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Abstract 

We prove the tight lower bound 4n - 4 on the size of tangent visibility graphs on n pairwise disjoint bounded 
obstacles in the euclidean plane, and we give a simple description of the configurations of convex obstacles 
which realize this lower bound. 

Keywords: Visibility graphs; Triangulations; Pseudotriangles; Pseudo-triangulations; Convex hulls; Relative 
convex hulls; Plane trees; Maps; Davenport-Schinzel sequences 

1. Introduction 

Visibility and shortest path problems in a scene consisting of disjoint polygons in the plane have been 
studied extensively. Recently the scope of this research has been extended to scenes of disjoint convex 
plane sets (convex obstacles for short). One of the combinatorial questions concerns the complexity of 
such scenes. Our starting point is the following question: what is the minimal number o f  f r e e  b i tangents  

shared by n convex obstacles? A bi tangent  is a closed line segment whose supporting line is tangent 
to two obstacles at its endpoints; it is called f r e e  if it lies in f r e e  space  (i.e., the complement of the 
union of  the relative interiors of the obstacles). The endpoints of these bitangents split the boundaries 
of the obstacles into a sequence of arcs; these arcs and the bitangents are the edges of the so-called 
tangent visibility graph. The size of the tangent visibility graph is defined to be the number of free 
bitangents, so our question asks for the minimal size of tangent visibility graphs. Visibility graphs (for 
polygonal obstacles) were introduced by Lozano-P6rez and Wesley [11] for planning collision-free 
paths among polyhedral obstacles; in the plane a shortest euclidean path between two points runs via 
edges of the tangent visibility graph of the collection of obstacles augmented with the source and target 
points. Since then numerous papers have been devoted to the problem of their efficient construction 
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Fig. 1. Conf igurat ions  o f  4 obstacles  with 4 x 4 - 4 = 12 free bi tangents .  

([1,4,5,8,10,13,17,18,21,22]) as well as their characterization (see [12] and the references cited therein). 
The more recent papers [14-16] consider the problem of the efficient computation of tangent visibility 
graphs for curved obstacles. This paper is concerned with the problem of characterizing the minimal 
tangent visibility graphs and classifying the corresponding configurations; such configurations are 
called, in this paper, minimal configurations. The answer to our question is given in the following 
theorem (we assume that the obstacles are closed, bounded, and are not reduced to points). 

Theorem 1.1. The number of  free bitangents shared by n pairwise disjoint convex obstacles is at 
least 4n - 4; this bound is tight. 

Configurations of n ( =  4) convex obstacles with exactly 4n - 4 (=  12) bitangents are depicted 
in Fig. 1. These examples are easily extented to any value of n. The 4n - 4 lower bound has been 
established previously in the case where the obstacles are line segments by Shen and Edelsbrunner [19] 
(see also [2,20]). Here we give a different proof based on the notion of pseudo-triangulation introduced 
in [14]. In fact we prove the following stronger result. 

Theorem 1.2. Consider a collection 0 of  n pairwise disjoint convex obstacles. The following asser- 
tions are equivalent. 
(1) The weak visibility graph of  0 is a tree. 
(2) The number o f  free bitangents of  O is minimal (i.e., 4n - 4). 
(3) The size o f  the convex hull o f  O is maximal (i.e., 2n - 2). 

Recall that the weak visibility graph is the graph whose nodes are the obstacles and whose edges are 
pairs of obstacles such that there is a free line segment with endpoints lying on the obstacles. The size 
of the convex hull is the number of bitangents appearing on its boundary. 

To discuss the characterization/classification problem we use the notion of visibility type (introduced 
in [15]). The visibility type might be considered as a combinatorial version of the tangent visibility 
graph where, for each obstacle, we take into account the circular order of the free bitangents incident 
to this obstacle. More precisely, let O --- O1 tO 02 U -.- tO On be the union of n pairwise disjoint 
convex obstacles; for the sake of simplicity we assume that each obstacle is strictly convex and has 
a smooth boundary (equivalently its boundary has a well-defined tangent line at every point, and a 
well-defined touching point for every tangent line). Let b be a bitangent of O with endpoints pi and 
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pj lying on the boundary of Oi and Oj,  respectively; we define the type of the bitangent b directed 
from Pi to pj to be the pair (e, e') with e = -4- or - (e ~ = -4- or - )  depending on whether Oi 
(Oj) lies, locally at the touch point Pi (Pj), to the left or to the right of the supporting line of the 
directed bitangent b. Now let B be a set of bitangents of O, and let P be the set of endpoints of 
bitangents in B. We define two permutations 0 and cr on P by the two following conditions: (1) the 
line segment [p, 0(p)] is a bitangent in B (observe that 0 is an involution), and (2) the point a(p) is 
the first point in P encountered when walking counterclockwise along the boundary of the obstacle on 
which lies p, starting at p. Finally, for p in P ,  we define e(p) to be the type of the bitangent ~o, 0(p)] 
directed from p to O(p). We denote by TB(O) the (combinatorial) map (P, a, 0) augmented with the 
labeling e; elements of P are usually called darts. TB(O) can also be considered as a topological map: 
its vertices are the cycles of the permutation a, its edges are the pairs {p, 0(p)}, and its faces are the 
cycles of the permutation a o 0 (see [3,9] for background material on combinatorial and topological 
maps). 

By definition the visibility type of O is the labeled map TB(O) where B is the set of free bitangents 
of O; the visibility type is denoted by V(O). The visibility type of a collection of two convex obstacles 
is depicted in Fig. 2. 

Given a visibility type (P, 0, a) one can easily recover the corresponding tangent visibility graph: this 
is the graph whose set of nodes is P and whose set of edges is the set of pairs {p, a(p)} and {p, O(p)}, 
where p ranges over P.  We do not know if, conversely, the tangent visibility graph determines the 
visibility type (up to reorientation of the plane). However, it follows easily from our analysis that 
the notion of visibility type and the notion of tangent visibility graph are equivalent for the class of 
minimal configurations (with smooth and strictly convex obstacles). Our characterization/classification 
result is the following. 

P 

i 
t 
i 
i 

0(p)  ' I . . . . . . . . . . .  

(a) (b) 

Fig. 2. (a) Representation of the visibility type of two disjoint convex obstacles: the cycles of tr are represented by circles 
in a conventional way (counterclockwise for instance) and the cycles of 0 are represented by arcs. (b) The corresponding 
topological map, obtained by contraction of each circle to a point, lies on the toms (opposite sides of the parallelogram are 
identified in the usual way). The labels of the darts p, cr(p), o'2(p), ~r3(p) are (- ,  - ) ,  (+, +), (+, - ) ,  ( - ,  +). 
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Theorem 1.3. The set o f  minimal visibility types on n disjoint convex obstacles is in 1-1 correspon- 
dence with the set o f  plane labeled trees on n nodes. Furthermore the realization space of  a minimal 
visibility type is connected. 

It is worth noting that in general the realization space of a visibility type is not connected (to see this 
recall that realization spaces of order types of points are in general not connected [6], and note that 
order types of points are visibility types of convex obstacles such that stabbing lines of triplets of 
obstacles do not exist). 

The paper is organized as follows. In Section 2 we introduce the notion of pseudo-triangulation 
and we prove the three theorems above. In Section 3 we generalize Theorems 1.1 and 1.2 to configu- 
rations of obstacles which are not necessarily convex. A classification of the corresponding minimal 
configurations is left open. 

2. Minimal tangent visibility graphs of convex obstacles 

Let O = O1 U O2 U . . .  U On be a configuration of n pairwise disjoint convex obstacles. As 
mentioned in the introduction we assume that each obstacle is strictly convex and has a smooth 
boundary (equivalently its boundary has a well-defined tangent line at every point, and a well-defined 
touching point for every tangent line). An extremal point of an obstacle is a boundary point at which 
the tangent line to the boundary is horizontal. 

2.1. Pseudo-triangulation 

A pseudotriangle is a simply connected bounded subset T of ]~2 such that (i) the boundary a T  is 
a sequence of three convex curves that are tangent at their endpoints, and (ii) T is contained in the 
triangle formed by the three endpoints of these convex curves (see Fig. 3). Observe that there is a 
well-defined tangent line to the boundary of  a pseudotriangle with a given (unoriented) direction. A 
pseudo-triangulation of the set of obstacles is the subdivision of the plane induced by the obstacles and 
a maximal (with respect to the inclusion relation) family of pairwise noncrossing free bitangents. It is 

(a) @) 

Fig. 3. (a) A pseudotriangle and (b) a pseudo-triangulation. 
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clear that a pseudo-triangulation always exists and that the bitangents of the boundary of the convex 
hull of the obstacles are edges of any pseudo-triangulation. A pseudo-triangulation of a collection of 
six obstacles is depicted in Fig. 3. 

Lemma  2.1. The bounded free faces of  any pseudo-triangulation are pseudotriangles. 

Proof.  Let B be a family of noncrossing bitangents containing the bitangents of the boundary of  the 
convex hull of  the collection of obstacles. Assume that some free bounded face of the subdivision is 
not a pseudotriangle; from which we shall derive that B is not maximal. This means that this face is 
not simply connected or that its exterior boundary contains at least 4 cusp points. In both cases we add 
to B a bitangent as follows. Take a minimal length curve homotopy equivalent to the curve formed by 
the part of the exterior boundary of the face that goes through all cusp points of the exterior boundary 
but one. This curve contains a free bitangent not in B; hence B is not maximal. [] 

L e m m a  2.2. Consider a pseudo-triangulation of  a collection of  n disjoint convex obstacles induced 
by a maximal family B of  free bitangents and let Fi be the set of  pseudotriangles with exactly i 
bitangents on their boundaries. Then we have 

IBI = 3n  - 3, (1) 

IF21 + IF3I + . . . .  2n - 2, (2) 

21F=I + 31F31 + . . . .  6n - 6 - h, (3) 

IF31 + 21F41 + . . . .  2n  - 2 - h, (4) 

where h is the number of  bitangents on the boundary of  the convex hull o f  the collection. 

Proof.  Each pseudotriangle contains in its boundary exactly 1 extremal point (namely the touching 
point of the horizontal tangent line to the boundary of the pseudotriangle); since there are 2n - 2 
extremal points in bounded free space (=  free space inside the convex hull of the collection of 
obstacles) there are exactly 2n - 2 pseudotriangles; this proves Eq. (2). The first equation is then 
an easy application of Euler's relation for planar graphs. To see this observe that the set of vertices 
(of the pseudo-triangulation) consists of all endpoints of bitangents. In particular every vertex has 
degree 3. Furthermore the number of edges, that lie on the boundary of some object, is equal to the 
number of vertices. Finally the total number of bounded regions is equal to the sum of the number of 
pseudotriangles and the number (n) of obstacles. 

The third equation is obtained by counting the number of incidences between the faces and the 
bitangents of the pseudo-triangulation. The last equation is a linear combination of the two preceding 
it. [] 

From Eq. (4) we deduce that 2n - 2 is an upper bound for h; Fig. 1 shows that this upper bound is 
tight. An alternative argument is the following. The number h is also the size of the circular sequence 
of obstacles that appear on the convex hull (we call this sequence the combinatorial convex hull 
of the collection of obstacles). Since the obstacles are pairwise disjoint this circular sequence is a 
circular Davenport-Schinzel sequence on n symbols and parameter 2 (i.e., factors aa and subwords 
abab are forbidden). It is well known (and easy to verify) that such a circular sequence has length 
at most 2n - 2. Conversely any circular Davenport-Schinzel sequence (not necessarily maximal) on 
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n symbols with parameter 2 can be realized as the combinatorial convex hull of n pairwise disjoint 
obstacles. The argument is very simple. Let i l . . .  ih be a circular Davenport-Schinzel sequence on 
the alphabet {1 , . . .  ,n} with parameter 2. Now label in clockwise order the h vertices of a regular 
h-gon by the indices of the sequence i l . . .  ih. The convex hulls Oi of the points labeled i are pairwise 
disjoint (because subwords abab are forbidden) obstacles whose combinatorial convex hull is exactly 
il . . .  in. Finally we note the following simple fact. 

Lemma  2.3. Consider a pseudo-triangulation of  a collection of  obstacles, and let F2 be the set o f  
pseudotriangles with exactly 2 bitangents on their boundaries. Then a pseudotriangle in F2 is adjacent 
to at most one other pseudotriangle in F2. 

2.2. Proof o f  the main results 

Lemma 2.4. The number of  free bitangents o f  a collection of  n disjoint convex obstacles is at least 
6n - 6 - h, where h is the number of  bitangents on the boundary of  the convex hull o f  the collection. 

Proof. Consider a pseudo-triangulation of the set of obstacles induced by a maximal set B of pairwise 
noncrossing free bitangents. Let b E B and suppose that b lies inside the convex hull. This bitangent 
is the common boundary of two pseudotriangles, say T1 and T2. Exactly one cusp point of Ti, say 
Ai, does not belong to the convex boundary of Ti that contains the bitangent b. Now a shortest path, 
inside T1 tO T2, between A1 and A2 contains a free bitangent b ~ that crosses b, and only b among the 
bitangents in B (see Fig. 4 for an illustration). Hence there are at least as many free bitangents as 
there are incidences among pseudotriangles, viz )--~i~>z ilEal = 6n - 6 - h, see Lemma 2.2. [] 

Proof of Theorem 1.1. Lemma 2.4 implies (the first part of) Theorem 1.1 since, as we have observed 
in the previous section, 2n - 2 is an upper bound for h. [] 

A1 

Fig. 4. Bitangent b ~ crosses b. 
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Proof  of  Theorem 1.2. Since the number of bitangents between two convex obstacles is 4 it is clear 
that the size of a tangent visibility graph is bounded above by 4 times the number of edges of the 
weak visibility graph. Assuming (1) (i.e., the weak visibility graph is a tree) it follows that the size 
of the tangent visibility graph is bounded above by 4n - 4; since 4n - 4 is a lower bound, the size 
of the tangent visibility graph is exactly 4n - 4. This proves that (1) implies (2). The fact that (2) 
implies (3) is an obvious consequence of Lemma 2.4 and the fact that 2n - 2 is an upper bound for 
the size of the convex hull. Now we prove that (3) implies (1). According to Eq. (4) of Lemma 2.2 we 
have IF I -- 0 for i ~> 3, i.e., the 2 n -  2 pseudotriangles of any pseudo-triangulation have exactly two 
bitangents on their boundaries. It follows (see Lemma 2.3) that the connected components of bounded 
free space are pseudoquadrangles (i.e., the union of two adjacent pseudotriangles). There are n - 1 
of these pseudoquadrangles. Each of these connected components is incident to exactly 2 obstacles 
and induces exactly one edge of the weak visibility graph. Therefore the weak visibility graph is a 
tree. [] 

Proof  of  Theorem 1.3. Let O = Ol t3 . . .  t3 On be a collection of n disjoint convex obstacles with 
minimal visibility type V(O). According to the argument in the proof of Theorem 1.2 there is exactly 
one edge of the weak visibility graph per connected component of bounded free space. Therefore 
there is a unique (topological) embedding of the weak visibility graph in the plane such that the 
counterclockwise ordering of the edges incident to a node i coincides with the counterclockwise 
ordering of the connected components of bounded free space incident to the corresponding obstacle 
Oi. We denote this (topological) plane tree by T(O). Clearly the plane tree T(O) determines the order 
type V(O), and conversely. It remains to show that any plane labeled tree on n nodes, say T, is 
the tree T(O) of some collection O of n disjoint convex obstacles. Let ili2.., i2n-2 be the circular 
sequence of nodes encountered when we follow the boundary of the external face of the plane tree 
in a counterclockwise direction. This is a circular Davenport-Schinzel sequence on n symbols and 
parameter 2. As we have already observed such a sequence is realizable as the combinatorial convex 
hull of a collection O of n disjoint convex obstacles. Clearly T --- T(O). Finally a simple induction 
argument shows that the realization space of a minimal visibility type is connected. [] 

It follows easily from the above analysis that the visibility type of a minimal configuration on n 
obstacles can be recovered from its tangent visibility graph by searching in the tangent visibility graph 
n - 1 disjoint occurrences of the following subgraph (their number is n - 1 + 2f ,  where f is the 
number of leafs of the corresponding plane tree): 

i X i  
v 

which represent the n - 1 connected compooents of bounded free space (see Fig. 5); details are left 
to the reader. 

3. Extension to nonconvex  obstacles 

In this section we extend our analysis to configurations of obstacles which are not necessarily 
convex. For our purpose, in this section an obstacle is a bounded closed set whose boundary is an 
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(a) ~ (b) 

(c) 

Fig. 5. (a) A minimal configuration, (b) its tangent visibility graph and (c) its weak visibility graph. 

injective smooth closed regular curve (i.e., an injective curve ~ : ~.~1 ~ I~2 whose derivative satisfies 
"/(t) ~ 0 for all t E S1). Given a configuration O = O1 U --. U On of n pairwise disjoint obstacles, 
we denote by Co its convex hull, and by Ci the relative convex hull of Oi with respect to O, i.e., 
the interior of the shortest curve in the closure of R 2 \ O homotopy equivalent to the boundary of 
Oi (this shortest curve is not necessarily injective; its interior can be defined as the set of points in 
the plane whose winding number with respect to the curve is equal to +1 [7]). We denote by hi 
(i ~> 0) the number of bitangents (counting multiplicities) on the boundary of Ci, and by li ( i )  1) the 
number of connected components of Ci \ Oi. (Note that a bitangent might involve only one obstacle.) 
Set l(O) = )-~in=l I i and h(O) = ~'~in__o hi. The complement in ]I~ 2 of the union of the Ci (i >>. 1) is 
called free space, the union [.Ji~=1 (Ci \ Oi) is called semi-free space, and the complement in Co of 
the union of the Ci (i ~> 1) is called the relative convex hull of the family of obstacles. We denote 
by h'(O) the number of bitangents lying on the boundary of the relative convex hull. Observe that 
h(O) = hi(O) + w(O), where w(O) is the number of free bitangents incident on both sides upon 
semi-free space (these bitangents are counted twice in h(O)). See Fig. 6(a) for an illustration of these 
notions. 

3.1. The lower bound 

As in the case of convex obstacles we define a pseudo-triangulation to be a subdivision of the plane 
induced by the obstacles and a maximal family of pairwise noncrossing free bitangents. Clearly a 
pseudo-triangulation always exists and the corresponding maximal family of free bitangents contains 
the h'(O) bitangents of the relative convex hull (see Fig. 6(b)). 

Lemma 3.1. The free bounded faces of any pseudo-triangulation are pseudotriangles. Furthermore 
the number of pseudotriangles in a pseudo-triangulation is equal to 2n - 2. 
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(a) (b) 

Fig. 6. (a) Relative convex hull (semi-free space is the dotted region) and (b) pseudo-triangulation of a configuration of 7 
obstacles (its bounded faces are the obstacles, the connected components of semi-free space, and pseudotriangles). 

Proof.  The first part is proven as in Lemma 2.1. For the second part we claim that the number 
of extremal points on the boundary of bounded free space is 2n - 2, as in the convex case. Let 
us say that an extremal point on the boundary of obstacles is red (green) if it lies on a convex 
(concave) arc. Obviously every green point lies in the boundary of semi-free space. Since the number 
of red points on a given obstacle is equal to the number of green points plus 2, the number of red 
points exceeds the number of green points by 2n. Now observe that each semi-free bounded face 
of a pseudo-triangulation contains in its boundary exactly the same number of green points and red 
points. Furthermore the boundary of the convex hull contains exactly two red points. These last two 
observations imply that the number of pseudotriangles is equal to the excess of red points, minus two. 
This proves our lemma. [] 

Consider now a pseudo-triangulation of the collection of obstacles, induced by a maximal family B 
of free bitangents. Let Fi be the set of pseudotriangles of the pseudo-triangulation with / bitangents 
on their boundaries. From the previous lemma we deduce, arguing as in the proof of Lemma 2.2, that 

IBI = 3 n  - 3 + Z(O),  

IF21 + IF31 + . . . .  2 n  - 2, 

21F2[ + 31F3[ + . . . .  6 n  - 6 + 2 / ( O )  - h(O), 
IF3I + 21F41 + . . . .  2 n  - 2 + 2 / ( O )  - h(O). 

(5) 
(6) 
(7) 
(8) 

It follows from (8) that 2n + 2 / (0 )  - 2 is an upper bound for h(O). It is not hard to verify that this 
upper bound is tight for fixed n (~>2) and l(O), see Fig. 7. Similarly 2n + 2/(O) - 2 is an upper 
bound for h'(O), since h'(O) = h(O) - w(O). 

We recall also that a pseudotriangle in F2 is adjacent to at most one pseudotriangle in F2. 
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Fig. 7. Configurations of two obstacles with l(O) = 1,2, 3, and maximal value of h. 

Theorem 3.1. Consider a collection 0 of  n pairwise disjoint obstacles. Then the number of  free 
bitangents of  the collection is at least 6n - 6 + 2l(O) - h(O) + w(O). Furthermore the following 
assertions are equivalent. 
(1) The number of  free bitangents of  O is minimal (i.e., 4 n -  4). 
(2) The size o f  the relative convex hull of  O is maximal (i.e., h(O) = h'(O) = 2(n + l(O) - 1)). 
(3) The connected components of  the relative convex hull of  0 are pseudotriangles and/or pseudo- 

quadrangles (=  union of  two adjacent pseudotriangles of  size two). 
In case at least one (and hence all) of  the conditions (1)-(3) hold, the number of  pseudotriangles is 
2l(O) and the number of  pseudoquadrangles is n - 1 - l(O). 

Proof. The proof of the first part is similar to that of Lemma 2.4. First observe that there are w(O) free 
bitangents that are not incident upon any pseudotriangle. Secondly, as in the convex case, there are at 
least ~--]i i lF i l  free bitangents incident upon or inside the pseudotriangles. Therefore the number of free 
bitangents is at least w(O)+~-~i ilF l which, according to (7), is equal to 6 n - 6 + 2 1 ( 0 ) -  h(O)+w(O).  
This proves the first part of the lemma. Since 2(n + l(O) - 1) is an upper bound for h(O), it follows 
that 4 n -  4 + w(O) is a lower bound for the number of free bitangents of O. Now we prove the second 
part. If the number of free bitangents is equal to its minimal value 4n - 4, it follows from the first 
part that w(O) = 0 and h'(O) = h(O) = 2n - 2 + 2l(O). This proves that (1) implies (2). Assume 
now that the size of the relative convex hull is maximal, i.e., h'(O) = h(O) = 2n + 2l(O) - 2. 
It follows that ~ (O)  = 0 and, according to Eq. (8), that IF31 = IF41 . . . . .  0, Hence every 
pseudotriangle has exactly 2 bitangents in its boundary. It follows that the connected components of 
the relative convex hull are pseudotriangles and pseudoquadrangles. This proves that (2) implies (3). 
Furthermore, if the connected components of the relative convex hull are pseudotriangles (in number 
nl)  and pseudoquadrangles (in number n2) the number of free bitangents (which lie necessarily in the 
connected components of free space) is exactly 2nl + 4n2, i.e., 4n - 4, since nl + 2n2 = 2n - 2. This 
proves that (3) implies (1). Finally, from 2(nl + n2) = 2n - 2 + 2l(O) and n~ + 2n2 = 2n - 2, we 
deduce that nl = 2l(O) and n2 = n -  1 - l(O). [] 

3.2. A zoo of  minimal configurations 

New minimal configurations appear with nonconvex obstacles, see Fig. 8. From the above analysis 
(see Theorem 3.1) we can easily deduce that there is a 1-1 correspondence between the set of minimal 
visibility types and the set of maximal (for a given value of l(O) between 0 and n - 1) combinatorial 
relative convex hulls (=  labeled maps TB (O) where B is the set of bitangents of O which appears 
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313 

@ 

Fig. 8. Minimal configurations on 2, 3 and 5 obstacles. 

in the relative convex hull of O). In the case of convex obstacles ( l(O) = 0) the set of maximal 
combinatorial convex hulls is in 1-1 correspondence with the set of plane trees (see Section 2). The 
case of non convex obstacles seems to be much harder to analyze; one reason is that we have no 
obvious "canonical" configuration with a given minimal visibility type. However we conjecture that 
these labeled maps are still recognizable in polynomial time and that the realization space of a minimal 
visibility type is still connected. 

4. Conclusion 

We have proven that 4n - 4 is a tight lower bound for the size of tangent visibility graphs on 
n obstacles. We have also given a simple description of the corresponding minimal configurations 
of convex obstacles. Our main tool is the notion of pseudo-triangulation. It is expected that a better 
understanding of this notion will give insights in the classification problem of tangent visibility graphs. 
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