

 University of Groningen

Some Issues on Control of Discrete Event Systems Using Model Specifications
Spathopoulos, M.P.; Smedinga, R.

Published in:
Proceedings on the international workshop on Discrete Event Systems, WODES96

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1996

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Spathopoulos, M. P., & Smedinga, R. (1996). Some Issues on Control of Discrete Event Systems Using
Model Specifications. In Proceedings on the international workshop on Discrete Event Systems,
WODES96: 19-21 August, 1996, Edinburgh, Scotland, UK IEE (Computing and Control division).

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/ad6b2418-0c67-4be8-9499-e79b3962f293

SOME ISSUES ON CONTROL OF DISCRETE EVENT SYSTEMS USING MODELSPECIFICATIONSM.P. Spathopoulos1 R. Smedinga21 Division of Dynamics and Control, University of Strathclyde, 75 Montrose St., Glasgow, G1 1XJ Scotland,UK, email: mps@mecheng.strath.ac.uk2 Department of Computing Science, University of Groningen, Groningen, The Netherlands, email:rein@cs.rug.nlKeywordsLogical discrete event system, Speci�cation, ControlObjective, Predicate, Partial Observation, Control-lableAbstractIn this paper the control of a logical discrete-eventsystem is introduced using predicates and associatedblocking events. The blocking occurs when a predi-cate concerning the system behaviour becomes true.It is shown that model speci�cations can be trans-formed into control objectives involving predicatesand blocking events. Next, we consider the controlproblem when events are unobservable and uncon-trollable. It is shown that when the control objec-tives are decidable a separation principle holds, i.e.,the problems of uncontrollability and unobservabilitycan be solved separately and independently.1 IntroductionDi�erent ways exists to de�ne a logical discrete eventsystem. A simple but e�ective way is the following:P = haP;bP iThis denotes a DES with possible events collectedin the �nite set aP and with possible behaviour col-lected in the set bP � (aP)�. bP is a set of strings.For simplicity we suppose that bP is pre�x closed(i.e., if st 2 bP then also s 2 bP , where st denotesconcatenation of s and t). DESs de�ned in this waycan be displayed using state graphs. The number ofstates in such a graph is �nite if the language de�nedby bP is regular.Controlling a DES can be done in di�erent ways.One way is to introduce a second system, called thesupervisor, that follows the system and blocks events,if necessary, in order to get desired behaviour givenin terms of a �nite automaton. This is the Ra-madge/Wonham approach, see [1, 2]. Alternatively,c 1996 IEE, WODES96 { Edinburgh UKproc. of the workshop on Discrete Event SystemsThis work is partly supported by the Dutch Foundationfor Scienti�c Research (NWO) and the British Council.

the second system can be a controller in the sensethat plant and controller lead to some form of de-sired behaviour in synchronized cooperation, see [3].Intuitively, we can think of a DES as a black box,observed by an observer from a distance. The ob-server is unaware of the model of the system he isobserving, he only sees events happen. The observerwrites down on a piece of paper each event that oc-curs. Because he is unable to write down more thanone event symbol at a time, events occurring in paral-lel will be written down on paper in some (arbitrary)order. This observation leads to a growing string ofsymbols on that piece of paper, representing possiblebehaviour of the system.Our view of controlling simply means inspectingthat written string, each time a new event happens(e.g., is written down) and, depending on some con-dition, block some events. It is shown that any modelspeci�cation can be transformed into the so-calledcontrol objectives. Although the technique devel-oped in this paper holds for arbitrary observed be-haviour, it should be clear by now that the observerhas to check only one speci�c string of events, namelythe string of events that actually occurs.Thus, the controller is a collection of control ob-jectives which are evaluated on-line for the currentstring only (pathwise). Depending on the evalu-ated conditions on this string only, some events areblocked. If an event is observed next, all blockingis reset, conditions are re-evaluated and a (possiblydi�erent) set of events is blocked, see [4].The controller involves two levels of hierarchy. Inthe upper level the current string is stored. In thelower level the control objectives are evaluated.When some control objectives are uncontrollable aback-propagated algorithm is given to derive the con-trollable objectives. Under some assumptions thisalgorithm is e�cient. The derivation of the observ-able control objectives is also given and it is provedthat, when these objectives are decidable, the con-trol problem can be solved under unobservable anduncontrollable conditions separately and indepen-dently.

2 NotationWith ab we denote concatenation of events a andb (�rst a, then b), with a j b choice (a or b), witha� repetition (Kleene star operator), and with a kb interleaving (a and b occur in parallel). Becauseof the fact that events are considered to occur inin�nitesimal time, a k b equals ab j ba. d denotesalphabet projection (restriction):(xa)da = xda(xb)da = (xda)b if b 6= aBy pref (x) we denote the pre�x closure of the stringx. Similar pref(T) denotes the pre�x closure of thelanguage T . If s is a string of events, say s = xb (withx another string and b an event) then last(s) = b andpast(s) = x denote the last event of the behaviour sand the past of the behaviour respectively.De�nition 1 A set of control objectives for a systemP = haP;bP) is de�ned by� = f[B;A]: B: (aP)� ! ftrue; falseg ^ A � aP [f�ggB is the blocking condition and A the correspondingblocking event set.A control objective [B;A] blocks the events in A if,for a behaviour s 2 bP , the condition B(s) returnstrue.De�nition 2 A system P = haP;bP i under the setof control objectives � = f[B;A]g is de�ned to be thesystem P� given by:P� = � haP;�i if (9[B;A] 2 � : � 2 A ^ B(�))haP; ft : t 2 bP ^ t sat�gi otherwisewhere � is the trigger event and(sbu) sat[B;A] = B(s) ^ b 62 At sat� = (8[B;A] 2 � : t sat[B;A])bP� is called the legal behaviour of P .It is clear thatf[B1; A]; [B2; A]g = f[B1 ^ B2; A]gf[B;A1]; [B;A2]g = f[B;A1 [A2]gIn the remainder of this paper we assume that con-trol objectives contain only one blocking event. If

not, equations like the ones above can be used toachieve this. We will write [B; a] instead of [B; fag].Instead of the function name B we sometimes writethe corresponding expression, i.e., write [B(s); A].Example 1 Suppose the system P is given ashfa; b; cg; (ajbjc)�i. It is clear that P is regular, i.e.,can be represented by a �nite state graph. More-over, suppose, we want to control the system in sucha way that �rst some a's occur, next event b occurs,and last the same many c's as a's occur, i.e., anbcn(for arbitrary n). Clearly, the desired behaviour isno longer regular. Nevertheless, three control objec-tives are su�cient in order to describe this desiredbehaviour:� = f[sN b = 1; fa; bg]; [sN b = 0; fcg]; [sN a = sN c; fa; b; cg]gwhere s N e denotes the number of occurrences ofevent e in trace s (with �N e = 0 for each event e).It is clear that, in the controlled system, the event cis blocked as long as no b has happened and a and bare blocked as soon as b has happened. Finally, allevents are blocked as soon as the desired behaviourhas occurred. So we have:P� = haP;preffanbcn : n � 0gi3 Transforming model speci�cationsPractical experience shows that usually is possible tode�ne desired behaviours in terms of control objec-tives. Moreover, desired behaviours are often statedusing such objectives: \if this happens, block thoseevents." Instead of translating these objectives tolanguages (or state graphs) our proposed methoduses them directly.3.1 General transformationThe control requirements can be consideredas boolean conditions R(s) on the observedbehaviour s. For example, the mutual exclu-sion of two events a and b reads as: R(s) =\in s pairing of ab and ba is not allowed to occur".This condition can be transformed into a controlobjective. In fact, we haveTheorem 1 If R: (aP)� ! ftrue; falseg is a pred-icate on the behaviour, it can be replaced by the setof control objectives:� = f[Be; e] : e 2 aPg

where Be: (aP)� ! ftrue; falseg is given by:Be(s) = R(s) ^ :R(se)In words the theorem says: for each event e 2 aP :block this event e if both the current observationmakes the requirement R true and, when e occursnext, the requirement becomes false. In fact: wereplace the predicate by a set of control objectives,namely one control objective for each event e 2 aP .The �rst condition of Be(s) evaluates to true by re-quirement and recursion (R(s) cannot return falsebecause of the blocking in the previous step) andneed not be included.An objective does not contribute to the controlof the system if the blocking condition Be(s) for anevent e returns false for any observation s. Some-times we may decide whether such a condition neverreturns true, for example if the condition involvesthe number of occurrences of some events not in-cluding e. In general, the issue is undecidable. How-ever, the inclusion of control objectives which are notneeded, a�ect only the computations, making the de-sign more complicated.We recall here, that the new predicates Be arecomputed o�-line, while the control is performed on-line using the observed behaviour only.3.2 Some examplesIn this section we give some examples of control ob-jectives.mutual exclusion of events a and b: (if a occursb should not occur next and visa versa)� = f[last(s) = a; b]; [last(s) = b; a]gmutual participation of a and b: (if a occurs, boccurs next, and visa versa).� = f [last(s) = a ^ last(past(s)) 6= b; aP n fbg]; [last(s) = b ^ last(past(s)) 6= b; aP n fag]gExample 1 (cont.) The desired behaviour can beformally expressed by the speci�cation:R(s) = (s 2 preffanbcng)

We use theorem 1 to show that this speci�cation canbe transformed into the three control objectives asgiven earlier. According to this theorem the spec-i�cation R(s) should be replaced by a set of threecontrol objectives, namely:� = f[Ba; fag]; [Bb; fbg]; [Bc; fcg]gWe consider the derivation of condition Ba:Ba(s)= R(s) ^ :R(sa)= (s 2 preffanbcng) ^ (sa 62 preffanbcng)= [with m 6= n and m � 0](s 2 preffanbcng) ^ (s = anbcm)= (s 2 preffanbcng)| {z }1 ^ (sN b = 1)| {z }2leading to the control objective [sN b = 1; fag]. No-tice that the �rst conjunction is always true and isnot included.It is left to the reader to verify that the other objec-tives are given by:[sN b = 1 _ sN a = sN c; fbg][sN b = 0 _ sN a = sN c; fcg]4 Unobservable eventsSuppose the alphabet aP of P contains two kinds ofevents: observable and unobservable ones, denotedby oP and uP respectively. Control requirementsusually are de�ned on the whole behaviour of P , i.e.,on bP . Because not all events are seen by the ob-server, the evaluation of the control objectives shoulddepend on the observed behaviour.Theorem 2 If aP = oP [uP , a set of control ob-jectives � = f[B; e]g on the whole behaviour bP canbe replaced by the set of observable control objectivesoco(�) = f[oco(B); e]gon the observed behaviour bP doP , whereoco(B)(t) = (9s : sdoP = t ^ B(s))However, oco(B) is only useful, if it is independentof any unobservable event. Therefore we introduce:De�nition 3 The observable control objectiveoco(B) is decidable, if(8sdoP = t : oco(B)(t) = B(s))

Property 2 If oco(B) is decidable, we haveB(s) = oco(B)(sdoP)If oco(B) is decidable then:(sbu) sat[B;A]= B(s) ^ b 62 A= oco(B)(sdoP) ^ b 62 Adef= (sbu) sat[oco(B); A]Therefore, we assume that systems with unobserv-able events have decidable observable control objec-tives. Otherwise, we can apply the previous theorem,but we do not get a computable result.If in the set � a not-needed control objective ispresent, it will not a�ect oco(�) as is shown by thefollowing proposition:Property 3(8s 2 bP : :B(s))) (8s 2 bP doP : :oco(B)(s))proof: directly from property 2.If all oco(B) are decidable, we get the same con-trolled behaviour as if we would have been able toobserve all events:Property 4bPoco(�) = bP�proof: if � = [B; a] then:bPoco(�)= ft : t 2 bP ^ t sat oco(�)g= ft : t 2 bP ^ t sat[oco(B); a]g= [let t = sbu]ft : t 2 bP ^ oco(B)(sdoP) ^ b 6= ag= [oco(B) is decidable]ft : t 2 bP ^ B(s) ^ b 6= ag= ft : t 2 bP ^ t sat[B; a]g= ft : t 2 bP ^ t sat�g= bP�Example 5 Recall the system P from example 1.Suppose the speci�cation now isR(s) = (s 2 preffa�bc�g)

According to the previous section the following setof control objectives are derived:� = f[sN b = 0; c]; [sN b = 1; fa; bg]gSuppose that event c is unobservable. According totheorem 2 we compute the set of observable controlobjectives as follows:oco(�)= [foco(sN b = 0); c]; [oco(sN b = 1); fa; bg]g= [ftN b = 0; c]; [tN b = 1; fa; bg]gNotice, that in the second line we have s 2 bP , whilein the last line we have t 2 bP doP .This example illustrates that we can specify desiredbehaviours which include unobservable events, andblock these events, without observing them. If a isunobservable we are still able to get the desired be-haviour! However, if b is unobservable the controlobjectives become undecidable and we cannot deriveit.5 Uncontrollable eventsAn event can only be blocked if it is controllable.Some events occur spontaneously and cannot beblocked. Such events are called uncontrollable. Ingeneral, the blocking event set in a control objec-tive does not contain controllable only events. Inthese terms, the main problem to solve is to trans-form control objectives with uncontrollable eventsinto control objectives where only controllable eventsare present. Given a system P , we know the set ofcontrollable events, denoted by cP and the set of un-controllable events eP , sometimes called exogenousevents, see [5].A control objective in which the blocking set containsonly controllable events is called a controllable con-trol objective (CCO). An uncontrollable control ob-jective (UCO) is de�ned by [B; a] where a 2 eP .The only way to derive a CCO from an UCO isto back-propagate the blocking of the uncontrollableevent in the plant, i.e., instead of blocking the desireduncontrollable event, one or more controllable eventsthat occur earlier in the behaviour of the plant shouldbe blocked, so the uncontrollable event cannot occuranymore.For example, if the only possible behaviour is abc andthe control objective [B; c] results in B(ab) = truethen c should be blocked. If c is uncontrollable, weshould block earlier, i.e., block b, if b is controllable.For this, we cannot use the same condition B, butshould change it accordingly to B0, such that B0(a) =B(ab) returns true and b is blocked.

De�nition 4 For a set of control objectives �(P) =[B; a] we de�ne the set of one step back-propagatedcontrol objectives bybco(�) = f[bcoe(B); e] : e 2 before(a)gwhere the before-set of event a is given bybefore(a)= fa0 : a0 2 aP ^ (9t; u 2 (aP)� : ta0au 2 bP)g= [init(a)withinit(a) = � f�g if a 2 bP� otherwisebefore(a) is the set of events that occur just beforethe occurrence of the event a and it includes the trig-ger event in the case the system can start from theevent a,and the back-propagated condition isbcoe(B)(s) = � B(se) if e 2 dom(B)B(s) if e 62 dom(B)where dom(B) is the set of events from which stringsare made of in order to evaluate the condition B, i.e.,normally dom(B) = aP but dom(oco(B)) = oP .Remark that bcoe(B)(S) = B(s) if s is not in thedomain of the function B, i.e, if we do not use eventslike e to evaluate the conditions.Notice that, because we assume bP to be pre-�x closed, the string u in the de�nition of before(a)can be omitted. Also notice that the \event" �, asintroduced here, corresponds to an unlabelled arrowpointing the initial state of a state graph.1 The setbefore(a) can be computed easily in the case P isregular and is represented by a �nite state automa-ton. The following informally described algorithmcan then be used:1. construct the reverse graph of the automaton,i.e., reverse the directions of all arrows.2. compute, in the reversed automaton, all eventsthat can occur after the occurrence of the eventa. This can be done in some recursive wayand is a �nite process because the automatoncontains only �nite number of states and �nitenumber of transitions.3. add the trigger event � in case the original sys-tem starts from the event a.1� as event is the trigger event, � also can denote a string:the empty string. This evident double meaning should notlead to confusion.

4. the computed set of events is the before-set ofthe original graph.If we use �nitely recursive processes to model the sys-tem, the before-set is again derived from the model.In this case the desired behaviour may not be repre-sented by a �nite automaton. Since the representa-tion and the number of events are �nite the calcula-tion of the set is again a �nite process.Next we prove that back-propagating control ob-jectives does not lead to undesired behaviour:Property 6bPbco(�) � bP�proof: We give the proof only in the case thebefore-set does not contain the trigger event �. If so,an additional condition should be taken into accountwhich only complicates the expressions, but does notcontribute to the proof. If � = [B; a] then:bPbco(�)= ft : t 2 bP ^ t sat bco(�)g= ft : t 2 bP ^ (8e 2 before(a) : t sat[bcoeB; e])g= [Consider t = sbu]ft : t 2 bP ^(8e 2 before(a) : bcoeB(s) ^ b 6= e)g= ft : t 2 bP ^(8e 2 before(a) : B(se) ^ b 6= e)g� [let s0 = se]ft : t 2 bP ^ b 2 aP ^ B(s0)) b 6= ag= [t = s0bu]ft : t 2 bP ^ t sat�g= bP�As stated before, some control objectives are notneeded and do not contribute to the controlled sys-tem when blocking conditions never return true. Thefollowing property shows, that these control objec-tives, after back-propagation, still do not contributeand are not needed.Property 7(8s : :B(s))) (8s; e : :bcoe(B)(s))proof: Directly from de�nition 4.When an uncontrollable objective exists, we proceedas follows: we compute the back-propagated controlobjectives for the uncontrollable events, and repeatback-propagating until all objectives become control-lable. However, proceeding in this way may leadto in�nite repetitions, because �rst, before(a) may

contain a again, and second, before the occurrenceof an event a in the behaviour of P an uncontrol-lable loop (loop with uncontrollable events) may bepresent.The �rst case is technical and we can deal with itas described in [4]. However, when an uncontrollableloop exists the back-propagated procedure is �niteonly when the model is represented by a �nite au-tomaton where this loop can be identi�ed. Then theloop can be avoided as it is described in [4]. Whenno �nite state representation is available (for exam-ple the system is \dynamic" and is modelled by a�nitely recursive process) the loop cannot be iden-ti�ed and therefore the back-propagation is not e�-cient.Only if the existence of the loop is known a priorifrom the model, a computable result can be derived.However, this is consistent with the same assumptiongiven in [6].It is worth mentioning here that the complexity ofthe back-propagated algorithm depends on the num-ber of the events of the model and on the complexityof the associated conditions.6 Combination of resultsNow suppose the alphabet of P contains bothcontrollable/uncontrollable events and observ-able/unobservable events. In this case we cancombine the results of the previous sections.If � = f[Ba; a]g for an a 2 aP , then we have thefollowing possibilities:1. a is both controllable and observable:� need not be changed2. a is controllable but is unobservable:� is replaced by: oco(�) = foco(B); a]g3. a is uncontrollable but observable:� is replaced by: bco(�) = f[bcoe(B); e] : e 2before(a)g4. a is both uncontrollable and unobservable:There are two ways to proceed: we may �rstdeal with the unobservability or �rst deal withthe uncontrollability. First dealing with unob-servability leads to:bco(oco(�)) =f[bcoe(oco(B)); e] : e 2 before(a)gwhile �rst dealing with uncontrollability leadsto: oco(bco(�)) =f[oco(bcoe(B)); e] : e 2 before(a)gThe following property shows that both wayslead to the same set of control objectives (if allobservable control objectives are decidable):

Property 8 For decidable control objectives:oco(bcoe(B)) = bcoe(oco(B))proof: First suppose e 2 oP , then:bcoe(oco(B))(sdoP)= oco(B)(sdoPe)= B(se)= bcoe(B)(s)= oco(bcoe(B))(sdoP)Next, suppose e 62 oP , then e 62 dom(oco(B)) and:bcoe(oco(B))(sdoP)= oco(B)(sdoP)= B(s)= bcoe(B)(s)= oco(bcoe(B))(sdoP)This last property says that we can solve the controlproblem using separation of concerns.7 ConclusionsThe control of a DES is introduced based on spec-i�cations involving predicates and blocking events.Algorithmic derivation involves partial observationsand uncontrollability and it is shown that, under thisformalism, these two issues can be formulated inde-pendently and solved separately.References[1] P.J. Ramadge andW.M. Wonham, \Supervisory con-trol of a class of discrete event processes", SIAM jour-nal on Control and optimalisation, vol. 25 (1), 1987,See also: systems control group report 8515, depart-ment of electrical engeneering, University of Toronto.[2] P.J. Ramadge and W.M. Wonham, \The control ofdiscrete event systems", Proceedings of the IEEE, vol.77, 1989.[3] R. Smedinga, An Overview of Results in DiscreteEvent Systems using a Trace Theory Based Setting,vol. 13 of Progress in Systems and Control Theory,pp. 43{56, Birkh�auser Verlag, Basel, Switzerland,1993, (Proceedings of the Joint Workshop on Dis-crete Event Systems (WODES'92), Aug. 26{28, 1992,Prague, Czechoslovakia).[4] M.P.Spathopoulos, R. Smedinga, and M.A. de Rid-der., \Distributive control of logical discrete eventsystems using control objectives.", in A. Isidori,S. Bittanti, E. Mosca, A. De Luca, M.D. DiBenedetto, and G. Oriolo, editors, Proceedings ofthe 3rd European Control Conference, Roma, Italy,september 1995, 1995.[5] R. Smedinga, Control of discrete events, PhD thesis,University of Groningen, 1989.[6] S. Chung, S. Lafortune, and F. Lin, \Supervisorycontrol using variable lookahead policies", DiscreteEvent Dynamic Systems: Theory and Applications,pp. 237{268, 1994.

