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Nonlinear Image Restoration in Confocal Microscopy:Stability under Noise �J.B.T.M. RoerdinkInstitute for Mathematics and Computing ScienceUniversity of Groningen, P.O. Box 800, 9700 AV Groningen, The NetherlandsTel. +31-50-633931; Fax +31-50-633800; Email roe@cs.rug.nlABSTRACT | In this paper we study thenoise stability of iterative algorithms developedin [1,2] for attenuation correction in Fluores-cence Confocal Microscopy using FFT meth-ods. In each iteration the convolution of theprevious estimate is computed. It turns outthat the estimators are robust to noise perturb-ation.1 IntroductionOne of the problems in 3D imaging by a CSLM(confocal scanning laser microscope) in the so-called (epi)
uorescence mode is the darkening ofthe deeper layers due to scattering and absorptionof excitation and 
uorescence light. Recently wedeveloped a new restoration method, called the`FFT-method', to correct for this attenuation ef-fect [2]. Essential in this method is the compu-tation of a correction factor in the form of a 3Dconvolution of the measured signal, which can bee�ciently computed by the use of the Fast FourierTransform (FFT). The complexity of computa-tion of this method is to O(Nz logNz), where Nzis the number of vertical layers. In contrast, theiterative `layer stripping' method (with condensa-tion) developed in [3] has complexity O(N2z ), withonly slightly better restoration quality.In an extension of this method we showed thatthe accuracy of the FFT-method can be improvedby �rst order moment and cumulant estimatorsleading to a nonlinear integral equation for theunknown 
uorescent density, which is solved byan iterative method [1].The purpose of the present paper is to studythe stability of our restoration method undernoise perturbation. In particular we perturb the(simulated) data by Gaussian or Poisson noiseand compare the behavior of the FFT methodwith that of the layer method.�In: Proc. IEEE Workshop on Nonlinear Signal andImage processing, June 20-22, Neos Marmaras, Halkidiki,Greece, I. Pitas (ed.), 1995, pp. 750-753. Postscript ver-sion obtainable at http://www.cs.rug.nl/~roe/

The organization of this paper is as follows. InSection 2 we review the CSLM imaging processand discuss the reformulation of the CSLM trans-form as a statistical averaging problem with cor-responding �rst order moment and cumulant es-timators. We give an iterative algorithm to solvethe resulting nonlinear integral equations for theobject density. The stability under noise is stud-ied in Section 3. Section 4 contains a summaryand conclusions.2 The CSLM transformThe CSLM imaging process leads to the fol-lowing nonlinear integral transform (`CSLM-transform'):f(r) = �(r)� 
f (r)
b(r); (1)where f(r) is the measured 
uorescent intensityat the point r,
f (r) : = Cf Z !0 d� Z 2�0 d� sin � cos �� exp ��"Z z0 dz0cos � �(r̂)� (2)is the forward attenuation factor, and
b(r) : = Cb Z !0 d� Z 2�0 d� sin �� exp ��"Z z0 dz0cos � �(r̂)� (3)is the backward attenuation factor. In these equa-tions " is the attenuation constant and Cf and Cbare normalization constants:Cf := 1� sin2! ; Cb := 12�(1� cos!) :Here � and � are the polar angles of a light raywith respect to the z-axis (chosen along the op-tical axis), cf. Fig. 1, while r̂ is the vectorr̂ = 0@ x+ (z � z0) tan � cos�y + (z � z0) tan� sin �z0 1A : (4)
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Figure 1: CSLM geometry. R: radius of spher-ical bundle; !: semi-aperture angle; (�; �): polarangles of light ray; dz: depth of the sample.2.1 Inversion of the CSLM transformAssuming weak attenuation one may carry out aperturbation expansion in the parameter ", andderive the following approximation ~�(r) for the
uorescent density [2]~�(r) = f(r) f1 + " c(r)g ; (5)where c(r) is the convolution integralc(r) = Z 1�1 Z 1�1 Z 1�1 dr0 �(r0) f(r� r0) (6)with �(r) the space-invariant kernel given by�(x; y; z) = Cf z(x2 + y2 + z2)3=2+Cb 1x2 + y2 + z2for 0 � z � dz ; x2 + y2 � (z tan!)2 and�(x; y; z) = 0 elsewhere.2.2 Iterative algorithmsBy applying moment and cumulant expansions ofcharacteristic functions and after discretization,one can derive a �nite system of nonlinear equa-tions of the formRijk = Fijk G�(K �R)ijk�; (7)where G(x) = exp("x) for the cumulant approx-imation and G(x) = (1 � "x)�1 for the moment

approximation, respectively, with K � R the dis-crete convolution of the 3D arrays K and R [1].Here Rijk; Fijk and Kijk are the discrete counter-parts of the estimated 
uorescent density ~�(r),the measured image density f(r), and the convo-lution kernel �(r).The solution of (7) leads to the following iter-ative algorithm:1. Read the data Fijk .2. Determine the appropriate value of ".3. Iteratively compute (n = 1; 2; 3; : : :)R(n)ijk = Fijk G �(K �R(n�1))ijk� ; (8)where R(0)ijk = Fijk , and G(x) = (1�"x)�1 orG(x) = exp("x) for the moment and cumu-lant estimator, respectively.In each iteration the convolution of the previousestimate is computed by means of the FFT (usingthe same kernel K as de�ned above). The �rst it-erate of (8) with G(x) = 1+"x coincides with thediscrete analogon of (5) and is the approximationused in [2].Input parameters of the algorithm are the di-mensions Nx; Ny; Nz of the data array, the scan-ning steps �x; �y; �z, the semi-aperture angle !and the attenuation constant ". For the determ-ination of the correct value of " one may resortto a calibration experiment in which a homogen-eous test sample is used [3]. In this paper we willconsider test densities for which the value of " isknown.3 Stability under noiseIn this section we will consider the situationwhere the data are perturbed by additive or mul-tiplicative noise. Error estimates will be derivedwhich show that the behavior of the FFT methodis stable under such perturbations. We will carryout the analysis for the algorithm with one itera-tion step only. The extension to two or more it-erations is straightforward. However, more thantwo iterations will not be used in practice, be-cause the computation time would increase tomuch. Moreover, the noise stability will becomeworse when many iterations are used. For thesame reason one may expect sensitivity to noiseof the iterative layer method of Visser et al. [3],which uses Nz iterations (Nz being the numberof vertical layers).



33.1 Additive noiseAssume that the data f(r) are perturbed by ad-ditive noise n(r). Then instead of (1) we have:f(r) = �(r)� 
f(r)
b(r) + �n(r): (9)We assume that the magnitude of the noise isbounded by the constant �, so that jn(r)j � 1.As a measure of the restoration quality we usethe di�erence between original density �(r) andrestored density ~�(r):E(r) = j�(r)� ~�(r)j :The restored density satis�es the equation~�(r) = f(r)n1 +M [(� � ~�)(r)]oWhen only one iteration is used this becomes~�(r) = f(r)n1 +M [(� � f)(r)]o (10)For the functionM [x] we consider the followingforms: M [x] = exp("x)� 1M [x] = "x(1� "x)�1M [x] = "xThe �rst of these applies to the cumulant approx-imation, the second to the moment approxima-tion. The third form is included for comparisonwith the original approximation (5) as derived in[2]. Note that in all casesM [x] is a monotonicallyincreasing function.The key estimate we need is the following (cf.[2]). For any continuous function g(r),j� � g(r)j � 2zgmaxcos! ; (11)where gmax is the maximum value of the functiong(r). Let �max be the maximum value of the ori-ginal density �. Then, using methods similar tothose used in the Appendix of [2], one can deriveE(r) � 2�2max"zcos! +(�max+�)M �2z(�max+ �)cos! �+�:For example, when M [x] = "x this formula re-duces toE(r) � 2"zcos!��2max+ (�max+ �)2�+ �:When there is no noise (� = 0) this formulaagrees with that in the Appendix of [2].

3.2 Multiplicative noiseLet the data f(r) be perturbed by multiplicativenoise, i.e.,f(r) = �1 + �n(r)��(r)� 
f(r)
b(r): (12)An example is impulsive noise, where n(r) = 1with probability p and n(r) = 0 with probability1 � p, with 0 � p � 1. In this case the estimatefor the approximation (10) isE(r) � �maxn�+ (1 + �)�� " +M [�(1 + �)]�owith � = (2�maxz)= cos!. When M [x] = "x thisformula reduces toE(r) � �maxn�+ (1 + �)(2 + �)2�max"zcos! o:It is clear from the formulas in this and theprevious subsection that the behavior of the al-gorithm under the in
uence of noise is essentiallythe same as when the noise is absent.3.3 Restoration of noisy test imagesWe show restorations for an image consistingof circles (`circle image') perturbed by Gaussiannoise, and a sinusoidally varying image (`trig im-age') perturbed by Poisson noise. One level of theoriginal is shown in Fig. 2. All 8 depth layers ofthe original image are identical. Signal data Fijkwere generated by numerically computing the in-tegrals in (2){(3) for a number of equidistant 3Dpositions. The parameters were chosen as follows:dx = dy = 1:0; dz = 0:1, Nx = Ny = 128, Nz = 8,! = 1:04719.The noisy attenuated images were restored bythe FFT method (moment estimator, 2 itera-tions), as well as the layer method of [3]. Res-ults are shown in Fig. 3 and Fig. 4. The �rstrow shows the noisy attenuated test images; thesecond row the restoration by the layer strippingmethod; the third row the restoration by the FFTmethod. In each row, the �rst, fourth and sev-enth layer is displayed from left to right. Compu-tations were performed on a HP 9000/735 work-station (130 MIPS), taking about 15 seconds periteration step.We conclude that the FFT method is stableunder noise perturbation. The layer strippingmethod has greater noise reduction e�ect, due tothe implicit averaging procedure. However, weobserve the occurrence of an `inverted' noise (theblack dots in the white regions), suggesting a cer-tain instability of the algorithm. This may be due
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Figure 2: One layer of original circle (left) andtrig (right) images.to the fact that in layer stripping methods errorsmade in the �rst layers will propagate to deeperlayers.4 ConclusionsIn this paper we study the noise stability of iterat-ive algorithms developed in [1,2] for attenuationcorrection in Fluorescence Confocal Microscopyusing FFT methods. By a statistical reformula-tion of the problem it is possible to derive �rstorder moment and cumulant estimators leadingto a nonlinear integral equation for the unknown
uorescent density, which can be solved by aniterative method. The estimators are robust tonoise perturbation, this in contrast to the layermethod of [3] which produces spurious noise. Fur-ther improvement may be obtained by either apre- or postprocessing of the images or by usingoptimal estimation techniques.References[1] Roerdink, J. B. T. M., \FFT-based methodsfor nonlinear image restoration in confocal mi-croscopy," J. Math. Imaging and Vision, 4, no.2, pp. 199{207, 1996, pp. 55-63.[2] Roerdink, J. B. T. M. and Bakker, M., \AnFFT-based method for attenuation correctionin 
uorescence confocal microscopy," J. Micro-scopy , 169, pp. 3{14, 1993.[3] Visser, T. D., Groen, F. C. A. and Brakenho�,G. J., \Absorption and scattering correction in
uorescence confocal microscopy," J. of Micro-scopy , 163, pp. 189{200, 1991.

Figure 3: Restoration of the circle image per-turbed by Gaussian noise (see text).

Figure 4: Restoration of the trig image perturbedby Poisson noise (see text).


