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Diels-Alder reactions in water: Enforced 
hydrophobic interaction and hydrogen bonding 

Jan B.F.N. Engberts 

Department of Organic and Molecular Inorganic Chemistry, University of 

Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands 

Abstract: Second-order rate constants have been measured for the Diels-Alder 

(DA) reactions of cyclopentadiene with dienophiles of varying hydrophobicity and 

hydrogen-bond acceptor capacity in water, in a series of organic solvents and in 

alcohol-water mixtures. The intramolecular DA reaction of N-furfuryl-N-

alkylacrylamides was also investigated in the same reaction media. The often huge 

rate accelerations in water appear to be inherent in the activation process of the 

cycloaddition and do not originate from diene-dienophile association. A 

pseudothermodynamic analysis of the rate acceleration in water relative to 1-

propanol and 1-propanol-water mixtures provides evidence for two factors 

dominating the rate enhancement in water: hydrogen-bond stabilization of the 

polarized activated complex and the decrease of the hydrophobic surface area of 

the reactants during the activation process. 

Quite generally, organic chemists think that water is not a good solvent for organic reactions. Rightly 

so. The often limited solubility of apolar organic compounds in water and the sensitivity of many 

reagents and functional groups towards water are among the factors which make more apolar and inert 

organic solvents a better choice. On the other hand, however, the selective molecular recognition 

processes and chemical transformations in biological systems are confined to aqueous reaction media. 

Also for many mechanistic studies in organic chemistry, water is a preferred solvent, partly because 

complex ion-pairing phenomena can be avoided. Eversince the pioneering work of Breslow et al. (ref. 

1) another factor has come to light which appears to favor water as the solvent for a whole variety of 

bimolecular organic reactions. In fact, it was found (largely by accident) that second-order rate 

constants for the Diels-Alder (DA) reactions of a series of diene/dienophile combinations are greatly 

enhanced in aqueous solution. This was the more surprising since DA reactions, involving isopolar 

activated complexes, are known (ref. 2) to exhibit only modest medium effects on their rate constants. 

Breslow’s findings attracted great attention and the aqueous medium effect was well-used in synthetic 

organic chemistry, in particular by Grieco et al. (ref. 3). Interestingly, several other organic 

transformations were found to be accelerated substantially in water, including the aldol condensation 

(ref. 4), the benzoin condensation (ref. 5) and the Claisen rearrangement (ref. 6). Most attention has 

been focussed on carbon-carbon bond formation processes (ref. 7). The interest in water as the solvent 

is, of course, also stimulated by chemist’s care for the environment (ref. 8). 

Different explanations have been offered in the literature for the rate enhancement of DA reactions in 

water. These include: hydrophobic packing of diene and dienophile (ref. 9), effects of the internal 

pressure (ref. 4, 10) and cohesive energy density of water (ref.  11), hydrogen-bonding effects (ref.  12, 
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13), solvophobic effects (ref. 14) and hydrophobic vs. antihydrophobic effects (ref. 15). Our interest in 

the peculiar solvent properties of water (ref. 16) and the obvious controversies in the interpretation of 

the aqueous medium effects, led us to investigate in some detail the origin of the, at first sight, 

anomolous rate accelerations in water. We employed a physical-organic approach: kinetics in different 

media and variation of substrate structures. The results have been rationalized in terms of transition-

state theory. 

Intermolecular DA reactions. Rate constants in organic solvents and in water 

The DA reactions of 5-substituted naphthoquinones (1a-e) with cyclopentadiene (2) and the 

corresponding reaction of 2 with methyl vinyl ketone (3) and methyl vinyl sulfone (4) (Scheme 1) have 

been studied in most detail (ref. 17-20). The data in Table 1 illustrate the large rate enhancements in 

water for the reactions of 1a-e with 2: k2(H2O)/k2(n-hexane) amounts to 1180 (1a), 1651 (1b), 4583 

(1c), 7250 (1d) and 12780 (1e). It is clear that the rate acceleration in water depends markedly on the 

nature of the dienophile. Another obvious conclusion that emerges from these data is, that an increase 

of the hydrogen-bonding donor capacity of the alcohols leads to a substantial increase of 

k2 : k/HFP)/k(EtOH)= 83 (1a), 68 (1b), 114 (1c), 99 (1d) and 154 (1e). However, the rate increase 

in water,  which is definitely less acidic than HFP,  is the highest of all solvents:  k(H2O)/k(HFP)= 1.91 

(1a), 2.88 (1b), 2.93 (1c), 3.73 (1d) and 2.96 (1e). It should be recognized, of course, that the small 

size of the water molecule and the availability of two OH donor sites, in combination with the 

cooperative H2O-H2O interactions, enhances the effectiveness of water as a H-bond donor solvent. 

For the slower DA reaction of 2 with 3 and 4 essentially similar results are obtained (Table 2), but the 

rate enhancements going to water as the solvent are smaller. The hydrogen-bonding effect is also less 

pronounced. Finally, the data show that the DA reaction of 2 with 3 is retarded rather than accelerated 

in micellar SDS and CTAB solutions. 

Thermodynamic activation parameters 

For organic reactions in a highly structured solvent like water, an interpretation of medium effects is 

usually couched in terms of transition-state theory (ref. 21). A rather informative plot is shown in Fig. 

1 (ref. 20). Gibbs energies of activation for the DA reaction of 1e with 2 show a trend with the 

Dimroth-Reichardt solvatochromic parameter ET(30). It appears that there is a stronger dependence on 

ET(30) for the protic solvents as compared with that for the aprotic solvents, but the regression 

coefficients for both lines are poor (rprotic= 0.919; raprotic= 0.737). Again, water is a much better solvent 

for the DA reaction than suggested on the basis of the trend of ∆∆
≠GΘ vs. ET(30). Isobaric activation 

parameters for the DA reaction of 2 with 1c, 1e, and 3 in water and 1-propanol are listed in Table 3. 

The Gibbs energies of activation are 10-15 kJ.mole-1 more favorable in water as compared with the 

alcohol. Both the enthalpies and entropies of activation contribute to this reduction of ∆∆
≠GΘ in water, 

but usually the entropic term is the dominating effect. 

© 1995 IUPAC, Pure and Applied Chemistry, 67, 823-828 
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TABLE 1. Second-order rate constants for the DA reaction of 

1a-e with 2 in selected organic solvents and in water at 25° 

  103.k2 (M
-1s-1)  

Solvent 1a 1b 1c 1d 1e 

n-hexane 21.2 5.37 1.08 0.509 0.435 
acetonitrile 92.2 21.6 6.28 5.35 3.90 

ethanol 158 45.0 14.8 10.0 12.2 

1-propanol 228 64.9c 19.6 13.2c 14.8c 

TFE a 3520 867 438 291 326 

HFP b 13100 3080 1690 988 1880 

water 25000 8870 4950 3690 5560 

—————————— 
a 1,1,1-Trifluoroethanol. 
b 1,1,1,3,3,3- Hexafluoro-2-propanol. 
c Rate constant in 2-propanol. 

TABLE 2. Second-order rate constants 
for the DA reaction of 3 and 4 with 2 in 
selected organic solvents and in water at 
25°C 

 103.k2 (M
-1s-1) 

Solvent 3 4 

acetonitrile 0.175 0.00885 
ethanol 0.839 0.0200 

1-propanol 0.912 0.0304 

TFEa 8.72 0.0950 

HFPb 17.5 0.200 

water 50.8 0.629 

water + SDSc,e 45.6  

water + SDSc,f 40.5  

water + CTABd,e 29.5  
water + CTABd,f 20.8  

a 1,1,1-Trifluoroethanol. 
b 1,1,1,3,3,3-Hexafluoro-2-propanol. 
c Sodium n-dodecylsulfate. 
d Cetyltrimethylammonium bromide. 
e 50 mmol in 1 kg of water. 
f 100 mmol in 1 kg of water. 

Fig.  1.  Gibbs energies of  activation   for   the   DA  

reaction of 1e with 2 in n-  hexane   (1),   CCl4   (2),  

benzene (3), 1,4-dioxane (4),  THF (5), CHCl3 (6),  CH2Cl2

(7), acetone (8),  DMSO (9),  CH3CN  (10),  2-PrOH  (11),  

EtOH    (12),    N-methyl-  acetamide  (13),  N-methyl-

formamide (14), MeOH (15),  glycol  (16),  TFE  (17),  H2O  

(18),  HFP (19). 

Endo-exo product ratios. Medium effects in alcohol-water mixtures 

The endo/exo product ratios for the reaction of 2 with 3 have been determined over the whole mole 

fraction scale in MeOH-H2O, EtOH-H2O, 1-PrOH-H2O and t-BuOH-H2O at 25°C (ref. 17). The 

preference for the endo product is greatly enhanced in water: [endo]/[exo]= 10(MeOH), 7(t-BuOH) and 

21 (H2O). Similar results were obtained for ethyl vinyl ketone as the dienophile. 

© 1995 IUPAC, Pure and Applied Chemistry, 67, 823-828 
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TABLE 3. Isobaric activation parameters for the DA 

reaction of 2 with 1c, 1e, and 3 in 1-propanol and 
water at 25°C 

Dienophile ∆∆
#GΘ ∆∆

#HΘ -T∆∆
#SΘ 

 kJ.mol-1 kJ.mol-1 kJ.mol-1 

1c 83.05a 42.9(0.6) 40.1(0.6) 
 69.42b 36.6(0.4) 32.8(0.5) 

1e 83.44a 43.3(1.0) 40.2(1.0) 

 68.91b 40.5(0.7) 28.4(0.7) 

3 90.37a 45.1(0.7) 45.3(0.7) 
 80.35b 39.4(0.7) 40.9(0.7) 

a In 1-propanol. b In water. 

TABLE  4.  First-order  rate  constants  for  the  

IMDA  reaction  of  N-furfuryl-N-alkylacryl -

amides  in  different solvents 

R1 R2 Solvent T k1 

   °C (s-1) 

Me CO2H CH2Cl2 25 2.36.10-5 

  MeCN 25 9.27.10-5 

  EtOH 25 3.09.10-4 

  H2O 25 2.50.10-2 

Me H EtOH 60  a 

  H2O 60 2.05.10-5 

a No observable conversion after a reaction 
time of 3 weeks. 

Intramolecular DA reactions 

The intramolecular DA (IMDA) reaction is an important transformation in the construction of 

polycyclic ring systems (ref. 22). In the substrate the diene and dienophile are already brought together 

and it was of particular interest to examine whether water is also a favorable medium for the 

unimolecular activation process. An extensive study has been made (ref. 17, 23), from which we have 

selected the kinetic data shown in Table 4 for the IMDA reaction of N-furfuryl-N-alkylacrylamides 

(Scheme 2) in different solvents. It is evident that the rate enhancements in water as compared to 

organic solvents resemble those for the intermolecular DA reactions. NMR studies reveal that the large 

rate enhancement in water cannot be attributed to a preference for the s-cis conformation of the 

substrate in aqueous solution. For example, for the substrate with R1=Me and R2=CO2H, the 

equilibrium constants [s-cis]/[s-trans] were found to be 1.05 (CHCl3), 1.03 (MeOH), 0.94 (acetone-d6) 

and 1.2 (H2O). 

Evidence against diene/dienophile association in water 

In previous studies it has been envisaged (ref. 9) that association of the DA reaction partners could be 

responsible for increased local concentrations of diene (DI) and/or dienophile (DIP) leading to 

acceleration of the bimolecular reaction. One can then distinguish between homotactic (i.e. DI-DI or 

DIP-DIP) association and heterotactic (DI-DIP) association. Similar favorable entropy effects for 

bimolecular processes have been identified for catalytic effects in the presence of surfactant aggregates 

and cyclodextrines. We contend, however, that such effects are not operative for the DA reaction of 2

with 1a-e, 3 and 4, at least under the conditions of the kinetic measurements. The evidence (ref. 17, 19) 

includes the following. (1) Vapor pressure measurements for 2 in water and in 10% (w/w) 1-PrOH-

H2O show nonideal behavior only at concentrations beyond 0.03M, and 0.06M, respectively. Since the 

concentration of 2 in the kinetic experiments was always kept below 0.002M, aggregation of 2 appears 

to be ruled out. (2) The DIP’s 3 and 4 are highly soluble in water. During the kinetic measurements the 

concentration of 3 was always below 0.01M and vapor pressure measurements again display no 

evidence for nonideal behavior. (3) The concentration of 1a-e in the kinetic measurements was 

≤ 5.10-5M, which makes association unlikely. (4) The second-order rate constants for the DA reactions 

in water were independent of the substrate concentrations, even when 2 was present in a large excess. 

Finally, (5), we note that the large rate enhancements for the IMDA reactions are not easily 

reconcilable with homo- or heterotactic association. 

© 1995 IUPAC, Pure and Applied Chemistry, 67, 823-828 
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Scheme 2 

Fig. 2.Standard Gibbs energies of transfer 

for IS and AC of the DA reaction of 2 with 

ethyl vinyl ketone (5) from 1-PrOH to 1-

PrOH-H2O mixtures as a function of the 

mole fraction of water; 2, n; 5, s; IS, l; 

AC, m. 

Initial state vs. transition state effects. Enforced hydrophobic interaction and hydrogen bonding 

Solvent effects on rate constants reveal differences in interactions of the solvent with the initial state 

(IS) and the activated complex (AC). A pseudothermodynamic analysis allows a distinction between 

both effects. In this analysis, the difference in ∆∆
#GΘ for reaction in the solvents S1 and S2, is combined 

with Gibbs energies for transfer of the substrate(s) from S1 to S2. The results (ref. 18, 19) for the DA 

reaction of 2 with ethyl vinyl ketone (5) in 1-PrOH-H2O over the whole mole fraction range are shown 

graphically in Fig. 2. Standard Gibbs energies of transfer were obtained from vapor pressure 

measurements using a GC technique. Similar results have been found for the reaction of 2 with 3. The 

results lead to the following conclusions. The IS (2 + 5) is strongly destabilized in the water-rich region 

(x(H2O) >0.8). This effect is dominated by the contribution of the rather hydrophobic 2, but the 

hydrophobicity of 5 is revealed by the positive ∆∆G°1→2 as well. By contrast, there are only minor 

changes in ∆∆G°1→2 for the AC over the whole solvent composition range. These results imply that the 

rate acceleration in water and in the water-rich mixtures is primarily caused by destabilization of the IS 

relative to the AC. In the absence of substrate association (vide supra), we submit that two factors are 

of major importance in determining this difference in solvation behavior of the IS and AC. The first is 

hydrogen-bonding; the AC is more polarized than the IS, and the polarized carbonyl moiety of the AC 

will be better stabilized by hydrogen-bonding than the carbonyl group of the IS. This enhanced 

hydrogen-bonding of water to the AC was also proposed on the basis of Monte Carlo simulations (ref. 

12) and ab initio MO calculations (ref. 13) and is in line with the relatively high rates of the DA 

reactions in TFE and HFP (vide supra). The second effect involves enforced hydrophobic interaction 

(ref. 17, 18, 20). The activation process of the concerted cycloaddition reaction involves a reduction of 

the hydrophobic surface area of the reaction partners, leading to a gain in Gibbs energy relative to 

nonaqueous solvents. This effect is not equivalent to "hydrophobic packing" of diene and dienophile in 

water, which may well lead to a complex with a geometry different from that of the AC. The 

contribution of both effects is further supported by analysis of our kinetic data for the reaction of 1d 

with 2 in a series of solvents employing the KOMPH2 correlation equation (ref. 24). We like to stress 

that the relative contribution of both effects to the rate acceleration in water will critically depend on 

the nature of diene and dienophile. As argued by Jorgensen (ref. 13) small charge variations in the AC 

relative to the IS will induce large differences in hydrogen-bonding. The operation of the hydrophobic 

effect provides a rational for the preference for the endo isomer in the  reaction  of  2  with  3  and  5  in 

© 1995 IUPAC, Pure and Applied Chemistry, 67, 823-828 
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water (vide supra) and for the small increase of k2, relative to water, upon addition of 1-2 mole % of 

1-PrOH or t-BuOH (ref. 17, 19). A detailed comparison of the solvent effects on the DA reaction of 

2 with 3 and 4 (ref. 20) led to the unexpected result that 4 is less hydrophobic than 3 despite the fact 

that the sulfonyl moiety is a weaker hydrogen-bond acceptor than the carbonyl group. This finding can 

be rationalized by assuming that 4 accepts four hydrogen bonds in water while the carbonyl group can 

accept only two hydrogen-bonds. 

Summary and outlook 

The DA reaction is not unique in exhibiting large rate accelerations in water. The effect has now been 

established for a whole series of other synthetically important organic reactions. Although further 

detailed studies are clearly necessary, the available data gives reason to believe that the hydrophobic 

and hydrogen-bonding effects, operative for the (IM)DA reactions in water, are also affecting the 

activation process of these reactions. It is a considerable challenge to further accelerate these organic 

transformations in water by carefully designed (chiral) catalysts. This could lead to a highly beneficial 

combination of medium and catalytic effects. There seems to be no doubt that research on organic 

reactions in water has been revitalized. 
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