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Group Invariance in Mathematical Morphology

J.B.T.M. Roerdink *

Institute for Mathematics and Computing Science
University of Groningen
P.O. Box 800, 9700 AV Groningen, The Netherlands

Abstract In this paper we discuss how invariance of operators arising
in binary mathematical morphology can be achieved for the collection of
groups commonly denoted as ‘the computer vision groups’. We present an
overview, starting with set mappings such as dilations, erosions, openings
and closings, which are invariant under the group of Euclidean transla-
tions. This can be trivially extended to other abelian groups such as the
group of rotations and scalar multiplications (‘polar morphology’). Then
we go to arbitrary transitive group actions on the plane. All these cases
are discussed within a common framework, using the theory of morpho-
logical operators on homogeneous spaces developed previously by the
author.

Keywords: Mathematical morphology, image processing, transitive
group action, Minkowski operations, complete lattice, invariance, com-
puter vision.

Note: Presented at the Workshop on Computer Vision and Applied
Geometry, Nordfjordeid, Norway, August 1-7, 1995.

1 Introduction

Mathematical morphology is a set-theoretical approach to image analysis [5,13],
studying image transformations with a simple geometrical interpretation. A two-
dimensional binary image is modeled as a subset X of the plane. To analyze the
image it is probed by translating small subsets B, called structuring elements,
of various forms and sizes over the image plane and recording the locations
where certain relations between the image X and translates of the structuring
element B are satisfied. In this way one obtains image transformations which
are invariant under the Euclidean translation group. The basic ‘object space’ is
the Boolean algebra of subsets of the the image plane. In the case of grey-level
images a lattice formulation is required, see [3,14]. We will restrict ourselves to
binary images in this paper.

Now translation invariance is not always appropriate (nor sufficient). In com-
puter vision an important question is how to take the projective geometry of the
imaging process into account. Here one requires invariance under other groups,
such as the Euclidean motion group, the similarity group, the affine group or the
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projective group, which are all non-commutative groups. For general questions
of invariance in computer vision, see for example [6]. In this paper we discuss the
construction of morphological operators invariant under the groups mentioned
above, and give some examples of such transformations. This is based on a gen-
eralization of classical morphology to arbitrary homogeneous spaces developed
by the author [8,9]. The essential difficulty to be solved here was the prob-
lem how to deal with the non-commutativity of the acting group. The simpler
case of a space with an abelian acting group constitutes a straightforward gen-
eralization of Euclidean morphology, see [2,11]. We mention two examples: (i)
(Polar morphology) For images with a polar symmetry one needs image trans-
formations invariant under the polar group generated by rotations and scalar
multiplications, which is abelian. Here the size of the structuring element in-
creases with increasing distance from the origin. (ii) (Perspective morphology)
Consider the perspective transformation of a planar shape lying in an object
plane V. Three-dimensional Euclidean motions of the plane V' induce projective
transformations on the image plane under perspective projection. Subgroups of
the projective group apply when the motion of the planar object is constrained.
An example is that of translations only within the object plane, in which case
the induced group is abelian, and a group multiplication between points of the
image plane can be defined. The interested reader is referred to [10] for more
details.

The main goal of this paper is to show the existence — not always obvious —
of nontrivial morphological transformations invariant under increasingly larger
groups. Although this requires the development of a certain amount of mathe-
matical machinery before we can consider the application to invariant feature
extraction, the motivating ideas are quite simple. To illustrate this, let us take
a glance ahead at Fig. 1 in Section 3. In Fig. 1(a) is shown a figure containing a
number of quadrangles. A typical morphological operation is an opening, which
extracts from the input image all structures which are ‘similar’ to the structuring
element, in this case a square. Here ‘similar’ means: obtainable from the square
by a certain group operation. Clearly this depends on the transformation group
considered. For example, when the group is that of the translations, the opening
extracts all translates of the square, see Fig. 1(b). When the group is enlarged,
one gradually recovers the various geometric shapes present in the image, see
Fig. 1(c-f). The practical significance of this is that the morphological operations
to be applied to the image for feature extraction can be adapted to the type of
geometric invariance which is deemed to be appropriate for the application under
consideration.

The organization of the paper is as follows. First we introduce in Section 2
the general framework of mathematical morphology on Euclidean space, followed
by its generalization to arbitrary homogeneous spaces. Then in Section 3 the
application to invariant feature extraction is studied. A summary and conclusions
are given in Section 4.



2 Morphology on homogeneous spaces

2.1 Euclidean morphology

For any set E, denote by P(E) the power set of E. Let E = R"” or E = Z"™. The
classical Minkowski addition and subtraction for subsets X, A of E are given by

XoAd=|J X, Xod=[)X_, (1)
a€A a€A
where
Xo=7(X)={z+a:2z€ X}, (2)

is the translate of X over the vector a € F, x + y is the sum of z and y, and —x
the reflection of . The transformations 4 : X = X P Aandeyg: X - X0 A
are called a dilation and erosion by the structuring element A, respectively. It

can be shown that X @ A={h € E: fvlh 1+ X'}, where A= {—a:a€ A} is the
reflection of A and A } B (A ‘hits’ B) is a general notation for AN B # . An
important property of dilation is:

Translation invariance : (X® A, =X,o A (3)

A similar property holds for the erosion. Dilation and erosion are increasing
mappings. (A mapping 1 is called increasing when for all X, Y € P(E), X CY
implies that ¥(X) C ¢ (Y).)

Other important increasing transformations are the opening and closing by
aset A (X°¢ is the complement of X):

Opening : XOA::(XGA)GBA:U{Ah:Ath} (4)
heE

Closing : XeA:=(XpA)oA= ﬂ{(fvlc)h:(fvlc)hQX}. (5)
heE

The opening is the union of all the translates of the structuring element which
are included in the set X. Opening and closing are related by Boolean duality:
(X¢oA)=XeA.

Note that XoA = d4€4(X), X @A =€454(X), i.e., an opening is the product
of an erosion followed by a dilation, and vice versa for a closing.

2.2 Generalized Minkowski operators

On any group I one can define generalizations of the Minkowski operations [9].
By definition a dilation (erosion) is a mapping commuting with unions (intersec-
tions). For a fixed subset H (the structuring element) of I', define the dilation
87 and erosion £7; by

NG :=Go&H:= ] Gh= | gH, (6)
heH geG
NG :=GEH = (| Gh, (7)

heH



which generalizes the Minkowski addition and subtraction to non-commutative
groups. Here gH := {gh: h € H}, Gh := {gh: g € G}, with gh the group
product of g and h, and h~! the group inverse of h. Both mappings are left-
invariant, i.e., 6% (9G) = gén(G), eN(9G) = ge}(G), Vg € I. This is the
reason for the superscript ‘A’ on the ‘©’ symbol.

Remark 1. Because of the non-commutativity of the set product there is another
possibility to introduce a generalized dilation and erosion. The right-invariant
dilation ¢%, and erosion &%, by the structuring element H are the mappings
P(I') — P(I') defined by

(G :=H&G:= | J G = | Hy,

heH 9EG
" (@) :=GEH = ﬂ ra.

heH

At this point we would like to mention the connection to the theory of residuated
lattices and ordered semigroups, which is explained in more detail in [9]. Only
left-invariant dilations and erosions will be used in the sequel of this paper.

For later use we also define the inverted set G~ of G by
G'l={g':geq (8)

Duality by complementation is expressed by the formula (G &H ) =G° SHL.
Of fundamental importance is the concept of adjunction, cf. [3]. This re-

quires the notion of complete lattices. A general introduction to lattice theory
is Birkhoff [1].

Definition 1. A complete lattice (£, <) is a partially ordered set L with or-
der relation <, a supremum or join operation written \/ and an infimum or
meet operation written )\, such that every (finite or infinite) subset of L has a
supremum (smallest upper bound) and an infimum (greatest lower bound). In
particular there exist two universal bounds, the least element written Oz and the
greatest element I.

In the case of the power lattice P(E) of all subsets of a set E, the order
relation is set-inclusion C, the supremum is the union |J of sets, the infimum is
the intersection [ of sets, the least element is the empty set ) and the greatest
element is the set E itself.

An atom is an element X of a lattice £ such that forany Y € £,0, <Y < X
implies that ¥ = Oy or Y = X. A complete lattice £ is called atomic if
every element of £ is the supremum of the atoms less than or equal to it.
It is called Boolean if (i) it satisfies the distributivity laws X sup(Y inf Z) =
(XsupY)inf(X sup Z) and X inf(Y sup Z) = (X inf V) sup(X inf Z) forall X, Y, Z €
L, and (i7) every element X has a unique complement X ¢, defined by X sup X¢ =
Ip, Xinf X¢ = Of. The power lattice P(E) is an atomic complete Boolean lat-
tice, and conversely any atomic complete Boolean lattice has this form.



Let £ and £ be complete lattices. A mapping ¢ : £ — L is called increasing
(isotone, order-preserving) when X <Y — ¢(X) < ¢(Y) for all X,Y € L. A
dilation & : £ — L is a mapping commuting with suprema. An erosion e : £ — L
is a mapping commuting with infima.

An automorphism of L is a bijection ¢ : £L — L such that for any X,Y €
L, X <Y if and only if ¥(X) < ¢(Y). When a group I" is an automorphism
group of both £ and £, a mapping ¢ : £ — L is called I'-invariant or a I'-
mapping if it commutes with all 7 € I, ie., if Y(7(X)) = 7((X)) for all
X e L, 7 € I'. Accordingly, we will speak below of I'-dilations, I'-erosions, etc.
If no invariance under a group is required, one may set I' = {id.}, the identity
operator on L.

Remark 2. In contrast to binary images, where one can work with the power
lattice P(E), non-Boolean complete lattices are needed when one is interested
in convex subsets of the plane or grey-level images [3,14].

Definition 2. Let € : £ — £ and § : £ — L be two mappings, where £ and L
are complete lattices. Then the pair (e, 0) is called an adjunction between £ and

L, if for every X € L and Y € L, the following equivalence holds:
(X)) <Y <<= X <¢Y). 9)
If £ coincides with £ we speak of an adjunction on L.

If (¢,6) is an adjunction, then € is an erosion and § is a dilation (e and § are
called ‘adjoints’ of each other).

The dilation 67y and erosion €}, as defined above form an adjunction on
P(I"). If I' is the Euclidean translation group one recovers the operators d4, €4
on P(E) of Section 2.1.

In the rest of this paper we restrict ourselves to Boolean lattices, as is ap-
propriate for binary image processing.

2.3 Group actions

Let X be a non-empty set, I' a transformation group on X', that is, each element
g € I'is a mapping g : X — A, satisfying

(&) ghlz) =g(h(z)) (i) e(z)=u, (10)

where e is the unit element of I', and gh denotes the product of two group
elements g and h. Instead of g(x) we will also write gx. We say that " is a
group action on X [7,15]. The group I is called transitive on X if for each
z,y € X there is a g € I' such that gxr = y, and simply transitive when this
element ¢ is unique. A homogeneous space is a pair (I, X') where I" is a group
acting transitively on X'. Any transitive abelian permutation group I" is simply
transitive. If I" acts on X', the stabilizer of € X is the subgroup I, := {g €



I' : gz = z}. Let w be an arbitrary but fixed point of X', henceforth called the
origin. The stabilizer I, will be denoted by X from now on:

Y=I,={g9€el:gw=uw} (11)

The set of group elements which map w to a given point x is called a left coset
and denoted by g, X := {g,s: s € X'}. Here g, is a representative (an arbitrary
element) of this coset.

2.4 Examples

In the following we present three examples. In each case I' denotes the group
and X the corresponding set.

Ezxample 1. X = Euclidean space R, I' = the Euclidean translation group T.
T is abelian, therefore it can be identified with X' [9]. Elements of T can be
parameterized by vectors h € R", with 7, the translation over the vector h:
e =xz+h, hzxeR".

Example 2. X = R? \ {0}, I' = the abelian group generated by rotations and
scalar multiplication w.r.t. the origin. In this case points of X can be given in
polar coordinates (r,8),r > 0,0 < 6 < 27. Again I' can be identified with X
and the group multiplication is (r1,0;1) * (r2,82) = (r172,601 + 62), cf. [11].

Exzample 8. X = Euclidean space R" (n > 2), I' = the Euclidean motion group
M := E*(3) (proper Euclidean group, group of rigid motions) [8]. The subgroup
leaving a point p fixed is the set of all rotations around that point. M is not
abelian. The collection of translations forms the Euclidean translation group T.
The stabilizer, denoted by R, equals the group S* of rotations around the origin.
Let 7, denote the translation over the vector h € R* and pjj the rotation over
an angle ¢ around the point p. Any element of M can be written in the form
Y. Where v =%, he€R?, ¢ € S', that is, a rotation around the origin
followed by a translation. For a simple geometrical representation, see [8,9].

2.5 Morphological operations on homogeneous spaces

Our interest is in defining I'-invariant morphological operators P(X) — P(X),
where (I, X') is a homogeneous space.

Definition 3 ((I-invariance)). A mapping ¢ : P(X) — P(X) is called I'-
invariant or a I'-mapping if ¥ (gX) = g(X) for all X € P(X), g€ I

Accordingly, we will speak below of I'-dilations, I'-erosions, etc. Let the ‘origin’
w be an arbitrary point of X'.

Definition 4. The lift ¥ : P(X) — P(I') and canonical projection 7 : P(I") —
P(X) are defined by
IX)={gel gwe X}, XCX (12)
m(G)={gw:9€ G}, GCI. (13)



The mapping ¥} associates to each subset X all group elements which map the
origin w to an element of X. For the case of the Euclidean motion group (Ex-
ample 3), these formulas specialize to

IX)= | nR=7(X) R, (14)
zeX

where 7(X) := {7, : # € X}. The mapping 7 associates to each subset G of I
the collection of all points gw where g ranges over G. We also need to introduce
a modified projection as follows.

Definition 5. Let 7 be the projection (13) and és the erosion éx(G) = GO X.
Then 7y, : P(I") — P(X) is the modified projection defined by

Ty = TEx. (15)

The operators ¥, and mx have several useful properties [9]. The most im-
portant ones are:

1. w, ¥, my are increasing and I'-invariant;

¥ and m commute with unions, ¢ and 7y commute with intersections;
70 = idp(x); wxVU = idp(x); (idc is the identity operator on L)
XCY = 9(X) C oY),

(9, 7) forms an adjunction between P(X) and P(I');

(rx,v) forms an adjunction between P(I") and P(X).

IR ol

There is a general construction of I'-invariant operators [8,9]. Given a map-
ping ¢ on P(X) we ‘lift’ it to a mapping 1) on P(I"). Then we apply the results of
Section 2.2 on P(I") and finally ‘project’ the results back to P(X). The following
results are quoted from [9].

Definition 6. Let I' be a permutation group on X, with X the stabilizer of
the origin w in X . A subset X of X is called Y-invariant if X = X, where
X = YX = U,y sX. If X is not Y-invariant, X is called the X-invariant
extension of X.

Proposition 1 ((Representation of dilations and erosions)).
The pair (€,0) is a '-invariant adjunction on P(X) if and only if, for some
Y € P(X), it is true that

§(X) = 6L (X) == 7[9(X) Graﬁ(Y)] = m[9(X) 6519(7)] (16)
€(X) = e (X) = wx[9(X) OI(Y)] = 7[9(X)
where Y is the X-invariant extension of Y. In particular, (e, 6L) is invariant
under the substitution Y — Y.

The proposition above shows that any dilation on P(X) can be reduced to a
dilation 8% involving a X-invariant structuring element Y'; the same is true for
erosions. Next we consider openings and closings.



Definition 7. The structural opening i/ (X) and closing ¢% (X) by a subset
Y C X are defined by

w(X) = |J{gY : gy C X}, (18)
gel’

¢y (X) = () {gY : gV 2 X}. (19)
ger

In words, v{,(X) is the union of all translates g¥" which are included in X.

An important consequence of the above proposition is that the morpholog-
ical opening 0% €l and closing e/.6{ with Y an arbitrary subset of X', are also
invariant under the substitution Y — Y.

Ezxample 4. Let X be a union of line segments of varying sizes in the plane and
Y a line segment of size L with center at the origin. Let the acting group I’
equal the translation-rotation group M. Then vM(X) consists of the union of
all segments in X of size L or larger, but éMeM(X) = 4, (X) = 0, since Y is
a disc of radius L/2 and does not fit anywhere in X.

So in general we cannot build the opening v{, from a I'-erosion el on P(X)
followed by a I'-dilation d% on P(X), in contrast to the classical case of the
translation group (I" = T), cf. Section 2.1. However, if erosions and dilations
between the distinct lattices P(X) and P(I") are allowed, openings and closings
can be decomposed into products of erosion and dilation.

Proposition 2 ((Decomposition of structural openings)).
The structural opening i : P(X) — P(X) defined by (18) is the projection of
the I'-opening Yy(yy on P(I'), i.e.

W(X) = (woy)éan ) (X) = 7 ({9(X) BN} EI(Y)).  (20)

So, v is the product of a I'-erosion €' : P(X) — P(I') followed by a I'-dilation
&t : P(I') = P(X), where (e',6%) := (Eg(y)V, mdy(v)) is a I'-adjunction between
P(X) and P(I).

A similar representation holds for structural closings [9]. By a general result from
[12], every I'-opening v on P(X) is a union of structural openings v{-, where ¥’
ranges over a subset ) C P(X'). Combining this with Proposition 2 we therefore
can decompose any I'-opening into I'-openings of the form wgﬂ(y)éﬂ(y)ﬁ.

3 Invariant feature extraction

Using the general theory outlined above we now consider several group actions
on the plane, where the group is chosen from the set of ‘computer vision groups’.
For all cases we process the following two images: (i) the ‘solid’ image shown in
Fig. 3(a) (collection of filled sets); (ii) the ‘quadrangle’ image shown in Fig. 1(a)
(collection of non-filled quadrangles). As the image transformation we take the
opening i, where the structuring element Y is an open disc (interior of a circle)
or a square (without interior), respectively.



The Euclidean translation group  This is the classical case. Only translates
of the structuring element are allowed. So the opening will extract translated
copies of the structuring element. In Fig. 3(b) we show the result of opening the
solid image by an open disc. It is seen that corners are removed, small bridges
are broken, etc. The corresponding ‘top-hat transform’ [13], defined as the set
difference X \ 7%, is shown in Fig. 3(c).

The opening with a square of the quadrangle image is shown in Fig. 1(b).

The Euclidean motion group Now translated and rotated versions of the
structuring element are extracted. In the case of the opening by a disc nothing
new is obtained compared to the previous case. The opening with a square of
the quadrangle image is shown in Fig. 1(c).

The similarity group Now also scaled copies of the structuring element are
allowed. This means that the dilation of a nonempty set X by a disc will be
the whole space R?, and the adjoint erosion of X will be the empty set. But
the opening of X is nontrivial, cf. Section 2. In Fig. 3(d) we show the result of
opening the solid image by a disc. What we obtain now is the interior of the sets,
since discs of arbitrary nonzero radii are fitted into the image. The corresponding
top-hat transform now results in the edges of the image, see Fig. 3(e).
The opening with a square of the quadrangle image is shown in Fig. 1(d).

The affine group Since every parallelogram can be mapped to every other
parallelogram by an affine mapping, the opening with a square extracts all par-
allelograms from the image. The result is shown in Fig. 1(e).

An interesting application of affine morphology is the extraction of parame-
ters of an iterated function system (IFS) used in fractal image modeling, see [4].
Notice though that the operators constructed in that paper are not affine-
invariant in the sense of Definition 3.

The projective group Since every quadrangle can be mapped to every other
quadrangle by a projective transformation, the opening with a square extracts
all quadrangles from the image. Therefore the result is equal to the original, see
Fig. 1(f).

4 Conclusions

We have shown how invariance of operators arising in binary mathematical
morphology can be achieved for the collection of groups commonly denoted as
‘the computer vision groups’: (i) the Euclidean motion group; (ii) the similarity
group; (iii) the affine group; (iv) the projective group. An outline has been pre-
sented of the construction of set mappings such as dilations, erosions, openings
and closings, which are invariant under a given group. It has been shown that,
although dilations and erosions on the image plane may become trivial if the
acting group becomes larger, nontrivial operations such as openings or closings
exist which are useful for invariant object feature extraction.
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Processing the ‘solid’ image with an open disc as structuring element: (a) original image
X, structuring element Y; (b) Opening by the translation group; (c¢) Top-hat transform
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of (b); (d) Opening by the similarity group; (e) Top-hat transform of (d).
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Figure 1. Opening of the quadrangle image X shown in (a) by a square structuring ele-
ment Y, using as acting group: (b) Translation group; (c) Motion group; (d) Similarity
group; (e) Affine group; (f) Projective group.
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