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3 UNIFICATION OF BOX
SHAPES IN MOLECULAR
SIMULATIONS

In molecular simulations with periodic boundary conditions the computational box
used, may have five different shapes: triclinic, the hexagonal prism, two types of
dodecahedrons, and the truncated octahedron. In this chapter we show that every
molecular simulation, irrespective of the shape of the initial computational box, can
be done as a simulation in one of the other ones, i.e. we show that in a preprocessing
phase a simulation formulated in one particular box can be transformed into a
simulation in another box such that the simulation in the new box is exactly identical
to the simulation in the original one. This means that every molecular simulation
may be done in the same type of box. Because the triclinic box is the easiest one to
implement, we pay special attention on how to transform the other four box types into
triclinic boxes. As a consequence, simulations in the often used truncated octahedron
are superfluous; they may be done in a much simpler way in a triclinic box.

3.1 Introduction

To mitigate finite system effects most molecular simulations are done on systems
with periodic boundary conditions (P.B.C.). This means that the computational box
is surrounded in a space-filling way by replica boxes, with identical content. In terms
of the crystallographic Bravais lattices we consider only triclinic systems, i.e systems
without symmetry elements.

In [1] it is proven that in 3-D space there are five convex1 box types (see Figure 3.1)

(1)This property is not strictly necessary, but image calculations would become very complex
for a non-convex box.
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34 Chapter 3 Unification of Box Shapes in Molecular Simulations
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FIGURE 3.1 Instances of the triclinic box, the hexagonal prism, two types of dodecahed-
rons, the truncated octahedron, and the most regular instance of the truncated octahedron, in
this chapter designated by PCT1, PCT2, PCT3, PCT4, PCT5, and PCT5R respectively.

that can be stacked in a space filling way, i.e. that there are five possible types of
boxes which may serve as a computational box: the triclinic box, the hexagonal
prism, two types of dodecahedrons, and the truncated octahedron. For short we will
designate these box types by PCT1, PCT2, PCT3, PCT4, and PCT5, where PC
stands for ‘Primitive Cell’, and T stands for ‘Type’. The notion ‘primitive cell’ will
be explained later. The rectangular instance of PCT1 will be designated by PCT1R
and the most regular instance of PCT5 by PCT5R. In the M.D. world, PCT5R is often
called ‘the truncated octahedron’, but as we will show later it is only the most regular
instance of a broader class of boxes. In the early years of molecular simulationPCT1
was used. Later PCT3 was introduced [9], and then PCT5R [8].

In current implementations of molecular simulation algorithms, the shape of the
computational box has to be taken into account at many places in the algorithm,
notably in neighbour searching, in non-bonded force calculations, in bonded force
calculations, and in the part in which particles are reset into the box. For the
computational boxes PCT2, : : :, PCT5, which have a complex shape, calculating the
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position of image particles outside the box as a function of their position in the box,
is complex. For this reason, in most molecular simulation packages only a limited
set of box shapes has been implemented. E.g. in the molecular dynamics package
GROMOS [2] only a limited instance of PCT1 and PCT5R have been implemented.

In this chapter we will show that every molecular simulation which is formulated
in one of the boxes PCT1, : : :, PCT5, can be transformed into a simulation in any
one of the other boxes. So, a simulation, formulated in PCT2, : : :, PCT5 can be
transformed into a simulation in PCT1 or PCT1R. These transformations can be
done in a preprocessing stage of a molecular simulation, so the actual simulation
can take place in for example PCT1 or PCT1R, including neighbour searching, non-
bonded force calculations, bonded force calculations, resetting particles into the box,
pressure scaling, etc. The simulation in PCT1 and PCT1R is exactly identical to
a simulation of the initial, untransformed system. So, for example, the number of
particles and interactions to be evaluated is exactly the same in all cases.

The structure of this chapter is as follows. In Section 3.2 we define the shape of
PCT1, : : :, PCT5 in an algebraic way by a lattice and an alternative metric. Using this
representation we derive the main theorem of this chapter. The lattice-and-metric
way of defining PCT1, : : :, PCT5 is not suitable for geometrical considerations.
Therefore, in Section 3.3 we introduce a different, but equivalent representation of
PCT1, : : :, PCT5. Using this representation, we show that PCT1, : : :, PCT4 are
degenerate instances of PCT5, and we show show how a tiling of the space with
PCT5 defines a lattice. In Section 3.4 we define a PCT1 and a PCT1R in terms of a
given PCT5, such that PCT1 and PCT1R define the same lattice as PCT5. Because
PCT1, : : :, PCT4 are degenerate instances of PCT5, the same expressions may be
used to define a PCT1 and a PCT1R in terms of PCT1, : : :, PCT4.2 In Section 3.5
we show how to map particles from one box into another one. As an example, in
Section 3.6 we show how a simulation, formulated in PCT5R, is transformed into
PCT1 and PCT1R.

The fact that every simulation, formulated in some box may be transformed into
a simulation in an other box, clarifies a number of unresolved matters. Notably the
pressure scaling of simulations in an PCT2, : : :, PCT5 box, controlling the long
range order of a molecular systems, and the maximum allowed cut-off radius. These

(2)Obviously, transforming PCT1 into PCT1 is an identity transformation. But because of
the generic character of the algorithms we propose, we do not have to exclude PCT1 from
our algorithms.
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matters and more will be discussed in Section 3.7.
The methods presented in this chapter may be used to transform existing molecular

simulations, formulated in PCT2, : : : PCT5, into a simulation in for example PCT1
and PCT1R. That is, however, not the best way to set up a new simulation because
then, complex boxshapes are still used to set up a simulation. In Subsection 3.7.4 it
is shown how to set up a new simulation without using complex boxes.

We feel that the methods as presented in this chapter to do molecular simulations
in a simple box, together with the efficient method presented in [3], will result in
faster and simpler molecular simulation software with a wider range of features. All
this, is brought about, not by improving existing implementations, but by revising
the basic concepts of M.D. simulation.

3.2 Defining primitive cells by a lattice and a metric

In 3-D space, a lattice L is the set of points

L(K;L;M) � n1K + n2L + n3M ; with n1; n2; n3 2 Z ; (3.1)

where K , L, and M are three independent vectors, called the basis vectors. We
define a lattice vector as a vector connecting two lattice points, so, because the origin
is a lattice point, lattice vectors are also given by (3.1). Two points, 1 and 2, are
called corresponding points when their positions are related by

r1 + lattice vector = r2 : (3.2)

In Euclidean space the squared distance d2(p1; p2) between two points p1 and p2

is given by

d2(p1; p2) = (p1 � p2)
T I (p1 � p2) : (3.3)

where I is the unit matrix. The Euclidean distance function satisfies the general
conditions of a distance function

d(p1; p2) > 0; if p1 6= p2; d(p1; p1) = 0; (3.4)

d(p1; p2) = d(p2; p1); d(p1; p2) � d(p1; p3) + d(p3; p2); 8p3: (3.5)

However, the Euclidean distance function is not the only one meeting these condi-
tions. Every function defined as

d2(p1; p2) = (p1 � p2)
Tm (p1 � p2) ; (3.6)
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FIGURE 3.2 Two primitive cells defined by the same lattice but two different distance
functions.

with m a positive definite matrix, satisfies (3.4), (3.5). (A matrix m is called positive
definite when

mT = m and xTmx > 0; for all x 6= 0 : (3.7)

Note that m is by definition symmetric.)
We can use a lattice and a distance function to partition the whole space in

primitive cells in the following way. To every lattice point p belongs a primitive
cell PC , defined so that every point in PC is closer to p than to any other lattice
point. This is the well known Voronoi or Wigner-Seitz construction [10], using a
more general metric. In Figure 3.2 two 2-D examples are given of a primitive cell
defined by the same lattice but by different distance functions. It has been proven
that by giving a lattice and a metric, the 3-D space is partitioned into five types of
primitive cells [6]. These are the triclinic box, the hexagonal prism, two types of
dodecahedrons, and the truncated octahedron, i.e. PCT1, : : :, PCT5. In this way
every primitive cell is uniquely determined by a lattice and a distance function. I.e.
every possible computational box can be described by giving a lattice and a metric,
and the other way around.

In our definition of a lattice, the origin is a lattice point. We will designate a
primitive cell in general by PC, and a primitive cell centred around the origin by
PC0. The primitive cells PCT1, : : :, PCT5, PCT1R, and PCT5R, centred at the
origin, are denoted as PC0T1, : : :, PC0T5, PC0T1R, and PC0T5R. In each primitive
cell is a unique lattice point, which we will often call the centre of PC.

A primitive cell defined in this way is an open set of points, because, in our
definition of a primitive cell, we do not consider points with the same distance to two
lattice points. This would mean that a point with equal distance to two or more lattice
points is not in any primitive cell at all. For molecular simulation this is undesirable;
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every point in the infinite PBC system should belong to exactly one (image) box.
Therefore it is necessary that we define a primitive cell as a half open, half closed
set of points, so that tiling the space with primitive cells covers every point of space
exactly once. How this is implemented is of no importance in later discussions.
There we will simply take a primitive cell as a half open half closed set of points.

Using the lattice-and-metric way to define primitive cells, we will now derive some
theorems about primitive cells, culminating in the main theorem of this chapter. We
present these derivations in an informal style.

A molecular system with P.B.C. is in principle an infinite system because every
(image) box is surrounded by replica boxes. With an infinite system we will mean
the set of particles, not the boxes. This gives the following definition:

Definition 1 Two infinite molecular systems IS and IS0 are called identical when for
every particle in IS there is an identical particle in IS0 at the same position, and when
for every particle in IS0 there is an identical particle in IS at the same position.

Theorem 1 A primitive cell does not contain two corresponding points.

Proof: Assume that a primitive cell PC contains two corresponding points i and j.
This means that i and j are closer to the centre of PC than to any other lattice
point, while ri�rj is a lattice vector. Primitive cells are centred around lattice
points, so the relative position of primitive cells are lattice vectors. This means
that shifting a point, belonging to some primitive cell, over a lattice vector
will bring this point to another cell. However, shifting i over the lattice vector
ri� rj brings it to j, which is in the same cell. This contradiction implies that
the first assumption is wrong.

Theorem 2 A lattice L and a metric m define the cell PC0. Then, for every point in
space, there is a corresponding point in PC0.

Proof: A tiling of the space with PC covers every point of the space. So, every point
p will fall in some PC. This PC is shifted over a lattice vector with respect to
PC0. Shifting p over minus this lattice vector will bring this point into PC0.
According to Theorem 1 this is the only translation over a lattice vector which
brings p into PC0.

Consequently, when we have two primitive cells defined by the same lattice but
different metrics, for every point in one cell there is a corresponding point in the
other one, and the other way around. The central theorem of this chapter is:
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Theorem 3 A lattice L and a metric m define a primitive cell PC0. PC0 contains
particles. Tiling the space with PC0 gives an infinite system IS. The same lattice L
and another metric m0 define PC00. According to Theorem 2, the particles from PC0
are brought into PC00 by shifts over lattice vectors. Tiling the space with PC00 gives
an infinite molecular system IS0. Then IS and IS0 are identical.

Proof: The position of a particle in PC0 and its position in PC00 only differ by a
lattice vector (Theorem 2). IS is created by tiling the space with PC, that is,
by locating a tile PC at every lattice point. IS0 is created by locating a tile
PC0 at every lattice point. So, particles are only shifted over lattice vectors.
Because tiling means shifting over all possible lattice vectors, every particle in
IS coincides with a particle in IS0.

So far for theorems. We will now investigate how many parameters are required
to specify the most general primitive cell, being PCT5. In 3-D space, a lattice is
defined by giving three independent vectors, so, by giving nine numbers. A distance
function is fully defined by giving a symmetric 3 � 3 matrix m, so, by giving six
numbers. However, we do not use the distance function to measure distances but
only to compare distances. So, for our purpose it does not matter whether we use m,
or m multiplied with a uniform factor. In this way, the number of parameters required
to define the distance function reduces from six to five. Therefore, we arrive at nine
plus five is fourteen parameters to describe a primitive cell. Describing a primitive
cell in this way means that its shape and its orientation in space is determined, but
not its position.

A last remark, about the diameter of a PC. The diameter of a PC is the maximum
of the distance between any pair of points belonging to PC. It can be shown that for
any lattice L, potentially the diameter of the primitive cell is unbounded.

Using a lattice and metric to define a primitive cell is conceptually elegant, but
not very well suited for geometrical considerations. In the next section we will use
another way to describe PCT1, : : :, PCT5, which makes it possible to think in a more
geometrical way about these box types.

3.3 Defining boxes by their edges

It has been proved [4] that a primitive cell, as introduced in the previous sections,
is centrally symmetric, and that it is bounded by pairs of parallel faces. A face is a
centrally symmetric hexagon or parallelogram. The edges of a primitive cell consist
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FIGURE 3.3 An instance of PCT5 defined by the six edges b; c; d; e; f; g.

of groups of parallel lines. Using this last property, we come to our way of describing
a primitive cell.

We describe PCT5 by giving its edge vectors b; c; d; e; f; g (see Figure 3.3).
These six vectors completely define PCT5 because it consists of 36 edges, which can
be grouped into six groups of six parallel edges each. When the vectors b; c; d; e; f; g
were independent, PCT5 would have 6 � 3 = 18 degrees of freedom. However, the

f     0
cde

g     0 e     0

PCT5 PCT1PCT2PCT3PCT4

lin.dep.

FIGURE 3.4 PCT5, PCT4 created by letting g ! 0 of PCT5, PCT3 created by letting
f ! 0 of PCT4, PCT2 created by letting jcdej ! 0 of PCT3, PCT1 created by letting
e! 0 of PCT2. Fat lines go to zero.
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vectors defining the hexagonal planes should be coplanar. This gives four constraint
conditions: jc; e; gj = 0, jb; d; gj = 0, jc; d; f j = 0, jb; e; f j = 0. So, PCT5 can be
described by 18� 4 = 14 parameters, which corresponds with the number found in
the previous section.

The number of degrees of freedom of PCT4, : : :, PCT1 can be obtained by
degenerating PCT5 as shown in Figure 3.4. To degenerate PCT5 into PCT4, only
the length of the vector g should go to zero because the direction of g is not free.
That is because g is the intersection of the planes defined by the vectors c; e and b; d.
So, PCT4 has one degree of freedom less than PCT5, i.e. 14� 1 = 13. In the same
way PCT4 can be degenerated into PCT3 by letting f ! 0. Again, because f is
the intersection of two planes, defined by the vectors c; d and b; e, only the length of
f can be changed. So, PCT3 can be described by 13 � 1 = 12 parameters. PCT2
can be obtained from PCT3 by choosing the vectors c; d; e to be linearly dependent.
This condition brings the number of degrees of freedom of PCT2 to 12 � 1 = 11.
PCT1 can be obtained from PCT2 by e! 0. The vector e is not completely free; it
should be in the plane defined by the vectors c; d. So it has two degrees of freedom.
This brings the number of degrees of freedom of PCT1 to 11� 2 = 9. This number
of degrees of freedom is what may be expected expected from a triclinic box.

The whole process of going from PCT5 to PCT1, can be concisely written as

PCT5
g!0
�! PCT4

f!0
�! PCT3

jcdej!0
——�! PCT2

e!0
�! PCT1 : (3.8)

This shows that PCT1, : : :, PCT4 are degenerate instances of PCT5, that PCT1, : : :,
PCT3 are degenerate instances of PCT4, etc. Put in an other way one can say that
PCT5 is the generic space filler. Therefore, in the following paragraphs we only
consider transformations of PCT5. Some properties of PCT5, : : :, PCT1 are given
in Table 3.1.

Again something about notation. Until now we only have been speaking about
different box types. In this and the following sections different ways to describe
boxes are introduced. We will denote a box described by the vectors b; c; d; e; f; g
as PCDg. The g stands for ‘general’ because this is the most general way to describe
a primitive cell. The box PCDg can be of any type because some vectors may be
chosen zero or linearly dependent. Later, two other ways to describe boxes will be
introduced. Analogous to our previous notation, the box PCDg centred at the origin
is designated by PC0Dg.

A few words about the absolute position of boxes. The centre of symmetry of
PCDg is half way the line connecting two opposite points of PCDg. The opposite
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PCT5 PCT4 PCT3 PCT2 PCT1

nr. faces 14 12 12 8 6
nr. rhombi 6 8 12 6 6
nr. hexagons 8 4 0 2 0
nr. edges 36 28 24 18 12
nr. vertices 24 18 14 12 8
degr. freedom 14 13 12 11 9

TABLE 3.1 Some properties of PCT5, : : :, PCT1.

vertices marked by a dot in Figure 3.3 are connected by the vector �(b + c + d +

e + f + g). We will use the vector a to give the position of PCDg. Centring PCDg
around the origin means that a should have the value

a = �
1
2
(b+ c+ d+ e+ f + g) ; (3.9)

so, by applying this expression, a PCDg becomes a PC0Dg.

3.4 Constructing simple boxes

Theorem 3 was about box shapes and particle positions. Let us first focus only on box
shapes. In Theorem 3 it was shown that every box PC00, which generates the same
lattice as PC0, may be used to construct an infinite molecular system IS0, identical
to IS. In this section we will propose two boxes, a triclinic and a rectangular one,
generating the same lattice as an initial box PCDg.

We will first derive expressions for the lattice vectors of the lattice generated by
a box PCDg. We start by considering an PC0Dg. As can be seen in Figure 3.5, the
centres of replica boxes, fitted to this box are at the positions

K = (g + d+ e + f); L = (g + b+ e); M = (f � c+ e) : (3.10)

With some patience, it can be verified that every other replica box fitted to the original
box, is shifted over an integer linear combination of K;L;M . So, the whole space
can be tiled with copies of the original box centred at the lattice points defined by
K;L;M . As long as the vectors b; c; d are linearly independent the expressions
(3.10) forK;L;M are meaningful, i.e. they also hold for the boxes PCT1,: : :,PCT4.
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ef

d g

b

g
e

FIGURE 3.5 The vectors K;L;M defined by PCT5 with three replica boxes fitted along
whole faces. It can be seen by inspection that K = (g + d + e + f), L = (g + b+ e),
M = (f � c+ e) (not shown).

With the lattice vectors K;L;M we can easily define a primitive cell which
generates the lattice defined by K;L;M , namely the triclinic box spanned by the
lattice vectors themselves (see Figure 3.6). We will call a box defined by the vectors
K;L;M , ‘PCDKLM’, and ‘PC0DKLM’ when it is centred at the origin. We will use
these names only in relation with a given box PCDg or a given latticeK;L;M . The
boxes PCDKLM and PC0DKLM can only be of the type PCT1.

Now we will introduce a rectangular box that generates the lattice defined by the

ML
K

FIGURE 3.6 The most trivial primitive cell of a lattice is the triclinic box PCT1, spanned
by the basis vectors of the lattice.
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LV

UK

FIGURE 3.7 A rectangular primitive cell PCDUVW (fat lines), and the the PCDKLM from
which it is derived (thin lines), both centred around the same point.

vectors K;L;M . First the vectors K;L;M have to be reordered such that

jKj � jLj � jM j : (3.11)

As we will show in Appendix B this simplifies some calculations in a later stage.
Using the reordered vectors K;L;M , the vectors U; V;W spanning a rectangular
primitive cell are given by a Gram-Schmidt orthogonalisation process (see Figure 3.7)

U =K; V = L � (L � K̂)K̂; W =M � (M �K�̂L)K�̂L ; (3.12)

with â � a
a

and with b�̂c � b�c
jb�cj

. The first expression needs no comment. The
second expression means that V is perpendicular to K, so to U , and that it is in the
plane defined byK andL. The third expression means thatW is perpendicular to the
plane defined byK and L, which implies that it is perpendicular to the plane defined
by U and V . Analogously with the nomenclature already introduced, we will call
the primitive cell described by the vectors U; V;W PCDUVW or PC0DUVW. We
will use these names only in relation with a given box PCDKLM or a given lattice
K;L;M .

Boxes should be centred at lattice points, so, should be stacked with relative
shifts over the lattice vectors K;L;M . This means that in a tiling with the boxes
PCDUVW, the boxes are not fitted along whole faces (see Figure 3.8). This last
fact looks a bit special because with the primitive cells PCT1, : : :, PCT5, the space
could be tiled by fitting these boxes along whole faces. A way out of this seemingly
strange property of PCT1R is by taking it as a PCT5, with some of its faces in the
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FIGURE 3.8 The box PCT1R has to be centred at lattice points, resulting in a tiling that is
seemingly not a tiling along whole faces. However, by taking PCT1R as a special instance
of PCT5, this tiling may be taken as a face to face tiling. This is indicated by the fact that
every box PCT1R is directly surrounded by 14 boxes, just like a tiling with a general PCT5.

same plane. In general PCT5 has contact along whole faces with 14 adjacent boxes,
just like PCDUVW. So, by taking PCT1R as a special instance of PCT5 the anomaly
is explained.

Let us now briefly look at the volume of the various primitive cells we encountered.
For a given lattice, defined by the vectorsK;L;M , the volume of the primitive cells
PCDg, PCDKLM, and PCDUVW is the same, and is given by determinants jK;L;M j

and jU; V;W j. That is because to every lattice point belongs one primitive cell, no
matter the shape of this primitive cell.

With this we have finished the discussion on how to transform one type of primitive
cell into another type. In the following section we will see how the particles in one
primitive cell should be mapped into another primitive cell.

3.5 Translating particles between primitive cells.

In Theorem 2 it was shown how to map particles from a primitive cell PC0 into a
primitive cell PC00, both defined by the same lattice but a different metric: particles
should be shifted from PC0 to PC00 over lattice vectors. In this way, the infinite
molecular system generated by tiling the space with PC00 is identical to the infinite
system generated by tiling the space with PC0. In principle, that is all there is to
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mapping particles between primitive cells. The only remaining problem is to find for
every particle the lattice vector bringing the particle from PC0 into PC00. In general,
it is difficult to give an explicit expression for the required shift. Therefore, we will
not use a direct method to find the required lattice vector, but try lattice vectors.
This can be done because it is possible to give an upper bound of the order of the
required shift, i.e. if the required shift is n1K + n2L + n3M it is possible to give
an upper bound of n1; n2; n3. For example, in Appendix A it is proved that particles
in PC0Dg have to undergo at most first order shifts to be translated into PC0DKLM,
i.e. �1 � n1; n2; n3 � 1. This way of determining the required lattice vectors is not
the most efficient, but it is general. Because the process of translating particles from
PC0 into PC00 is done in a preprocessing stage of the actual molecular simulation,
the inefficiency is no problem.

The algorithm for translating particles
We will now discuss two algorithms to move particles from PC0Dg into the related
PC0DKLM. We assume that we have a boolean function INPC0D2(r), which
determines whether r is in the box PC0DKLM. With this function, and using the
boundedness of the required translations, the algorithm to move a particle from
PC0Dg into PC0DKLM is as follows:

procedure PutIntoPC0D2(var r: vector);
fr is shifted from PC0D1 into PC0D2g

constant
maxOrder = 1; fsee Appendix Ag

var
n1, n2, n3: integer;
s: vector;
fk,l,m are vectors, globally declared and initialisedg

begin
for n1 := -maxOrder to maxOrder do begin

for n2 := -maxOrder to maxOrder do begin
for n3 := -maxOrder to maxOrder do begin

s := n1*k + n2*l + n3*m;fvector operatorsg
if InPC0D2(r + s) then begin

r := r + s; fvector operatorsg
exit(PutIntoPC0D2);

end; fif InPC0D2g
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end; ffor n3g
end; ffor n2g

end; ffor n1g
end; fputIntoPC0D2g

This implementation of PutIntoPC0D2 is not very efficient because trans-
lations over first order shifts are tried first, while the shift over zero is the most
probable one. Later we will encounter a case where maxOrder is more than one,
which results in even more inefficiency. Therefore we will now show a more efficient
implementation of PutIntoPC0D2. The inefficiency is removed by first trying the
most probable shift, which is the zero shift. Then, the second most probable shifts
are tried, which are shifts over lattice vectors in the first layer around the origin.
Then, if max order > 1, the shifts over lattice vectors in the third layer are tried,
and so on.

procedure PutIntoPC0D2(var r: vector);
var

j, a, b, maxRadius: integer;

procedure tryShiftingIntoBox(n1, n2, n3: integer);
var

shift: vector;
begin fnote vector operationsg

shift := n1*k + n2*l + n3*m;
if InPC0D2(r+shift) then begin

r := r + shift;
exit(PutIntoPC0D2);

end; fifg
if inbox1(r -- shift) then begin

r := r - shift;
exit(PutIntoPC0D2);

end; fifg
end; ftryShiftingIntoBoxg

beginfPutIntoPC0D2g
maxRadius := 100;
for j := 0 to maxRadius do begin

f try further and further away g
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for a := �j to j do begin
for b := �j to j do begin

tryShiftingIntoBox(a, b, j);
end; ffor bg

end; ffor ag
for a := �j to j do begin

for b := �j+1 to j�1 do begin
tryShiftingIntoBox(a, j, b);

end; ffor bg
end; ffor ag
for a := �j+1 to j�1 do begin

for b := �j+1 to j�1 do begin
tryShiftingIntoBox(j, b, a);

end; ffor bg
end; ffor ag

end; ffor jg
FatalError(’Max radius overflow.’);

end; fPutIntoPC0D2g

Comments on this pseudo code: Note that we use vector operators in this code.
The code consists of three similar blocks, each consisting of a nested loop over a
and b. In the first block all lattice points in the top and bottom plane of a cube with
‘radius’ j are visited. In the second block the lattice points in the left and right plane
are visited, and in the third block the lattice points in the front and back plane are
visited.

In Appendix B it is shown that particles in PC0DKLM have to undergo at most
second order shifts to be translated into PC0DUVW. This means that the procedure
proposed in this subsection can also be used for that case, with of course the exception
that in the algorithms maxOrder:=2. Later we will encounter a case where the
maximum order of the translation is unbounded, but still zero shifts are the most
probable ones with decreasing probability outwards. For that case, the second
implementation of the procedure PutIntoPC0D2 is the only one that can be used
because in the first implementation infinite translations would be tried first.
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3.6 An example transformation of a simulation

In the M.D. simulation package GROMOS, two box shapes are implemented:
PCT1R, and PCT5R. In this section, as an example application of the theory,
we will show how a simulation, formulated in PCT5R, can be transformed into a
simulation in PCT1 and PCT1R. We will assume that PCT5R is centred at the origin,
so, that it is actually a PC0T5R.

PC0T5R is obtained by cutting away pieces of a cube with edge lengths h. The
cutting away of pieces is done with the Voronoi, or Wigner-Seitz construction, using
the Euclidean metric. This results in a PC0T5R with edge vectors b; c; d; e; f; g
given by

b =

0
BB@

0
� 1

4h

� 1
4h

1
CCA; c =

0
BB@

0
1
4h

� 1
4h

1
CCA; d =

0
BB@
� 1

4h
1
4h

0

1
CCA ; (3.13)

e =

0
BB@
� 1

4h

� 1
4h

0

1
CCA; f =

0
BB@
� 1

4h

0
1
4h

1
CCA; g =

0
BB@
� 1

4h

0
� 1

4h

1
CCA : (3.14)

Applying (3.10) gives the vectors K;L;M

K =

0
BB@
�h

0
0

1
CCA; L =

0
BB@
� 1

2h

� 1
2h

� 1
2h

1
CCA; M =

0
BB@
� 1

2h

� 1
2h

+ 1
2h

1
CCA : (3.15)

Applying (3.12) gives the vectors U; V;W

U =

0
BB@
�h

0
0

1
CCA; V =

0
BB@

0
� 1

2
h

� 1
2h

1
CCA; W =

0
BB@
� 1

2h

� 1
2
h

+ 1
2h

1
CCA : (3.16)

It can be checked that the volume of each of these three figures (PC0T5R, PC0T1,
PC0T1R) is 1

2h
3.

In Figure 3.9a PC0T5R is shown with a (fancy) spherical molecule. The molecule
is mapped into PC0T1 according to Theorem 2 (see Figure 3.9b). The fact that the
molecule is ‘cut into pieces’ in PC0T1 indicates that the atoms of the molecule are
shifted over different lattice vectors when translated from PC0T5R into PC0T1.

PCT5R is the most regular instance of PCT5. Consequently, as can be seen in
(3.15), the lattice vectors K;L;M are also special, i.e., to create image particles
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b)a)

FIGURE 3.9 a: PC0T5R with a (fancy) spherical molecule. b: PC0T1 derived from
PC0T5R, with the molecule mapped into it. It is instructive to copy b) on a transparent
sheet, and to fit this copy at various faces to its original. It can then be seen that the molecule
is reconstructed.

surrounding the original box PCT5R, the particles in the box have to undergo regular
shifts. The regularity of these shifts is exploited in [5] to calculate in a simple way
the required shifts. Quite appropriately, this shift pattern is called the ‘checker-
board’ periodic boundary condition. However, this shift method is only applicable
to PCT5R, and the actual simulation is still done in PCT5R.

We have made some software available3 as both Turbo Pascal and C code with
executables. In DEM1 the primitive cells PCT1, : : :, PCT5 can be (randomly)
generated, and visualised (in X). In DEM2 the process of moving particles from
PC0T5R into PC0DKLM and PC0DUVW is implemented. DEM2 can thus be used by
the M.D. community to transform existing simulations, formulated in PCT5R, into a
simulation in PC0DKLM and PC0DUVW.

3.7 Related Topics

3.7.1 Pressure scaling

The most general pressure of an molecular system can be represented by a 3� 3
tensor P. The pressure per dimension is defined as a vector (Pxx, Pyy , Pzz ), and the
scalar pressure P is defined as

P �
1
3

trace(P) : (3.17)

(3)Can be obtained by anonymous ftp from ftp.cs.rug.nl in directory pub/mdbox.
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In many M.D. simulations, every now and then the M.D. system, that is, the box and
particle positions, is scaled depending on the most recently calculated pressure. In
case the computational box is triclinic, it is well known how to scale the system [11]:
in case only the scalar pressure is calculated, the box and particles are scaled in every
dimension with the same factor. In case the pressure is calculated per dimension,
the system is scaled per dimension, proportional to the components of the pressure
vector. In case the full tensorial pressure is used, the system is scaled by multiplying
all particle position and box vectors with the scaled pressure tensor. As a result of
the the last two types of pressure scaling, the angles of the system may change.

With the notions developed in this article, it is clear how to scale the system
when the computational box is one of PCT2, : : :, PCT5 and a pressure scaling per
dimension or a full tensorial pressure is used. Then, just as in the case of a triclinic
box, the system may be scaled by scaling box vectors and particle positions per
dimension, resp. by multiplying box vectors (b, : : :, g) and particle positions with a
scaled tensor P. This is because the infinite M.D. system may be taken as a tiling of
the space with one of PCT2, : : :, PCT5 but just as well as a tiling with PCT1.

3.7.2 Lattice reduction

Until now our attention has been focussed on transforming simulations in a complex
box into simulations in a simple box, i.e. on transformations between different box
types. We will now discuss a transformation from one PCT1 into another PCT1,
both defining the same lattice.

Let us suppose that a 2-D simulation of a long thin molecule is set up as shown in
Figure 3.10a. In principle the simulation may be done in this box but for a number
of practical reasons this may be unattractive. For example, then the cut off sphere
may be located in many boxes at the same time. To improve this situation, a general
technique, called lattice reduction [6], may be applied. According to Theorem 3 a
simulation may be done in every box that defines the same lattice as the original box.
When we assume that the original box defines the lattice basis vectorsK;L, the same
lattice is defined by the basis vectorsK;L�nK with n 2 Z. So, the simulation may
just as well be done in a box defined by the vectorsK;L� nK. When the particles
are moved from the original box to the new one this results in a system as shown in
Figure 3.10b. This method may be generalised to 3-D.

Let us now be a bit more precise. For a given box PCT1, spanned by the vectors
K;L;M , we look for three vectors K0; L0;M 0, such that the vectors K0; L0;M 0
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a) b)

FIGURE 3.10 2-D example of two primitive cells of the same type (parallelogram), defining
the same lattice. Applying lattice reduction to a gives b, resulting in a cell with shorter
spanning vectors than the original primitive cell. The molecule in a is mapped into b
according to Theorem 2.

define the same lattice as the vectors K;L;M . Moreover, the vectors K0; L0;M 0

should span a ‘nice’ box, where nice means something like ‘as cubic as possible’.
The process of transforming the vectors K;L;M into the vectors K0; L0;M 0 is
called lattice reduction. Many different notions of ‘reduced’ exist in the literature,
but roughly speaking, they all mean that the cellK0; L0;M 0 is as cubic as possible. It
has been shown [6] that in 3-D the three shortest, linearly independent lattice vectors
are a basis of the lattice. We will define a reduced basis as follows: a reduced basis
consists of the three shortest, linearly independent lattice vectors.

After the process of lattice reduction, particles from the box K;L;M should be
mapped into the box K0; L0;M 0. This should be done according to Theorem 2, i.e.
particles should be shifted over lattice vectors. Which lattice basis is used,K;L;M
or K0; L0;M 0, does not matter because both are a basis of the same lattice. The
algorithm from Section 3.5 may be used to shift particles over the required lattice
vectors, although, unlike the situation in Section 3.6, now there is no upper limit on
the required shift (called max shift in the algorithm).

A useful application of lattice reduction has to do with the maximum allowed
cut-off radius. More precise: for a given triclinic box spanned by the (unre-
duced) vectors K;L;M , how large may the cut-off radius be at most, such that
a particle has no interactions with two corresponding particles? This may be re-
formulated as: how large may the cut-off sphere be at most, such that it does not
contain corresponding points? As can be seen in Figure 3.11a, it is not enough
that max Rco =

1
2 min(jKj; jLj; jMj). Using our foregoing definition of ‘reduced
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R

b)

Rco

co

a)

FIGURE 3.11 a: 2-D example of an unreduced primitive cell. When Rco is chosen half
the length of the shortest vector spanning the primitive cell, the cut-off sphere still contains
corresponding particles. b: WhenRco is chosen half the length of the shortest vector spanning
the reduced primitive cell, the cut-off sphere does not contain corresponding particles.

basis’, the answer is

max Rco =
1
2
min(jK0j; jL0j; jM 0j) ; (3.18)

i.e. the cut-off radius should be less than half the shortest reduced lattice basis vector
(Figure 3.11b).

3.7.3 Long range order

Stacking boxes in a space filling way introduces a well defined long range order in
the infinite system. This long range order may influence the results of a simulation.
For example, when the box shape is chosen such that it defines a long range order
close to the long range order of ice, it may happen that in a simulation of pure water,
the water freezes above 0 oCelsius. By simulating water in a box with a long range
order incompatible with the long range order of ice, the water may be liquid below
0 oCelsius. Probably, for every solvent and depending on the type of simulation,
there is an optimal long range order, so that the solvent behaves normal. So, when
setting up a simulation, the resulting lattice must be compatible with the desired long
range order. This means that the shape of the computational box is not completely
free anymore.

3.7.4 How to set up a simulation

From the foregoing it will be clear that a molecular simulation can be done without
using complex boxes. We will now show that setting up a simulation can also be
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done without using complex boxes, i.e. we will show that it is not necessary to set up
a simulation in a complex box which is subsequently transformed into a simulation
in a simple box. Historically, M.D. simulations are done in complex boxes because
it was believed that this was the only way to get a minimal volume simulation. An
implicit condition was that the box should contain an unfragmented molecule. This
superfluous implicit condition has led to the use of complex shaped boxes. As will
be clear from this chapter, it is not forbidden that the molecule is stored in the box in
pieces, provided that the molecule is reconstructed when the boxes are stacked.

Let us now assume that one single large molecule has to be simulated in a solvent.
The molecule has been given, the solvent has to be added later. We will designate
this molecule by ‘mol’. See Figure 3.12. In general a molecule is not allowed to
interact with its own image molecules, so, in the infinite system the smallest distance
between two atoms of two different images of mol should be at least Rco apart. For
this purpose we surround mol by an enlarged convex hull, such that no atom of mol is
closer than 1=2Rco to this enlarged hull. We will designate this enlarged hull of mol
by MOL. Three replica’s of MOL, with the same orientation as MOL, are designated
by MOL0, MOL00, and MOL000.

To set up a PBC simulation with a minimal amount of solvent means that we have
to find a densest lattice packing of translates of MOL. A practical approach to this
minimisation problem is to fit MOL0, : : :, MOL000 to MOL, such that the volume of
the tetrahedron defined by these four molecules is minimal. More exactly, when we
define the vector K as the vector connecting the centre of MOL with the centre of
MOL0, the vector L as the vector connecting MOL with MOL00, and the vector M
as the vector connecting MOL with MOL000, the problem boils down to: minimise
jK;L;M j so that each of the molecules MOL, : : :, MOL000 is touched4 by the other
three. This is a minimisation problem in three parameters. This can be seen as
follows: because MOL0 has to touch MOL, the position of MOL0 is determined by
two angles, say � and �, where the origin of these two angles is somewhere in MOL.
MOL00 should touch MOL and MOL0, so there is only one degree of freedom in
the placement of MOL00. Finally, MOL000 has to touch the first three ones, so the
placement of MOL000 is completely determined by the positions of MOL, : : :, MOL00.
Thus, we have a minimisation problem in three variables, (minimise jK;L;M j),
subject to six contact conditions (contact between every pair of MOL, : : :, MOL000).

(4) It is a well known property of the densest lattice packing of convex figures that every
figure is touched by twelve other ones.
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MOL

MOL

Kmol

MOL

Rco1/2
L

FIGURE 3.12 To find a computational box with a minimal volume, containing a single
molecule MOL, three translates of MOL have to be fitted to MOL, defining three vectors
K;L;M , such that the volume of box defined byK;L;M is minimal. After finding such a
minimal box, the atoms of MOL can be translated into this box by shifts over lattice vectors,
where the lattice is defined by K;L;M .

A near minimal solution can be found by a standard minimisation procedure as for
example NAG routine E04UCF. When a minimal volume configuration of MOL,
� � �, MOL00 has been found, the vectorsK;L;M are the vectors defining the triclinic
simulation box.5 By shifts over lattice vectors, the atoms of mol can now be brought
into this triclinic box, and the empty space can be filled with solvent. Of course, if
desired this box can be transformed into a rectangular box as described earlier in this
chapter.

3.7.5 Which box to use: the triclinic or the rectangular?

The main message of this chapter is that complex shaped boxes with particles, as
for example PCT5 and its degenerates PCT4, � � �, PCT2, can be transformed into
simpler ones, i.e. into PCDKLM and PCDUVW. Which one of these last two is the
best one as a simulation box is not very clear. The choice may be slightly influenced
by some parts of the simulated system and the simulation methods used. We will

(5)Obviously, when the simulation has to be set up with a predefined long range order the
optimisation process may be skipped.
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briefly discuss some of these aspects. Still, this discussion will not lead to a strong
preference.

Neighbour searching: As has been shown in [7], using a grid search technique
significantly improves the efficiency of neighbour searching. The essence of the grid
search technique is that a grid is constructed in the computational box, and that for
every particle it is determined in which grid cell it is located. Neighbour searching
for a given particle then boils down to inspecting its own and directly neighbouring
grid cells for neighbouring particles. In [7] it was shown that a grid size ofL = 1

2Rco

gives an optimal neighbour searching speed, which is six times faster than neighbour
searching without using a grid. However, as far as we can see now, the grid search
technique can only work efficiently when the grid cells are rectangular, or even better,
cubic. Obviously, a rectangular box can be partitioned in cells in a natural way. This
does not hold for the non-rectangular box PCDKLM, so then many grid cells will be
empty. Therefore we think that in case neighbour searching is implemented with
the grid search technique, the rectangular box is to preferred over the triclinic box.
Of course, although the box is rectangular, image particles are created by shifting
particles over lattice vectors, so not over the orthogonal vectors U; V;W .

The function inbox(r): Every now and then during an M.D. simulation,
particles that moved outside the computational box have to be reset into the box.
To check whether a particle is inside or outside the computational box, the boolean
function inbox(r) is used. When r is inside the box the function evaluates to
true. Obviously, when PCT1R is used as a computational box, and the directions of
U; V;W coincide with the x; y; z axes, inbox(r) can be implemented by checking
independently in three directions in what range the components of r are. This does
not work that simple in case of a non-rectangular triclinic box. Then a linear
transformation on r has to be done, or some other more complex calculation. So, for
the implementation of inbox(r) it is desirable to work with PCDUVW.

Full pressure scaling: As we explained before, three kinds of pressure scaling are
possible in an M.D. simulation: uniform in every direction, scaling per dimension,
and by using the full pressure tensor. In general, the last two ways of pressure scaling
will change the directions of the vectors spanning the computational box. This means
that when PCDUVW is used as a computational box, the angles between the vectors
U; V;W will change, i.e. afterwards the box will not be rectangular anymore. Then,
in principle, the functioninbox(r)will not work properly, and the search grid will
not be rectangular anymore. However, the computational effort of recalculating the
vectorsU; V;W and resetting particles is small, so possibly pressure scaling will not
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be an obstacle for using a rectangular box.
Summarising one may say that a rectangular box simplifies the implementation

of some parts of molecular algorithms (grid search, inbox(r)), but causes small
complications in the implementation of other parts.

3.8 Conclusion

In this chapter we studied the possible shapes of the computational box of molecular
simulations with PBC. For this purpose, five types of boxes are suitable: triclinic,
the hexagonal prism, two types of dodecahedrons, and the truncated octahedron, for
short PCT1, � � �, PCT5. We showed that PCT1, � � �, PCT4 are degenerate instances
of PCT5.

The main purpose of this chapter is to show that for every simulation in some type
of box, simulations in the other four types can be devised which give exactly the same
simulation result, i.e. it is shown that boxes with a complex shape are superfluous.
Therefore we first showed how to transform the complex shaped box into a triclinic
one, and how to transform the triclinic one into a rectangular one. Then we showed
how to map particles from the complex shaped box into the simpler ones.

Important conceptual tools in this chapter are lattices and primitive cells. It was
shown that a simulation box may be taken as a primitive cell. Tiling the space with a
box with particles gives an infinite molecular system. A cornerstone of this chapter
is a theorem in which it is stated which transformations are allowed on the original
box with particles, subject to the condition that the infinite system generated by tiling
the space with the transformed box with particles gives the same infinite system as
the initial box.

Although most of this chapter is about transforming complex boxes with particles,
this does not mean that a molecular simulation should be set up in a complex box
which is subsequently transformed into a simpler box. On the contrary, because
every simulation in a complex box can be transformed in a simpler one in a triclinic
box, nothing is lost when a simulation is set up right away in a triclinic box. In
Subsection 3.7.4 it is explained how this can be done.

With the concepts developed in this chapter, some questions are clarified. This
includes amongst others: pressure scaling in a complex box, and the long range order
introduced by the shape of the box.
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PC’0

PC0

FIGURE A1 Particles in PC0 have to be shifted over more than first order shifts to be
translated into PC00.
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Appendix A

We will prove that particles in the box PC0Dg have to be shifted at most over first
order shifts, i.e. over n1K + n2L + n3M , with � 1 � n1; n2; n2 � 1, to be located
in the related PC0DKLM. It is instructive to see that this does not hold in general
(see Figure A1), i.e. that particles in a primitive cell PC0 potentially require infinite
shifts in order to be located in a related PC00, where ‘related’ means that the cells
define the same lattice.

The reason that between PC0Dg and PC0DKLM at most first order shifts are
required, has to do with the special choice ofK;L;M . Consequently, when PC0Dg
is long and thin, PC0DKLM is also long and thin and is oriented in the same direction.
In this way PC0Dg and PC0DKLM have a large overlap, so going from one to the
other cell, only limited particle shifts are required.

Let us now give a more formal proof. Using the 3-D nomenclature, we give the
proof for the 2-D case, but it is simple to extend it to 3-D. We start with PC0Dg
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FIGURE A2 Every point belonging to PC0DKLM is also in F.

and its eight first order images. We will call this arrangement of 9 tiles ‘F’. See
Figure A2. In this same figure the related PC0DKLM is drawn. It is constructed by
scaling the rhombus A,B,C,D with a factor 1/2. The rhombus defined by A,B,C,D is
in F because the boundary of the rhombus A,B,C,D is in F. This last fact is because,
when two space fillers (either 2-D or 3-D) are fitted face to face, the line connecting
their centres of symmetry lies in these two figures. Because PC0DKLM is in the
rhombus A,B,C,D, it is also in F. The particles in F are shifted from PC0Dg over at
most first order lattice vectors, so, the particles in PC0Dg have to be shifted over at
most first order shifts to be located in PC0DKLM.

Appendix B

In this appendix we will show the necessity to order the vectors K, L, M before
calculatingU , V , W . We first show what may go wrong when it is not done. Just as
in Appendix A, using the 3-D nomenclature, we will do this for 2-D.

Suppose that we have a PC0DKLM as shown in Figure B1. We can construct a
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b)

a)

FIGURE B1 a: When the vectors K,L,M are not ordered such that jKj � Lj � jM j,
possibly the boxes PCDKLM and PCDUVW have little overlap, so possibly, particles
require shifts over high order lattice vectors to be moved from one box into another one. b:
The boxes PCDKLM and PCDUVW have a large overlap because the longest box vector is
called K.

rectangular primitive cell from PC0DKLM in two ways: by U = K and V ? U

(Figure B1a), and by U = L and V ? U . (Figure B1b). From these figures it is
clear that PC0DUVW has a large overlap with PC0DKLM when the longest one of
the pair K,L is defined as U. So, ordering K,L,M prevents possibly infinite shifts of
particles going from PC0DKLM into PC0DUVW.

Now, just like in Appendix A, we will determine the maximum shift required to
bring a particle from PC0DKLM into PC0DUVW. We suppose that the vectorsK, L
are ordered, i.e. that jKj � jLj. We define ‘F’ as the array of nine cells, created by
all possible first order shifts of PC0DKLM (Figure B2). To show that every point of
PC0DUVW is in F it is sufficient to show that C0 is in F. This last statement can be
reformulated as: show that the distance of C0 to C is less than the distance C to D.
This last statement is true because CC0 < CE � DC. So, at most first order shifts
are required to bring particles from PC0DKLM into PC0DUVW.

For the 3-D case the reasoning above can be applied twice. Thus, in 3-D at most
second order shifts are required to bring particles from PC0DKLM into PC0DUVW.
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FIGURE B2 When the vectors K;L;M are ordered such that jKj � jLj � jM j, every
point belonging to PC0DUVW is also in F.
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