

 University of Groningen

A Proposal for the Implementation of a Parallel Watershed Algorithm
Meijster, A.; Roerdink, J.B.T.M.

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1995

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Meijster, A., & Roerdink, J. B. T. M. (1995). A Proposal for the Implementation of a Parallel Watershed
Algorithm. In EPRINTS-BOOK-TITLE University of Groningen, Johann Bernoulli Institute for Mathematics
and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/458f8fd8-7bb7-4f92-af9b-fc67b9929619

A Proposal for the Implementation of a Parallel

Watershed Algorithm

A. Meijster and J.B.T.M. Roerdink

University of Groningen, Institute for Mathematics and Computing Science

P.O. Box 800, 9700 AV Groningen, The Netherlands

Email: arnold@cs.rug.nl roe@cs.rug.nl

Tel. +31-50-633931, Fax. +31-50-633800

Abstract. In this paper a parallel implementation of a watershed algorithm is

proposed. The algorithm is designed for a ring-architecture with distributed mem-

ory and a piece of shared memory using a single program multiple data (SPMD)

approach. The watershed transform is generally considered to be inherently se-

quential. This paper shows that it is possible to exploit parallelism by splitting the

computation of the watersheds of an image into three stages that can be executed

in parallel.

1 Introduction

In the field of image processing and more particularly in gray scale Mathematical Mor-

phology [5, 6] the watershed transform [2, 3, 7] is frequently used as one of the stages

in a chain of image processing algorithms. Unfortunately, the computation of the water-

shed transform of a gray scale image is a relatively time consuming task and therefore

usually one of the slowest steps in this chain. The use of a parallel watershed algorithm

can significantly improve the overall performance. In [4] a distributed algorithm for

the watershed transform was developed by splitting the input image into equally sized

blocks. Communication overhead turned out to be a major problem.

The watershed algorithm can easily be extended to graphs, as shown in [7]. This fact

is used to derive an alternative algorithm which is suitable for parallel implementation.

We first transform the image into a graph in which each vertex represents a connected

component at a certain gray level h. Then we compute the watershed of this graph and

transform the result back into an image. The computation of a skeleton of plateaus is

performed as a post-processing step.

2 The Classical Algorithm

A digital algorithm for computing the watershed transform was developed by Vincent

[7]. In this section we will give a short summary of this algorithm.

A digital gray scale image is a function f : D �! N, where D � Z2 is the domain

of the image (pixel coordinates) and for some p 2 D the value f(p) denotes the gray

value of this pixel. Gray scale images are looked upon as topographic reliefs where f(p)
denotes the altitude of the surface at location p. Let G denote the underlying grid, i.e.

G is a subset of Z2� Z2. A path P of length l between two pixels p and q is an l + 1-

tuple (p0; p1; :::; pl�1; pl) such that p0 = p, pl = q and 8i 2 [0; l) : (pi; pi+1) 2 G.

For a set of pixels M the predicate conn(M) holds if and only if for every pair of

pixels p; q 2 M there exists a path between p and q which only passes through pixels

of M . The set M is called connected if conn(M) holds. A connected component is a

nonempty maximal connected set of pixels. A (regional) minimum of f at altitude h is a

connected component of pixels p with f(p) = h from which it is impossible to reach a

point of lower altitude without having to climb. Now, suppose that pinholes are pierced

in each minimum of the topographic surface and the surface is slowly immersed into

a lake. Water will fill up the valleys of the surface creating basins. At the pixels where

two or more basins would merge we build a “dam”. The set of dams obtained at the end

of this immersion process is called the watershed transform of the image f .

Let A be a set, and a; b two points in A. The geodesic distance dA(a; b) within A is

the infimum of the lengths of all paths from a to b in A. Let B � A be partitioned in k
connected componentsBi, i.e. B = Ski=1 Bi. The geodesic influence zone of the set Bi
within A is defined as izA(Bi) = fp 2 A j 8j 2 [1::k]nfig : dA(p;Bi) < dA(p;Bj)g.

The set IZA(B) is defined as the union of the influence zones of the connected compo-

nents of B, i.e. IZA(B) = Ski=1 izA(Bi). The complement of the set IZA(B) withinA, i.e. SKIZA(B) = AnIZA(B), is called the skeleton by influence zones of A. The

set Th(f) = fp 2 D j f(p) � hg is called the threshold set of f at level h. Let hmin
and hmax respectively be the minimum and maximum gray level of the digital image.

Let Minh denote the union of all regional minima at the height h.

Definition Watershed algorithm Define the following recurrence:Xhmin(f) = fp 2 D j f(p) = hmingXh+1 = Minh+1 [IZTh+1(f)(Xh); h = hmin; : : : ; hmax � 1: (1)

Intuitively, one could interpretXh(f) as the set of pixels p, satisfying f(p) � h, that lie

in some basin. The watershed transform of the image f is the complement ofXhmax(f)
in D: Wshed(f) = DnXhmax(f): (2)

Most implementations of algorithms that compute the watershed of a digital gray

scale function are translations of the recursive relation (1). The fact that Xh is needed

to compute Xh+1 expresses the sequential nature of this algorithm.

Computing influence zones is a costly operation, while it is not necessary to com-

pute them for non-watershed plateaus. Also, the SKIZ is not necessarily connected,

and may also be a ‘thick’ one, meaning that a set of pixels equally distant from two

connected components may be thicker than one pixel.

3 An Alternative Algorithm

In the algorithm described in the previous section influence zones are computed during

every iteration of the algorithm. There is the problem of plateaus which may result in

thick watersheds. Now, suppose that the image f does not contain plateaus, i.e. 8p; q 2

D : (p; q) 2 G) f(p) 6= f(q). In this case every ‘plateau’ consists of exactly one

pixel. This observation leads us to an alternative watershed algorithm, which consist of

3 stages:

1. Transform the image f into a directed valued graph f� = (F;E).
2. Compute the watershed of the directed graph.

3. Transform the labeled graph back into a binary image.

3.1 Stage 1

The first stage of this algorithm transforms the image f into a directed valued graphf� = (F;E), called the components graph of f . Here F denotes the set of vertices of

the graph and E the set of edges. The vertices of this graph are maximal connected sets,

called level components, of pixels which have the same gray-values. The set of level

components at level h is defined asLh = fC � ThnTh�1 j C is a connected component of ThnTh�1g:
The set of vertices of the graph f� is the collection of level components of f , i.e. F =Shmaxh=hmin Lh. A pair of sets (v; w) is an element of E if and only if 9p 2 v; q 2 w :(p; q) 2 G ^ f(p) < f(q). With a little abuse of notation we denote the gray-value of a

level component w by f(w), which is the value f(p) for some p 2 w.

h = 40

h = 30

h = 20

h = 10

L1

L2

L3

L4

L5

L6

L0

(b)(a)

L0

L1

L2

L6
L5

L3

L 4

40

30

10

30

40

30

20

(c)

Fig. 1. (a) artificially generated image. (b) labeled level sets. (c) components graph.

3.2 Stage 2

The second stage of the algorithm computes the watershed of the directed graph. The

procedure is very similar to the classical algorithm. The basic idea of the algorithm is

to assign a colour (label) to each minimum node and its associated basin by iteratively

flooding the graph using a breadth first algorithm. If to some node v there can be as-

signed two or more different labels, i.e. the node can be reached from two different

basins along an increasing path, the node is marked to be a watershed node. If the node

can only be reached from nodes which have the same label the node is assigned this

same label, i.e. the node is merged with the corresponding basin. A pseudo-code of this

algorithm is given in Fig. 3.

Fig. 2. (a) graph after flooding. (b) binary output image. (c) skeleton of output image.

3.3 Stage 3

In the third stage of the algorithm the labeled graph is transformed back into an image.

The pixels belonging to a watershed node are coloured white while pixels belonging

to non-watershed nodes are coloured black. After this transformation we end up with

a binary image, in which the watersheds are plateaus. If we want thin watersheds we

need to compute a skeleton of this image, for example the skeleton by influence zones

but other types of skeletons can be used as well.

MASK := -1; WSHED := 0; lab := 1;

for h := hmin to hmax do

begin forall v 2 F with f(v) = h do wsh[v] := MASK; (� mask nodes at level h �)
forall v 2 F with f(v) = h do begin (� extend basins �)iswshed := false;

forall w 2 F with (w;v) 2 E ^ :iswshed do

if wsh[v] = MASK then wsh[v] := wsh[w] else

if wsh[w] > 0 then if wsh[v] = WSHED then wsh[v] := wsh[w] else

if wsh[v] 6= wsh[w] then begin wsh[v] := WSHED; iswshed := true end

end;(� process newly discovered minima �)
forall v 2 F with wsh[v] = MASK do

begin wsh[v] := lab; lab := lab + 1 end

end;

Fig. 3. Watershed algorithm on a graph.

4 Parallelization of the Graph Algorithm

It turns out that the average performance of our algorithm is approximately the same as

that of the classical algorithm. However, since we clustered all the pixels which are in

the same level component in one single node of the components graph, we can decide

whether a node is a watershed node based on local arguments, i.e. we only have to look

at the lower neighbours of the node in the graph. Because of this fact, in contrast with

the classical algorithm, the graph algorithm can be parallelized.

In the rest of this paper we assume that we have a ring network of N processors.

Each processor has an unique identifier called myproc and can communicate with both

its neighbouring processors. Each processor has its own local memory for storing data,

and a simulated piece of shared memory called the Linda tuple space [1]. Three atomic

operations can be performed on this tuple space. A tuple (a; b) is stored using the com-

mand out (a; b). A tuple is read and deleted using the command in (a; b), while a tuple

can be read without deleting it using the command read (a; b). When the read operation

is performed the runtime system tries to find a tuple which matches the value of a. If

3
P

2
P

1
P

0
P

0

P
1

P
2

P
3

L 0

L 0

L 0

L 0

L1

P

L 51

L1

L 2

L1

(a)

L

L

L
L 0

2
3

4

(b)

L

L 6

L6

Fig. 4. (a) data distribution for four processors. (b) labeling of the distributed image.

such a tuple exists, let us say (a; c), the value c is assigned to b, otherwise the operation

is blocked until some matching tuple is stored in the tuple space.1
4.1 Data Distribution and Level Components Labeling

The parallel algorithm consists of the same three stages as the sequential one. The

labeling of the level components is performed by only one processor, since this is a

very fast operation which is hardly worth the burden of parallelization.

After labeling of the components the input image and the labeled image are dis-

tributed. Each processor is assigned an equally sized slice of consecutive image rows,

and consecutive slices are assigned to neighbouring processors. During distribution of

the slices one processor builds up a table, called shared. The value shared[i] denotes

the number of processors that share component Li. After distribution each processor

receives a copy of this table. This table is extensively used in the second stage of the

algorithm.

4.2 Parallel Watershed Transform of a Graph

After the labeling stage each processor builds a local components graph. Since some

level components are shared these graphs are not disjoint. Each processor performs a

modified version of the flooding algorithm on its own graph. A new minimum which

is shared between two or more processors must be given the same label. This is done

by introducing an array owner. If owner[v] = i for some minimum v then processorPi assigns a new label to this minimum, and stores this value in the tuple space, such

that other processors sharing this vertex can read this label and assign it to its local

vertex v. A similar method is used for expansion of basins. After flooding of level h
each processor puts the local colour of every shared vertex in the tuple space. After

that, every processor retrieves these values and compares them. If all these values are

the same label number, the corresponding local copy of the vertex is coloured with this

number, otherwise it is coloured WSHED.1 Full Linda implementations are more general than described here, but this subset of the se-

mantics of the Linda tuple space suffices.

LAB := -2; MASK := -1; WSHED := 0; if myproc = 0 then out (LAB; 1);

for h := hmin to hmax do

begin forall v 2 F with f(v) = h do wsh[v] := MASK; (� mask nodes at level h �)
forall v 2 F with f(v) = h do (� extend basins �)
begin iswshed := false;

forall w 2 F with (w; v) 2 E ^ :iswshed do

if wsh[v] = MASK then wsh[v] := wsh[w] else

if wsh[w] > 0 then if wsh[v] = WSHED then wsh[v] := wsh[w]
else if wsh[v] 6= wsh[w] then

begin wsh[v] := WSHED; iswshed := true end

end;(� now we have to take care of shared level components �)
forall v 2 F with f(v) = h ^ shared[v] > 1 do out (v;wsh[v]);

forall v 2 F with f(v) = h ^ shared[v] > 1 do begini := 0; while i 6= shared[v] ^wshed[v] 6=WSHED do

while i 6= shared[v] ^wshed[v] 6=WSHED do

begin i := i+ 1; read (v; tmp);

if wsh[v] = MASK then wsh[v] := tmp
else if tmp 6= MASK ^wsh[v] 6= tmp then wsh[v] :=WSHED

end

end;

forall v 2 F with wsh[v] = MASK do (� process newly discovered minima �)
if owner[v] = myproc then

begin in (LAB,lab); wsh[v] := lab;

for i := 1 to shared[v]� 1 do out (LAB,lab+ 1)

end else read(v; wsh[v])
end;

Fig. 5. Parallel (SPMD) watershed algorithm on a graph.

At the end of the flooding process the local component graphs are transformed back

into image slices. Since the watersheds in these slices can be thick plateaus we could

decide to perform a skeletonization, which we regard as a postprocessing stage.

References

1. H. Bal, Programming Distributed Systems. Prentice Hall, 1990.

2. S. Beucher and F. Meyer. The morphological approach to segmentation: The watershed

transformation. In E.R. Dougherty, editor, Mathematical Morphology in Image Processing.

Marcel Dekker, New York, 1993. Chapter 12, pp. 433–481.

3. F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communications

and Image Representation, 1(1):21–45, 1990.

4. A.N. Moga, T. Viero, B.P. Dobrin, M. Gabbouj. Implementation of a distributed watershed

algorithm. In J. Serra and P. Soille (Eds.), Mathematical Morphology and Its Applications to

Image Processing, Kluwer, 1994, pp. 281-288.

5. J. Serra, Image Analysis and Mathematical Morphology. Academic Press, 1982.

6. S.R. Sternberg, Grayscale morphology. Computer Vision, Graphics, Image Processing, 35,

pp 333-355, 1986 Academic Press, 1982.

7. L. Vincent and P. Soille, Watersheds in Digital Spaces: An Efficient Algorithm Based on

Immersion Simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence,

13, no. 6, pp 583-598, june 1991.

