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Pseudo-triangulations : Theory and Applications

Michel Pocchiola * Gert Vegter t

1 Introduction

Pseudotriangles and pseudo-triangulations have

played a key role in the recent design of two optimal

visibility graph algorithms; see [1, 2]. The purpose

of this paper is (1) to give three new applications of

these concepts to 2-dimensional visibility problems,

and (2) to study realizability questions suggested by

the pseudotriangle-pseudoline duality; see Figure 1.

Our first application is related to the ray-shooting

problem in the plane: preprocess a set of objects into

a data structure such that the first object hit by a

query ray can be computed efficiently. In section 3 we

show that for a scene of n objects, where the objects

are pairwise disjoint convex sets with m ‘simple’ arcs

in total, one can obtain O(log m) query time using

O(rn + k) storag< where k = 0(n2) is the size of the

visibility graph of the set of obstacles. Previous solu-

tions use @(n2) storage for a similar query time. (We

refer to [3, 4] for a bibliography on the ray-shooting

problem.) An other feature of our data structure is

that it can be used to compute in O(h log m) time the

h objects visible from a query point in a query inter-

val of directions; we mention also that our technique

can be extended to scenes of non-convex obstacles.

Due to lack of space these latter two points will only

be developed in the full version of the paper, Our
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proof is based on the ‘right-to-left’ property of the so-

called greedy pseudo-triangulation (see section 2); it

uses dynamic point-location data structures for plane

graphs and persistent data structures. (We refer to [4]

for a bibliography related to these data structures.)

The two other applications are related to optimal cov-

ering problems. In section 4 we show that (l) comput-

ing a lighting set with worst case minimal size (i.e.,
4n – 7, as shown in [5]) for a set of n disjoint convex

sets reduces in O(n) time to computing a pseudo-

triangulation; (Using the Koebe Representation The-

orem we also give a practical characterization of all

cases in which 4n – 7 lighting points are required.)

and (2) computing a polygonal cover with worst case

minimal size (i.e., with no more than 6rt – 9 sides and

3n – 6 slopes, as shown in [6]) for a set of n disjoint

convex sets, reduces in O(n) time to computing a

pseudo-triangulation. Our polygonal cover algorithm

is simpler than the algorithm described by M. de

Berg [3]. In section 5 we examine realizability ques-

tions suggested by the pseudotriangle-pseu doline du-

ality. One of the main questions concerning arrange-

ments of pseudolines is realizability by arrangements

of straight lines (also called stretchability): given a

configuration of pseudolines, is it isomorphic to an ar-

rangement of straight lines? It is known that ‘most’

arrangements of pseudolines are not st ret chable, and

that the realizability question is NP-hard. (See [7, 8]

for background material and recent developments on

this topic, ) A set of pseudotriangles whose dual im-

age is isomorphic to a given arrangement of pseudo-

lines will be called a realization of this arrangement,

We show that any arrangement of pseudolines can

be realized by a set of pseudotriangles. It, is tempt-

ing to conjecture that it can even be realized by a

1This latter algorithm, attributed to R. Wenger, applies

only to (convex) polygons and achieves an O(n) size for the

cover but not worst case size optimality. Finally we mention

that polygonal covers with few vertices can be used to answer

efficiently depth order queries on terrains; see M. de Berg [3,

pages 132-133].
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Figure 1: A pseudotriangle is a simply connected sub-
set T of the plane, such that (i) its boundary 6’T consists

of three smooth convex curves that are tangent at their

endpoints, (ii) T is contained in the triangle formed by

the three endpoints of these convex curves. For each ~,

O s ~ < 27r, the bcumdary of a pseudotriangle has exactly

one directed tangent line that makes an angle of ~ with
the positive x-axis. The curve of directed tangent lines to
T is described by its @parametrization .z(rj) : ‘R -+ S2,

where z(~) = —z(~ + T), and z(~) is a line with slope

~. (We identify the point (a, b, c), with c # +1, on the
2-sphere S2 = {(z, y, z) c ‘R3 I X2 +y2 +.z2 = 1} with the
directed line with equation ax + by + c = O and direction
u = (—b/r, a/r) c s], T = (az + b2)1/2. ) Therefore the

dual curve @ w {z(~), -z(#)} of the pseudotriangle is a

pseudoline in the projective plane 7J2 = s2/{~! -~}, Wo-
tient of the 2-sphere by its antipodal isomorphism. Ac-

cording to [1], two disjoint pseudotriangles share exactly

one common tangent line; in other terms the set of dual

curves of a set of pairwise disjoint pseudotriangles is an

arrangement of pseudolines, called the dual arrangement

of the pseudotriangles.

set of disjoint pseudotriangles, but so far we have

onl~ been able to prove this for a large class, of size

2’n , for some poistive constant c, of arrangements of

n pseudolines. A byproduct of our study is a lower

bound for the nu~ber of visibility graphs/complexes

of configurations of n convex obstacles of the form

2’*2, for some positive constant c. If we only con-
sider convex objects of degree d = O(na), for some

fixed O s a < 1, ( i.e., whose boundaries consist of

at most d arcs of complexity O(l)) the lower bound

is of the form 2Qfdn 10g‘).

2 Background material

Let O = {Oi } be a finite set of n pairwise disjoint

bounded closed convex subsets of the Euclidean plane

(obstacles for short). We assume that the bound-
ary of Oi is a @curve2 given by its ~-parametrization

2A smooth closed ~mv~ in the Euclidean plme is called a

d-curve, if for each 4, 0 ~ 4< 2n, the curve has exactly one

z~(~) as the product of nq ‘simple’ ~-arcs, in the sense

that the <2 common tangent lines of two q$-arcs are

computable in constant time. We set m = ~~=1 mi.

A maximal (minimao point of an obstacle is a bound-

ary point at which the tangent line is horizontal, such

that the obstacle lies below (above) this tangent line.

An extremal point is either a maximal or a minimal

point. A bitangent is a closed line segment whose

supporting line is tangent to two obstacles at its end-

points. It is called free if it lies in free space, i.e.,

the complement of the union of the interior of the

obstacles. We denote by B the set of free bit angents,

and by k its cardinality. Bitangents in B are oriented

upward.

Figure 2: The right-to-left property.

A pseudo-triangulation G is a maximal subset of

non-crossing free bit angents in B. The boundaries

of the obstacles and the bitangents in G induce a

regular cell decomposition of the plane, still called

a pseudo-triangulation and denoted by H(G). Ac-

cording to [1], the bounded free faces of ‘H(G) are

pseudotriangles, their number is 2n - 2, and the

cardinality of G is 3n – 3. The greedy pseudo-

triangulation Go = {bl, b2, . . . . b3n_3} is defined as

follows : (1) bl has minimal slope in B; (2) b;+l

has minimal slope in the subset of bitangents in

B disjoint from bl, b2, . . . . bi. According to [2], the

pseudo-triangulation ‘HO = ‘H(Go) is computable in

O(m + n log m) time, and verifies the remarkable

‘right-to-left’ property.

Theorem 1 (Right-to-left property) (2] For all

b E Go, and at! t E B crossing b, the slope oft is

greater than the slope of b, i.e., t pierces b from its

right side to its Iefl side. •1

The endpoints of the bitangents in B subdivide the

boundaries of the obstacles into a set of arcs; these

point where its tangent makes an angle of @with the positive Z-
axis. Such a curve is described by its &parametrization z(~) :
‘R ~ 7?2, where z(~) = z(d + 2m) and the unit tangent vector
is u(4) = (cos@, sin@) for all @E ‘R. By definition Z([#l, 42]),
with O < 42 – @l < T, is called a o-arc.
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Figure 3: Neighborhood of the visibility complex at a
bitangent with direction u(~); d+ (~-) refers to d + c
(f#J– 6) for an infinitesimal c ~ ‘R+.

arcs and the bitangents are the edges of the vis-

ibility graph of the set of obstacles. The pseudo-

triangulation ‘HO induces a ‘partition’ of B that will

be useful in the sequel: For each pseudotriangje T

let T* be the slope-increasing sequence of bitangents

in B whose initi~l or terminal point lies on 8T, and

let T~ni be the subsequence of bitangents in T“ with

initial point on dT; finally for b c G incident along

its right, side to T, we denote by Q(b) the sequence of

bitangents of T~ni that cross b. We assume that each

of these sequences of bitangents is represented by a

doubly-linked list.

The structure of a visibility graph is better described

in ‘dual space’ via the notion of visibility complex.

A ray is a pair (p, u) c I?z x S1. The point p in
the plane is called the origin of the ray, and the unit

vector u is called its direction. For a point p in the

plane we are interested in the point-obstacle (i.e., a

point on U~) that we can see from p in a certain

direction u in S1. This point is called the forward

point-wew along the ray (p, u) (the backward point-

view along the ray (p, u) is the forward point-view of

the opposite ray, (p, –u)). The obstacle containing

the point-view is called the view (from p). We denote

by y(+Oi) (y(–Oi)) the curve of rays (z~(~), u(~))

((zi(~), –u(o))) emanating from and tangent to Oi,

oriented along increasing values of ~.

The visibility complex X is a cell-decomposition of

the quotient space V of the set of rays by the equiva-

lence relation -, defined by (p, u) w (q, u) if (p, u) and

(g, u) have the same forward point-view. (A point in

V is still called a ray.) Its O-cells (=vertices) are the

intersection points of (the images under the canonical

map 7?2 x Sl ~ V of) the curves in Y(AO) (therefore

we have a 2-1 correspondence between the vertices of

X and the bitangents in B), its l-skeleton is sup-

ported by the curves in y(+O) (therefore we have a

2-1 correspondence between the l-skeleton of X and

the set of edges of the visibility graph), its 2-skeleton

is supported by the set of rays with origins on the

obstacles’ boundaries, and its 3-cells are the sets of

rays with origins in the obstacles’ interiors. Modulo

the addition of two obstacles at infinity, the poset of

cells of X ordered by the inclusion relation of their

closures is an abstract polytope of rank 4; the vertex-

figure of a vertex is the face poset of a 3-dimensional

simplex. (See Figure 3.)

We will represent the visibility complex X by the

set of planar subcomplexes3 X(O~ ), whose underly-

ing spaces V(Oi ) is the space of rays with backward

view Oi. (Since Oi is convex, X(Oi ) is planar. ) Each

X(Oi ) is augmented with a point location data struc-

ture so that given a ray in V(Oi ) its forward view can

be computed in O(log m) time. The whole represen-

tation uses O(k) space.

l~g
y(a~

a)
y(a~)

?’(R’, L’) 0

@
y(a )

T(L u R, R’
Y(T) \ \

\ tz ~(~’, W y(T)

‘\~(R’, L) tl \

@ ‘1
\ \ t3

-f(al r(L u R, L’ r(.L’, R’)

Q @
7(U3 -f(az)

Figure 4: The visibility complex (restricted to upward

rays) X(T) of a red pseudotriangle T with cusp points w

consists of 6 planar patches that correspond to sets of rays

emanating from and ending on specific chains of T. Let

~(c~ c’) be the set of rays emanating from chain c and
ending on chain C’ then patch 1 is r(R’, L’), etc. (The

symbols at, R, R’, L, L’ refer to Figure 5. -Y(T) is the curve

of upward rays emanating and tangent to T, and y(ai ) is

the curve of upward rays with origin ai. )

The definition of the visibility complex extends in

a natural way to the case of non-convex obstacles.

However cusp points and inflection points give rise to

new types of vertices in the visibility complex. In the

sequel we use the set of visibility complexes X(T) of

the pseudotriangles T in Ho. We refer to Figures 6

and 4 for a description of T and X(T). (Here the

obstacle is the exterior of the pseudotriangle).

3 A sulbset W of V is said to be planar if the canonical map
W + S2 which associates with the ray (p, u) the directed line

through p and direction u, is one-to-one.
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3 The ray shooting problem

Theorem 2 A set O of n pairwise disjoint convez

obstacles wtth m simple arcs in total can be stored in a

data structure of size O(k) such that the forward view

along a query ray can be computed in time O(log m);

here k = 0(n2) is the stze of the visibility graph of

the set of obstacles.

\ ~L? ~< ~,,1it” Case 1
$

/,/\ ~

kJ

/
,

/’ b>

Case 2.1 Case 2.2

Figure 5: The three cases of the ray-shooting algorithm.

.
The idea behind the construction of the ray shooting

data structure is based on the observation that if the

backward view is known then the ray shooting prob-

lem reduces to a point location problem in the pla-

nar subcomplex associated with the known backward

view. But how can we compute the backward view ....

without computing the forward view? The idea is to

add line segment obstacles that play the role of obsta-

cles only along the backward directions. The right-to-

left property of the greedy pseudo-triangulation GO is

all that we need to make this idea working.

For C a convex chain of 7-fo (i.e., an alternating se-
quence of arcs and bitangents of ‘lfO without cusp

points) let V(C) to be the (2-dimensional) planar

space of upward rays emanating from C and pointing

toward free space. The forward view mapping with

respect to the obstacles and the lefl sides of the bi-

tangents in GO induces a partition of V(C), denoted

by X(C). For each bitangent b E Go we will de-
fine a convex chain4 C(b) of ‘HO that contains the left

side of b. Our ray-shooting data structure consists of

the set of planar maps X(O) and the set of planar

maps X( C(GO)) ,“each augmented with a point loca-

tion data structure. We explain now how a ray shoot-

4We use a chain C(b) instead of b itself to achieve an O (k +

m) size for our ray-shooting data stmcture.

ing query reduces in O(log m) time to O(1) point lo-

cation queries in O(1) of these maps.

The algorithm proceeds as follows. Let r = (p, u) be

the query ray directed, w.1.o.g, upward, i.e., u E S:.

We start by computing the forward and backward

point-views along r, denoted by p’ and pl’ respec-

tively, in the pseudo-triangulation ‘7-10, i.e., p’ (p”)

is the first point-obstacle (i.e., in Ud) or point-

bitangent (i.e., in UG’O) that is visible from p along the

direction u (–u). This can be done in O(log m) time

after a suitable preprocessing of the visibility com-

plexes of the pseudotriangles in ‘Ho. We distinguish

several cases. Case 1. p’ (or p“) is a point-obstacle,

say on obstacle 0; in that case the problem reduces

to locating a point in the planar map X(0). Case

2. p’ and p“ ly on bitangents b’ and b“, respectively.

We subdivide this case into two sub cases. Case 2.1.

P’ (or P“) lies on the left (right) side of b’ (b”), with
respect to p. In that case the problem reduces to

locating a point in X(0), for some obstacle O that

depends only on b’ or b“; see Lemma 1. Case 2.2.

p’ and p“ lies on the right and left sides of b’ and

b“, respectively. In that case we compute the forward

point-view p’” along the ray (p’, u) in X(b’). If p’”

lies on an obstacle we are done, if it lies on a bitan-

gent, say b’”, (necessarily on its left side) we restart

the algorithm with the ray (p’”, u); the crucial point

is that the backward view of this ray in ‘Ho is now the

right side of b’”, and consequently we are in case 1 or

2.1 of our algorithm.

Of course we have to show that the whole set of pla-

nar maps X( C(b)) with b c Go, each map being

augmented with a planar point-location data struc-

ture, can be represented by a data structure with

O(k) size. To this end, we are going to define a

partial order < on Go, and, for each down-set5 A
of (G., <), (1) a 2-dimensional cell complex XA, (2)

a partition of XA in planar sub complexes {XA (Cj )}
whose underlying spaces are spaces of rays that em-

anate from convex chains {Cj }, called the canonical

chains of A, such that for all b c max< A there is a

unique chain Cj (= C(b)) that contains the left side

of b. Then given an unrefinable chain of down-sets

of (Go, <) :Ao=Goo A1 . . . o A3n-3 = @we will

show that X~t+, (and its partition) can be computed

from XA, (and its partition) in O(ki) time; here ki

is the cardinality of Q(bi), where bi = Ai \ Ai+l. In

this way we can store the whole collection of planar

maps X~, (Cj ), each augmented with a point location

data structure, in O(k) space using a persistent data

structure. Before defining this partial order we justify

the reduction claimed in case 2.1 of our algorithm.

5A down-set A of (G., <) is a subset of Go such that if

bEAandb’ <bthenb’ EA.
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Ray shooting inside a pseudotriangle. A pseu-
dotriangle is said to be red (green) if its extremal point
is a maximal (minimal) point. Let T be green pseudo-
triangle with extremal point m and cusp points al, a2

and a3. Walking in clockwise order around its bound-
ary, starting from its minimal point m, we find suc-
cessively the convex chains mal, alaz, azaa, and asm,

respectively denoted by R, L’, R’ and L and called its
canonical chains, as illustrated in Figure 6. Similar
notations are used for red pseudotriangles.

Lemma 1 For a-red (green) pseudotriangle the chain

R (L) is free of bitangents.

Let T be a red pseudotriangle of ‘HO. The forward

(backward) view function is a constant function on

patches r(R’UL, L’), r(L’, R) (r(R’, L), r(R, R’uL’)).

Let T be a green pseudotriangle of?lo. The backward

(forward) vzew function is a constant functton on

patches r(R’, L’UR), r(L, R’) (r(R, L’), r(R’UL’, L)).

Proof. Assume that there is a bitangent b on chain
R of a red pseudotriangle T. Let T’ be the pseudotri-
angle incident along the left side of b. The common
tangent line of T and T’ is the supporting line of a
free bitangent that crosses b from left-to-right, a con-
tradiction with the right-to-left property. A similar
argument applies to the chain L of a green pseudotri-
angle.
Let T be a red pseudotriangle and consider the patch
r(R’ U L, L’). We prove the result by contradiction.
Assume that the forward view function along rays in
r(R’ U L, L’) is not constant. In that case there is
an upwardly directed line segment with initial point
a on the chain R’ U L, that pierces L’ from left to
right, and termir@ point b on some obstacle Oi; the
segment is tangent at b to Oi. Let Mi be the max-
imal point of Oi. Consider the curve C with initial
point the first cusp point al of T, that runs along R’

or L towards the point a, then along the line segment
[a, b], and then along the boundary of Oi from b to Mi,

its terminal point. The shortest path from al to Mi

homotopy equivalent to C’ contains necessarily a bi-
tangent emanating from R! or L and piercing L1 from
left-to-right. This is a contradiction with the right-
to-left property of the greedy pseudo-triangulation.
A similar argument applies to the other cases. ❑

Acyclic orientation of the greedy pseudo-

triangulation. By definition, the canonical orien-
tation of a pseudotriangle in ‘HOis given by the follow-
ing rules concerning the orientation of its canonical
chains R, R’, L and L’ : (1) R’ and L’ are oriented
upward; (2) R is oriented upward or downward de-
pending on whether T is green or red; (3) L is ori-
ented upward or downward depending on whether T

is red or green, Note that the orientations of R and L

az al as

Figure 6: A green (red) pseudotriangle and its canonical
orient ation.

A

Figure 7: Canonical orientations of an obstacle and (by
convention) of the convex hull.

are consistent at the extremal point of T. According
to the first part of Lemma 1 one has:

Lemma 2 The canonical orientation of a pseudotri-

angle is consistent with the upward orientation of its

bitangents. ❑

Therefore the canonical orientations of pseudotrian-
gles induce a canonical orientation of Ho. Note that
if O is an obstacle with minimal (maximal) point m

(M), and if z (y) is the third cusp of the pseudotri-
angle with extremal point m (M), then the arc zmy

(yMz) is oriented counterclockwise (clockwise), It
follows that ‘HOis acyclic. Similarly the dual directed
graph ‘H; of ‘HO(a dual edge is directed from the right
side to the left side of the corresponding primal edge)
is acyclic. Let e = (Tail(e), Head(e)) be an edge of
Ho and let e* = (Tail(e”), Head(e*)) be its dual edge
in ‘?-t:. The accessibility relations in ‘HO and ‘H: are
compatible, i.e., the transitive and reflexive closure
of the rellation defined by Tail(e) < e < Head(e) and
Tail(e” ) < e < Head(e* ) is a partial order (on the set
of faces, edges, and vertices of ‘HO.
The complexes X,4. For p a point lyin,g on a bi-
tangent [) c Go we denote by ~(p) the set of upward
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rays {P} x S+, and by ~min(ti) (~max(~)) the set of
upward rays (p, u) that point into the right (left) side
of b, respectively denoted by bR and b~. We denote
by E the disjoint union of the closed pseudotriangles
in ‘Ho; note that a point-bitangent appears twice in E.

Let A be a down-set of (Go, <). We denote by

JA (JGo\A ) the endpoints of the bitangents in A

(G. \ A). The complex XA is the ‘visibility com-
plex’ of the scene whose ‘obstacles’ are (1) the obsta-
cles in 0, (2) the bitangents in A, and (3) the left
sides of the bitangents in GO \ A, i.e., b in Go \ A is
an obstacle only $o~ rays that pierce b from its left
side to its right side. The definition is a last but
one variation on quotient space : We form a quotient
space VA of E x S: by identifying the rays (p, u) and
(q, u) if the pair ((p, u), (q, u)) belongs to the topo-
logical closure of the equivalence relation ‘A defined
by (p, U) *A (q, fi) if (1) p and q iy in the interior

of E and u is not the direction of a bitangent, (2) p

and q are visible along the direction u, (3) ~q] pierces
only bitangents in Go \ A, and (4) the bitangents in
GO \ A pierced by ~q] are pierced from right-to-left.
The space VA is locally a two-dimensional set, except

Figure 8: Neighborhood of the visibility complex XA at
a vertex corresponding to a bitangent in GO\ A. Such a
vertex is incident to 6 edges and 7 faces.

(1) at (upward) rays 7(+0), (2) at rays ~(JA), and
(3) at rays Tmin(JGO\A). If we fix a direction u in
S+ the set of rays in VA with direction u is locally
a one-dimensional set, called the cross-section of VA

at u. The curves ~(+0), Y(JA), Tmin (JGOiA), and the

cross-sections at O and m induce a 2-dimensional cell
decomposition of VA, denoted by XA. One can easily
check that its vertices are the intersection points of
the curves in y(+O) (in one-to-one correspondence
with the bitangents in Go U Q(GO \ A)) plus the end-
points of the curves 7(JA ) and ~min(JGOJA ), that the
curves ~min(~GO) and 7~~~ (JA ) are edges, each inci-

dent to a unique face. As illustrated in Figure 8, a
new type of vertices corresponding to bitangents in
Go \ A appears.

n d’

Figure 9: The cutting process.

Planar decomposition of XA. We introduce now
a decomposition of XA into planar sub complexes. We
cut the visibility complex along each of its edges, lying
on the curves yi, but we keep glued the two faces
incident to the edge that correspond (locally around
the edge) to set of rays with the same backward view,
as illustrated in Figure 9. In this way we decompose
XA into a set of planar subcomplexes (with pairwise
disjoint interiors) Xi. The underlying space Vj of

Xi corresponds to the set of upward rays emanating
from a convex chain C’j of Ho. These chains are called

the canonical chains of XA. For example consider the
case A = Go; the complex XGO is composed of 2n – 2
connected components : one per pseudotriangle in the
pseudo-triangulation. Let XGO(T) be the visibility
complex associated with the pseudotriangle T. If T

is red then the complex XGO(T) is decomposed into 3
planar subcomplexes: namely T(R?, L’ U L) (patches
1 and 2), r(L U R, L’ U R’) (patches 3 and 5), and
T(L’, R u R’) (patches 4 and 6). The canonical chains
are Rt, L U R, and Lt.

Figure 10: The canonical chain CJ is oriented (this ori-
entation should not be confused with the canonical orien-
tation of 7-fo. ) such that Vi is the set of rays pointing on
the right side of C3.
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Description of the canonical chains. Let z be
an endpoint of a bitangent b in Go. We denote by
bR, bL the right +nd left sides of b, respectively. We
denote by aI, aT the arc of which z is the initial and
terminal point, respectively. The point .z is said to
be of type In or Te depending on whether z is the
initial point or the terminal point of the bitangent
b (directed upward). The point z is said to be of
type Le or Ri depending on whether the obstacle is
on the right side or left side of b. At the beginning
of the algorithm both sides of b are obstacles; upon
termination only the right side bR is still an obstacle.
The local canonical chains at b E Go are described in
the following table (see also the above figure).

z type
InLe
InLe
InRi
InRi
TeLe
TeLe
TeRi
TeRi

bc

A

Go\A

A
Go\A

A

Go\A

A

Go\A

prefix of C(b)

UI

;;

bR

bL

aT

suffix

.
Figure 11: Local canonical chains at b e Go.

Update of (the canonical decomposition of)

XA .
pute

Let b E max< A. We explain now how to
XA\{a} from XA.

com-

~(~R, b) Backz

B(iclcl

Figure 12: Update of XA.

Let TR (TL ) be the pseudotriangle incident upon b

along its right (left) side. We denote by Y(TR, b) the
curve of rays emanating from TR, tangentto TR, and
with forward view the (right) side of b. This curve is
represented by the sequence Q(b).

Let Backward (Fe?’wa?d(bR)) be the set of
rays in VA with backward (forward) view the left
(right) side bL (bR) of b. Clearly the space
VA\{b} is obtained from VA by identifying rays in
Backward(bL ) and in Forward that are sup-
ported by the same line.

Let C = clbL6’z be the canonical chain c)f XA that
contains the left side bL of b. The set Backwa?’d(bL)

is a subset, bounded by the curves -yma,(db), of (the
underlying set of) the planar complex XA (C). The
curve of rays 7(TR, b) splits Backward(bL ) into two
parts denoted by Backl(bL) and Backz(bL).

The curve of rays y(T, b) splits Forward

into two parts Forwl(bR) and Forwz(b,R). part
Forwi(b~) is a subset, bounded by tlhe curves

~max(~b), of the (underlying space of) a canonical
sub complex of XA, denoted by XA (C;).

Upon removal of b the left side bL of b disappears
from the canonical chains and we should rearrange
the chains Cl, C2, C; and C; to create new canon-
ical chains. The patches Backi (bL) and ]Torw~(bR)

are then used to update their corresponding canoni-
cal complexes. We distinguish several cases.
Case 1. The endpoints of b are cusp points

of TL. In that case C = bL and Backward =

[XA(C)[, The chain C disappears and we should just
update the the complexes associated with the canon-
ical chains C;. This is done as follows. l–-We intro-
duce in XA (C;) the curves -ymax(c?b). These curves
bound the single patch Forw~(bR) in XA (C:). 2– We
cut the complex XA (C) along 7(TR, b). (This is done
in time proportional to the number of bitimgents in
Q(b) with the representation of B introduced in sub-
section 2.) The resulting piece Backi (bL ) is glued
with the piece Forwi(bR) along their common bound-
aries supported by the curves ymaX(db) and Y(TR, b).

3– We remove the patches Forwi (bR) and the curves

~max(~b).
Case 2. The endpoints of b are cusp points

of TR. l[n that case the curves ~maX(~b) appears in
the boundary of X(C(). The chains Ci and C: are
concatenated to create a new chain Cr. To create
XA (Cfl) we proceed as follows 1– We cut the com-
plex XA (C) along Y(TR, b) = y(TR). The resulting
piece that contains Back~(bL) is glued with XA (C:)
along ~(’~R, b); 2– The piece Forw~ (bR) is removed.
Case 3 and 4. One endpoint of b is a cusp

point of TR and the other is a cusp point of TL.

Similar to the two previous cases.
From the above discussion we get:
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Lemma 3 The set of planar subcomplexes associated

with XA~{b] can be computed from the set of p~anar

subcomplexes associated with XA is time proportional

to the number of biiangents in Q(b).

Keeping the history of the construction of the se-
quence of complex XA we get the ray-shooting data
structure in time O(k) up to some polylog factor, due
to the use of dynamic point location data structures.

4 Covering problems.
According to L. Fejes T6th [5], the boundary of a
set of n > 3 interior pairwise disjoint convex sets
can be illuminated by 4n – 7 points. The proof of
L. Fejes T6th proceeds by growing the convex sets
unfoundedly in all directions but the growth (in a
given direction) is limited by the condition that the
convex sets remain pairwise interior disjoint. In this
way the convex sets will expand into convex polygons
that fill the plane except for a finite number of gaps
that are also convex polygons. A suitable choice of
the lighting points at the vertices of the gaps leads
to the 4n – 7 bound. It is not clear how to turn
this ‘growing process’ into an (efficient) algorithm to
compute a lighting set. L. Fejes T6th provides also
sets of n > 3 convex sets which cannot be illumi-
nated by less than 4rI — 7 points but leaves open a
practical characterization of all cases when this num-
ber of lighting points is required. It turns out that
the computation and characterization problems can
be solved using the concept of pseudo-triangulation.
Let us say that a. visibility complex requires z light-
ing points if z lighting points are always sufficient
and sometimes necessary to illuminate the boundary
of any realization of the visibility complex.

Theorem 3 Computing a lighting set for a set of n

pairwise disjoint convex sets reduces in O(n) time to

computtng a pseudo-triangulation.

The vas~bihty complezes requiring 4n – 7 lighting

poznts are in one-to-one correspondence with the tri-

angular planar graphs on n vertices.

Proof. Since the boundary points of the convex sets
are the boundary points of the pseudotriangles it is
sufficient to tind a lighting set for the pseudotriangles
of a pseudo-triangulation. How many lighting points
are necessary for a pseudotriangle? Two in general
(computable in O(1) time) but only one if a side of
the pseudotriangle reduces to a line segment. Let a
be the number of pseudotriangles with a line segment
side or, equivalently, the number of exterior6 bitan-
gents in the pseudo-triangulation. From the above

6A bitangent to obstaclesO and O‘ is said to be interior
(exterior) if its supporting line separates(doesnot separate)
the obstaclesO and”O’.

discussion a lighting set with 4n – 4 – a lighting
points exists and is computable in O(n) time from
the pseudo-triangulation. It is no hard to see that
a ~ 3, from which the result follows (taking care to
send the lighting points on the convex hull far enough
to illuminate also the boundary of the convex hull).

According to the previous discussion a necessary
condition for a visibility complex to require 4n – 7
points is that no more than three free exterior bi-
tangents exist. This condition implies strong condi-
tions on the visibility complex: (1) the number of
exterior bit angents is three; they all ly on the con-
vex hull; (2) the visibility complex depends only on
the planar graph whose vertices are the obstacles and
whose edges are the interior bitangents of any pseudo-
triangulation. From (1) we can deduce that this pla-
nar graph is triangular. Conversely, according to the
Koebe Representation Theorem’ [9, page 96], any tri-
angular planar graph on n points is realizable as the
cent act graph of a set of n interior disjoint circles.
While configurations of circles require only 2n – 2

lighting points (see [5]), a slight perturbation of the
circles leads to configurations that require 4n – 7 light-
ing points. ❑

A polygonal cover of a set {Oi} of n pairwise disjoint
convex sets is a set {O:} of pairwise disjoints con-
vex polygons such that Oi ~ 0~. H. Edelsbrunner
et al [6] have shown that no more than 6n — 9 sides
and 3n – 6 slopes for n ~ 3 are required for a polyg-
onal cover—these bounds being optimal in the worst
case; the proof is based on a growing process simi-
lar to the one used by L. Fejes Tc%h, and therefore
doesn’t lead to an (efficient) algorithm. Once more
the notion of pseudo-triangulation is the key idea to
achieve optimal time complexity.

Theorem 4 Computing a worst case optimal (with

respect to the number of slopes and sides) polyg-

onal cover of a set of n pairwtse disjoint convex

sets reduces in O(n) time to computing a pseudo-

triangulation.

Proof. Let D be the set of closed half-planes bounded
by the supporting lines of the bitangents of a pseudo-
triangulation. Let Vi be the set of the half-planes
D in ‘D such that (1) Oi ~ D and (2) the bitan-
gent that defines D is tangent to Oi. Since Oi is
convex, Vi is a non-redundant presentation of the
convex polygon Pi = fl pi. Clearly {Pi} is a con-
vex polygonal cover with 6n — 6 sides realizing no
more than 3n – 3 slopes. The computation of {Pi}

reduces clearly in linear time to the computation of
the pseudo-triangulation. •1
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5 Realizability questions

We say that an arrangement of n pseudolines is k-
stretchable if it is isomorphic to an arrangement of
pseudolines which satisfies the following property: its
number of transversal intersection points with any
(straight) line doesn’t exceed 2k + n. Clearly an ar-
rangement of pseudolines is stretchable iff, it is O-
stretchable. Similarly an arrangement of pseudolines
is l-stretchable iff. it is realizable by pairwise disjoint
pseudotriangles. Arrangements of pseudolines realiz-
able by k + 1 by k + 1 disjoint pseudotriangles are
examples of k-stretchable arrangements.

Theorem 5 Any arrangement ofn pseudolines is re-

alizable by set o~n pseudotriangies. (Therefore any

arrangement of n pseudo !ines w n-stretchable).

Proof. Omitted from this version. ❑

Figure 13: The regular k–gon, with small circles at
its vertices.

Figure 14: Perturbing L(C~, C~) s Lh, for {i, j} ~
E. Here q~,mj(i,j, –h) = r(~,~)(i,.j, h) = a({i, ~}) =
+1.

Theorem 6 The number of arrangements of n pseu-

dolines reahzable by disjoint pseudotriangles (= I-

stretchable) is 2@fn2~.

To p;ove this theorem we are going to define a class
of 2n Is sets7 of n pairwise disjoint convex obstacles
such that the arrangements of the dual curves of this
convex obstacles (called the order types of the sets,
by analogy with the order types of sets of points)

7Relatedto an eYamDlein [10]

are all combinatorially distinct, and therefore in num-
ber 2n2f8. Consider a pseudo-triangulation of any of
these sets. The dual image of its pseudotriangles is an
arrangement of pseudolines, that is obvicmsly realiz-
able by dis~oint pseudotriangles. Since there are only
2°[n log’1 different pseudo-triangulations for each set,
our result follows.

Theorlem 7 The number of order types of sets of n

disjoint convex objects in the plane is at least
1. y22/t3.

2. 2n(d’’’10gnJ, if the objects are of degree d = O(na)j

for some fixed a with O < Q <1.

In the proof we need the following lemma, whose (not
very difficult) proof we omit from this version.

Lemma 4 The number of labeled graphs with n ver-

tices and maxima! degree at most d is 2n(dn 10gn), pro-
vided d = O(na), for some fixed Q with O s a < 1,

Remark For an asymptotically sharp result, under
stricter conditions on d, we refer to [11], Since the
proof of the latter result is quite involved, we prefer
to give the simple proof of the weaker lemma 4.
Proof. We shall prove both parts simultaneously. Let
k = [n/2~. Consider a regular k–gon with vertices

PI, . . . . pk. Put a Small circle c~ of radius @centered
at pi. Here @is small enough to guarantee that no line
in the plane intersects more than 2 of the circles. We
denote by L(cC, c’C’), with c, d E {+, –}, the tan-
gent line that is directed from C to C’ and contains
the objects C and C’ in their left or right half-planes
according to the sign c and e) in front of C and Cl.
Draw all common tangent lines of any pair of circles
parallel to the sides and the diagonals of the k-gon (so
for any pair of distinct circles we draw exactly 2 out of
their 4 common tangent lines), see Figure 13. This set
of lines is partitioned into k classes of pamallel lines,
denotecl by Lk+l, . . . . Lzk. All lines in class Lh are
given the same, arbitrarily chosen, direction. Let T
be the set of triples (i)j, h) such that L(C$, Cj) ● Llhl.

So for(i, j,h) ET we have 1 ~ i,j < k <lhl~2k,
i # j, and (i, j, h) e ‘T iff. (ilj, –h) E T. Obviously
lT~ = @(kz). Let V = {1,..., k}, and let f; be the set
of labeled undirected graphs, in the first case, and the
set of labeled undirected graphs of maximal degree
not exceeding d— 2 in the second case. The restriction
on the degree will become clear from the construction
below. For a pair (E, m), such that (V, E) c ~ and
u : E —+ {–1,+1}, define ~(E,a) : T ~ {–1,+1} by

{

u({i, j}), if {i, j} E E,

T(~,a)(i, j, h) = –l,if{i,j} @E and h;, O, Note

+1, if {i, j}”@ E and h z: O.
that ~(fi,~) # Y(E,~) far (E, ~) # (~’, ~’). N~~~~
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~~1> 1~1such map-there are at least ~E:(v,~)~~2 _

pings T + {– 1, +1}. Since the number of graphs in

~ is 2(;), in the first case, and 2Wd~l“g ~) in the second
case, the proof is complete, provided we show that ev-
ery r(E,Oj is realizable. By this we mean that there is
a set of 2k disjoint convex objects 01, . . . . ozk such

that qE,~)(i,j,+hJ satisfies, for all triples (i, j, +h) c T
with h >0:

condition (*): ~(E,c)(i,~, +h) = 1(–1) if the sup-
port line of +Oh, parallel to L(O,, Oj ), lies to the left
(right) of L(O,, O1).
(By convention a support line of oh (–Oh ) contains
oh in its left (right) half plane.)

So let us describe the construction of the convex ob-
jects 01, ..., OZ~ for some fixed a : E + {–1,+1}.
These objects are obtained by
1. slightly perturbing the objects bounded by the cir-
cles Ci; this yields objects 0;, 1 ~ i ~ k;
2. adding a convex object oh, k < h ~ 2k, that in-
tersects all lines in Lh ahead of the regular k–gon.
On each circle Ci; 1 ~ i s k, we introduce a set Ti of
2k disjoint small chords, centered at the points whose
tangent lines are parallel to the sides and diagonals
of the k-gon. (See Figure 14.)

Consider a triple (i, j, h) c T with h > 0. Note
that L(C,, C’j) E Lh. If {i, j} E E we perturb the
line L(ci, C’j) into a line L(~,O)(i, j), such that

(i) the tilt of L(~,o)(i, j) with respect to L(C,, CJ) is
+9 if a(i, j) = +1;

(ZZ) L(E,~)(i, ~) intersects Ci (Cj) in the same chord
of Ti (Tj) as L(Ci, Cj).

It is not hard to see that there is a small p > 0
satisfying these conditions. ( See also Figure 14.)
The sign of the tilt is determined by our intention
to insert a convex object oh that intersects L(Ci, Ci)

ahead of Ci and Cj, and that lies to the right (left) of

L(E,~J(i,.0 iff. ~i~,~)(i,j, h) = –1 (+1). If {i,~} @E
we take L(~, O)(i, j) = L(Ci, Cj). Note that this way
we perturb exactly di of the lines tangent at Ci, where
di is the degree of i E V in the graph (V, E).

We first put, for 1 ~ i ~ k, a convex object Oi at
vertex pi of the regular k–gon, that is tangent to all
lines of the formrL(E,o)(i, j) or L(~,O)(j, i). TO this
end consider the convex object O; bounded by the
circle Ci, and the di lines L(~,cJ(i, j) or L(E,~)(j, ~),

that intersect the interior of this circle. Note that we
still have to perturb object 0( so that its boundary
becomes algebraic (and of degree at most d in case
2). However, all of the k lines of the form L[E,mJ(i, ~)
or L(E,O)(j, i) are tangent to it.

We now introduce a convex object oh (of degree
O(l)) that
(i) intersects all lines L(Ci, Cj) E Lh ahead of Ci
and Cj;

(’ii) lies to the right (left) of L(E,m) (i, j) iff.

‘(-5,0 )(i, j, h) = –~ (+1).
Condition (i) implies that ~(E,o) (i, j, +h) satisfies
condition (k), if L(~,O)(i, j) # L(Ci, Cj), viz. if
{i, j} @E. Condition (ii) implies that ~(E,a)(i, j, +-h)

satisfies condition (k), if L(E,a)(~, .i) = L(Ci, Cj)>

viz. if {i, j} c E. Therefore the order type of the

set {o;, . . . . ok, Ok+l, . . . . Ozk} iS a realization Of

~(E, u) . ❑

In the full version of the paper we show that all
sets in the proof of theorem 7 have distinct visibility
graphs/complexes. This shows:

Corollary 1 The number of vis-

ibility graphs/complexes of sets of n disjoint convez

objects in the plane is at least
1. 2n2/g;

2. 2Q(dn10gn) if the objects are of degree d = O(n”),

for some fixed cr with O ~ a <1.
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