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Abstract

The representation of the desired behaviour of a logical

discrete-event system (DES), using predicates and associated

sets of blocking events, is introduced. The control of a regular

DES consists in blocking events when a predicate concerning

the system behaviour becomes true. If a blocking event is

uncontrollable an algorithm is given which transforms the as-
sociated “uncontrollable” predicates into “controllable” ones.

It is shown that using this technique it is possible to derive a

non-regular desired behaviour which is least restrictive.

1 Introduction

A simple but effective way of defining a logical discrete event
system is by giving its alphabet set and its behaviour set, so:

P = haP; bPi
denotes a DES with possible events collected in the finite set aP

and with possible behaviour collected in the set bP � (aP)�.
bP is a set of strings. For simplicity we suppose that bP is

prefix closed (i.e., if st 2 bP then also s 2 bP, where st de-

notes concatenation of s and t). DESs defined in this way can

be displayed using state graphs. The number of states in such

a graph is finite if the language defined by bP is regular.

The above definition of a DES can be extended in differ-
ent ways. For example, it is possible to add a second set of

strings, called the task set and denoting all completed tasks of

the system, see [7, 8]. Another possibility is to define a DES

as a finite recursive process, which means that next to bP a

marking set is introduced, which gives additional information

for each string in the behaviour, see [3, 9].

Controlling a DES can be done in different ways. One

way is to introduce a second system, called the supervisor, that
follows the system and blocks events, if necessary, in order

to get desired behaviour given in terms of a finite automaton.

This is the Ramadge/Wonham approach, see [4, 5]. Alternat-

ively, the second system can be a controller in the sense that

plant and controller lead to some form of desired behaviour in
synchronized cooperation, see [7].

In this paper a new way of describing the desired beha-

viour and, consequently, of controlling the plant is introduced.

The desired behaviour is given in terms of some predicates

on the system behaviour together with some associated block-

ing events. The pairing of the predicates and blocking events,
called “control objectives” takes the form “if some condition on

the system behaviour becomes true, then block some events.”

In the real world, most of the desired behaviours can be ex-

pressed in this way: block a certain door if an animal enters

a certain room, close a valve if the pressure becomes too low,

etc.

Intuitively, we can think of a DES as a black box, observed
by an observer from a distance. The observer is unaware of

the model of the system he is observing, he only sees events

happen. The observer writes down on a piece of paper each

event that occurs. Because he is unable to write down more

than one event symbol at a time, events occurring in parallel
will be written down on paper in some (arbitrary) order. This

observation leads to a growing string of symbols on that piece

of paper, representing possible behaviour of the system.

Our view of controlling simply means inspecting that writ-

ten string, each time a new event happens (e.g., is written�This work is partly supported by the Dutch Foundation for Scientific Research (NWO) and the British Council.yIn: Proceedings of the third European Control Conference (ECC) 1995, september 5-8, 1995, Roma, Italy, vol.1 of 4, pages 383–388
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down) and, depending on some condition, block some events.

Although the technique developed in this paper holds for ar-

bitrary observed behaviour, it should be clear by now that the
observer has to check only one specific string of events, namely

the string of events that actually occurs. Thus, the controller

is a collection of control objectives which are evaluated on-

line for the current string only (pathwise). Depending on the

evaluated conditions on this string only, some events should

be blocked. If a next event occurs, all blocking is reset, condi-
tions are re-evaluated and a (possibly different) set of events is

blocked. Because of the resetting of the blocking, this way of

controlling is said to be local. In general, in order to evaluate

the conditions, there is no need to know the whole string, e.g.,

if the condition depends on the number of certain events that
have occurred, only this number needs to be remembered by

the observer. Nevertheless, this way is particularly effective

in describing “dynamic” (“time varying”) desired behaviours

and gives rise to “dynamic” and “non-Markovian” (not state

dependent) control laws, see [10]. If some events are uncon-
trollable and thus cannot be blocked the conditions describing

the desired behaviour become uncontrollable and their trans-

formation to controllable ones is required. This is obtained

by backpropagating the conditions by means of an off-line

algorithm.

The controlled system involves inserting the collection of

control objectives (controller) into the plant. If, for example,

a door needs to be blocked, if a condition becomes true, then

we only have to evaluate this condition just before opening

the door. So, the corresponding objective can be placed into

the plant before the event “door.” Effectively, the controller is
distributed within the plant and this design technique is called

distibutive control. This becomes particularly clear when mod-

ular models of finitely recursive processes are considered, see

[2, 10]. It should be noticed that the control objectives are

defined on the whole system behaviour, i.e., in distributive
control the specifications are global.

1.1 Notation

First we introduce the set notationused in this paper. In general

the notationfx : B(x) : f (x)g
is the set of all elements f (x), constructed using some x for
which B(x) returns true. x and f (x) may be vectors, i.e., multi-

dimensional elements. For example:fn;m : 1 � n < 5 ^ 1 � m � 2 : n � mg
is the integer set f1; 2; 3; 4; 6; 8g.

Based on the same syntax,(8x : B(x) : P(x))
evaluates to true if for all x that satisfy B(x) the condition P(x)
is true. For example(8x : x > �12 : x2 � 0) = true

Similarly,(9x : B(x) : P(x))
is true if for at least one x satisfying B(x) the condition P(x)
becomes true.

2 Control objectives

First the control objectives are defined and a definition of the

plant under these objectives is given.

Definition 1 A control objective for a process P = haP; bP)
is defined by�(P) = [B;A]
with

B: (aP)� ! ftrue; falseg the blocking condition

A � aP [ f�g the blocking event set 2
A control objective �(P) blocks the events in A if, for any

behaviour s 2 bP, the condition B(s) returns true.

In the set A the symbol � is also present. � is the trigger

event which starts the system. Blocking � means “do not

start the system.” This symbol is added in order to handle
the backpropagation in a proper way. We will return to the

backpropagation in the next section.

Notice that B is a predicate on the language bP. It is not a

language itself, nor a predicate on the states of the correspond-

ing state graph of P. This form of B allows the controlling of

a regular plant (P can be represented by a finite state graph) so

that the desired controlled behaviour becomes non-regular.

Definition 2 A system P = haP; bPi under the control ob-

jective �(P) = [B;A] is defined to be the system P�(P) given

by:

P�(P) = � haP;Øi if � 2 A ^ B(�)haP; ft : t 2 bP ^ t sat�(P) : tgi otherwise

where:

t sat[B;A] =(8s; u; b : t = sbu ^ b 2 aP : B(s) ) b =2 A)
A system under a set of control objectives f�1; : : : ; �ng, de-

noted by Pf�1;:::;�ng is now defined by(� � � ((P�1
)�2

: : :)�n 2
From the behaviour of P, each trace at for which sat 2 bP,

where s is such that B(s) becomes true and a 2 A, is removed.

Also, we block the whole system, i.e., prevent the system from
starting, if � is in the blocking event set and the corresponding

blocking condition is initially true.
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Example 3 Suppose the system P is given ashfa; b; cg; (ajbjc)�i. Here, � is the Kleene star and j denotes

alternatives. It is clear that P is regular, i.e., can be represented
by a finite state graph. Moreover, suppose, we want to control

the system in such a way that first some a’s occur, next event

b occurs, and last the same many c’s as a’s occur, i.e., anbcn

(for arbitrary n). Clearly, the desired behaviour is no longer

regular. Nevertheless, three control objectives are sufficient in

order to describe this desired behaviour:�1 = [s N b = 1; fa; bg]�2 = [s N b = 0; fcg]�3 = [s N a = s N c; fa; b; cg]
where s N e denotes the number of occurrences of event e in

trace s (with � N e = 0 for each event e). It is clear that, in the

controlled system, the event c is blocked as long as no b has
happened and a and b are blocked as soon as b has happened.

Finally, all events are blocked as soon as the desired behaviour

has occurred. So we have:

Pf�1;�2;�3g = haP; fn : n � 0 : anbcngi 2
Practical experience shows that it usually is possible to define

desired behaviours in terms of control objectives. Moreover,

desired behaviours are often stated using such objectives: “if

this happens, block these events.” Instead of translating these

objectives to languages (or state graphs) our proposed method
uses them directly.

3 Backpropagation of control objectives

An event can only be blocked if it is controllable. Some events
occur spontaneously and cannot be blocked. Such events are

called uncontrollable. In general, the blocking event set in a

control objective does not contain controllable only events. In

these terms, the main problem to solve is to transform control

objectives with uncontrollable events into control objectives
where only controllable events are present. Given a system P,

we know the set of controllable events, denoted by cP and the

set of uncontrollable events eP, sometimes called exogenous

events, see [6].

A control objective in which the blocking set contains only

controllable events is called a controllable control objective

(CCO). An uncontrollable control objective (UCO) is defined

by [B; fag] where a 2 eP.

The only way to derive a CCO from an UCO is to back-

propagate the blocking of the uncontrollable event in the plant,

i.e., instead of blocking the desired uncontrollable event, we
have to block one or more controllable events that occur earlier

in the behaviour of the plant, such that the uncontrollable event

cannot occur anymore.

For example, if the only possible behaviour is abc and the con-

trol objective [B(s); fcg] results in B(ab) = true then c should
be blocked. If c is uncontrollable, we should block earlier, i.e.,

block b, if b is controllable. For this, we cannot use the same

condition B, but should change it accordingly to B0, such that

B0(a) = B(ab) returns true and b is blocked.

For simplicity, we suppose that the control objectives con-

tain only one event in the blocking set. If not, we can easily

change the objective with a set of events into a set of objectives
with the same condition but with one event in the blocking set.

Definition 4 For a control objective �(P) = [B; fag] we

define the set of one step backpropagated control objectives by� (P) = fe : e 2 before(a) : [wpe(B); e]g
where

before(a) =fa0 : a0 2 aP ^ (9t; u : t; u 2 (aP)� : ta0au 2 bP)
: a0g[ init(a)

with

init(a) = � f�g if a 2 bP

Ø otherwise

before(a) is the set of events that can occur just before the

occurrence of the event a, it includes the trigger event in case

the system can start from the event a, and

wpe(B)(s) = B(se)
is the backpropagated condition. 2
Notice that, because we assume bP to be prefix closed, the

string u in the definition of before(a) can be omitted. Also

notice that the “event” �, as introduced here, corresponds to an

unlabelled arrow pointingthe initial state of a state graph.1 The
set before(a) can be computed easily in the case P is regular

and is represented by a finite state automaton. The following

informally described algorithm can then be used:

1. construct the reverse graph of the automaton,i.e., reverse

the directions of all arrows.

2. compute, in the reversed automaton, all events that can
occur after the occurrence of the event a. This can eas-

ily be done in some recursive way and is a finite process

because the automaton contains only finite number of

states and finite number of transitions.

3. add the trigger event � in case the original system starts

from the event a.

4. the computed set of events is the before-set of the ori-

ginal graph.

Next we prove that backpropagating control objectives does

not lead to unwanted behaviour:

1� as event is the trigger event, � also can denote a string: the empty string. This evident double meaning should not lead to confusion.
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Property 5

bP� (P) � bP�(P)
proof: We give the proof only in the case the before-set does

not contain the trigger event �. If so, an additional condition

should be taken into account which only complicates the ex-

pressions, but does not contribute to the proof.
If �(P) = [B; fag] then:

bP� (P)= ft : t 2 bP ^ t sat� (P) : tg= ft : t 2 bP ^ (8e : e 2 before(a) : t sat[wpeB; feg])
: tg= ft : t 2 bP ^ (8e : e 2 before(a)

: (8s; u; b : t = sbu

: wpeB(s) ) b 6= e))
: tg= ft : t 2 bP ^ (8e : e 2 before(a)

: (8s; u; b : t = sbu

: B(se) ) b 6= e))
: tg� [ see below ]ft : t 2 bP ^ (8s; u; b : t = sbu : B(s) ) b 6= a)
: tg=

bP�(P)
where we use that:(8e : e 2 before(a) : (8s; u; b : t = sb : B(se) ) b 6= e))) [ take s0 = se, for some e 2 before(a) ](8s0; u; b : t = s0bu : B(s0) ) b 6= a) 2
Therefore, the use of backpropagated control objectives results

in obtaining less behaviour than when blocking the event itself,

as initially required. However, this does not add behaviour that

is already blocked due to the original objectives.

Next we give the following definition which characterizes

the least restrictive behaviour with respect to the blocking of

an uncontrollable event a.

Definition 6 The blocked behaviour after u w.r.t. event a is

defined by

Ba(u) = ft : t 2 (aP)� ^ uat 2 bP : uatg
The least restrictive blocked behaviour after u w.r.t. the uncon-

trollable event a and for b 2 before(a) is defined by

B�a;b(u) =fs; t : s; t 2 (aP)� ^ ub 2 bP ^ ubat 2 Ba(ub)
: ubsg 2

Ba(u) characterizes the behaviour of the plant that is removed

when, after behaviour u, event a is blocked. B�a;b(u) is the

behaviour which is removed when, after u, event b is blocked,
and includes the blocked behaviour Ba i.e., Ba(ub) � B�a;b(u).
However, as stated in the following theorem, B�a;b(u) does

not remove any “unnecessary” behaviour in order to include

Ba(bu).
Theorem 7(8u; a; b : uba 2 bP

: b 2 before(a) ) Ba(ub) = B�a;b(u))
proof: follows from definition. 2
Following theorem 7 we conclude that the backpropagation of

uncontrollable control objectives does not block unnecessary

events, but only these events that should be blocked in or-
der to get the desired behaviour, i.e., backpropagation is least

restrictive.

To recap, when an uncontrollable objective exists, we pro-

ceed as follows: we compute the backpropagated control ob-
jectives for the uncontrollable events, and repeat backpropaga-

tion until all objectives become controllable. However, pro-

ceeding in this way, may lead to infinite repetitions because

first, before(a) may contain a again, and second, before the

occurrence of an event a in the behaviour of P an uncontrol-
lable loop (loop of uncontrollable events) may be present. We

deal with both situations in the next sections.

3.1 Event precedes itself

If a 2 before(a), we have the problem of infinite repetition

of the same event a when the set before(a) is computed.

However, this event does not contribute to the derivation of
controllable control objectives. In order to avoid this problem,

the following definition of before is used:

before(a) =fa0 : a0 2 aP ^ (9t; u :: ta0au 2 bP) ^ a0 6= a

: a0g[ init(a)
3.2 Uncontrollable loops

In case, before a, an uncontrollable loop is present, no back-

propagated blocking contribution can be expected from all the

events in the loop. The only way to block the event a, is to
make a block, as close as possible, before the loop.

Suppose tbu�av 2 bP and the event a together with all the

events in u are uncontrollable, i.e., u�a 2 (eP)�. Blocking the

event a is thus impossible. Computing before(a) leads to a set
which includes event b and an uncontrollable event from u as

well. The before-set contains an event from u each time we

repeat the computation. However, the only way to prevent the

event a to happen is to block b. Basically, we have to block b

so that the system cannot get into the uncontrollable loop.

This informal discussion leads to the following definition:
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Definition 8

strictBefore(a) = before(a) n beforeInLoop(a)
where

beforeInLoop(a) =fa0 : a0 2 eP ^ (9u; v; t : u; v 2 (eP)� ^ t 2 (aP)�
: t(ua0v)�a � bP)

: a0g 2
beforeInLoop(a) contains the uncontrollable events that may

occur before the event a in an uncontrollable loop. Since we

deal with regular systems, loops can always be detected by

inspecting the corresponding state graphs. It is easy to find the

set strictBefore(a) is such a graph. First delete all uncontrol-
lable loops and then proceed as above to find the before-set.

4 Controlled behaviour

Suppose we have a system P = haP; bPi and a control object-

ive �(P) = [B; fag] with a 2 eP. By backpropagating the
uncontrollable objective we can control the system in order to

satisfy the desired constraint. So we compute the controlled

behaviour�((P) = fe : e 2 strictBefore(a) : [wpe(B); e]g
Clearly, following theorem 7, P�((P) is least restrictive.

Moreover, if the system P is regular, the backpropagation

of control objectives can be done in a finite number of steps.

This follows directly from the fact that regular systems can be

represented using finite automata and both deleting uncontrol-

lable loops and finding strictBefore-events can be done using
a finite number of steps. We should emphasize here, that for

regular systems all possible traces are known (and represen-

ted using an automaton). If the systems are not regular, or if

the system is not given in a language-form in which all traces

are known, loops and strictBefore-events cannot always be
computed using finite number of steps. In the last case, ad-

ditional information about the plant, may make possible the

computation in finite steps.

5 Observable events

If an event is observable, i.e., the event can be seen, we place

the control objective, if needed, just before the occurrence of

this event. If a door should be blocked, the corresponding

objective is placed in the flow just before the event “door,”

such that the condition is computed before using the door and
before the door is blocked. If an event is not observable, e.g.,

if the door is hidden behind some machinery, we have to place

the control objective earlier in the flow. The solution here is

to backpropagate the control objectives and to block the unob-

servable event from a distance. The backpropagating objective

should be placed in front of the first observable event, before
the unobservable one. However, we do not deal with this case

in the present paper.

6 Deadlock

The existence of uncontrollable events in the plant and the

effort to derive completed task behaviours can cause the con-
trolled system to deadlock. Until now, when dealing with

finite automata desired behaviours, the solution to the dead-

lock problem has been to recognize the deadlock states and

remove them. Basically, removing the deadlock state is a static

problem. However, in our setup, when nonregular desired be-

haviours are considered, the only solution to the problem is
by considered limited deadlock predictors. The essence here

is to predict the deadlock, since recognizing it, in an infinite

state graph, is impossible. Let P = haP; bP; tPi, where tP

denotes completed task behaviour. To avoid deadlock, the ob-

server, each time a new event has happened, should check the
following condition, called deadlock condition:

D(s) = (9t : st 2 bP ^ st =2 tP : (8a :: sta =2 bP))
If D(s) is true, the observer should block every event leading

to such a deadlock trace s. However, this condition is undecid-

able, so we define the following limited deadlock condition:

D(s) = (9t : jtj< n ^ st 2 bP ^ st =2 tP

: (8a :: sta =2 bP))
where, by jtjwe denote the length of the string t.

In case the desired behaviour is regular, the maximum

number of n that will guarantee deadlock prediction, i.e., it

will recognize deadlock, is given by the number of the states

of the finite automaton of the controlled plant. When the de-
sired behaviour is non-regular, the limited deadlock predictor

may fail to predict a deadlock and this may lead to an “im-

possible” situation, i.e., the prediction of a deadlock will come

too late in order to be avoided. However, in the real world, a

reasonable length of n may successfully result in avoiding the

possible deadlock.
This involves the following deadlock control objectives:ff : f 2 aP : [Df ; f ]g

with

Df (s) = D(sf )
which are added to the controllable control objectives in or-
der to derive the limited guaranteed deadlock free controlled

behaviour. The above notions become appropriate when “dy-

namic” (logical “time varying”) plant and desired behaviours

are introduced, see [2, 10].

7 Conclusion

We have developed a new technique of representing desired be-
haviours and, consequently, of controlling a logical DES. The

specifications are given in terms of blocking conditions and

associated blocking events, and these may arise from quasi-

language specifications. The control design based on these

specifications consists in transforming “uncontrollable” con-

ditions to “controllable” ones. Using this technique makes it
possible to derive non-regular desired behaviours using finite

algorithms.
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