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SAMPLED-DATA AND DISCRETE-TIME H, OPTIMAL CONTROL*
H. L. TRENTELMANT AND A. A. STOORVOGEL?}

Abstract. This paper deals with the sampled-data Hz optimal control problem. Given a
linear time-invariant continuous-time system, the problem of minimizing the Hs performance over
all sampled-data controllers with a fixed sampling period can be reduced to a pure discrete-time Ha
optimal control problem. This discrete-time Ha problem is always singular. Motivated by this, in
this paper we give a treatment of the discrete-time Hz optimal control problem in its full generality.
The results we obtain are then applied to the singular discrete-time Hs problem arising from the
sampled-data Ho problem. In particular, we give conditions for the existence of optimal sampled
data controllers. We also show that the Ho performance of a continuous-time controller can always
be recovered asymptotically by choosing the sampling period sufficiently small. Finally, we show that
the optimal sampled-data Ho performance converges to the continuous-time optimal Hy performance
as the sampling period converges to zero.

Key words. sampled-data, lifting technique, discrete-time, Ha optimal control, algebraic Riccati
equation, small sampling periods

AMS subject classifications. 93C05, 93C35, 93C60

1. Introduction. Recently, much attention has been paid to Hs and H opti-
mal control of linear systems using sampled-data control (see (6], [7], [12], [2], [4] and
[5], [11], [10], (1], [3], [17], [21]). For a given a continuous-time plant, a sampled-data
controller consists of the cascade connection of an A/D converter, a discrete-time con-
troller, and a D/A converter. The A/D device converts the continuous-time measured
plant output into a discrete-time signal, which is used as an input for the discrete-
time controller. The discrete-time controller generates a discrete-time output signal,
which, in turn, is converted into a continuous-time signal that is used as a control
input for the continuous-time plant.

Apart from a control input and a measurement output, the plant under consid-
eration has an exogenous input and an output to be controlled. The quality of a
controller is given by the performance of the corresponding closed-loop system. This
performance measures the influence of the exogenous input on the output to be con-
trolled. In the present paper, we will take the Hs performance of the closed-loop
system as performance measure.

In contrast to the Ho, performance of a sampled-data control system, which in
analogy with the pure continuous-time context can simply be defined as the norm
of the input/output operator between the exogenous inputs and the outputs to be
controlled, it is not clear from the outset how one should define the Hy performance
of a sampled-data control system. One definition was proposed in [6]: the Hs perfor-
mance of the closed-loop system is the number obtained by applying at each input
channel a Dirac distribution and by taking the sum of integral squares of the resulting
outputs. Of course, this definition exactly mimics the one that is common in the pure
continuous-time context.
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In our opinion, a more natural definition was given independently in [12] and [2].
In these references, the crucial observation is that the closed-loop system resulting
from a sampled data controller, albeit time-varying, is in fact a periodic system, with
period equal to the sampling period. It is then argued that, instead of applying
impulsive inputs at time ¢ = 0, one should in fact apply these inputs at all time
instances between 0 and the sampling period and take the mean of the integral squares
of the resulting outputs. This leads to an Hy performance measure that captures the
essential features of a sampled-data closed-loop system more satisfactorily. For a
given continuous-time plant, the sampled-data Hy optimal control problem is then to
minimize the Hy performance of the closed-loop system over all internally stabilizing
sampled-data controllers with a fixed sampling period. It is the latter problem that
will be studied in this paper.

It was shown in [12] and [2] (see also [4]) that the sampled-data Hy optimal
control problem can be reduced to a pure discrete-time H; optimal control problem
in the following way. First one defines an auxiliary time-invariant discrete-time sys-
tem (involving the parameters of the original continuous-time plant and the given
sampling period). Next, one expresses the sampled-data Hy performance in terms
of the ‘normal’ Hy performance of the closed-loop system obtained by interconnect-
ing the auxiliary discrete-time system and the discrete-time controller defining the
sampled-data controller. Thus, the sampled-data Hy optimal control problem under
consideration is completely resolved once the auxiliary discrete-time Hs problem is.
This procedure makes use of the so-called lifting technique (see [20], [1], [3])

Now it turns out that the auxiliary discrete-time Hs problem obtained in this way
is always a singular problem: the direct feedthrough matrix from the exogenous input
to the measurement output is always equal to 0. Apart from this, in the auxiliary
discrete-time system the direct feedthrough matrix from the control input to the
output to be controlled is in general not injective. (Note that, in general, an H,
optimal control problem is called regular if the direct feedthrough matrix from the
control input to the output to be controlled is injective, and the direct feedthrough
matrix from the exogenous input to the measurement output is surjective. If the
problem is not regular it is called singular.) In [12], this difficulty is partly removed
by introducing an additional noise on the sampled measured output signal and by
assuming the corresponding feedthrough matrix to be surjective.

In the present paper we want to consider the completely general formulation of the
sampled-data Hy problem. As a starting point we will take the auxiliary discrete-time
H, problem derived in [12] and [2]. As noted, this problem is inherently singular. To
our best knowledge, no resolution of the discrete-time singular Hy optimal is known
in the literature. Therefore, a substantial part of this paper is devoted to a study
of the completely general discrete-time Hs problem (no assumptions on the direct
feedthrough matrices, no assumptions on the absence of zeros on the unit circle). We
will describe a complete resolution to this problem, including a characterization of
the optimal performance, and necessary and sufficient conditions for the existence of
optimal controllers. The expression for the optimal performance is different from the
one that might be expected in analogy with the continuous-time case (see [15]). Due
to the fact that the role of the imaginary axis is taken over by the unit circle, for the
discrete-time Hy performance to be finite it is no longer required that the closed-loop
transfer matrix is strictly proper. Intuitively, this enlarges the class of admissible
controllers and yields a smaller optimal performance.

We will apply our results on the discrete-time Hy optimal control problem to
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the sampled-data Hy problem by simply applying them to the auxiliary discrete-time
system derived in [12] and [2]. Our expression for the optimal sampled-data Hy
performance will be an immediate consequence of these results. We will, however,
also be interested in conditions guaranteeing the existence of optimal sampled-data
controllers. Our results on the general discrete-time Hs problem give such conditions
in terms of the auxiliary discrete-time system, but we will reformulate these conditions
in terms of the original continuous-time plant. Preliminary results in that direction
were also found in [12].

Obviously, the sampled-data Hs optimal performance is a function of the sampling
period. An important question is: what happens if the sampling period tends to
zero. In particular, we will answer the following two questions. First, if we control
the original continuous-time plant by a “normal” continuous-time compensator, is
it then possible to recover this performance asymptotically by using a sampled-data
controller with sufficiently small sampling period? This question was also studied for
the Hy, performance and for the Hy performance & la Chen and Francis in [6]. A
second, related, question that we will answer is: does the optimal sampled-data H,
performance converge to the optimal continuous-time H; performance as the sampling
period decreases to zero?

The outline of this paper is as follows. In §2 we will define the sampled-data Hs
optimal control problem and recall the main results of [12] and [2]. We will also intro-
duce some notation and recall the notions of left-invertibility and right-invertibility of
linear systems, zeros, and their most important state space interpretations. In §3 we
deal with the discrete-time Hy optimal control problem. In this section we will not
yet treat the completely general case but make some assumptions on the absence of
zeros on the unit circle. In §4, the results of §3 will be extended to derive a resolution
of the general discrete-time Hs optimal control problem. Then, in §5, we return to
the sampled-data context and apply the results of §§3 and 4 to the sampled-data
H, optimal control problem. In particular, we will derive conditions in terms of the
original continuous-time plant that guarantee the existence of optimal controllers for
the sampled-data Hy problem. Finally, in §6 we study the aforementioned questions

regarding the behavior of the (optimal) performance as the sampling period tends to
Z€ero.

2. Problem formulation. Consider a continuous-time, linear, time-invariant,
finite-dimensional plant X. Let ¥ have inputs d and u and outputs z and y, where d
is an exogenous input, u is a control input, z is an output to be controlled, and y is a
measured output. We want to control ¥ by means of sampled-data feedback control.
We take a fixed A > 0, called the sampling period. From the measured output y we
obtain a discrete-time signal § = {yx} defined by yx := (Say)k, where Sao denotes
the sampling operator defined by (Say)x := y(kA). This discrete-time signal is taken
as input for a discrete-time, linear, time-invariant, finite-dimensional compensator
Tais. The latter compensator generates a discrete-time signal @ = {u}, which, in
turn, yields a (piecewise constant) continuous-time input signal u for the plant by
defining u(t) := (Ha)(t), where Ha is the hold operator defined by (Ha@)(t) := ug
(t € [kA, (k + 1)A)). This type of feedback control is depicted in Fig. 1.

If we control the system ¥ by means of a sampled-data controller with sampling
period A, then the resulting closed-loop system will no longer be time-invariant. In
[12] and [2] the following definition of Hy performance in the context of sampled-data
control is proposed. First, it is observed that the closed-loop system resulting from a
sampled-data controller with sampling period A is always a time-varying, A-periodic
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system. Then, for A-periodic systems the notion of Hs performance is defined as

follows. Suppose we have a finite-dimensional, time-varying, A-periodic system Y,
described by

(2.1) z(t) = /Ot G(t,s)d(s)ds.

It is argued in [12] and [2] that a natural way to define the H, performance of (2.1) is

A oo
(2.2) 1S o2 :=i— / b / G (1. 9)G(t, )dt ds.
0 s

Next, if I" is a sampled-data controller with sampling period A, the associated per-
formance is defined as Js A (T) := ||= x I'||2, the Hs performance of the (A-periodic)
closed-loop system 3 x I'. The sampled-data Hy problem is then to minimize, for a
fixed sampling period A, the performance criterion Jx a(T") over all internally stabi-
lizing sampled-data controllers I' with sampling period A. It was shown in [12] and
[2] that this problem can be reduced to a discrete-time ‘normal’ H, optimal control
problem. To be specific, let the plant ¥ be given by the equations

z(t) = Az(t) + Bu(t) + Ed(t),
(2.3) y(t) = Crz(t) ,
2(t) = Cox(t) + Dault) ,

with z(t) € R", u(t) € R™,d(t) € R", y(t) € R?, and 2(t) € IR?. It will be a standing
assumption in this paper that (A, B) is stabilizable and that (C1, A) is detectable,
both with respect to C™ := {s € C | Re s < 0}. Introduce a finite-dimensional linear
time-invariant discrete-time system X a:

Tp+1 = Aazp + Baup + Eady,
(2.4) ye = Cizp,
2z = Coazk + Do aug ,

where we define

A
Ap =4 Ba :=/ et4dtB,
0
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where Ea is any matrix satisfying

A
(2.5) EAE} = / AEET e dt,
0

and where C5 o and Dy a are matrices satisfying

A
(26) (C2a D2a)" (Coa D2,A)=/ e (Cy D)™ (Co Dp)eddt.
0

Here we have denoted

2.7) A::(‘(‘)‘ ’g)

Let A denote the set of sampling periods for which either (Aa, Ba) is not stabilizable
or (C1, Aa) is not detectable, both with respect to the open unit disc {z € C | |z| < 1}.
It is well known [13], [8] that if (A, B) is stabilizable and (C1, A) is detectable, then
every bounded subset of IRT contains only finitely many elements of A. We will
restrict ourselves to sampling periods that are not in A. The plant ¥ is controlled
using sampled-data controllers I' := HaT'q;s5a, with Tg;s given by the equations

w1 = Kwyg + Ly ,
(2'8) Uk = Mwy + Ny .

Let us denote by Jx, (Tais) the discrete-time Hy performance of the closed-loop system
YA x Tgjs, i.e., the value ), tr (GxG}), where {G}} denotes the pulse response of
the closed-loop system. The main result of [12] and [2] is the following:

THEOREM 2.1. Assume that A € A. Then there exists a sampled-data controller
I with sampling period A such that the closed-loop system ¥ x I is internally stable.
The sampled-data controller I' = HAT4isSa internally stabilizes ¥ if and only if the
discrete-time controller Tgis internally stabilizes ¥ 5. Furthermore, for every such
controller we have

1

AJEA(Fdis)~

1 A pA-s .
Jnal) = — / / tr (C’ze“‘EETe“‘ Cg) dtds +
AJo Jo

We shall use this theorem as a starting point and study in this paper the discrete-
time Hj optimal control problem for the discrete-time system X a given by (2.4). This
Hj; problem is inherently singular, due to the fact that the direct feedthrough matrix
from the disturbance input to the measured output is always equal to zero.

We conclude this section by introducing some notation and recalling some basic
concepts. In this paper, any given continuous-time system & = Az + Bu,y = Cx+ Du
or discrete-time system 41 = Az + Bug,yx = Czg + Duy will be denoted simply
by (A,B,C,D). It will be clear from the context which interpretation we have in
mind. For any such system, the system matriz is defined as the first-order polynomial

matrix
sI-A -B
P(s) = < c D ) .

If the underlying system is discrete-time, we will rather use the indeterminate z instead
of s. For a real rational matrix R, its normal rank, normrank R, is defined as the
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rank of R as a matrix with entries in the field of real rational functions. It is well
known that normrank R = max, rank R(c). A zero of the system (A, B, C, D) is any
complex number A with the property that rank P()A) < normrank P. The system
(A,B,C, D) is called left-invertible (right-invertible) if its transfer matrix G(s) =
C(sI — A)7'B + D is a left-invertible (right-invertible) rational matrix. Assuming
that A € R™", B € R™*", and C € R?*" we have that (A4, B, C, D) is left-invertible
(right-invertible) if and only if its system matrix has normal rank n + m (n + p).

If M € R™™"™ and L is a subspace of R"™, then (M | £) will denote the smallest
M -invariant subspace containing £. The largest M-invariant subspace contained in £
will be denoted by (£ | M). In particular, given (A, B, C, D), the reachable subspace
is equal to (A | im B) and the unobservable subspace is equal to (ker C' | A).

Given the system (A, B,C, D), we define the weakly unobservable subspace V to
be the smallest subspace £ of IR”™ with the property that there exists F' € IR™*™ such
that (A+ BF)L C £ and (C + DF)L = 0 (see [14]). In addition, the controllability
subspace R of (A, B,C, D) is defined as follows:

R :=(A+ BF | VN Bker D),

for any F such that (A+ BF)V C V and (C + DF)V = 0 (any such F yields the
same R). It was shown in [14] that the system (A, B,C, D) is left-invertible if and
only if ker BNker D =0 and VN Bker D = 0. Note that VN Bker D = 0 if and only
if R =0.

Finally, the set of zeros of (A, B,C,D) can be shown to be equal to o(A4 +
BF | V/R), for any F such that (A + BF)V C V and (C + DF)V = 0. Here,
A+ BF | V/R is the quotient map of A+ BF |V modulo R (see, e.g., [19]).

3. The discrete-time H: problem: No zeros on the unit circle. In this sec-
tion we shall consider the discrete-time Hy problem. Consider the finite-dimensional,
linear, time-invariant, discrete-time system Ygis given by the equations

Tg+1 = Azp + Bugp + FEdy,
(3.1) yr = Cizg + Dydy,
2k = Coxk + Douy .

There will be no assumptions on the direct feedthrough matrices D; and Dy. In the
present section, however, we will have assumptions on the absence of system zeros
on the unit circle in the complex plane: it will be assumed that (A, B, Ca, D) and
(A, E,Cy, D;) do not have zeros on the unit circle |z| = 1. In the next section we will
drop these assumptions and treat the completely general case. Of course, it will be a
standing assumption that (A4, B) is stabilizable and that (Cj, A) is detectable, both
with respect to the open unit disc.

We will consider discrete-time controllers 'gis given by (2.8). For any internally
stabilizing controller g, let Jx,, (Tais) be its Hy performance. Denote by J* the
optimal performance, i.e., the infimum over all internally stabilizing controllers I'g;s.

For a given matrix M, we will denote by Mt its Moore-Penrose inverse. The
solution of the discrete-time H, optimal control problem centers around the following
two algebraic Riccati equations:

(3.2) P = A"PA + CFCy — (CIDy + A™PB)(DED, + B*PB)*(DEC, + B*PA),

(3.3) Q = AQA™ + EE™ — (AQCT + EDT)(D, DT + C1QC})t (D1 E™ + C1QA™).
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For any real symmetric matrix P, we shall denote

(3.4) Dp = (DID, + B*PB)?,

(3.5) Cp = D;(DECZ + BTPA).

Note that, since for any matrix M > 0 we have (M2)* = (M™*)3, we have DiCp =
(D3Dy + B*PB)*t(D}Cs + B*PA). If, in addition, P is a real symmetric solution of
(3.2), then C5Cp = ATPA—P+C5C,. Note also that Dp is symmetric by definition.
Finally, since im (D3 Cq+ BT™PA) C im Dp, we have DpCp = DJCy+ B*PA. (Note
that it is a property of the Moore-Penrose inverse that MM is the orthogonal
projection onto im M.)
The following is a corrected and slightly extended version of a theorem from [14].
A proof can be given along the lines of the proof of [14, Thm. 18].
THEOREM 3.1. Consider the system (A, B,C2, D3) together with the algebraic
Riccati equation (3.2). The following two statements are equivalent :
(i) (A, B) is stabilizable and (A, B, Ca, D3) has no zeros on the unit circle |z| =
1,
(ii) Equation (3.2) has a real symmetric solution P with the following property:
there exists a matriz Fy such that

(3.6) lo(A— BD}Cp + B(I — DEDp)Fy)| < 1.

Furthermore, if P satisfies this condition, it is the unique real symmetric solution
of (3.2) for which this condition holds. In addition, P is positive semidefinite and is
in fact the largest real symmetric solution of (3.2).

Next we consider the dual algebraic Riccati equation (3.3). For any real symmetric
matrix ), denote

(3.7) Dg := (D1 D} + C1QCY)¥,

(3.8) Eq := (AQC} + ED?})D}.

By dualizing the previous theorem, the corresponding result on the Riccati equation
(3.3) can be found:
THEOREM 3.2. Consider the system (A, E,C1,D;) together with the algebraic

Riccati equation (3.3). The following two statements are equivalent :

(i) (Cy, A) is detectable and (A, E,Cq, D1) has no zeros on the unit circle |z| =
1.

(ii) Fquation (3.3) has a real symmetric solution QQ with the following property:
there exists a matriz K1 such that

(3.9) lo(A — EqDSC1 + Ki(I — DoD{)Ch)| < 1.

Furthermore, if Q satisfies this condition, it is the unique real symmetric solution
of (3.3) for which this condition holds. In addition, Q is positive semidefinite and is
in fact the largest real symmetric solution of (3.3).

In the remainder of this section we will always denote by P and @ the largest
real symmetric solution of (3.2) and (3.3), respectively. Now we will state the main
result of this section:

THEOREM 3.3. Consider the system (3.1). Assume that (A, B) is stabilizable and
(Cy, A) is detectable. Assume that (A, B,Cs, D3) and (A, E,C1, D1) have no zeros on
the unit circle. Then we have the following:
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(i)

(3.10) J* =tr (E"PE) +tr (CpQC%) —tr (DpN*Dgq)(DpN*Dg)"),

where N* is defined by

(3.11) N*:= —(D})*(DpCpQCT + B*PEDT)(D)>.

(ii) There exists an optimal controller, i.e., an internally stabilizing controller
I%is such that Js,, (Th) = J*. One such optimal controller is given by the following
“construction”:
(a) Choose a state feedback matriz F such that |c(A+BF)| <1 and Cp+DpF = 0.
(b) Choose an output injection matriz G such that |0 (A+GC1)| < 1 and Eg+GDg =
0.
(c) Define Ty, = (K™, L*, M*,N*) by choosing N* given by (3.11), and by choosing
K*:=A+ BF +GC,—-BN*C4, L* :==BN* -G, and M* := F — N*C;.
In the remainder of this section we shall prove this theorem. In addition to the
system Xgjs, consider the system X4is p given by the equations

Tk+1 = Axzg + Bup+ Edy,
(3.12) y = Cizg + D1 dy,
2x = Cpxy + Dpuy ,

with P the largest real symmetric solution of the algebraic Riccati equation (3.2).
The following basic lemma can be proven by a standard completion-of-the-squares
argument:

LEMMA 3.4. For every compensator Tgis = (K, L, M, N) we have Tg;s internally

stabilizes Xqis if and only if T'gis internally stabilizes Xq;s, p. For any such compensator
we have

(3.13) Jz;dis(rdis) =tr (ETPE) + 2tr (D;FNTBTPE) + JEdis.P(FdiS)'
In addition to Xgis,p we consider the system Xgis p,g defined by

ZTp+1 = Axp+ Bur + Egdg,
(3.14) yp = Cizg + DQdk,
zx = Cpxy + Dpuy,

with @ the largest real symmetric solution of the dual algebraic Riccati equation (3.3).
It is clear that the Hy performance of a given compensator I'g;s applied to Xg;s is equal
to the Hy performance of the dual compensator I'},, := (K™, M™, L™, NT) applied to
the dual system ¥3;;. By applying Lemma 3.4 to the dual system ¥F;; p and the dual
compensator I'}j;; we thus arrive at the following theorem:

THEOREM 3.5. For every compensator I'gis = (K, L, M,N) we have : Tgis in-

ternally stabilizes Lais if and only if Tais internally stabilizes Xq4is,p,g. For any such
compensator we have

Is g (Lais) = tr (ETPE) + tr (CpQCE) + 2tr (DT NTBTPE)

+ 2tr (CPQCTNTDg) + J):dis'P’Q (Fdis)'

Now note that in the above formula the first two terms do not depend on the
compensator I'gis. The remaining three terms do depend on the compensator. Also
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note that in the closed-loop system Xgis, p,g X I'dis the direct feedthrough matrix from
the disturbance input to the output to be controlled is equal to DpNDg. As a
consequence, Jxy, 5o (Tais) > tr (DpNDqg)(DpNDq)T), with equality if and only
if the transfer matrix Gp g r,, (%) of the closed-loop system Zgis p,g X Lais is equal to
the constant matrix DpNDg. It thus follows immediately from Theorem 3.5 that

LEMMA 3.6. For every internally stabilizing compensator T'ais = (K, L, M, N) we
have

Js,.(Tais) > tr (ETPE) + tr (CpQCT) + 2tr (DTN B*PE)

+2tr (CPQCTN™D}) + tr (DpND@)(DpNDq)"),

with equality if and only if Gp,g,ra.(2) = DpNDg.
This lemma shows that, in order to minimize Jx, (T'qis) over all internally stabi-
lizing compensators, we should do the following:
(i) First minimize the quadratic matrix function

(3.15) &(N) := 2tr (DFN"B" PE) + 2tr (CpQCTN™D})

+tr (DpNDq@)(DpNDgq)"),

yielding an optimal N*.

(i) Next find a compensator I'},;, described by the quadruple (K*, L*, M*, N*),
that is internally stabilizing and yields Gpqrs (2) = DpN*Dg, i.e., the closed-loop
system Xgis, p.@ X I'};s has the constant transfer matrix DpN*Dg.

Indeed, if N* minimizes ®(N) and if Gp,Q,p;is(z) = DpN*Dg, then we have

Jsau(Tie) = tr (E*PE) + tr (CpQCE) + ®(N"),
while for any internally stabilizing compensator Igis = (K, L, M, N) we have
Jsy. (Cais) = tr (E"PE)+tr (CpQCE)+®(N) > tr (E"PE)+tr (CpQCH)+P(N™).
This clearly implies that
J* =1tr (E*PE) + tr (CpQCF) + ®(N™*)
and that
Iz (Lis) = J™

We will first study the minimization of ®(N).
LEMMA 3.7. Let ®(N) be defined by (3.15). Define

R* := DE(DpCpQCT + B*PEDT)D},.
Then
®* := min{®(N) | N € R™*P} = —tr (R*R*").

N minimizes ®, i.e., ®(N) = ®*, if and only if N is a solution to the linear equation
DpNDg = —R*. One particular solution of this linear equation is given by N* =
~D}R*DY. We have @* = —tr ((DpN*Dg)(DpN*Dg)").
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Proof. Using the facts that

ker Dg C ker (DpCpQCT + B*PEDY),
im Dp D im (DPCPQCT + BTPEDf),

it can be shown by straightforward calculation that
O(N) = —tr (R*R*") +tr (DpNDg + R*)(DpNDg + R*)™).

The equation DpNDg = —R" has a solution since ker Dg = ker Dg, = ker Dg C
ker R* and im Dp = im D} = im D;S D im R*. Clearly, one particular solution is
then given by N* = ——D;R* Dg. Finally, the expression for ®* can be checked in a
straightforward manner. O

Next we study the question whether, starting with N* above, it is possible to find
K*, L*, M* such that the resulting compensator I'};,, = (K*,L*, M*,N*) yields a
closed-loop system Xgis pg % I, With constant transfer matrix DpN*Dg. We will
first prove the following lemma:

LEMMA 3.8. Assume that (A, B) is stabilizable and that (A, B, C2, D3) has no
zeros on the unit circle. Let P be the largest real symmetric solution of the algebraic
Riccati equation (3.2). There exists a matriz F' such that

(i) |o(A+BF)| <1,
(i) Cp + DpF = 0.

Proof. Let F; be such that (3.6) holds, and define F' := ~D;Cp+(I—D;Dp)F1.
Then (i) is satisfied. To prove (ii), note that im Cp C im D} = im Dp. Consequently,
—DpD}Cp = —Cp, which proves (ii). ]

We will also need the dual of this lemma, which reads as follows:

LEMMA 3.9. Assume that (Cy, A) is detectable and that (A, E,Cy,D;) has no
zeros on the unit circle. Let Q be the largest real symmetric solution of the dual
algebraic Riccati equation (3.3). There exists a matriz G such that

(i) lo(A+GCy)| <1,
(ii) Eg +GDg =0.

Now we show that by suitable choice of compensator I'y;s, the transfer matrix of
Ldis, P, X I'ais can be made equal to any constant matrix product M;Ma, as long as
im Dp C im M; and ker Dg C ker M.

LEMMA 3.10. Consider the system (3.1). Assume that (A, B) is stabilizable
and (Cy,A) is detectable. Assume that (A, B,Ca,D3) and (A, E,Cy,D1) have no
zeros on the unit circle. Let P and @Q be the largest real symmetric solution of the
algebraic Riccati equation (3.2) and (3.3), respectively. Then for any pair of matrices
M, My such that the product My Ms is defined and such that im Dp C im M; and
ker Do C ker My there exists an internally stabilizing compensator Tqis such that the
transfer matriz of Lais, p,g X Tais 15 equal to the constant My M.

Specifically, for given My and My let Fy be a solution of Mqw = DpFy and G2
be a solution of My = —G2Dg and take F' such that the conditions in Lemma 3.8
are satisfied and G such that the conditions of Lemma 3.9 are satisfied. Then the
compensator Tgis := (K,L,M,N) with K := A+ BF + GC; + BFy,G2Ch, L :=
—BF,Gy9 — G, M := F + F,G2C1, and N := —F>G> satisfies the requirements.

Proof. The equations of the compensator are given by (2.8). Using the specifica-
tions of K, L, M, and N given above, we find that the error ey := wy — i satisfies
ex+1 = (A + GCi)ek. Thus, if wy = 0 and zp = 0, we have xy = wy, for all k. In par-
ticular, this implies that uy = Fx + FoMawy. The output of the closed-loop system
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is then equal to 2y = Cpxy + Dpuy = M Mowy. This implies that the closed-loop
transfer matrix is equal to the constant matrix M;Ms. Finally, the spectrum of the
closed-loop system matrix A, is easily shown to be equal to 6(A+ BF)Uo(A+ GCY).
This implies that the closed-loop system is internally stable. 0

Clearly, if in this lemma we take My = Dp and My = N*Dg, we arrive at an
internally stabilizing compensator I'gjs such that the closed-loop transfer matrix is
equal to the constant matrix DpN*Dg. In the formulas for the compensator as given
in the lemma, we should then take Fy, = I and Go = —N*. The result of Theorem
3.3 follows immediately by combining the above lemmas.

Remark 3.11. For later use we note that Lemma 3.8 also provides a resolution
of the discrete-time linear quadratic problem for the case that (A, B, Cs, D2) has no
zeros on the unit circle (see also [14]). Given x4+ = Axg + Buy, the problem is to
minimize the cost-functional J(zo, u) := Y ||(Cozk+Daugl||? over all inputs u = {ux}
such that z — 0. It was pointed out in [14] that for each such input u we have the
completion-of-the-squares formula J(zo,u) = ©§ Pzo + Jp(zo,u), with Jp(zo,u) :=
>k ICpzk+Dpuy||?. Thus, if we take F satisfying (i) and (ii) of Lemma 3.8, then the
input ux = Fzy, leads to the optimal cost J*(zg) = xf Pzo. Note that we could also
formulate the linear quadratic problem as a minimization over all internally stabilizing
feedback laws: minimize the cost-functional J(zo, F) := 3, [[(Cp + DpF)zi||? over
all F € R™*" such that |0(A + BF)| < 1. By the above argument, any F satisfying
(i) and (ii) of Lemma 3.8 is then optimal and the optimal cost is again given by
xf Pxo.

Remark 3.12. An interesting question is under what conditions the Moore—
Penrose inverse (D3 Dy + B*PB)™ reduces to the inverse (D3 Dy + B*PB) ™!, equiv-
alently, under what conditions D3 Dy + BTPB is positive definite. Using the ideas
from [14] it can be shown that if P is a positive semidefinite solution of the algebraic
Riccati equation (3.2), then DDy + B*PB > 0 if and only if (A, B,C2, D) is a
left-invertible system. Of course, dually, if @ is a positive semidefinite solution of the
algebraic Riccati equation (3.3), then D1 DT + C;QCT > 0 if and only if the system
(A, E,C4, Dy) is right-invertible. In view of this, it is perhaps more natural to call
the discrete-time Hy problem regular if (A, B, Cs, D5) is a left-invertible system and
(A, E,Cy, D,) is a right-invertible system.

4. The discrete-time H,; problem: The general case. In this section we
will extend the results of the previous section and treat the discrete-time Ha problem
in its full generality. This means that we will drop the assumption on the absence of
zeros on the unit circle that was made in the previous section. First we will prove
that also without the assumption that (A, B, Cq, D3) has no zeros on the unit circle,
the Riccati equation (3.2) has a largest real symmetric solution. We will prove that
this solution can be obtained as the limit of solutions of algebraic Riccati equations
associated with suitable perturbations of the system (A, B, Ca, Ds).

THEOREM 4.1. If (A, B) is stabilizable, then the Riccati equation (3.2) has a
largest real symmetric solution, say P. P is positive semidefinite. We have P =
lime|o P., where for € > 0 P, is the largest real symmetric solution of the algebraic
Riccati equation

A™P.A— P. + C3Cy +€°1
(4.1) —(ATP.B + CTD,)(DIDy + BTP.B)Y(B*P.A + D3C5) = 0.
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Remark 4.2. Note that (4.1) is the Riccati equation associated with the perturbed
system (A, B, (g}), (%2) ). (Here, I denotes the nxn identity matrix, and 0 denotes

the n X m zero matrix). For ¢ > 0, the perturbed system has no zeros. Consequently,
the existence of P, follows from Theorem 3.1.

The idea of the proof of Theorem 4.1 is to show first that the P. indeed converge
to some matrix P and next to show that P satisfies (3.2). The difficulty is that in the
general case we are considering, the term D3 Dy + BT PB need not be invertible, so
that we cannot conclude that (D3 D2+ BT P, B)* converges to (D3 D+ B*PB)*. We
will show, however, that we can get around this difficulty by considering the so-called
linear matrix inequality. Our proof is split up in three lemmas. In the following, let
J(xzg,u) be the cost-functional of the linear quadratic problem, and let J*(xz¢) be the
optimal cost (see Remark 3.11).

LeEMMA 4.3. Let P. be the largest real symmetric solution of (4.1). There erists
a real positive semidefinite matriz P such that P, | P (¢ | 0). For all zyp € R™ we
have J*(x0) = z§ Pxo.

Proof. Let Je(zo,u) := Y4 |Cpzr + Dpuk||® + €2||lzx||?, and let J#(zo) be the
infimum of Je(xo,u) over all u such that xx — 0. According to Remark 3.11 we have
J¥(zg) = 2§ Pexo. From this interpretation it follows that P. is monotonically non-
increasing as € | 0. Being bounded from below by 0, this yields the existence of a limit
P. Obviously, for all € > 0 we have J*(zo) < J¥(xg) = z§ Pexo, so J*(zo) < z§ Pxo.
Conversely, for all € > 0 and for all u we have J.(xg,u) > xjP.xo. Taking the limit
on both sides this yields J(xo,u) > x5 Pz for all u. Taking the infimum over u then
yields the converse inequality. O

LEMMA 4.4. P is the largest real symmetric solution of the linear matriz inequal-
ity

([ ATPA-P+C35C; C3Dy;+ A™PB
M(P) = ( DIC,+ B"PA DD, + B*PB ) 2 0.

Proof. Denote the left-hand side of (4.1) by R.(P:). Also consider the linear
matrix inequality associated with the perturbed system:

_( ATP.A—P.+C}Cy+ 2 CiDy+ ATP.B
Me(Fe) = ( D}Cy + B*P.A DID,+ B"P.B ) ="

We have M (P:) > 0 if and only if R.(P:) > 0. This follows from the fact that the
latter is equal to the Schur complement of DDy + B*P.B in M.(P.). The Schur
complement is defined here with matrix inverse replaced by Moore—Penrose inverse.
This can be done because of the fact that

ker(DID, + B™P.B) C ker(CTDs + A™P.B).

Since R.(P:) = 0, we indeed have M (P.) > 0. Taking the limit € | 0 then yields
M(P) > 0. To show that P is the largest real symmetric solution, let P; be any real
symmetric solution of the linear matrix inequality. Using a standard completion-of-
the-squares argument then yields J(xo,u) > x§ Pixo for any xp and any u such that
zy, — 0. Taking the infimum over all such u yields z§ Pxo = J*(x¢) > zg Pizo. 0

Now we will show that P in fact satisfies the algebraic Riccati equation (3.2).
Denote

R(P) := ATPA — P + CFCy — (CFDy + APB)(DXD, + B*PB)"(D}C, + B*P).
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Again, by the fact that ker(D3 Dy + BTPB) C ker(C3 Dy + ATPB), R(P) is equal to
the Schur complement of D Dy + BTPB in M(P). In particular this implies that

rank M (P) = rank (D3 Dy + B*PB) + rank R(P).

In order to prove that R(P) = 0 we should therefore prove that P has the property
expressed in the following lemma:

LEMMA 4.5. rank M(P) = rank (D3 D, + BTPB).

Proof. Let C and D be matrices such that

MP)=(C ¢)(C D).
Again using a standard completion-of-the-squares argument, for any initial state xg
and for any input sequence u such that xy — 0 we have

(42)  J(zo,u) =25 Pzo+ »_ [|Cax + Dugl* > afwo + ||CPzo + Duo|”
k

From Lemma 4.3 we have that J*(zo) = g Pzo. In particular this implies that the
infimum of ||Cxo + Dug||? over all ug € R™ is equal to 0. Consequently, for all zo
there exists ug € IR™ such that Czg + Dug = 0. This implies im C' C im D so

rank M(P) =rank ( ¢ D ) =rank D = rank (D} D, + B"PB). 0

Clearly, the proof of Theorem 4.1 follows by combining these three lemmas. The
fact that P is the largest real symmetric solution of the algebraic Riccati equation
follows by noting that any real symmetric solution is also a solution of the linear
matrix inequality and by applying Lemma 4.4.

Remark 4.6. For later use, note that by combining the above results with Re-
mark 3.11 we obtain that also for the general case the optimal cost J*(xzp) of the
discrete-time linear quadratic problem associated with the system (A, B, Ca, D3) is
given by J*(zo) = xjPxo, with P the largest real symmetric solution of the Riccati
equation (3.2). We will also need the dual result of Theorem 4.1, which is stated
below:

THEOREM 4.7. If (C1, A) is detectable, then the Riccati equation (3.3) has a
largest real symmetric solution, say Q. @ is positive semidefinite. We have @ =
lime o Qe, where for € > 0 Q. is the largest real symmetric solution of the algebraic
Riccati equation

AQ.AT — Q. + EE™ +€%I
(4.3) —(AQ.CT + EDT)(D, DT + C1Q.CT)*(C1Q-A" + D, E™) = 0.

Now we are in a position to state the main results of this section. It turns out that
also for the discrete-time Hy problem in its full generality, so without any assumptions
on the zeros, the optimal performance J* is given by (3.10), with P and @ the largest
real symmetric solutions of the respective Riccati equations. However, in general
no optimal controller will exist. We will, however, derive necessary and sufficient
conditions for the existence of an optimal controller. Our first main result deals with
the optimal performance.

THEOREM 4.8. Consider the system (3.1). Assume that (A, B) is stabilizable and
(Cy, A) is detectable. Then the optimal performance J* is given by (3.10), where P
and Q are the largest real symmetric solutions of (3.2) and (3.3), respectively.
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Proof. In addition to the system (3.1), consider its perturbation Xj,;:

Tht1 = Az + Buy + (E SI)’Uk ,
(4.4) Y = Crzy, + (D1 O)vg ,
2k (Sf)wk —+ ([())2)uk .
Let JEiis(FdiS) denote the H, performance, and let J denote the optimal Hy perfor-

mance. Since, for € > 0, neither (A, B, (g}), (%2)) nor (A,(E €I),Cq,(D1 0)) have
zeros; we can apply Theorem 3.3 to obtain

Il

J*' =tr (EE™ +€*I)P.) 4+ tr (A"P.A — P. + C3Cy + €21)Q.)
—tr (Dp,NZDq,)(Dp.N:Dq,)"),

where P. and Q. are the largest real symmetric solutions of (4.1) and (4.3), respec-
tively, and where Dp_, N7, and Dg, are defined by (3.4), (3.11), and (3.7), with P
and @ replaced by P. and .. From Lemma 3.7, recall that

with
- Dy T T RT T \TT
B (N) := 2tr ( ( ) ) N™B™P.(E eI)) + 2tr (Cp,Q.CTN"Dp,)
+tr (Dp,NDq,)(Dp.NDq,)")

= 2tr (D*NTB"P.E) + 2tr (Q.C*N™(DXC, + B"P.A))
+tr (Dp,NDq,)(Dp,NDq,)™).

Since P, — P and Q. — @, we see that for every N we have ®.(N) — ®(N) (¢ | 0),
where ®(N) is defined by (3.15). Since of course for all € > 0 we have J* < J* we
see that for all € > 0, for all N we have

J* <tr (EE™ +2I)P.) + tr (AP, A — P. + C3Cy + €2 I)Q.) + ®.(N).
Now, letting € | 0 on the left in this inequality, we find that for all N
J* <tr (EE"P) +tr (ATPA—- P+ C;C2)Q) + ®(N).
Finally, taking the minimum over all N, this yields
J* <tr (EETP) +tr (C5CpQ) — tr (DpN*Dq)(DpN*Dg)™).

To prove the converse inequality note that by using the fact that P and @ satisfy
(3.2) and (3.3) we can apply a repeated completion-of-the-squares argument as in §3
to obtain that for any internally stabilizing compensator I'gis we have

(4-5) JEdis (Fdis) > tr (ETPE) +tr (CPQC;) + (I>(N*)

Taking the infimum over all such T'y;s yields the desired inequality. 0

Next we will study the question: Under what conditions does there exist an
optimal controller? Again, let P and @ be the largest real symmetric solutions of
the respective Riccati equations. Define a system Xg;s p,g by (3.14). Again, for any
internally stabilizing compensator I'yis = (K, L, M, N) we have the inequality (4.5).
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As noted in §3, we have equality if N = N* and I'y;s has the property that the closed
loop system g5, p,@ X T'ais has the constant transfer matrix DpN*Dg. Of course, the
latter statement only gives a sufficient condition for a compensator to be optimal. In
the following theorem we will give necessary and sufficient conditions for optimality.
Let R* be as defined in Lemma 3.7.

THEOREM 4.9. A controller T'gis is optimal if and only if Lais P X Tais 45
internally stable and has constant transfer matriz R*.

Proof. If Tgi;s = (K, L, M, N) is optimal, then we have

Isu, (Lais) = tr (B PE) + tr (CpQCp) + @*.
By Lemma 3.6 we also have
Iz (Tais) 2 tr (B"PE) + tr (CBQCr) + B(N).

This clearly yields ®(N) = ®*, i.e., N minimizes the function ®. Again by Lemma
3.6 this implies that Ygis p,g X I'gis has the constant transfer matrix DpNDg. How-
ever, since N minimizes ®, by Lemma 3.7 we have DpNDg = —R*. The converse
statement is also an immediate consequence of Lemma 3.6. |

Our aim is to reformulate these conditions in terms of the original system ¥g;s.
For any given matrix N € IR™*?, consider the system Eé\{s, PQ that is obtained by
applying to Xqis,p,o the static output feedback v = Ny + v. This system Eﬁs‘ PQ is
described by

Tht1 = (A + BNCl)wk + Bug + (BNDQ + EQ)dk R
(4.6) Y = Cizk + Dqdy
ze = (Cp+ DpNCh)zy, + Dpug

Also, for a given compensator I'q;s = (K,L, M,N), let 'Y, := (K, L, M,0) be the
compensator with direct feedthrough matrix N replaced by 0. It is clear that the
closed-loop system Xgis, p, X I'dis has constant transfer matrix Dp N Dy, if and only if
Eé‘zs‘ P.Q % I'%,, has transfer matrix equal to 0. Consequently, an internally stabilizing
compensator I'gis = (K,L,M,N) is optimal if and only if DpNDg = —R* and
Eé\{sy PO X I'%,, has transfer matrix 0. In other words, in order to find necessary
and sufficient conditions for the existence of an optimal controller, we should study
the problem of disturbance decoupling with internal stability. This problem has been
studied extensively in [16]. One of the main results of [16] gives necessary and sufficient
conditions for the existence of an internally stabilizing strictly proper compensator
9., for the system Eg4;s given by (3.1). We will briefly recall this result here. Given
Ydis, let Vg denote the largest subspace of IR"™ for which there exists F' € R™*™ such
that (A + BF)V, C Vg, |0(A+ BF | Vy)| < 1, and (C2 + D2F)V, = 0. Dually, let
Sy be the smallest subspace of IR" for which there exists a matrix G € R™*? such
that (A4 GC1)Sy C S, |0(A+ GCy | R"/Sg)| < 1, and im (E+ GD;) C S, 1t
was shown in [16, Thm. 2.4] that there exists an internally stabilizing compensator
9, = (K,L,M,0) such that Sg;s x ', has transfer matrix 0 if and only if the
following conditions hold: (i) (A, B) is stabilizable and (C1, A) is detectable, (ii) the
following four subspace inclusions hold: im E C V4, §; C kerCs, §; C Vg, and
ASy C V.

Here, we want to apply this result to the system Eé\{s’ p.Q» With IV any solution of
DpNDg = —R*. In the following, we will omit some of the details. Using the fact
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that im (Cp + DpNC)) C im Dp, it can be shown that the subspace V, associated
with S, p o is given by

4.7) Vy = X4(A — BDECp) + (A — BDECp | Bker Dp),

where for a given matrix M, X,;(M) is the sum of the generalized eigenspaces of
M associated with its eigenvalues in |z| < 1, and where (M | £) is the smallest

M-invariant subspace contained in L£. It can also be shown, using the fact that
ker Do C ker(BNDg + Eg), that

(4.8) Sy = Xp(A— EQDLC1) N (Cy lim Dg | A — EqD§Ch),

where A3(M) is the sum of the generalized eigenspaces of M associated with its
eigenvalues in |z| > 1 and where (£ | M) is the largest M-invariant subspace con-
taining £. Using the fact that, from (4.7), Bker Dp C V,, it can be shown that
im (BNDg + Eq) C V, if and only if

(4.9) im (Eq — BDER*) C V.

Using the fact that, by (4.8), Sy C C7'im Dy, it can be shown that S, C ker (Cp +
DpN(C) if and only if

(4.10) Sy C ker (Cp — R*D§Ch).
Finally, it can be shown that (A + BNC1)S, C V, if and only if
(4.11) (A— BDER*DEC)S, C V.

Collecting the above facts, we then obtain the following necessary and sufficient con-
ditions for the existence of an optimal controller for the discrete-time Hy optimal
control problem associated with the system Yg;s:

THEOREM 4.10. Consider the system (3.1). Assume that (A, B) is stabilizable
and (Cy,A) is detectable. Let P and Q be the largest real symmetric solution of
(3.2) and (3.3), respectively. Let Vg and Sy be given by (4.7) and (4.8). Then we
have: there exists an optimal controller, i.e., an internally stabilizing controller I'};, =
(K*,L*, M*, N*) such that Js, (I'}) = J*, if and only if the four subspace inclusions
Sg C Vg, (4.9), (4.10), and (4.11) are satisfied.

5. The sampled-data H; problem. Now we return to the sampled-data Hs
problem. Consider the continuous-time system X given by (2.3), and let A ¢ A be a
given sampling period. Let the discrete-time system Yo be given by (2.4). According
to Theorem 2.1, the optimal sampled-data Hy performance J3, 5 is equal to

1 [A (A T 1

(5.1) Tha =4 / / ir (Co BEeA"CF) deds + 13,

5 A 0 0 A A
where Jg,  is the optimal discrete-time H, performance associated with ¥ . Accord-
ing to Theorem 4.8, the optimal performance J3,, can be found in terms of two alge-
braic Riccati equations associated with 5. According to Theorem 4.10, an optimal
compensator 'qis A exists if and only if four subspace inclusions involving subspaces
associated with the system ¥ 5 are satisfied. According to Theorem 3.3, if the systems
(Aa,Ba,Caa,Ds a) and (Aa, Ea,C1,0) have no zeros on the unit circle, then an
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optimal compensator I'gis o exists and can be calculated using the “construction” in
the statement of Theorem 3.3. The sampled-data controller I' := HaT'gis,ASa is then
optimal for the sampled-data Hs problem under consideration.

In this section we study the following question: what are conditions in terms of
the original system ¥ that guarantee that there exists an optimal compensator for
the sampled-data Hs problem? Instead of being completely general, we will study
the following question: what are necessary and sufficient conditions in terms of the
original system ¥ such that (Aa, Ba, C2,a,D2,4) and (Aa, Ea,C1,0) have no zeros
on the unit circle? In the following, let R be the controllability subspace of the system
(A, B,C3, D3) (see §2). The main results of this section are the following:

THEOREM 5.1. Consider the system %. Let A > 0.

(i) Let A be a zero of (Aa, Ba,Ca,a,Dan), A # 1. Then there exists a unob-
servable eigenvalue p of (Ca, A) such that X = eH®,

(ii) If (A, B, Cy, Dy) is left-invertible, then also the converse of (i) holds: if u is
an unobservable eigenvalue of (Ca, A), then et is a zero of (Aa,Ba,C2.a, D2 n).

(iii) 1 4s a zero of (Aa, Ba, Ca,a, D2.a) if and only if at least one of the following
two conditions hold:

(a) 0 1is a zero of (A, B,C3, Ds),
(b)

(5.2) R ¢ (kerCy | A).

(iv) If (A, B,Cq, Dy) is left-invertible, then 1 is a zero of (Aa,Ba,Ca,a,D2.a)
if and only if 0 is a zero of (A, B,Ca, D3).

COROLLARY 5.2. Consider the system %. Let A > 0.

(i) If (Cq, A) has no unobservable eigenvalues on the imaginary axis, 0 is not a
zero of (A, B,Cq, D3), and R C (ker Cy | A), then (Aa,Ba,Ca.a,D2.a) has no zeros
on the unit circle.

(ii) If (A, B,Cy, Dy) is left-invertible, then (Aa, Ba,C2 A, Da2.a) has no zeros on
the unit circle if and only if (Ca, A) has no unobservable eigenvalues on the imaginary
azis and 0 is not a zero of (A, B,Ca, Ds).

THEOREM 5.3. Consider the system ¥. Let A > 0.

(i) Let X be a zero of (Aa, Ea,C1,0). Then there exists an uncontrollable ei-
genvalue p of (A, E) such that A = et2.

(ii) If (A, E, C1,0) is right-invertible, then also the converse of (1) holds; i.e., if
w is an uncontrollable eigenvalue of (A, E), then e*® is a zero of (Aa, Ea, C1,0).

COROLLARY 5.4. Consider the system . Let A > 0. If (A, E) has no un-
controllable eigenvalues on the imaginary axis, then (Aa, Ea,C1,0) has no zeros on
the unit circle. If, in addition, (A, E,C1,0) is right-invertible, then also the converse
holds: (Aa, Ea,C1,0) has no zeros on the unit circle if and only if (A, E) has no
uncontrollable eigenvalues on the imaginary axis.

Note that the conditions on ¥ obtained in these theorems are independent of the
sampling period. In the remainder of this section we shall prove these results.

In order to study the zeros of (A, B,C2, D2) and (Aa, Ba,C2.a,D2,a), consider
the system matrices of these systems. Let

_( 2I—An —Ba _(sI-A -B
Pp(z) = ( Con Don ), P(s):= < c, Do ) .

Recall that A is a zero of (Aa, Ba,Ca.a, D2 a) if and only if the rank of the complex
matrix PA()) is less than the normal rank of Pa (see §2). In order to find out in
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which points A this happens, we will study for A € C the subspace
Vy = ker PA(\) C C™t™,

Clearly, for all A we have dimVy = n + m — rank Pa(A). Consequently, for all but
finitely many A we have dim V) = d, where

d := n + m — normrank PA.

Hence, A is a zero of (Aa, Ba, Ca.a, D2 ) if and only if dim V) > d. In the following
lemma we will calculate for each A the subspace V), its dimension dim V), and the
number d. Denote the unobservable subspace (ker Co | A) by N. Define a subspace
W as follows:

(5.3) W := B™'N Nker D,.
LEMMA 5.5. For every A € C, A # 1 we have
(5.4) V)\=(NXW)nker()\I—AA BA),

(5.5) dim V) = dimN + dim W — dim((A] — Ap)N + BaW).

For all but finitely many X we have dim V) = d = dim W, equivalently, normrank Pa =
n+m —dimW. In addition we have

—-A —-B
(5.6) V) = ker( C, Dy ) .
Proof. We will first prove (5.4). We know (;°) € Vy if and only if
(5.7) Aazo + Baup = Ao,
(5.8) Cz'Axo + Dy Aug = 0.

Consider the differential equation z(t) = Az(t) + Buo, ©(0) = zo; and define 2(t) :=
Cyx(t) + Dug. Clearly, z(A) = Aazg + Baug, so (5.7) is equivalent to z(A) = Azo.
In turn, this is equivalent to

(5.9) (A=1zo = /OA e (Azo + Bug)dt.
Using the definition (2.6) of Cp A and Dy A, we see that (5.8) is equivalent to
(Cy Dy)edt (ig) =0 for all t € [0,A],
which, in turn, is equivalent to z(t) = 0 for all ¢t € [0, A]. Obviously,
2(t) = Chezy + [Cz /Ot e4*Bds + Dz} Up.

Since z(t) = 0 for all ¢t € [0, A] is satisfied if and only if 2(0) = 0 and 2(t) = 0 for all
t € [0,A], we find that (5.8) is equivalent to

Cozo + Doug =0 and Chet(Azg + Bug) =0, t € [0,A].
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In other words (5.8) is satisfied if and only if
(5.10) Coxo+ Doug =0 and Axg+ Bug € N.

Now assume that A # 1. Then (5.9) and (5.10) imply that zp € N C ker Cs, so
ug € ker Dy. Also it follows that Azg € N, so Bug € N and, in fact, ug € W.
We conclude that, for A # 1, Vx C (N x W) N ker( M — Apn Ba ) To prove the
converse inclusion, note that ug € W implies that Dyug = 0 and Bug € N. If, in
addition, o € N, then we have Cazg + Daug = 0 and Azxg + Bug € N. By the above
this is equivalent to (5.8). This completes the proof of (5.4).

To prove (5.5), note that, in general, if £ is a subspace of some finite-dimensional
linear space X’ and if T is a linear map acting on X, then we have dim(L NkerT) =
dim £ — dimTL. Applying this to the situation at hand, we find that for any A # 1
we have

dim V) = dim(N X W) - dim()\I — Aa BA)(N X W),

which immediately yields (5.5).

Next, we will prove the statement on the dimension of V. First note that since
N is A-invariant, it is also e“*-invariant, for any ¢. In particular, this implies that A/
is Aa-invariant and invariant under fOA etdt. Now assume that A & o(Aa). Then
we have (AI — Ap)N = N. Also, since BW C N, we have BAW C N. This implies
that (AI — AA)N + BaW = N. If, in addition, we assume that X # 1, then (5.5)
yields dim Vy = dim W.

Finally, to prove (5.6), recall that (5.7) is equivalent to (5.9). Note that for all
A > 0, fOA e4tdt is a nonsingular matrix (this can be shown using the Jordan form
of A). Thus, for the case that A =1 (5.9) is equivalent to Axo + Bup = 0. Together
with the fact that (5.8) is equivalent to (5.10), this proves (5.6). O

By applying this lemma, we are now able to prove the statements (i) and (ii) of
Theorem 5.1:

Proof of Theorem 5.1 (i) and (ii). (i) Assume that X\ # 1 is a zero of (Aa, Ba,
C2,A,D2 A). Then we must have dim Vy > dimW. Using (5.5) this implies

(5.11) © dimN > dim((A] — Aa)N + BaW).
As noted in the proof of Lemma, 5.5, NV is Aa-invariant and BAW C AN. Consequently,
()\I - AA)N+ BAWCWN.

Together with the inequality (5.11), this implies that (A] — Ax)N is a strict subspace
of N. This implies that the map (Al — Aa) restricted to A is singular. Thus,
ker(Al — Ap) NN # 0. Clearly, this intersection is A-invariant, so the restriction of A
to this intersection has an eigenvalue, say p, with corresponding eigenvector p. This
eigenvector satisfies Aap = Ap. Also, since Ap = up, we have Aap = e#p, so A = et.
Finally, p € N C ker C», so u is an unobservable eigenvalue of (Cs, A).

(ii) We claim that if (A4, B,C2, D) is left-invertible, then dim W = 0. Indeed,

left-invertibility is equivalent to the conditions ( 1])32) is injective and VN B ker Dy = 0,

where V denotes the weakly unobservable subspace associated with (A, B, Ca, D2) (see
§2). Assume that ugp € W. Then we have Daug = 0 and Bug € N. Since N' C V, this
yields Bug = 0. Combining this with Daug = 0 then leads to ug = 0. This proves our
claim. Now let u be a unobservable eigenvalue of (Cy, A). There exists z¢ # 0 such
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that Azg = pxo and Cozg = 0. This yields Aazg = Azg, with X := e*®. From the
definition of Cy A it is also easily seen that Cy aozo = 0. Consequently, (%0) € V), so

dim V), > 0 = dim W. This implies that X is a zero of (Aa, Ba,C2,a,Da,a)- ]
In order to prove statements (iii) and (iv) of Theorem 5.1, we need the following
lemma.

LEMMA 5.6. Let A > 0. Then we have
(5.12) normrank PA > normrank P,

with equality if and only if R C N.
Proof. For each A ¢ o(A) define a subspace Ly by

£A = {(23) I ug € W, x9 = ()\I — A)_lB’U,O} .

Clearly, £ C ker P()\) and dim £, = dimW. Consequently, for each A € o(A) we
have dimW < dimker P()). This implies normrank P < n + m — dimW. The
inequality (5.12) then follows from Lemma 5.5.

Of course, normrank PA = normrank P if and only if dim ker P(\) = dim W for
all but finitely many A, which, in turn, is equivalent to ker P(\) = L, for all but
finitely many A, A € o(A). We will prove that the latter statement is equivalent to
RCWN.

Let k := dimR, and let Ay,..., Az be distinct complex numbers, A; € o(A),
such that ker P()\;) = Ly,. There exists F € R™*™ such that (A + BF)R C R,
(Ca+ DoF)YR = 0, and o(A+ BF | R) = {A1,.... \}. Let z1,...,2x € R be
corresponding eigenvectors of A+ BF | R. Then {z1,...,zx} is a basis of R. We will
prove that z; € . Indeed, define u; := —Fxz;. Then (2:) € ker P(\;) = Ly,. Since

u; € W, we have Bu; € N, so z; = (\I — A)~'Bu; € N by A-invariance of N'. We
conclude that z; € N, so R C N.

Conversely, assume that R C N. It suffices to show that ker P(\) C £, for all
but finitely many A. Let X be arbitrary, A & o(A), and X not a zero of (A4, B, Ca, D3).

Let (%) € ker P()\). We will prove that =9 € R, so zo € N. Assume that zo # 0.
u

0

Let F € IR™*" be such that Fzy = ug. Then we have (A + BF)zg = Azg and
(Co+ DyF)xg = 0. This implies z¢ € V, the weakly unobservable subspace associated
with the system (A, B, C2, D2). (Indeed, the one-dimensional subspace £ spanned by
the vector xy has the property that (A + BF)L C £ and (C2 + DoF)L = 0 and so
must be contained in V, the largest subspace for which such F exists.) By extending
the linear map F to the whole subspace V, we obtain that (A + BF)VY C V and
(Co + DoF)Y = 0,50 XA € 0(A+ BF | V). We have assumed that A is not a zero.
This implies A € c(A+ BF | V/ R) (the latter spectrum is equal to the set of zeros of
(A, B,C3, Dy); see [19]). But then we must have zo € R. This implies that zo € N.
Now (M — A)zg — Bup = 0, so Bug € N. This implies that ug € W. For A ¢ o(A)
this then yields 2o € £). This completes the proof of the lemma. O

Proof of Theorem 5.1 (iii) and (iv). (iii) We will prove that 1 is not a zero of
the system (Aa, Ba,C2a,Dz,a) if and only if 0 is not a zero of (A, B,Cy, D3) dnd
normrank P = normrank Pa. Clearly, 1 is not a zero of (Aa, Ba,Ca a, D2 a) if and
only if dim V; = n+m—normrank Pa. By (5.6) we have dim V; = n+m—rank P(0) >
n+m — normrank P, with strict inequality if and only if 0 is a zero of (A, B, C2, D).
Combining these facts proves our claim. The proof of (iii) is then completed by
applying Lemma 5.6.
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(iv) If (A4, B, C2, D7) is left-invertible, then R = 0. In that case condition (5.2) is
never satisfied. O

In order to study the zeros of (Aa, Ea, C1,0), consider the system matrix of this
system. Let

Qa(2) := ( 2l EIAA _gA )

As before, ) is a zero of (Aa, Fa, C1,0) if and only if the rank of the complex matrix
Qa(A) is less than the normal rank of QA (see §2). In order to find out in which
points A this happens, we will study for A € C the subspace

Wy = (im Qa(N))*t c P,

For all A we have dim W), = n + p — rank Qa()\). Consequently, for all but finitely
many A we have dim W), = dy, where

dy :=n+ p — normrank Qa.

Hence, ) is a zero of (Aa, Ea, C1,0) if and only if dim W), > d;. The following lemma
calculates for each A the subspace W), its dimension dim W), and the number d;.
Let M := (A | im E), the reachable subspace of (4, E).

LEMMA 5.7. Let A > 0. Then we have

Wy = (M* x (CT)"'M*) nker ( A — A% CT ),

(5.13) dim Wy, = dim M+ + dim(CT) "M+
—dim((\ — AR)M™* + CT(CT)"IM™).

For all but finitely many A we have dim Wy = d; = dim(CT) " *M+*, equivalently,

normrank Qa = n + p — dim(CT) ' M*.

Proof. By definition, (;g) € W, if and only if

(5.14) (M — AQ)zo+ Ci{yo=0 and ziEa =0.

Since, by definition, im Fa = M, we see that it suffices to show that (5.14) implies
Yo € (CT)"*M=. From the fact that M~ is AT-invariant it follows that M+ is A%-
invariant, so CTyg € M. The statement (5.13) on the dimension of W) follows in
the same way as the corresponding statement in the previous lemma.

Now let A be any complex number such that A € o(AR). Since Mt is A%-
invariant, we then have (A\I — AR)M* = M*. Also we have CT(CT)"'M+ c M+
(no equality!). Thus, for such A we have dim W), = dim(CT)"'M*L. O

We are now ready to prove Theorem 5.3.

Proof of Theorem 5.3. Let A be a zero of (Aa, Ea, C1,0). Then we have dim W, >
dim(CT)"'!M*.  Consequently, by (5.13), dimM*t > dim((\] — AR)M*+
CT(CT)~'M™1). In particular, this implies that (A\] — AR )M is a strict subspace of
M| so ker(AI — AX) N ML # 0. This subspace is A™-invariant, so there exist y and
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g € ML, xg # 0, such that ATzy = pxo, A% zo = Axo, and o € ML. Obviously,
this implies A = e#*A, and p is an uncontrollable eigenvalue of (A, E).
Assume that (A, E, Cy,0) is right-invertible. Let

o= (5" )

be the system matrix. We have normrank @@ = n+p. We claim that also normrank Qa =
n+ p. Indeed, assume that yo # 0 is an element of (CT)"*M*. For A & o(A"), define
0:=—(A — A™)"1CTyo. Then 2o € M+ and we have (z§ y3)Q()\) = (0 0). Thus,
for all but finitely many A we have rank Q(A) < n+p, which is a contradiction. Hence
we must have (CT)"'M+ = 0.
It follows that ) is a zero if and only if Wy # 0. Assume that u is an uncontrollable
eigenvalue of (A, E). Then there exist's zo # 0, Tp € M=, such that 3 AT = puxo.
Define A := e#®. Then we have z§ EX = 0 and 2 (A — Aa) = 0. It follows that

(0) € W, so A is a zero of (AA,EA,Cl,O). O

6. Performance recovery and convergence of optimal performance. In
this section we study the connection between the ‘ordinary’ continuous-time Hy pro-
blem and the sampled-data Hs problem. In particular, we are interested in the fol-
lowing questions:

e Suppose that we control the system ¥ by means of an internally stabilizing
continuous-time compensator I'cyp, yielding continuous-time Hy performance
Js(Teon)- Is it possible to recover this performance asymptotically by us-
ing a sampled-data controller with sufficiently small sampling period? More
precisely, is it true that for all ¢ > 0 there exists A > 0 and an intern-
ally stabilizing sampled-data controller I with sampling-period A such that
|J§:(Fcon) - Jz],A(F)l < €?

e Does the optimal sampled-data Hs performance converge to the optimal
continuous-time Hy performance as the sampling period A decreases to zero?
More precisely, suppose that Jy, ., is the optimal continuous-time Hy per-
formance associated with the system ¥ and, as before, denote the optimal
sampled-data Ha performance by J3; 5. Is it true that lima o J5 A = J5 con?

The first question above was studied before in [6, Thm. 4] using a different definition
of Hy performance and for the Hy, performance criterion [6, Thm. 5]. In this section
we will show that both questions have an affirmative answer.

Let ¥ be given by (2.2). If the system X is controlled by a continuous-time
compensator I'co, given by the equations

' w(t) = Kw(t) + Ly(t),
(6.1) u(t) = Muw(t) + Ny(t) ,

with w(t) € IR, then the associated closed-loop system ¥ x T'gop is given by

ie(t) = Aexe(t) + Eey(t) )
2(t) = Cexe(t),

with

A+ BNC, BM E N Y
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If Tcon is internally stabilizing, i.e., 0(A.) C C~, then the Hy performance of the
closed-loop system X x I'cop is equal to

JE(Fcon) =tr (EePeEg)a
where P, is the unique solution of the Lyapunov equation
(6.2) ATP, + P,A, + C;C. = 0.

On the other hand, if the system ¥ is controlled by the sampled-data controller
I' = HaT4isSa, with Tgjs given by (2.8), then the discrete-time closed-loop system
YA % Tygjs is given by the equations

Te k+1 = Ae,Axe,k: Ee,Ayk ,
2k = Ce,AZTek »

with

A _ Ap +BANC, BaM E L Ea
e, A — LCl K 9 e A +— 0 9

Cen = ( Con + Dy aNC1 DoaM ).
If T is internally stabilizing, equivalently |o(Ae,a)| < 1, then the Hy performance of

the closed-loop system ¥ x I is given by

1 A A—s
(6.3) Joa(l) = X /0 /0 ir (Coct EE* 4" 05 ) dtds-!—%tr (EonPeaEr ),

where P, a is the unique solution of the Lyapunov equation
(64) AE,APe,AAe,A - Pe‘A + C;Ace.A =0.

The following theorem shows that our first question above indeed has an affirmative
answer:

THEOREM 6.1. Let I'co, be an internally stabilizing continuous-time compensator.
For any A > 0 define a discrete-time controller Tgis by Tdais := SalconHa, and let
Ta := HaT4isSA be the corresponding sampled-data controller with sampling period
A. Then we have that there exists A1 > 0 such that for all A ¢ A with0 < A < Ay,
L is internally stabilizing. Furthermore,

JE,A(FA) i JZ(Fcon) (A l 0)*
Proof. Tt is easily verified that Tgis := SaTconHa is described by the equations

W1 = Kawg + Layk ,
ur = Mwg+ Nyg,

with K := eX2 and La := fOA eKtdtL. Thus we have

AeA=

)

Ap 4+ BANCy BaM
LACy Ka ’
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Note that Ae o — I, the (n+£) x (n+£) identity matrix, and that % (Ae,a —1) — A.
(A | 0). Now we will first show that for A sufficiently small we have |o(A4. a)| < 1.

Since A, is stable, there exists @ > 0 such that ATQ + QA. < 0. Now note that

L (AT aQA0s — Q) = £ (AT5 ~ NQAcs + Qi (Aes = 1),

Since the right-hand term converges to A7Q + QA. < 0, for A sufficiently small we
have A7 A\QAe A — @ < 0. This implies that for A sufficiently small A a is stable.

Next we show the convergence of the Ho performance. For A sufficiently small
we have |0(A4c,a)| < 1, so the Hy performance is given by (6.3), with P. A given by
the Lyapunov equation (6.4). We shall prove that P, o — P, the unique solution of
(6.2). For any A sufficiently small define a linear map ma : R®*™ — R™™" by
%A;AXA&A - %X.

Also define a linear map m : R™*™ — IR™*" by

mA(X) =

m(X) = ATX + X A,.

Note that m and ma are all bijections. We can rewrite ma as
1
ma(X) = —A_(A:‘ —NXAen+ X— (Ae a—1).

Recall that Ao — I and % (Aea — I) — Ac. Thus we see that ma — m (A | 0).
Consequently, also mZ — m~! (A | 0). Obviously, P. a = mgl( i CiaCen). In
addition, it follows from (2.6) that 1 xCo AC’e A — C7C,. This 1mphes that Pea —

m~(CTC,), which, in turn, is equal to P,. By (2.5) we see that Ee aE7 A — ECE7.
Combining these facts we find that

—é—tr (EQ,AE;APE'A) — tr (EeEgPe).

Finally, it is immediate that

1 A-s T
= / / tr (CletAEETetA c;) dtds—0, A0,
A 0 0

which completes the proof of the theorem. 0

Now we turn to the second question posed above. In order to be able to answer
this question, it is useful to consider this question first for the linear quadratic problem.

For this, consider the system z(t) = Axz(t) + Bu(t), 2(t) = Cax(t) + Dau(t).
Assume that (A, B) is stabilizable. For a given static state feedback control law v =
Fz and initial state xo, the output function is denoted by zp z,. The linear quadratic
problem is to minimize for each zy the cost-functional J(zo, F) := fooo lzF,zo (£)]|2dt
over all F € R™*™ such that (A + BF) C C™. It is well known (see [9], [18]) that
for each zg the optimal cost

J*(zo) := inf{J(xo,F) | F s.t. 6(A+ BF)C C™} = z3Pxq,
where P is the largest real symmetric solution of the linear matrix inequality

( ATP+ PA™ + C3Cy PB+ C3Dy )

(65) B*P + D}C, DID;

>0.
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We want to compare this “normal” linear quadratic problem with its sampled-data
version.

In the following, take a fixed sampling period A > 0. The sampled-data version
of the linear quadratic problem is to do the minimization over all stabilizing sampled-
data static state feedback laws. More precisely, for a given F' € IR™*"™ define the
sampled-data state feedback control law u = Fazx by u(t) := Fz(kA) (t € [kA, (k +
1)A), k=0,1,2,..., or with a slight abuse of notation: Fo = HAFSa. For a given
Fa and initial state xo, denote the output by zr, z,. Define the sampled-data cost
functional in the obvious way, and denote it by J(zg,Fa). The control law Fa is
called internally stabilizing if for each initial state the controlled state trajectory x(t)
converges to 0 as t — oo. The sampled-data linear quadratic problem is to minimize
for each zg J(xg, Fa) over all internally stabilizing control laws Fa. Let

JA(zo) == inf{J(z0, Fa) | Fa is internally stabilizing}

be the optimal cost. If no internally stabilizing Fa exists, we define JX (zp) := oo
for all zo. We will briefly explain here how the sampled-data linear quadratic can be
resolved. First, note that for any Fao = HaFSa we have

0 a(k+1)A
J(wo, Fa) =Y / 2 p a0 (8] .
k=0 kA

Secondly, note that for all ¢ € [kA, (k+1)A) we have ©(t) = Az(t)+Bu(t), 254 20 (t) =
Caz(t) + Dau(t), with u(t) = Fz(kA). Hence, on the interval [kA, (k + 1)A), x and

u satisfy
t\_ (A B x
w /) \0 O u )’

with u(kA) = Fz(kA). Consequently,

() (242)

fort € [kA, (k+1)A), with A defined by (2.7). Using this, it follows immediately from
(2.6) that for t € [kA, (k+1)A) we have ||z, 2, (1)]|? = |C2.a7z(kA)+ Do a Fz(kA)||2.
Obviously, ¢(kA)) evoluates according to z((k + 1)A) = Aaxz(kA) + BaFz(kA).
Hence we see that if Fo = HaFSa, then J(zo,Fa) = Y peo [(C2,a + Do aF)ai|?,
with zx+1 = (Aa + BaF)zk. It is also easily seen that Fp is internally stabilizing if
and only if |0(Aa + BaF)| < 1. Hence, J} (zo) < oo for all z¢ if and only if (Aa, Ba)
is stabilizable.

Consequently, we can make the following conclusion: the sampled-data linear
quadratic problem under consideration is equivalent to the “normal” discrete-time
linear quadratic problem of minimizing, for the system xx4+1 = Aaxi + Baug, the
cost functional Jyis(zo, F) 1= Y s I(Co,azk + Do aukl|? over all F € IR™*" such
that |0(Aa + BAaF)| < 1. The latter problem was discussed in §3, remark (3.11)
and §4, remark (4.6). By applying these results to the situation under consideration
we can find a characterization of the optimal cost J} (zo) of the sampled-data linear
quadratic problem:

LEMMA 6.2. Let A > 0 be such that (Aa, Ba) is stabilizable. Then for each xq
we have

JZ(:CO) = ngACCOa
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where Pa is the largest real symmetric solution of the algebraic Riccati equation

(6.6) AZPAAA — PA + CZT,AC2’A
—(C3 AD2A + AAPABA)(D3 ADaa + BAPABA)Y (D3 ACa,n + BAPAAA) = 0.

Now we will show that as A | 0 the largest real symmetric solution Pa of (6.6)
converges to P, the largest real symmetric solution of (6.5). We will prove this by
proving that for each z we have JX (o) — J*(x0). Note that if (A, B) is stabilizable,
then for A > 0 sufficienly small we have that (A, Ba) is stabilizable.

LEMMA 6.3. Assume that (A, B) is stabilizable. Then there exists Ay > 0
such that for all 0 < A < Ay, for all zg we have JX(xo) < oo. For all o we
have lima o JA (z0) = J*(xo). Also, for all 0 < A < A,, Pa exists and we have
limAlo PA = P.

Proof. First of all note that for each sampling period A we have J} (o) > J*(zo)
for all zg. This can be shown using that, in fact, for each xzy,

oo
J*(zo) = inf {/ |Coz(t) + Dou(t)||*dt | u is such that tlirgo z(t) = 0} .
0 b d

Hence, by taking u to be generated by the internally stabilizing sampled-data control
law Fa, it follows that J(zg, Fa) > J*(x0).

Now, let § > 0. Let F be such that c(A+ BF) C C~ and J(zg, F) < J*(z0) + %.
Clearly, J(zo, F') = z{ Lzo, where L is the unique solution of the Lyapunov equation

(A+ BF)"L + L(A + BF) + (Cy + DyF)*(Cy + Do F) = 0.

Now consider the sampled-data control law Fa = HaFSa. By previous arguments,
J(z0, Fa) = x§ Lazo, where La is the unique solution of the Lyapunov equation

(AA + BAF)"LA(AA + BAF) — La + (Co.a + DQ,AF)T(CQYA + Dy aF)=0.

Note that Aa + BaF — I, x(Aa + BaF —I) — A, and % (Ca,a + D2 aF)"(Can +
Dy AF) — (Cy + DaF)™(Cy + DoF) as A | 0. Using a completely similar argument
as in the proof of Theorem 6.1 we derive from this that Lo — L, which implies
J(zo, Fa) — J(zo,F). Of course, we also have J*(zg) < JA(zo) < J(zo,Fa).
Combining this with J(zo, F) < J*(z0) + £, we find that for § sufficiently small we
have J*(zo) < JA (o) < J*(z0) +6. Since é was arbitrary, this proves the claim. The
second statement in the formulation of the theorem is then immediate. ]

Let J§ ., be the optimal continuous-time Hj performance, i.e., the infimum of
Js(Teon) over all internally stabilizing continuous-time compensators (6.1). It was
shown in [15] that if (A, B) is stabilizable and (C, A) is detectable, then

(6.7) T con = tr (EETP) + tr ((A™P + PA+ C3C)Q),

where P is the largest real symmetric solution of the linear matrix inequality (6.5)
and @ is the largest real symmetric solution of the dual linear matrix inequality

(6.8) ( AQ+%A£1+ EET CEQ ) > 0.
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Let Jg; A be the optimal sampled-data Hs performance. If A € A, then we define
J5, A == +00. Our next theorem gives an affirmative answer to the second question
posed in the introduction to this section.

THEOREM 6.4. Let (A, B) be stabilizable and (C1, A) be detectable. Then there
ezists Ay such that for all 0 <A <Ay, J§ o <oo. We have limajo J5 A = J5 con-

In the remainder of this section we will prove this theorem. First, recall the
expression (5.1) for J3, o. Denote the first term in (5.1) by I(A). Then, under the
conditions that (A, B) is stabilizable and (C4, A) is detectable, we know that for
A¢gA

¥ 1 1
(6.9) J}:,A = I(A) + —A—tr (EAEZPA) + Ztr ((AZPAAA — Pa + CzT‘ACzA)QA)

1 "
- Ztr ((DPANZDQA)(DPANADQA)T)?
where Pp is the largest real symmetric solution of (6.6), Qa is the largest real sym-
metric solution of the dual Riccati equation

(6.10)  AAQAAR — Qa + EaEX + AraQaCT(C1QACT)TC1QaAA =0,

and
NZ =-Dp, (D;A )ZDPA Cps QACIT(DgA)?DQA ’

Here, Cp,, Dp,, and Dg, are defined by (3.5), (3.4), and (3.7), respectively, with
P = P and Q = Qa. We will prove that J§, A — J§ ., by analyzing the asymptotic
behavior of the four terms appearing in (6.9) separately:
e It is immediate that the first term, I(A), converges to 0 as A | 0.
e From (2.5) it follows that %EAEZ — EET™. Since also Po — P, we conclude
that the second term, —i—tr (EaERPa), converges to tr (EE™P).
e To prove convergence of the third term, first note that @ — Q. This follows
immediately by dualizing Lemma 6.3. Next, as before, rewrite

—i—tr (ALPAAA — Pa + CFAC2.0)Qn)
(6.11) = %(AZ — I)PAAA + PA%(AA -I)+ %C;ACQ‘A.
Since %(AA —I)— A, Ax — I, and %C{Acz,A — C3C4, we conclude that
the third term in (6.9) converges to tr (ATP + PA + C5C52).

e In order to complete the proof of Theorem 6.4, we should hence prove that
the fourth term in (6.9) converges to 0 as A | 0. This is done in the following
lemma:

LEMMA 6.5. %tr ((DpaNADQA)(DpaNADQ,)™) — 0 as A L 0.

Proof. Rewrite the fourth term in (6.9) as | DpyNADq,|I?, where for any
matrix M, ||M| denotes the Frobenius norm tr (M M™). Note that if M is a given
matrix, then M+t M and MM are orthogonal projectors, so consequently | MM ™| =
|[MM*| = rank (M). In particular, this implies that if M is n x n matrix, then
IMM*|| = ||MMT| <n. Now make the following estimates:

1 «
KHDPANADQA”z
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INA

1
KN(DPAD?A)(D?A Dp,)CpaQaCT DS, (DY, Do)lI?

AN

mip?
T”CPAQACngA |12

IA

m4p2
L | Cra IP1QaCT D, I

As noted before, CF, Cpy = AAPAAA — Pa 4+ C3 ACaa, 50 %||Cpy |2 — tr (AP +
PA + C3C5). On the other hand, by noting that Qa satisfies the Riccati equation
(6.10), where Ap = e“42 is invertible, we see that

1QaCT DS, |I1?
=tr (QaCT(C1QaC1)TC1Qn)
=tr (Qa — AX'QaAR" + AX'EAERAL").
Since Qo — Q, AZI — I and EAEX — 0, the latter converges to zero as A | 0.

0
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