o) if and only if

(5.7) Axo + Buo xo,
(5.8) C,xo + D,uo O.

Consider the differential equation 2(t) Ax(t) + Buo, x(0) x0; and define z(t):=
Cx(t) + Duo. Clearly, x(A) Axo + Buo, so (5.7) is equivalent to x(A) x0.
In turn, this is equivalent to

(5.9) (- 1)x0 edt(Axo + Buo)dt.

Using the definition (2.6) of C2,a and D2,A, we see that (5.8) is equivalent to

(C D)et(x =0 forallt [O,A],

which, in turn, is equivMent to z(t) 0 for all t [0, A]. Obviously,

z(t) Ceatzo + C eaBds + D o.

Since z(t) 0 for all t e [0, ] is satisfied if and only if z(0) 0 and (t) 0 for all
t [0, ], we find that (.8) is equivalent to

Czo+Do=0 and Ceat(Azo+Bo)=O, t[0,].
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In other words (5.8) is satisfied if and only if

(5.10) C2xo + D2uo 0 and Axo + Buo

Now assume that A : 1. Then (5.9) and (5.10) imply that x0 EAf c kerC2, so

u0 kerD2. Also it follows that Axo Af, so Buo Af and, in fact, u0 W.
We conclude that, for ,k 1, C (Af W) V ker AI A/x B/x ). To prove the
converse inclusion, note that u0 E W implies that D2uo 0 and Buo A/’. If, in
addition, x0 Af, then we have C2xo + D2uo 0 and Axo + Buo Af. By the above
this is equivalent to (5.8). This completes the proof of (5.4).

To prove (5.5), note that, in general, if is a subspace of some finite-dimensional
linear space X’ and if T is a linear map acting on X’, then we have dim( N ker T)
dim- dim T.. Applying this to the situation at hand, we find that for any A : 1
we have

dim2 dim(A/" x 142) -dim(M- Azx Bzx)(Af W),

which immediately yields (5.5).
Next, we will prove the statement on the dimension of 2. First note that since

Af is A-invariant, it is also eAt-invariant, for any t. In particular, this implies that
is A/x-invariant and invariant under foa eAtdt. Now assume that ,k a(A/x). Then
we have (AI- A/x)Af Af. Also, since BW C Af, we have BaT CAf. This implies
that (M A/x)Af + B/xW Af. If, in addition, we assume that A : 1, then (5.5)
yields dim ]d dim

Finally, to prove (5.6), recall that (5.7) is equivalent to (5.9). Note that for all

A > O, foa eAtdt is a nonsingular matrix (this can be shown using the Jordan form
of A). Thus, for the case that ,k 1 (5.9) is equivalent to Axo + Buo 0. Together
with the fact that (5.8) is equivalent to (5.10), this proves (5.6).

By applying this lemma, we are now able to prove the statements (i) and (ii) of
Theorem 5.1:

Proof of Theorem 5.1 (i) and (ii). (i) Assume that 1 is a zero of
C2,/x, D2,/x). Then we must have dim > dim W. Using (5.5) this implies

(5.11) dimAf > dim((AI Aa)A/" + BAT).

As noted in the proof of Lemma 5.5, Jr" is AA-invariant and BxW CAf. Consequently,

Together with the inequality (5.11), this implies that (/kI-Aa)Af is a strict subspace
of A/’. This implies that the map (AI- Azx) restricted to Af is singular. Thus,
ker(AI-Azx) CAf J= 0. Clearly, this intersection is A-invariant, so the restriction of A
to this intersection has an eigenvalue, say #, with corresponding eigenvector p. This
eigenvector satisfies A/xp p. Also, since Ap #p, we have A/p ep, so ,k e.
Finally, p A/" c ker C2, so # is an unobservable eigenvalue of (C2, A).

(ii) We claim that if (A,B, C2,D2) is left-invertible, then dim142 0. Indeed,

left-invertibility is equivalent to the conditions (DB2)is injective and FVB ker D2 0,

where denotes the weakly unobservable subspace associated with (A, B, C2, D2) (see
2). Assume that uo E W. Then we have D2uo 0 and Buo A/’. Since AFc ]d, this
yields Buo 0. Combining this with D2uo 0 then leads to uo 0. This proves our
claim. Now let # be a unobservable eigenvalue of (C2, A). There exists xo : 0 such



SAMPLED-DATA AND DISCRETE-TIME H2 OPTIMAL CONTROL 853

that Axo #xo and C2xo O. This yields A/xxo Axo, with A e/, From the
definition of C2,A it is also easily seen that C2,/xxo O. Consequently, (Xo E )2, so

dim > 0 dim W. This implies that A is a zero of (AA, BA, C2,A, D2,A).
In order to prove statements (iii) and (iv) of Theorem 5.1, we need the following

lemma.
LEMMA 5.6. Let A > O. Then we have

(5.12) normrank PA k normrank P,

with equality if and only if c .
Proo For each A a(A) define a subspace x by

{(x0), x0
u0

Clearly, C ker P(A) and dim dim. Consequently, for each a(A) we
have dim dimkerP(A). This implies normrank P n+m-dim. The
inequality (5.12) then follows from Lemma 5.5.

Of course, normrank PA normrank P if and only if dim ker P(A) dim for
M1 but finitely mny , which in turn, is equivalent to ker P(A) for all but
finitely many A, A a(A). We will prove that the latter statement is equivalent to

Le := dm, and le be dine complex number,
such that kerP(Ai) . There exists F mxn such that (A + BF) C

(C+D2F) O, and a(A+BF ) {A1, A}. Let xx, xa be
corresponding eigenvectors of A+BF[. Then {Xl,... ,xa} is a basis of. We will

that xi . Indeed, define ui -Fxi. Then ( ker P(Ai)= . Sinceprove
]ui

ui , we have Bui , so xi -(AiI- A)-IBui by A-invariance of . We
conclude that xi , so C .

Conversely, assume that C . It suffices to show that ker P(A) C for all
but finitely many A. Let A be arbitrary, A a(A), and A not a zero of (A, B, C2, D2).
Let (o)0 ker P(A). We will prove that xo , so xo . Assume that xo 0.

Let F mx be such that Fxo to. Then we have (A+BF)xo Axo and
(C + D2F)xo 0. This implies Xo , the weakly unobservable subspace associated
with the system (A, B, C2, D). (Indeed, the one-dimensional subspace spanned by
the vector xo has the property that (A + BF) C E and (C + D2F) 0 and so
must be contained in , the largest subspace for which such F exists.) By extending
the linear map F to the whole subspace , we obtain that (A + BF)P C and
(C2+D2F)F 0, so A a(A+BF ). We have assumed that A is not azero.
This implies h a(A + BF /R) (the latter spectrum is equal to the set of zeros of
(A, B, C2, D2); see [19]). But then we must have xo . This implies that xo
Now (AI- A)xo Buo 0, so Buo . This implies that uo . For A a(A)
this then yields xo . This completes the proof of the lemma.

Proof of Theorem 5.1 (iii) and (iv). (iii) We will prove that 1 is not a zero of
the system (AA, B, C2,, D2,) if and only if 0 is not a zero of (A, B, C2, D2) nd
normrank P normrank PA. Clearly, 1 is not a zero of (A, BA, C,A, D2,A) if and
only if dim n+m-normrank PA. By (5.6) we have dim1
n + m normrank P, with strict inequality if and only if 0 is a zero of (A, B, C2, D2).
Combining these facts proves our claim. The proof of (iii) is then completed by
applying Lemma 5.6.



854 H.L. TRENTELMAN AND A. A. STOORVOGEL

(iv) If (A, B, C2, D2) is left-invertible, then 7 0. In that case condition (5.2) is
never satisfied.

In order to study the zeros of (A/x, E/x, C, 0), consider the system matrix of this
system. Let

Qa (z) ( zI
C

As before, A is a zero of (A/x, E/x, C1,0) if and only if the rank of the complex matrix
Q/+/-(A) is less than the normal rank of Q/x (see 2). In order to find out in which
points this happens, we will study for A E the subspace

W (im Q/x(,))+/- c C+v.
For all we have dim ]/Ya n + p- rank QA (A). Consequently, for all but finitely
many/ we have dim ]/Y dl, where

d := n + p- normrank Q/x.

Hence, A is a zero of (A/x, E/x, C1,0) if and only if dimV > d. The following lemma
calculates for each A the subspace /Y, its dimension dim ]/Y, and the number d.
Let A//"= {Alim E}, the reachable subspace of (A, E).

LEMMA 5.7. Let A > O. Then we have

1/V,-- (M+/- x (C)-IM+/-)Vker( ,kI-Ax C ),

(5.13) dim 1/Vx dimM+/- + dim(C)-lM+/-

dim((M A)M" + C(C)-IM’).

For all but finitely many we have dim 42 dl dim(C)-M+/-, equivalently,

normrank Q/x n + p dim(C)-1M+/-.

Proof. By definition, (x0)y0 E ]/Y if and only if

(5.14) (AI AX)xo + Cyo O and xE/x O.

Since, by definition, im Ezx M, we see that it suffices to show that (5.14) implies
y0 G (cr)-IM+/-o From the fact that AJ +/- is AT-invariant it follows that A/ +/- is Ax-
invariant, so Cyo J4 +/-. The statement (5.13) on the dimension of 1/Y follows in
the same way as the corresponding statement in the previous lemma.

Now let /k be any complex number such that A a(A). Since J4 +/- is Ax-
invariant, we then have (I- A)M+/- M+/-. Also we have C(C)-IM+/- c M+/-

(no equality!). Thus, for such we have dim 1/Y dim(C)-IM+/-.
We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let A be a zero of (A/x, E/x, C1,0). Then we have dim ]/Y >
dim(C)-M+/-. Consequently, by (5.13), dimM+/- > dim((M- A)M+/-+
C(C)-IM+/-). In particular, this implies that (I- A)AJ+/- is a strict subspace of
jI +/-, so ker(AI- Ax g A/I +/- :/: 0. This subspace is AT-invariant, so there exist/, and
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x0 E A/f +/-, x0 - 0, such that ATxo #xo, AXo Axo, and x0 E A/t +/-. Obviously,
this implies/k et’A, and # is an uncontrollable eigenvalue of (A, E).

Assume that (A, E, C1,0) is right-invertible. Let

Q(s) ( sI- -E

be the system matrix. We have normrank Q n+p. We claim that also normrank Q
n +p. Indeed, assume that y0 - 0 is an element of (Cr)-lM+/-. For A a(AT), define
X0 (,I- AT)-1 TC1 y0. Then x0 G AA +/- and we have (x y)Q(k) (0 0). Thus,
for all but finitely many A we have rank Q(/k) < n +p, which is a contradiction. Hence
we must have (Cr)-1M+/- 0.

It follows that A is a zero if and only ifW : 0. Assume that # is an uncontrollable
eigenvalue of (A, E). Then there exists x0 - 0, x0 M+/-, such that xA #xo.

T TDefine A e"A. Then we have xoEA 0 and x(/kI- AA) 0. It follows that

(o) Wx, so ) is a zero of (AA, EA, Cl, O).

6. Performance recovery and convergence of optimal performance. In
this section we study the connection between the ’ordinary’ continuous-time H2 pro-
blem and the sampled-data H2 problem. In particular, we are interested in the fol-
lowing questions:

Suppose that we control the system E by means of an internally stabilizing
continuous-time compensator Fcon, yielding continuous-time H2 performance
JE(Fcon). Is it possible to recover this performance asymptotically by us-
ing a sampled-data controller with sufficiently small sampling period? More
precisely, is it true that for all e > 0 there exists A > 0 and an intern-
ally stabilizing sampled-data controller F with sampling-period A such that
IJr,(rcon)- Jr,,(r)l < ?
Does the optional sampled-data H2 performance converge to the optimal
continuous-time H2 performance as the sampling period A decreases to zero?
More precisely, suppose that J,con is the optimal continuous-time H2 per-
formance associated with the system E and, as before, denote the optimal
sampled-data H2 performance by J,A. Is it true that limA,0 J,A J,co*"The first question above was studied before in [6, Thm. 4] using a different definition

of H2 performance and for the H performance criterion [6, Thm. 5]. In this section
we will show that both questions have an affirmative answer.

Let E be given by (2.2). If the system E is controlled by a continuous-time
compensator Fcon given by the equations

(v(t) Rw(t) + Ly(t)
+

with w(t) IRt, then the associated closed-loop system E x Fcon is given by

5c(t) Ax(t) + Ey(t)
z(t) Cx(t)

with

LC [( E :=
0 Ce C2 -t- D2C1
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If Fcon is internally stabilizing, i.e., a(Ae) C C-, then the H2 performance of the
closed-loop system E Fcon is equal to

Jz(Fcon) tr (EePE[),

where P is the unique solution of the Lyapunov equation

(6.2) AP+PeA+
On the other hand, if the system E is controlled by the sampled-data controller
F HAFdisSA, with Fdis given by (2.8), then the discrete-time closed-loop system
EA Fdis is given by the equations

Xe,k+l Ae,AXe,k Ee,iyk
Zk Ce,A Xe,k

with

A/x + B/xNC1A,I LC1 )K E,A :=

Ce,A :: C2,A + D2,ANC1 Dg.,AM ).

If r is internally stabilizing, equivalently la(A,A)I < 1, then the H2 performance of
the closed-loop system E x F is given by

1/0(6.3) JZ,A (r) ( ) 1
tr c2etAEEwetAWcf dt ds + tr

where P,A is the unique solution of the Lyapunov equation

(6.4) W TA,AP,AA,A P,A + C,AC,A O.

The following theorem shows that our first question above indeed has an affirmative
answer:

THEOREM 6.1. Let Fcon be an internally stabilizing continuous-time compensator.
For any A > 0 define a discrete-time controller Fdis by Fdis :-- SAI-’conHA, and let

FA := HAFdisSA be the corresponding sampled-data controller with sampling period
A. Then we have that there exists A1 > 0 such that for all A

_
Z with 0 < A < A1,

FA is internally stabilizing. Furthermore,

Jz,A(r/\)--+ J(Fcon) (A ,!. 0).

Proof. It is easily verified that I’dis := SAFconHA is described by the equations

Wk+l KAwk + LAYk
uk Mwk + Nyk,

with KA eRA and LA .= oAj eRtdt" Thus we have

AeA= ( AA + BANC1 BAM )LAC1 KA
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Note that A,A -- I, the (n + t) (n + t) identity matrix, and that (A,A- I) A
(A i 0). Now we will first show that for A sufficiently small we have la(Ae,A)l < 1.

TSince A is stable, there exists Q > 0 such that AQ + QA < 0. Now note that

11 (A,/xQA,A Q) -1 (A:,A I)QA,A + Q-(A,/x I).

Since the right-hand term converges to AQ + QA < 0, for A sufficiently small we
have ATe,AQAe,A Q < 0. This implies that for A sufficiently small A,A is stable.

Next we show the convergence of the H2 performance. For A sufficiently small
we have la(Ae,A)l < 1, so the H2 performance is given by (6.3), with Pe,A given by
the Lyapunov equation (6.4). We shall prove that P,A --* P, the unique solution of
(6.2). For any A sufficiently small define a linear map mix :]Rnn ]Rn’ by

1 1
m, X "= -A,,XA, --X.Also define a linear map m:IRnn --. IRn’ by

m(X) AX + XA.
Note that m and mA are all bijections. We can rewrite mA as

1 1
ma(X) -(A,a I)XA,a + X-(A,a I).

Recall that Ae,A -- I and -(Ae,A I) Ae. Thus we see that ma - m (A 0).
Consequently, also m rn-1 (/k 0). Obviously, P,A real( T

KC,AC,A). In
addition, it follows from (2.6) that -C[,AC,A --* CC. This implies that P,A
m-l(C[Ce), which, in turn, is equal to Pc. By (2.5) we see that -E,E,A -, EE.
Combining these facts we find that

1
tr (E,AE[,AP,A) tr (EEP).

Finally, it is immediate that

tr CletAEETetATC dtds O, A O,

which completes the proof of the theorem.
Now we turn to the second question posed above. In order to be able to answer

this question, it is useful to consider this question first for the linear quadratic problem.
For this, consider the system (t) Ax(t)+ Bu(t), z(t) C2x(t)+ D2u(t).

Assume that (A, B) is stabilizable. For a given static state feedback control law u
Fx and initial state x0, the output function is denoted by zg,o. The linear quadratic
problem is to minimize for each x0 the cost-functional J(xo, F)"= f IIZF,xo(t)ll2dt
over all F IRmn such that a(A + BE) c C-. It is well known (see [9], [18]) that
for each x0 the optimal cost

J*(xo) inf{J(xo, F) F s.t. a(A + BF) C C-} xPxo,
where P is the largest real symmetric solution of the linear matrix inequality

( ATP + PAT + CC2 PB + CD2
_

O.(6.5)
\ BTP + DC2 DD2 /
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We want to compare this "normal" linear quadratic problem with its sampled-data
version.

In the following, take a fixed sampling period A > O. The sampled-data version
of the linear quadratic problem is to do the minimization over all stabilizing sampled-
data static state feedback laws. More precisely, for a given F E IRmn define the
sampled-data state feedback control law u zxx by u(t) := Fx(kA) (t e [kA, (k +
1)A), k 0, 1, 2,..., or with a slight abuse of notation: -zx H/xFSzx. For a given
’zx and initial state x0, denote the output by z:,,xo. Define the sampled-data cost
functional in the obvious way, and denote it by J(xo,zx). The control law 9zx is
called internally stabilizing if for each initial state the controlled state trajectory x(t)
converges to 0 as t -- oc. The sampled-data linear quadratic problem is to minimize
for each xo J(xo, zx) over all internally stabilizing control laws 9czx. Let

J(xo) := inf{J(x0, 9) 9/x is internally stabilizing}

be the optimal cost. If no internally stabilizing 9A exists, we define J, (Xo) :=
for all x0. We will briefly explain here how the sampled-data linear quadratic can be
resolved. First, note that for any 9/x HAFSA we have

J(xo,.T’/x) E f(+)A IIz:,o(t)ll 2dt.
k=0 J kA

Secondly, note that for all t [kA, (k+l)A) we have 2(t) Ax(t)+Bu(t), z,,o(t
C2x(t) + Du(t), with u(t) Fx(kA). Hence, on the interval [kA, (k + 1)A), x and
u satisfy

with u(kA)= Fx(kA). Consequently,

.)(x)0 u

for t G [kA, (k+ 1)A), with A defined by (2.7). Using this, it follows immediately from
(2.6) that for t [kA, (k+l)A) we have IIz:a,xo(t)ll 2 IIC2,zxx(kA)+D2.zxFx(kA)ll2o
Obviously, x(kA)) evoluates according to x((k + 1)A) Azxx(kA)+ BzxFx(kA).
Hence we see that if -zx HzxFSzx, then J(xo,.Tzx) k=0 II(C2,zx + D2,zxF)xkll
with X+l (A/x + BzxF)x. It is also easily seen that zx is internally stabilizing if
and only if la(Azx +BzxF)l < 1. Hence, Jx(Xo) < for all x0 if and only if (Azx, Bzx)
is stabilizable.

Consequently, we can make the following conclusion: the sampled-data linear
quadratic problem under consideration is equivalent to the "normal" discrete-time
linear quadratic problem of minimizing, for the system xk+l Azxxk + Bzxuk, the
cost functional Jdis(Xo, F) := -k=0 I1(C2,Axk -t- D2,zxukll 2 over all F Imxn such
that la(Azx + BzxF)I < 1. The latter problem was discussed in 3, remark (3.11)
and 4, remark (4.6). By applying these results to the situation under consideration
we can find a characterization of the optimal cost J2x(xo) of the sampled-data linear
quadratic problem"

LEMMA 6.2. Let A > 0 be such that (A/x, B/x) is stabilizable. Then for each xo
we have

TJ:,(z0) xoPaxo,
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where PA is the largest real symmetric solution of the algebraic Riccati equation

(6.6) AAP/A/X P/X + C2,/X C2,/X

--(C2,/xD2,A + AAPABA)(D,AD2,/X + BAP/XBA)+ (D,AC2,A + BXPAA/X) O.

Now we will show that as A $ 0 the largest real symmetric solution PA of (6.6)
converges to P, the largest real symmetric solution of (6.5). We will prove this by
proving that for each x0 we have J(xo) J*(xo). Note that if (A,B) is stabilizable,
then for A > 0 sufficienly small we have that (AA, BA) is stabilizable.

LEMMA 6.3. Assume that (A,B) is stabilizable. Then there exists A1 > 0
such that for all 0 < A < A1, for all Xo we have J(xo) < oc. For all xo we

have lim/x0 J(xo) J*(xo). Also, for all 0 < A < At, P/X exists and we have
lim/xl0 PA P.

Proof. First of all note that for each sampling period A we have J,(xo) >_ J*(xo)
for all x0. This can be shown using that, in fact, for each x0,

{/0J*(xo) inf IIC2x(t) + D2u(t)ll2dt u is such that lim x(t) 0

Hence, by taking u to be generated by the internally stabilizing sampled-data control
law A-/x, it follows that J(xo,A) >_ J*(xo)o

Now, let 5 > 0. Let F be such that a(A + BE) C C- and J(xo, F) < J*(xo) + .
Clearly, J(xo, F) xLxo, where L is the unique solution of the Lyapunov equation

(A + BF)TL + L(A + BF) + (C2 + D2F)T(C2 + D2F) O.

Now consider the sampled-data control law 9/x HAFSA. By previous arguments,
J(xo, A) xLAXo, where LA is the unique solution of the Lyapunov equation

(AA + BAF)TLA(A/X + B/XF) LA + (C2,A + D2,AF)T(C2,/X + D2,AF) O.

Note that A/X + BAF I, -(AA + BAF- I) --, A, and - (C2,A + D2,AF)(C2,A +
D2,AF) - (C2 + D2F)(C2 + D2F) as A $ 0. Using a completely similar argument
as in the proof of Theorem 6.1 we derive from this that LA L, which implies
J(xo,/x) ---* J(xo, F). Of course, we also have J*(xo) <_ J,(xo) <_
Combining this with J(xo, F) < J*(xo) + , we find that for 5 sufficiently small we

have J*(xo) <_ J(xo) <_ J*(xo)+5. Since 5 was arbitrary, this proves the claim. The
second statement in the formulation of the theorem is then immediate.

Let J,con be the optimal continuous-time H2 performance, i.e., the infimum of
JE(Fcon) over all internally stabilizing continuous-time compensators (6.1). It was

shown in [15] that if (A, B) is stabilizable and (C1, A) is detectable, then

(6.7) J.con tr (EErP) + tr ((ArP + PA + CC2)Q),

where P is the largest real symmetric solution of the linear matrix inequality (6.5)
and Q is the largest real symmetric solution of the dual linear matrix inequality

(6.8) ( AQ+QA+EETQC1 CQI>0"0
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Let J,A be the optimal sampled-data H2 performance. If A E A, then we define

J,A := +x. Our next theorem gives an affirmative answer to the second question
posed in the introduction to this section.

THEOREM 6.4. Let (A,B) be stabilizable and (C1,A) be detectable. Then there
exists A1 such that for all 0 < A < A1, J,A < c. We have limA,0 J,A J,con"

In the remainder of this section we will prove this theorem. First, recall the
expression (5.1) for J,A. Denote the first term in (5.1) by I(A). Then, under the
conditions that (A,B) is stabilizable and (C1,A) is detectable, we know that for

1 1
(6.9) J,A I(A) + tr (EAE,PA) + tr ((APAAx PA + C,AC2,A)QA)

A
--tr ((DpaNDQ,)(DpNxDQ)T),

where PA is the largest real symmetric solution of (6.6), QA is the largest real sym-
metric solution of the dual Riccati equation

(6.10)

and

AAQAA QA + E/E, + AAQ/xC(C1QAC)+C1QAAA O,

N -DRy, (D+p, )2DRy, CRy,QC(D)2DQ,
Here, Cpa, DRy, and DQ, are defined by (3.5), (3.4), and (3.7), respectively, with
P PA and Q Q. We will prove that J,A J,con by analyzing the asymptotic
behavior of the four terms appearing in (6.9) separately:

It is immediate that the first term, I(A), converges to 0 as A $ 0.
om (2.5) it follows that EAE EE. Since also P P, we conclude
that the second term, tr (EAEPA), converges to tr (EEP).
To prove convergence of the third term, first note that QA Q. This follows
immediately by dualizing Lemma 6.3. Next, as before, rewrite

1
tr (APAAA PA + CT2,AC2,A)QA)

11
(AA I) + C2C2,.

1
(A I)PA +P(6.11)

Since (AA I) A, AA I, and C,C2, CC2, we conclude that
the third term in (6.9) converges to tr (AP + PA + CC2.)
In order to complete the proof of Theorem 6.4, we should hence prove that
the fourth term in (6.9) converges to 0 as A $ 0. This is done in the following
lemma:

LEMMA 6.5. tr ((DpNDQa)(DpNDQ)) 0 as A O.
Proof. Rewrite the fourth term in (6.9) as [IDpNDQ[[2, where for any

matrix M, [[M][ denotes the obenius norm tr (MM). Note that if M is a given
matrix, then M+M and MM+ are orthogonal projectors, so consequently ]MM+

[MM+]] rank (M). In particular, this implies that if M is n z n matrix, then
[[MM+ll ]lMM+[I n. Now make the following estimates:

1- IIDpNyDQ 2
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1<_ -II(DpD+p, )(D+p,Dp,)CpQCD(D,DQ)II
m4p2

<_ ...IICP QAC:D , II
rn4p2 TD+<- A IICP II IIQ, , I

As noted before, C:,Cpx AAPAAA PA + CT2,A so - llCp ,ll tr (ArP +
PA + CC2). On the other hand, by noting that Qzx satisfies the Riccati equation
(6.10), where Azx eAzx is invertible, we see that

CWr)+

tr (QAC(CQ,C)+CQ)
tr (QA AIQAA2T + AIEAEA2).

Since QA Q, A I and EAE,, --, O, the latter converges to zero as A 0.
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