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UNIFICATION OF BOX
SHAPES IN MOLECULAR
SIMULATIONS

In molecular ssimulations with periodic boundary conditions the computational box
used, may have five different shapes. triclinic, the hexagonal prism, two types of
dodecahedrons, and the truncated octahedron. In this chapter we show that every
molecular ssimulation, irrespective of the shape of the initial computational box, can
be done as a simulation in one of the other ones, i.e. we show that in a preprocessing
phase a smulation formulated in one particular box can be transformed into a
simulation in another box such that the simulation in the new box is exactly identical
to the simulation in the original one. This means that every molecular simulation
may be done in the same type of box. Because thetriclinic box is the easiest one to
implement, we pay special attention on how to transformthe other four box typesinto
triclinic boxes. Asa consequence, simulationsin the often used truncated octahedron
are superfluous; they may be donein a much smpler way in atriclinic box.

3.1 Introduction

To mitigate finite system effects most molecular ssmulations are done on systems
with periodic boundary conditions (PB.C.). This meansthat the computational box
issurrounded in a space-filling way by replicaboxes, withidentical content. Interms
of the crystallographic Bravais|atticeswe consider only triclinic systems, i.e systems
without symmetry elements.

In[1] itisproventhatin 3-D spacetherearefiveconvex! box types(seeFigure3.1)

(1) Thisproperty isnot strictly necessary, but image cal cul ationswoul d become very complex
for anon-convex box.

33



34 Chapter 3 Unification of Box Shapes in Molecular Simulations

PCT1 PCT2 PCT3
PCT4 PCT5 PCT5R

FIGURE 3.1 Instances of the triclinic box, the hexagonal prism, two types of dodecahed-
rons, the truncated octahedron, and the most regular instance of the truncated octahedron, in
this chapter designated by PCT1, PCT2, PCT3, PCT4, PCT5, and PCT5R respectively.

that can be stacked in a space filling way, i.e. that there are five possible types of
boxes which may serve as a computational box: the triclinic box, the hexagonal
prism, two types of dodecahedrons, and the truncated octahedron. For short we will
designate these box types by PCT1, PCT2, PCT3, PCT4, and PCT5, where PC
stands for ‘ Primitive Cell’, and T stands for ‘ Type'. The notion ‘primitive cell’ will
be explained later. The rectangular instance of PCT1 will be designated by PCT1R
and themaost regular instance of PCT5 by PCT5R. IntheM.D. world, PCT5R isoften
called ‘ the truncated octahedron’, but aswe will show later it isonly the most regul ar
instance of abroader class of boxes. Inthe early yearsof molecular smulationPCT1
was used. Later PCT3 was introduced [9], and then PCT5R [8].

In current implementations of molecular simulation algorithms, the shape of the
computational box has to be taken into account at many places in the algorithm,
notably in neighbour searching, in non-bonded force calculations, in bonded force
calculations, and in the part in which particles are reset into the box. For the
computational boxesPCT2, ..., PCT5, which have acomplex shape, calculating the
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position of image particles outside the box as afunction of their position in the box,
is complex. For this reason, in most molecular simulation packages only a limited
set of box shapes has been implemented. E.g. in the molecular dynamics package
GROMOS [2] only alimited instance of PCT1 and PCT5R have been implemented.

In this chapter we will show that every molecular simulation which isformulated
in one of the boxes PCT1, ..., PCT5, can be transformed into a simulation in any
one of the other boxes. So, a simulation, formulated in PCT2, ..., PCT5 can be
transformed into a simulation in PCT1 or PCT1R. These transformations can be
done in a preprocessing stage of a molecular simulation, so the actual simulation
can take place in for example PCT1 or PCT1R, including neighbour searching, non-
bonded force cal culations, bonded force cal culations, resetting particlesinto the box,
pressure scaling, etc. The simulation in PCT1 and PCT1R is exactly identical to
a simulation of the initial, untransformed system. So, for example, the number of
particles and interactions to be evaluated is exactly the same in all cases.

The structure of this chapter is as follows. In Section 3.2 we define the shape of
PCT1,...,PCT5inan algebraic way by alattice and an alternative metric. Using this
representation we derive the main theorem of this chapter. The lattice-and-metric
way of defining PCT1, ..., PCT5 is not suitable for geometrical considerations.
Therefore, in Section 3.3 we introduce a different, but equivalent representation of
PCT1, ..., PCT5. Using this representation, we show that PCT1, ..., PCT4 are
degenerate instances of PCT5, and we show show how a tiling of the space with
PCT5 defines alattice. In Section 3.4 we defineaPCT1 and aPCT1R in termsof a
given PCT5, such that PCT1 and PCT1R define the same lattice as PCT5. Because
PCT1, ..., PCT4 are degenerate instances of PCT5, the same expressions may be
used to definea PCT1 and aPCT1R interms of PCT1, ..., PCT4.2 In Section 3.5
we show how to map particles from one box into another one. As an example, in
Section 3.6 we show how a simulation, formulated in PCT5R, is transformed into
PCT1 and PCT1R.

The fact that every ssmulation, formulated in some box may be transformed into
asimulation in an other box, clarifies a number of unresolved matters. Notably the
pressure scaling of simulations in an PCT2, ..., PCT5 box, controlling the long
range order of amolecular systems, and the maximum allowed cut-off radius. These

(2) Obviously, transforming PCT1 into PCT1 is an identity transformation. But because of
the generic character of the a gorithms we propose, we do not have to exclude PCT1 from
our algorithms.
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matters and more will be discussed in Section 3.7.

Themethods presented in thischapter may be used to transform existing molecul ar
simulations, formulated in PCT2, ... PCT5, into a simulation in for example PCT1
and PCT1R. That is, however, not the best way to set up a new simulation because
then, complex boxshapes are still used to set up asimulation. In Subsection 3.7.4 it
is shown how to set up a new simulation without using complex boxes.

We feel that the methods as presented in this chapter to do molecular ssmulations
in a simple box, together with the efficient method presented in [3], will result in
faster and simpler molecular simulation software with awider range of features. All
this, is brought about, not by improving existing implementations, but by revising
the basic concepts of M.D. simulation.

3.2 Defining primitive cells by alattice and a metric

In 3-D space, alattice £ isthe set of points
L(K,L,M)=n1K + naL + nsM, withni, np,nz € Z, (3.1

where K, L, and M are three independent vectors, called the basis vectors. We
define alatticevector asavector connecting two | attice points, so, because the origin
is a lattice point, lattice vectors are al'so given by (3.1). Two points, 1 and 2, are
called corresponding points when their positions are related by

rq + lattice vector = r» . (3.2

In Euclidean space the squared distance d?(p1, p2) between two points p; and p,
isgiven by

d*(p1,p2) = (p1— p2)" | (p1— P2) - (3.3)

where | is the unit matrix. The Euclidean distance function satisfies the general
conditions of a distance function

d(p1,p2) >0, ifp1 #p2;  d(p1,p1) =0 (3.4)
d(p1, p2) = d(p2, p1); d(p1,p2) < d(p1,p3) + d(ps, p2), Yps.  (3.5)

However, the Euclidean distance function is not the only one meeting these condi-
tions. Every function defined as

d*(p1,p2) = (p1— p2) "M (p1 — p2) , (3.6)
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FIGURE 3.2 Two primitive cells defined by the same lattice but two different distance
functions.

with m apositive definite matrix, satisfies (3.4), (3.5). (A matrix m iscalled positive
definite when

m’ =mandz’mz >0, foradlz #0. (3.7)

Note that m is by definition symmetric.)

We can use a lattice and a distance function to partition the whole space in
primitive cells in the following way. To every lattice point p belongs a primitive
cell PC, defined so that every point in PC is closer to p than to any other lattice
point. Thisis the well known Voronoi or Wigner-Seitz construction [10], using a
more general metric. In Figure 3.2 two 2-D examples are given of a primitive cell
defined by the same lattice but by different distance functions. It has been proven
that by giving a lattice and a metric, the 3-D space is partitioned into five types of
primitive cells [6]. These are the triclinic box, the hexagonal prism, two types of
dodecahedrons, and the truncated octahedron, i.e. PCT1, ..., PCT5. In this way
every primitive cell is uniquely determined by alattice and a distance function. |.e.
every possible computational box can be described by giving a lattice and a metric,
and the other way around.

In our definition of a lattice, the origin is a lattice point. We will designate a
primitive cell in general by PC, and a primitive cell centred around the origin by
PCO. The primitive cells PCT1, ..., PCT5, PCT1R, and PCT5R, centred at the
origin, aredenoted asPCOT1, ..., PCOT5, PCOT1R, and PCOT5R. Ineach primitive
cell isaunique lattice point, which we will often call the centre of PC.

A primitive cell defined in this way is an open set of points, because, in our
definition of aprimitivecell, we do not consider pointswith the same distance to two
lattice points. Thiswould mean that a point with equal distanceto two or morelattice
pointsisnot in any primitivecell at all. For molecular smulation thisis undesirable;
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every point in the infinite PBC system should belong to exactly one (image) box.
Therefore it is necessary that we define a primitive cell as a half open, half closed
set of points, so that tiling the space with primitive cells covers every point of space
exactly once. How this is implemented is of no importance in later discussions.
There we will ssimply take a primitive cell as a half open half closed set of points.

Using thelattice-and-metric way to define primitive cells, wewill now derive some
theorems about primitive cells, culminating in the main theorem of this chapter. We
present these derivationsin an informal style.

A molecular system with PB.C. isin principle an infinite system because every
(image) box is surrounded by replica boxes. With an infinite system we will mean
the set of particles, not the boxes. This gives the following definition:

Definition 1 Two infinite molecular systems1Sand IS are called identical when for
every particlein ISthereisanidentical particlein IS at the same position, and when
for every particlein IS there isan identical particle in |Sat the same position.

Theorem 1 A primitive cell does not contain two corresponding points.

Proof: Assume that a primitive cell PC contains two corresponding points: and ;.
This means that - and ; are closer to the centre of PC than to any other lattice
point, whiler; — r; isalattice vector. Primitive cells are centred around lattice
points, so therelative position of primitive cells arelattice vectors. Thismeans
that shifting a point, belonging to some primitive cell, over a lattice vector
will bring this point to another cell. However, shifting: over the lattice vector
r; —r; bringsit to j, whichisin the same cell. This contradictionimpliesthat
the first assumption iswrong.

Theorem 2 Alattice £ and a metric m define the cell PCO. Then, for every point in
gpace, there is a corresponding point in PCO.

Proof: A tiling of the space with PC covers every point of the space. So, every point
p will fall in some PC. This PC is shifted over alattice vector with respect to
PCO0. Shifting p over minus this lattice vector will bring this point into PCO.
According to Theorem 1 thisisthe only trandation over alattice vector which
brings p into PCO.

Consequently, when we have two primitive cells defined by the same lattice but
different metrics, for every point in one cell there is a corresponding point in the
other one, and the other way around. The central theorem of this chapter is:
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Theorem 3 A lattice £ and a metric m define a primitive cell PCO. PCO contains
particles. Tiling the space with PCO gives an infinite system IS, The same lattice £
and another metric m’ define PC’0. According to Theorem 2, the particlesfromPCO
are brought into PC’0 by shifts over lattice vectors. Tiling the space with PC’0 gives
an infinite molecular system|S. Then ISand IS areidentical.

Proof: The position of a particle in PCO and its position in PC’0 only differ by a
lattice vector (Theorem 2). 1Sis created by tiling the space with PC, that is,
by locating a tile PC at every lattice point. 1S is created by locating atile
PC’ at every lattice point. So, particles are only shifted over lattice vectors.
Because tiling means shifting over all possible lattice vectors, every particlein
IS coincideswith aparticleinIS.

So far for theorems. We will now investigate how many parameters are required
to specify the most general primitive cell, being PCT5. In 3-D space, alattice is
defined by giving three independent vectors, so, by giving nine numbers. A distance
function is fully defined by giving a symmetric 3 x 3 matrix m, so, by giving six
numbers. However, we do not use the distance function to measure distances but
only to compare distances. So, for our purpose it does not matter whether we use m,
or m multiplied with auniformfactor. Inthisway, the number of parametersrequired
to define the distance function reduces from six to five. Therefore, we arrive at nine
plus five is fourteen parameters to describe a primitive cell. Describing a primitive
cell in thisway means that its shape and its orientation in space is determined, but
not its position.

A last remark, about the diameter of aPC. The diameter of aPC isthe maximum
of the distance between any pair of points belonging to PC. It can be shown that for
any lattice £, potentially the diameter of the primitive cell is unbounded.

Using a lattice and metric to define a primitive cell is conceptually elegant, but
not very well suited for geometrical considerations. In the next section we will use
another way to describe PCT1, . . ., PCT5, which makesit possibleto think inamore
geometrical way about these box types.

3.3 Defining boxes by their edges

It has been proved [4] that a primitive cell, as introduced in the previous sections,
is centrally symmetric, and that it is bounded by pairs of parallel faces. A faceisa
centrally symmetric hexagon or parallelogram. The edges of aprimitive cell consist
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FIGURE 3.3 Aninstance of PCT5 defined by thesix edges b, ¢, d, e, f,g.

of groupsof parallel lines. Using thislast property, we cometo our way of describing
aprimitive cell.

We describe PCT5 by giving its edge vectors b,c,d, e, f, g (see Figure 3.3).
These six vectors completely define PCT5 because it consists of 36 edges, which can
be grouped into six groupsof six paralel edgeseach. Whenthevectorss, c,d, e, f, g
were independent, PCT5 would have 6 x 3 = 18 degrees of freedom. However, the

cde
g—=0 f—=0 lin.dep. e—=0
—= —= —= —=

PCT5 PCT4 PCT3 PCT2 PCT1

FIGURE 3.4 PCT5, PCT4 created by letting g — 0 of PCT5, PCT3 created by letting
f — 0 of PCT4, PCT2 created by letting |cde| — 0 of PCT3, PCT1 created by letting
e — 0 of PCT2. Fat linesgo to zero.
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vectors defining the hexagonal planes should be coplanar. This gives four constraint
conditions: |c,e,g| =0, |b,d,g| =0, |e,d, f| =0, |b,e, f| = 0. So, PCT5 can be
described by 18 — 4 = 14 parameters, which corresponds with the number found in
the previous section.

The number of degrees of freedom of PCT4, ..., PCT1 can be obtained by
degenerating PCT5 as shown in Figure 3.4. To degenerate PCT5 into PCT4, only
the length of the vector g should go to zero because the direction of g is not free.
That isbecause g istheintersection of the planes defined by the vectorsc, e and b, d.
So, PCT4 has one degree of freedom lessthan PCT5, i.e. 14 — 1 = 13. Inthe same
way PCT4 can be degenerated into PCT3 by letting f — 0. Again, because f is
the intersection of two planes, defined by the vectorse, d and b, e, only the length of
f can be changed. So, PCT3 can be described by 13 — 1 = 12 parameters. PCT2
can be obtained from PCT3 by choosing the vectorsc, d, e to be linearly dependent.
This condition brings the number of degrees of freedom of PCT2to 12 — 1 = 11.
PCT1 can be obtained from PCT2 by e — 0. The vector e is not completely free; it
should bein the plane defined by the vectors e, d. So it has two degrees of freedom.
This brings the number of degrees of freedom of PCT1 to 11 — 2 = 9. This number
of degrees of freedom is what may be expected expected from atriclinic box.

The whole process of going from PCT5 to PCT1, can be concisely written as

pcts 979 peta 729 pora 169e129 perp €29 poty (3.8)
This showsthat PCT1, ..., PCT4 are degenerate instances of PCT5, that PCT1, .. .,
PCT3 are degenerate instances of PCT4, etc. Put in an other way one can say that
PCT5 is the generic space filler. Therefore, in the following paragraphs we only
consider transformations of PCT5. Some properties of PCT5, ..., PCT1 are given
in Table 3.1.

Again something about notation. Until now we only have been speaking about
different box types. In this and the following sections different ways to describe
boxes are introduced. We will denote a box described by the vectors b, c,d, e, f, g
asPCDg. The g standsfor ‘general’ because thisisthe most general way to describe
a primitive cell. The box PCDg can be of any type because some vectors may be
chosen zero or linearly dependent. Later, two other ways to describe boxes will be
introduced. Analogousto our previous notation, the box PCDg centred at the origin
is designated by PCODg.

A few words about the absolute position of boxes. The centre of symmetry of
PCDg is haf way the line connecting two opposite points of PCDg. The opposite
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PCT5 | PCT4 | PCT3 | PCT2 | PCT1
nr. faces 14 12 12 8 6
nr. rhombi 6 8 12 6 6
nr. hexagons 8 4 0 2 0
nr. edges 36 28 24 18 12
nr. vertices 24 18 14 12 8
degr. freedom 14 13 12 11 9

TABLE 3.1 Some propertiesof PCT5, ..., PCT1.

vertices marked by a dot in Figure 3.3 are connected by the vector —(b + ¢ + d +
e+ f + g). Wewill use the vector a to give the position of PCDg. Centring PCDg
around the origin means that a should have the value

1
a:—é(b—l—c—l—d—l—e—l—f—l—g), (3.9

s0, by applying this expression, a PCDg becomes a PC0Dg.

3.4 Constructing ssmple boxes

Theorem 3 wasabout box shapes and particle positions. Let usfirst focusonly onbox
shapes. In Theorem 3 it was shown that every box PC’0, which generates the same
lattice as PCO, may be used to construct an infinite molecular system 1S, identical
to IS. In this section we will propose two boxes, atriclinic and a rectangular one,
generating the same lattice as an initial box PCDg.

We will first derive expressions for the lattice vectors of the lattice generated by
abox PCDg. We start by considering an PCODg. As can be seen in Figure 3.5, the
centres of replicaboxes, fitted to thisbox are at the positions

K=(gt+tdte+f), L=(g+bte), M=(f-c+te). (310)

With some patience, it can beverified that every other replicabox fitted to theoriginal
box, is shifted over an integer linear combination of K, L, M. So, the whole space
can be tiled with copies of the original box centred at the lattice points defined by
K,L,M. Aslong as the vectors b, c, d are linearly independent the expressions
(3.10) for K, L, M are meaningful, i.e. they also hold for the boxesPCT1,. . .,PCT4.
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FIGURE 3.5 Thevectors K, L, M defined by PCT5 with three replica boxes fitted along
whole faces. It can be seen by inspectionthat K = (g +d+e+ f), L=(g+b+e),
M = (f — ¢+ e) (not shown).

With the lattice vectors K, L, M we can easily define a primitive cell which
generates the lattice defined by K, L, M, namely the triclinic box spanned by the
|attice vectors themsel ves (see Figure 3.6). We will call abox defined by the vectors
K,L,M, 'PCDKLM’, and ‘PCODKLM’ whenit is centred at the origin. We will use
these names only in relation with agiven box PCDg or agiven lattice K, L, M. The
boxes PCDKLM and PCODKLM can only be of the type PCT1.

Now we will introduce a rectangular box that generates the lattice defined by the

FIGURE 3.6 Themost trivia primitive cell of alatticeisthetriclinic box PCT1, spanned
by the basis vectors of the lattice.
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FIGURE 3.7 A rectangular primitivecell PCDUVW (fat lines), and thethe PCDKLM from
which it is derived (thin lines), both centred around the same point.

vectors K, L, M. First the vectors K, L, M have to be reordered such that
K| > |L] > |M]. (3.12)

As we will show in Appendix B this simplifies some calculations in a later stage.
Using the reordered vectors K, L, M, the vectors U, V, W spanning a rectangular
primitivecell aregiven by aGram-Schmidt orthogonalisation process(seeFigure 3.7)

U=K, V=L—(L-K)K, W=M—(M-KXL)KXL, (312

witha = ¢ and with bxc = |ll;§g|' The first expression needs no comment. The
second expression meansthat V' is perpendicular to K, soto U, and that it isin the
planedefined by K and L. Thethird expression meansthat W is perpendicular tothe
plane defined by K and L, which impliesthat it is perpendicular to the plane defined
by U and V. Analogoudy with the nomenclature already introduced, we will call
the primitive cell described by the vectors U, vV, W PCDUVW or PCODUVW. We
will use these names only in relation with a given box PCDKLM or a given lattice
K,L, M.

Boxes should be centred at lattice points, so, should be stacked with relative
shifts over the lattice vectors K, L, M. This means that in atiling with the boxes
PCDUVW, the boxes are not fitted along whole faces (see Figure 3.8). This last
fact looks a bit specia because with the primitive cellsPCT1, . .., PCT5, the space
could betiled by fitting these boxes along whole faces. A way out of this seemingly
strange property of PCT1R is by taking it as a PCT5, with some of its faces in the
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FIGURE 3.8 Thebox PCT1R hasto be centred at lattice points, resultingin atilingthat is
seemingly not atiling along whole faces. However, by taking PCT1R as a special instance
of PCTS5, thistiling may be taken as a face to face tiling. Thisisindicated by the fact that
every box PCT1R isdirectly surrounded by 14 boxes, just likeatilingwithageneral PCT5.

same plane. In general PCT5 has contact along whol e faces with 14 adjacent boxes,
just like PCDUVW. So, by taking PCT1R asa special instance of PCT5 the anomaly
isexplained.

Let usnow briefly look at thevolume of thevariousprimitive cellsweencountered.
For agiven lattice, defined by the vectors K, L, M, the volume of the primitive cells
PCDg, PCDKLM, and PCDUVW isthe same, and isgiven by determinants | K, L, M |
and |U,V,W|. That is because to every lattice point belongs one primitive cell, no
matter the shape of this primitive cell.

With thiswe havefinished the di scussion on how to transform onetypeof primitive
cell into another type. In the following section we will see how the particlesin one
primitive cell should be mapped into another primitive cell.

3.5 Trandating particles between primitive cells.

In Theorem 2 it was shown how to map particles from a primitive cell PCO into a
primitive cell PC’0, both defined by the same lattice but a different metric: particles
should be shifted from PCO to PC’0O over lattice vectors. In this way, the infinite
molecular system generated by tiling the space with PC’0 isidentical to the infinite
system generated by tiling the space with PCO. In principle, that is all there isto
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mapping particles between primitive cells. The only remaining problemisto find for
every particlethelattice vector bringing the particle from PCO into PC’0. In general,
it isdifficult to give an explicit expression for the required shift. Therefore, we will
not use a direct method to find the required lattice vector, but try lattice vectors.
This can be done because it is possible to give an upper bound of the order of the
required shift, i.e. if the required shift isn; K + noL + ngM it is possible to give
an upper bound of n1, n,, n3. For example, in Appendix A it is proved that particles
in PCODg have to undergo at most first order shiftsto be trandated into PCODKLM,
i.e. —1 < n1,ny n3 < 1 Thisway of determining the required lattice vectorsis not
the most efficient, but it is general. Because the process of trand ating particlesfrom
PCO into PC’0 is done in a preprocessing stage of the actual molecular simulation,
the inefficiency is no problem.

Thealgorithm for trandating particles

We will now discuss two algorithmsto move particles from PCODg into the related
PCODKLM. We assume that we have a boolean function | NPCOD2( r) , which
determines whether r is in the box PCODKLM. With this function, and using the
boundedness of the required trandations, the algorithm to move a particle from
PCODg into PCODKLM isasfollows:

procedure PutlntoPCOD2(var r: vector);
{r is shifted from PCOD1 into PCOD2}
constant
maxOrder = 1; {see Appendix A}
var
nl, n2, n3: integer;
S. vector;
{k,I,m are vectors, globally declared and initialised}
begin
for nl := -maxOrder to maxOrder do begin
for n2 := -maxOrder to maxOrder do begin
for n3 := -maxOrder to maxOrder do begin
s: = nl*k + n2*| + n3* m{vector operators}
if INPCOD2(r + s) then begin
r:=r+s {vector operators}
exit(PutintoPCOD2);
end; {if InPCOD2}
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end; {for n3}
end; {for n2}
end; {for n1}
end; {putintoPCOD2}

This implementation of Put | nt oPCOD2 is not very efficient because trans-
lations over first order shifts are tried first, while the shift over zero is the most
probable one. Later we will encounter a case where maxOr der is more than one,
which resultsin even moreinefficiency. Thereforewewill now show amoreefficient
implementation of Put | nt oPCOD2. Theinefficiency isremoved by first trying the
most probable shift, which is the zero shift. Then, the second most probable shifts
are tried, which are shifts over lattice vectors in the first layer around the origin.
Then, if max_order > 1, the shifts over lattice vectors in the third layer are tried,
and so on.

procedur e PutlntoPCOD2(var r: vector);
var
j, a b, maxRadius: integer;

procedur e tryShiftinglntoBox(nl, n2, n3: integer);

var
shift; vector;
begin {note vector operations}

shift: = n1*k + n2*| + n3* m;

if INPCOD2(r+shift) then begin
r:=r+ shift;
exit(PutintoPCOD2);

end; {if}

if inbox1(r -- shift) then begin
r:=r- shift;
exit(PutlntoPCOD2);

end; {if}

end; {tryShiftingIntoBox}

begin{PutintoPCOD2}
maxRadius := 100;
for j := 0to maxRadius do begin
{ try further and further away }
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for a:= —j toj do begin
for b:= —j toj dobegin
tryShiftinglntoBox(a, b, j);
end; {for b}
end; {for a}
for a:= —j toj do begin
for b:= —j+1toj—1do begin
tryShiftinglntoBox(a, j, b);
end; {for b}
end; {for a}
for a:= —j+1toj—1dobegin
for b:= —j+1toj—1do begin
tryShiftinglntoBox(j, b, d);
end; {for b}
end; {for a}
end; {forj}
FatalError(’ Max radi us overflow. ),
end; {PutintoPCOD2}

Comments on this pseudo code: Note that we use vector operatorsin this code.
The code consists of three similar blocks, each consisting of a nested loop over a
and b. Inthefirst block al lattice points in the top and bottom plane of a cube with
‘radius | arevisited. Inthesecond block thelattice pointsin theleft and right plane
are visited, and in the third block the lattice points in the front and back plane are
visited.

In Appendix B it is shown that particles in PCODKLM have to undergo at most
second order shifts to be trandated into PCODUVW. This means that the procedure
proposed in this subsection can al so be used for that case, with of coursetheexception
that in the algorithms maxOr der : =2. Later we will encounter a case where the
maximum order of the trandation is unbounded, but still zero shifts are the most
probable ones with decreasing probability outwards. For that case, the second
implementation of the procedure Put | nt oPCOD2 isthe only one that can be used
because in the first implementation infinite translations would be tried first.
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3.6 An exampletransformation of a ssmulation

In the M.D. smulation package GROMOS, two box shapes are implemented:
PCT1R, and PCT5R. In this section, as an example application of the theory,
we will show how a smulation, formulated in PCT5R, can be transformed into a
simulationin PCT1 and PCT1R. Wewill assume that PCT5R iscentred at the origin,
so, that it isactually aPCOT5R.

PCOT5R is obtained by cutting awvay pieces of a cube with edge lengths . The
cutting away of piecesis done with the Voronoi, or Wigner-Seitz construction, using
the Euclidean metric. This results in a PCOT5R with edge vectors b, c,d, e, f, g
given by

0 0 —1h
b=| —ih |, c= th |, d= 1h , (3.13)
—1h —1h 0
—1h —1h —1h
e=| - |, f= 0 |, g= 0 (3.19)
0 th —1h
Applying (3.10) givesthe vectors K, L, M
—h —1h —1h
K=| 0 |, L= -t |, M=| -2 (3.15)
0 —1h +1ih
Applying (3.12) givesthe vectorsU, V, W
—h 0 —1h
U=| 0 |, V=| =i |, W=| —ih |. (3.16)
0 —1ih +ih

It can be checked that the volume of each of these three figures (PCOT5R, PCOT1,
PCOTLR) is 3/°.

In Figure3.9aPCOT5R isshown with a(fancy) spherical molecule. Themolecule
is mapped into PCOT1 according to Theorem 2 (see Figure 3.9b). The fact that the
moleculeis‘cut into pieces in PCOT1 indicates that the atoms of the molecule are
shifted over different lattice vectors when trandated from PCOT5R into PCOTL1.

PCT5R is the most regular instance of PCT5. Consequently, as can be seen in
(3.15), the lattice vectors K, L, M are also specidl, i.e., to create image particles
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FIGURE 3.9 a: PCOT5R with a (fancy) spherica molecule. b: PCOT1 derived from
PCOT5R, with the molecule mapped into it. It is instructive to copy b) on a transparent
sheet, and to fit this copy at variousfacestoitsoriginal. It can then be seen that the molecule
is reconstructed.

surrounding the original box PCT5R, the particlesin the box have to undergo regular
shifts. The regularity of these shiftsis exploited in [5] to calculate in a simple way
the required shifts. Quite appropriately, this shift pattern is called the ‘ checker-
board’ periodic boundary condition. However, this shift method is only applicable
to PCT5R, and the actual smulationis still donein PCT5R.

We have made some software available® as both Turbo Pascal and C code with
executables. In DEML the primitive cells PCT1, ..., PCT5 can be (randomly)
generated, and visualised (in X). In DEM2 the process of moving particles from
PCOT5R into PCODKLM and PCODUVW isimplemented. DEMR can thus be used by
the M.D. community to transform existing smulations, formulated in PCT5R, into a
simulation in PCODKLM and PCODUVW.

3.7 Related Topics

3.7.1 Pressurescaling

The most general pressure of an molecular system can be represented by a 3 x 3
tensor P. The pressure per dimension is defined as a vector (P, P,,, P..), and the
scalar pressure P is defined as

= %trace( P). (3.17)

(3) Can be obtained by anonymous ftp fromf t p. ¢s. rug. nl indirectory pub/ mdbox.




3.7 Related Topics 51

In many M.D. simulations, every now and then the M.D. system, that is, the box and
particle positions, is scaled depending on the most recently calculated pressure. In
case the computational box istriclinic, it iswell known how to scale the system [11]:
in case only the scalar pressureis calculated, the box and particlesare scaled in every
dimension with the same factor. In case the pressure is calculated per dimension,
the system is scaled per dimension, proportional to the components of the pressure
vector. In casethefull tensorial pressureis used, the system is scaled by multiplying
all particle position and box vectors with the scaled pressure tensor. As a result of
the the last two types of pressure scaling, the angles of the system may change.

With the notions developed in this article, it is clear how to scale the system
when the computational box is one of PCT2, ..., PCT5 and a pressure scaling per
dimension or afull tensorial pressureis used. Then, just asin the case of atriclinic
box, the system may be scaled by scaling box vectors and particle positions per
dimension, resp. by multiplying box vectors (b, . . ., g) and particle positions with a
scaled tensor P. Thisis because the infinite M.D. system may be taken as atiling of
the space with one of PCT2, ..., PCT5 but just aswell asatiling with PCT1.

3.7.2 Latticereduction

Until now our attention has been focussed on transforming simulations in acomplex
box into simulations in a smple box, i.e. on transformations between different box
types. We will now discuss a transformation from one PCT1 into another PCT1,
both defining the same lattice.

Let us suppose that a2-D simulation of along thin moleculeis set up as shownin
Figure 3.10a. In principle the smulation may be done in this box but for a number
of practical reasons this may be unattractive. For example, then the cut off sphere
may be located in many boxes at the same time. To improve this situation, a general
technique, called lattice reduction [6], may be applied. According to Theorem 3 a
simulation may be donein every box that definesthe same | attice as the original box.
When we assume that the original box definesthelattice basisvectors K, L, the same
latticeis defined by thebasisvectors K, L — n K withn € Z. So, the simulation may
just aswell be done in a box defined by the vectors K, L — n K. When the particles
are moved from the original box to the new one this resultsin a system as shown in
Figure 3.10b. This method may be generalised to 3-D.

Let us now be a bit more precise. For agiven box PCT1, spanned by the vectors
K, L,M, we look for three vectors K', L', M’, such that the vectors K’, L', M’
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FIGURE 3.10 2-D exampleof two primitivecdlsof the sametype (parallelogram), defining
the same lattice. Applying lattice reduction to a gives b, resulting in a cell with shorter
spanning vectors than the origina primitive cell. The molecule in a is mapped into b
according to Theorem 2.

define the same lattice as the vectors K, L, M. Moreover, the vectors K', L', M’
should span a ‘nice’ box, where nice means something like ‘as cubic as possible’.
The process of transforming the vectors K, L, M into the vectors K', L', M’ is
called lattice reduction. Many different notions of ‘reduced’ exist in the literature,
but roughly speaking, they all mean that thecell K’, L', M’ isascubic as possible. It
has been shown [6] that in 3-D the three shortest, linearly independent lattice vectors
are abasis of the lattice. We will define a reduced basis asfollows: a reduced basis
consists of the three shortest, linearly independent lattice vectors.

After the process of lattice reduction, particles from the box K, L, M should be
mapped into the box K’, L', M'. This should be done according to Theorem 2, i.e.
particles should be shifted over lattice vectors. Which latticebasisisused, K, L, M
or K',L', M’', does not matter because both are a basis of the same lattice. The
algorithm from Section 3.5 may be used to shift particles over the required lattice
vectors, although, unlike the situation in Section 3.6, now there is no upper limit on
the required shift (called max _shi f t in theagorithm).

A useful application of lattice reduction has to do with the maximum allowed
cut-off radius. More precise: for a given triclinic box spanned by the (unre-
duced) vectors K, L, M, how large may the cut-off radius be at most, such that
a particle has no interactions with two corresponding particles? This may be re-
formulated as. how large may the cut-off sphere be at most, such that it does not
contain corresponding points? As can be seen in Figure 3.11a, it is not enough
that maz R., = 3 min(|K|,|L|,|M]). Using our foregoing definition of ‘reduced
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FIGURE 3.11 a 2-D example of an unreduced primitive cell. When R, is chosen half
the length of the shortest vector spanning the primitive cell, the cut-off sphere still contains
corresponding particles. b: When R.., ischosen half thelength of the shortest vector spanning
the reduced primitive cell, the cut-off sphere does not contain corresponding particles.

basis', the answer is

1
maz R, = 5 min(|K'|, |L'], M), (318)

i.e. the cut-off radius should be lessthan half the shortest reduced | attice basis vector
(Figure 3.11b).

3.7.3 Longrangeorder

Stacking boxes in a space filling way introduces a well defined long range order in
the infinite system. Thislong range order may influence the results of a simulation.
For example, when the box shape is chosen such that it defines a long range order
close to the long range order of ice, it may happen that in asimulation of pure water,
the water freezes above 0 °Celsius. By simulating water in a box with along range
order incompatible with the long range order of ice, the water may be liquid below
0 °Celsius. Probably, for every solvent and depending on the type of simulation,
there is an optimal long range order, so that the solvent behaves normal. So, when
setting up asimulation, the resulting lattice must be compatible with the desired long
range order. This means that the shape of the computational box is not completely
free anymore.

3.7.4 How to set up asimulation

From the foregoing it will be clear that a molecular simulation can be done without
using complex boxes. We will now show that setting up a simulation can also be



54 Chapter 3 Unification of Box Shapes in Molecular Simulations

done without using complex boxes, i.e. we will show that it isnot necessary to set up
asimulation in a complex box which is subsequently transformed into a ssimulation
inasimple box. Historically, M.D. ssimulations are done in complex boxes because
it was believed that this was the only way to get a minimal volume ssimulation. An
implicit condition was that the box should contain an unfragmented molecule. This
superfluous implicit condition has led to the use of complex shaped boxes. Aswill
be clear from this chapter, it is not forbidden that the moleculeis stored in the box in
pieces, provided that the molecule is reconstructed when the boxes are stacked.

Let usnow assume that one single large molecul e has to be simulated in a sol vent.
The molecule has been given, the solvent has to be added later. We will designate
this molecule by ‘mol’. See Figure 3.12. In general a molecule is not allowed to
interact with its own image molecules, so, in the infinite system the smallest distance
between two atoms of two different images of mol should be at least R.., apart. For
this purpose we surround mol by an enlarged convex hull, such that no atom of mol is
closer than 1/2R,, to thisenlarged hull. We will designate this enlarged hull of mol
by MOL. Threereplica’'sof MOL, with the same orientation asMOL, are designated
by MOL’, MOL", and MOL"".

To set up aPBC simulation with aminimal amount of solvent meansthat we have
to find a densest lattice packing of trandates of MOL. A practical approach to this
minimisation problem isto fit MOL’, ..., MOL" to MOL, such that the volume of
the tetrahedron defined by these four moleculesis minimal. More exactly, when we
define the vector K as the vector connecting the centre of MOL with the centre of
MOL’, the vector L as the vector connecting MOL with MOL”, and the vector M
as the vector connecting MOL with MOL"”, the problem boils down to: minimise
| K, L, M| so that each of the moleculesMOL, ..., MOL" istouched* by the other
three. This is a minimisation problem in three parameters. This can be seen as
follows. because MOL’ has to touch MOL, the position of MOL'’ is determined by
two angles, say § and ¢, wherethe origin of these two anglesis somewherein MOL.
MOL" should touch MOL and MOL’, so there is only one degree of freedom in
the placement of MOL"”. Finally, MOL" has to touch the first three ones, so the
placement of MOL"" is compl etely determined by the positionsof MOL, ..., MOL".
Thus, we have a minimisation problem in three variables, (minimise |K, L, M),
subject to six contact conditions (contact between every pair of MOL, . .., MOL").

41t is awell known property of the densest lattice packing of convex figures that every
figure istouched by twelve other ones.
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FIGURE 3.12 To find a computational box with a minimal volume, containing a single
molecule MOL, three trandates of MOL have to be fitted to MOL, defining three vectors
K, L, M, suchthat thevolumeof box defined by K, L, M isminimal. After findingsuch a
minimal box, the atoms of MOL can betrandated into thisbox by shifts over lattice vectors,
wherethelatticeisdefined by K, L, M.

A near minimal solution can be found by a standard minimisation procedure as for
example NAG routine EO4UCF. When a minimal volume configuration of MOL,
.-+, MOL" has been found, the vectors K, L, M arethe vectors defining thetriclinic
simulation box.®> By shifts over lattice vectors, the atoms of mol can now be brought
into this triclinic box, and the empty space can be filled with solvent. Of course, if
desired thisbox can be transformed into a rectangular box as described earlier in this
chapter.

3.7.5 Which box to use: thetriclinic or the rectangular?

The main message of this chapter is that complex shaped boxes with particles, as
for example PCT5 and its degenerates PCT4, - - -, PCT2, can be transformed into
simpler ones, i.e. into PCDKLM and PCDUVW. Which one of these last two is the
best one as asimulation box is not very clear. The choice may be dightly influenced
by some parts of the smulated system and the simulation methods used. We will

(5 Obviously, when the simulation has to be set up with a predefined long range order the
optimisation process may be skipped.
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briefly discuss some of these aspects. Still, this discussion will not lead to a strong
preference.

Neighbour searching: As has been shown in[7], using a grid search technique
significantly improves the efficiency of neighbour searching. The essence of the grid
search technique is that a grid is constructed in the computational box, and that for
every particleit is determined in which grid cell it islocated. Neighbour searching
for a given particle then boils down to inspecting its own and directly neighbouring
grid cellsfor neighbouring particles. In[7] it wasshownthat agridsizeof . = %RCO
gives an optimal neighbour searching speed, which is six times faster than neighbour
searching without using a grid. However, as far as we can see now, the grid search
technique can only work efficiently when the grid cellsarerectangular, or even better,
cubic. Obvioudly, arectangular box can be partitioned in cellsinanatural way. This
does not hold for the non-rectangular box PCDKLM, so then many grid cells will be
empty. Therefore we think that in case neighbour searching is implemented with
the grid search technique, the rectangular box is to preferred over the triclinic box.
Of course, although the box is rectangular, image particles are created by shifting
particles over lattice vectors, so not over the orthogonal vectorsU, v, W.

The function i nbox(r): Every now and then during an M.D. simulation,
particles that moved outside the computational box have to be reset into the box.
To check whether a particle isinside or outside the computational box, the boolean
function i nbox(r) isused. When r isinside the box the function evaluates to
true. Obviously, when PCT1R is used as a computational box, and the directions of
U, V,W coincidewiththez, y, z axes,i nbox(r) canbeimplemented by checking
independently in three directions in what range the components of » are. This does
not work that smple in case of a non-rectangular triclinic box. Then a linear
transformation on » hasto be done, or some other more complex calculation. So, for
the implementation of i nbox(r) itisdesirabletowork with PCDUVW.

Full pressurescaling: Asweexplained before, threekinds of pressure scaling are
possible in an M.D. simulation: uniform in every direction, scaling per dimension,
and by using thefull pressuretensor. In general, thelast two ways of pressure scaling
will changethe directions of the vectors spanning the computational box. Thismeans
that when PCDUVW is used as a computational box, the angles between the vectors
U, vV, W will change, i.e. afterwardsthe box will not be rectangular anymore. Then,
inprinciple, the functioni nbox(r) will not work properly, and the search grid will
not be rectangular anymore. However, the computational effort of recalculating the
vectorsU, V, W and resetting particlesis small, so possibly pressure scaling will not
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be an obstacle for using a rectangular box.

Summarising one may say that a rectangular box simplifies the implementation
of some parts of molecular algorithms (grid search, i nbox(r) ), but causes small
complicationsin the implementation of other parts.

3.8 Conclusion

In this chapter we studied the possible shapes of the computational box of molecular
simulations with PBC. For this purpose, five types of boxes are suitable: triclinic,
the hexagonal prism, two types of dodecahedrons, and the truncated octahedron, for
short PCT1, - - -, PCT5. We showed that PCT1, - - -, PCT4 are degenerate instances
of PCT5.

The main purpose of thischapter isto show that for every simulation in sometype
of box, simulationsin the other four types can be devised which give exactly the same
simulation result, i.e. it is shown that boxes with a complex shape are superfluous.
Therefore we first showed how to transform the complex shaped box into atriclinic
one, and how to transform the triclinic one into arectangular one. Then we showed
how to map particles from the complex shaped box into the ssmpler ones.

Important conceptual tools in this chapter are lattices and primitive cells. It was
shown that a simulation box may be taken as aprimitive cell. Tiling the space with a
box with particles gives an infinite molecular system. A cornerstone of this chapter
isatheorem in which it is stated which transformations are allowed on the original
box with particles, subject to the condition that the infinite system generated by tiling
the space with the transformed box with particles gives the same infinite system as
theinitial box.

Although most of this chapter isabout transforming complex boxeswith particles,
this does not mean that a molecular simulation should be set up in a complex box
which is subsequently transformed into a smpler box. On the contrary, because
every simulation in a complex box can be transformed in a simpler onein atriclinic
box, nothing is lost when a simulation is set up right away in a triclinic box. In
Subsection 3.7.4 it is explained how this can be done.

With the concepts developed in this chapter, some questions are clarified. This
includes amongst others. pressure scaling in acomplex box, and thelong range order
introduced by the shape of the box.
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FIGURe Al Particlesin PCO have to be shifted over more than first order shifts to be
translated into PC’0.
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Appendix A

We will prove that particlesin the box PCODg have to be shifted at most over first
order shifts, i.e. over n1 K + noL + n3M, with — 1 < nj,ny, ny < 1, to belocated
in the related PCODKLM. It is ingtructive to see that this does not hold in general
(see Figure Al), i.e. that particlesin aprimitive cell PCO potentially require infinite
shifts in order to be located in arelated PC'0, where ‘related’” means that the cells
define the same | attice.

The reason that between PCODg and PCODKLM at most first order shifts are
required, has to do with the special choice of K, L, M. Consequently, when PCODg
islong and thin, PCODKLM isalso long and thin and is oriented in the same direction.
In this way PCODg and PCODKLM have a large overlap, so going from one to the
other cell, only limited particle shifts are required.

Let us now give a more formal proof. Using the 3-D nomenclature, we give the
proof for the 2-D case, but it is simple to extend it to 3-D. We start with PCODg
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FIGURE A2 Every point belongingto PCODKLM isasoinF

and its eight first order images. We will call this arrangement of 9 tiles ‘F'. See
Figure A2. Inthis same figure the related PCODKLM is drawn. It is constructed by
scaling the rhombus A,B,C,D with afactor 1/2. The rhombus defined by A,B,C,D is
in F because the boundary of therhombus A,B,C,D isinF. Thislast fact is because,
when two space fillers (either 2-D or 3-D) arefitted face to face, the line connecting
their centres of symmetry lies in these two figures. Because PCODKLM is in the
rhombus A,B,C,D, itisaso in F. The particlesin F are shifted from PCODg over at
most first order lattice vectors, so, the particlesin PCODg have to be shifted over at
most first order shiftsto be located in PCODKLM.

Appendix B

In this appendix we will show the necessity to order the vectors K, L, M before
calculatingU, v, w. Wefirst show what may go wrong when it isnot done. Just as
in Appendix A, using the 3-D nomenclature, we will do thisfor 2-D.

Suppose that we have a PCODKLM as shown in Figure B1. We can construct a
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FIGURE B1 a When the vectors K,L,M are not ordered such that |K| > L| > |M],
possibly the boxes PCDKLM and PCDUVW have little overlap, so possibly, particles
reguire shifts over high order lattice vectors to be moved from one box into another one. b:
The boxes PCDKLM and PCDUVW have alarge overlap because the longest box vector is
cdled K.

rectangular primitive cell from PCODKLM intwoways. by U = KandV L U
(FigureBla), andby U = L and V L U. (Figure B1lb). From these figuresit is
clear that PCODUVW has a large overlap with PCODKLM when the longest one of
the pair K,L isdefined as U. So, ordering K,L,M prevents possibly infinite shifts of
particles going from PCODKLM into PCODUVW.

Now, just like in Appendix A, we will determine the maximum shift required to
bring a particle from PCODKLM into PCODUVW. We suppose that the vectors K, L
areordered, i.e. that |K| > |L|. We define‘F asthe array of nine cells, created by
all possible first order shifts of PCODKLM (Figure B2). To show that every point of
PCODUVW isin F it is sufficient to show that C' isin F. This last statement can be
reformulated as. show that the distance of C' to C isless than the distance C to D.
This last statement is true because CC' < CE < DC. So, at most first order shifts
are required to bring particles from PCODKLM into PCODUVW.

For the 3-D case the reasoning above can be applied twice. Thus, in 3-D at most
second order shifts are required to bring particles from PCODKLM into PCODUVW.
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FIGURE B2 When the vectors K, L, M are ordered such that | K| > |L| > | M|, every
point belonging to PCODUVW isadsoinF.
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