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Abstract

In this paper the control of a logical discrete-event
system is introduced using predicates and associated
blocking events. The blocking occurs when a predi-
cate concerning the system behaviour becomes true.
It is shown that model specifications can be trans-
formed into control objectives involving predicates
and blocking events. Next, we consider the control
problem when events are unobservable and uncon-
trollable. It is shown that when the control objec-
tives are decidable a separation principle holds, i.e.,
the problems of uncontrollability and unobservability
can be solved separately and independently.

1 Introduction

Different ways exists to define a logical discrete event
system. A simple but effective way is the following:

P = (aP,bP)

This denotes a DES with possible events collected
in the finite set aP and with possible behaviour col-
lected in the set bP C (aP)*. bP is a set of strings.
For simplicity we suppose that bP is prefix closed
(i.e., if st € bP then also s € bP, where st denotes
concatenation of s and t). DESs defined in this way
can be displayed using state graphs. The number of
states in such a graph is finite if the language defined
by bP is regular.

Controlling a DES can be done in different ways.
One way is to introduce a second system, called the
supervisor, that follows the system and blocks events,
if necessary, in order to get desired behaviour given
in terms of a finite automaton. This is the Ra-
madge/Wonham approach, see [1, 2]. Alternatively,
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the second system can be a controller in the sense
that plant and controller lead to some form of de-
sired behaviour in synchronized cooperation, see [3].

Intuitively, we can think of a DES as a black box,
observed by an observer from a distance. The ob-
server is unaware of the model of the system he is
observing, he only sees events happen. The observer
writes down on a piece of paper each event that oc-
curs. Because he is unable to write down more than
one event symbol at a time, events occurring in paral-
lel will be written down on paper in some (arbitrary)
order. This observation leads to a growing string of
symbols on that piece of paper, representing possible
behaviour of the system.

Our view of controlling simply means inspecting
that written string, each time a new event happens
(e.g., is written down) and, depending on some con-
dition, block some events. It is shown that any model
specification can be transformed into the so-called
control objectives. Although the technique devel-
oped in this paper holds for arbitrary observed be-
haviour, it should be clear by now that the observer
has to check only one specific string of events, namely
the string of events that actually occurs.

Thus, the controller is a collection of control ob-
jectives which are evaluated on-line for the current
string only (pathwise). Depending on the evalu-
ated conditions on this string only, some events are
blocked. If an event is observed next, all blocking
is reset, conditions are re-evaluated and a (possibly
different) set of events is blocked, see [4].

The controller involves two levels of hierarchy. In
the upper level the current string is stored. In the
lower level the control objectives are evaluated.
When some control objectives are uncontrollable a
back-propagated algorithm is given to derive the con-
trollable objectives. Under some assumptions this
algorithm is efficient. The derivation of the observ-
able control objectives is also given and it is proved
that, when these objectives are decidable, the con-
trol problem can be solved under unobservable and
uncontrollable conditions separately and indepen-
dently.



2 Notation

With ab we denote concatenation of events a and
b (first a, then b), with a | b choice (a or b), with
a* repetition (Kleene star operator), and with a ||
b interleaving (a and b occur in parallel). Because
of the fact that events are considered to occur in
infinitesimal time, a || b equals ab | ba. [ denotes
alphabet projection (restriction):

ifb#a

By pref(z) we denote the prefix closure of the string
x. Similar pref(T') denotes the prefix closure of the
language T'. If s is a string of events, say s = b (with
x another string and b an event) then last(s) = b and
past(s) = z denote the last event of the behaviour s
and the past of the behaviour respectively.

Definition 1 A set of control objectives for a system
P = (aP,bP) is defined by

0= {B A

]
: B: (aP)* — {true, false} A A CaPU{e}

}

B is the blocking condition and A the corresponding
blocking event set.

A control objective [B, A] blocks the events in A if,
for a behaviour s € bP, the condition B(s) returns
true.

Definition 2 A system P = (aP,bP) under the set
of control objectives © = {[B, A]} is defined to be the
system Pg given by:

Po — (aP, @) if (A[B,A]€ @ :e€ A A Ble))
©= (aP,{t:t € bP A tsatO®}) otherwise

where € is the trigger event and

(sbu) sat[B, A]
tsat @

B(s) Nb¢g A
(V[B, A] € O : tsat[B, A])

b Py is called the legal behaviour of P.

It is clear that

{[BlaA]a[B2aA]} = {[Bl A B27A]}
{[B, 41 U Az]}
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In the remainder of this paper we assume that con-
trol objectives contain only one blocking event. If

not, equations like the ones above can be used to
achieve this. We will write [B, a] instead of [B, {a}].
Instead of the function name B we sometimes write
the corresponding expression, i.e., write [B(s), A].

Example 1 Suppose the system P is given as
({a,b,c}, (alblc)*). Tt is clear that P is regular, i.e.,
can be represented by a finite state graph. More-
over, suppose, we want to control the system in such
a way that first some a’s occur, next event b occurs,
and last the same many c’s as a’s occur, i.e., a"bc"
(for arbitrary n). Clearly, the desired behaviour is
no longer regular. Nevertheless, three control objec-
tives are sufficient in order to describe this desired
behaviour:

O = {[sNb=1,{a,b}
s Nb=0,{c}]
[sNa=sNge{a,b,c}

3

}

where s N e denotes the number of occurrences of
event e in trace s (with e N e = 0 for each event e).
It is clear that, in the controlled system, the event ¢
is blocked as long as no b has happened and a and b
are blocked as soon as b has happened. Finally, all
events are blocked as soon as the desired behaviour
has occurred. So we have:

Pgo = (aP,pref{a™bc" : n > 0})
3 Transforming model specifications

Practical experience shows that usually is possible to
define desired behaviours in terms of control objec-
tives. Moreover, desired behaviours are often stated
using such objectives: “if this happens, block those
events.” Instead of translating these objectives to
languages (or state graphs) our proposed method
uses them directly.

3.1 General transformation

The control requirements can be considered
as boolean conditions R(s) on the observed
behaviour s.  For example, the mutual exclu-
sion of two events a and b reads as: R(s) =
“in s pairing of ab and ba is not allowed to occur”.
This condition can be transformed into a control
objective. In fact, we have

Theorem 1 If R: (aP)* — {true, false} is a pred-
icate on the behaviour, it can be replaced by the set
of control objectives:

O ={[B.,€]: e € aP}



where B,: (aP)* — {true, false} is given by:

B.(s) = R(s) N —R(se)

In words the theorem says: for each event e € aP:
block this event e if both the current observation
makes the requirement R true and, when e occurs
next, the requirement becomes false. In fact: we
replace the predicate by a set of control objectives,
namely one control objective for each event e € aP.
The first condition of B, (s) evaluates to true by re-
quirement and recursion (R(s) cannot return false
because of the blocking in the previous step) and
need not be included.

An objective does not contribute to the control
of the system if the blocking condition B,(s) for an
event e returns false for any observation s. Some-
times we may decide whether such a condition never
returns true, for example if the condition involves
the number of occurrences of some events not in-
cluding e. In general, the issue is undecidable. How-
ever, the inclusion of control objectives which are not
needed, affect only the computations, making the de-
sign more complicated.

We recall here, that the new predicates B, are
computed off-line, while the control is performed on-
line using the observed behaviour only.

3.2 Some examples

In this section we give some examples of control ob-
jectives.

mutual exclusion of events a and b: (if a occurs
b should not occur next and visa versa)

O = {[last(s) = a, b], [last(s) = b,a]}

mutual participation of a and b: (if a occurs, b
occurs next, and visa versa).

O = { [last(s) = a A last(past(s)) #b

,aP\ {b}]
, [last(s) =b A last(past(s)) #b

;aP\ {a}]
}

Example 1 (cont.) The desired behaviour can be
formally expressed by the specification:

R(s) = (s € pref{a™bc"})

We use theorem 1 to show that this specification can
be transformed into the three control objectives as
given earlier. According to this theorem the spec-
ification R(s) should be replaced by a set of three
control objectives, namely:

0= {[Bm {a}]= [Bba {b}]a [Bca {C}]}
We consider the derivation of condition B,:

By (s)
= R(s) A —=R(sa)
= (s € pref{a"bc"}) A (sa & pref{a"bc"})
= [withm#nandm>0]
(s € pref{a™bc™}) A (s =a"bc™)
= (s € pref{a”bc"}) A (sNb=1)

~ v

1 2

leading to the control objective [sN b = 1, {a}]. No-
tice that the first conjunction is always true and is
not included.

It is left to the reader to verify that the other objec-
tives are given by:

[{[Nb=1V sNa=sNge,{b}]
[SNb=0V sNa=sNe{c}]

4 Unobservable events

Suppose the alphabet aP of P contains two kinds of
events: observable and unobservable ones, denoted
by oP and uP respectively. Control requirements
usually are defined on the whole behaviour of P, i.e.,
on bP. Because not all events are seen by the ob-
server, the evaluation of the control objectives should
depend on the observed behaviour.

Theorem 2 If aP = oP UuP, a set of control ob-
jectives © = {[B, €]} on the whole behaviour bP can
be replaced by the set of observable control objectives

oco(O) = {[oco(B), €]}

on the observed behaviour bP[oP, where
oco(B)(t) = (3s:s[oP =t A B(s))

However, oco(B) is only useful, if it is independent
of any unobservable event. Therefore we introduce:

Definition 3 The observable control objective
oco(B) is decidable, if

(Vs[oP =t : oco(B)(t) = B(s))



Property 2 If oco(B) is decidable, we have

B(s) = oco(B)(s[oP)

If oco(B) is decidable then:

(sbu) sat[B, A]
B(s) Nb¢g A
= oco(B)(s[oP) ANb¢g A

e

= (sbu)sat[oco(B), A]

I
Ly

Therefore, we assume that systems with unobserv-
able events have decidable observable control objec-
tives. Otherwise, we can apply the previous theorem,
but we do not get a computable result.

If in the set @ a not-needed control objective is
present, it will not affect oco(@) as is shown by the
following proposition:

Property 3

(Vs € bP : =B(s))
=
(Vs € bP[oP : —oco(B)(s))

proof: directly from property 2.

If all oco(B) are decidable, we get the same con-
trolled behaviour as if we would have been able to
observe all events:

Property 4
bPoco(@) =bPe
proof: if @ = [B, a] then:

bPoco(@)
= {t:t€bP A tsatoco(O)}
{t:t € bP A tsat[oco(B),ad]}
[let ¢ = sbu ]
{t:t € bP A oco(B)(s[oP) A b#a}
= [oco(B) is decidable ]
{t:tebP A B(s) N b#a}
= {t:t € bP A tsat[B,a]}
= {t:t€bP A tsat@}
= bPo

Example 5 Recall the system P from example 1.
Suppose the specification now is

R(s) = (s € pref{a*bc*})

According to the previous section the following set
of control objectives are derived:

O={[sNb=0,¢,[sNb=1,{a,b}]}

Suppose that event ¢ is unobservable. According to
theorem 2 we compute the set of observable control
objectives as follows:

oco(O)
= [{oco(s Nb=0),c],[oco(sNb=1),{a,b}|}

Y

= [{tNb=0,c],[tNb=1,{a,b}|}

Notice, that in the second line we have s € bP, while
in the last line we have t € bP[oP.

This example illustrates that we can specify desired
behaviours which include unobservable events, and
block these events, without observing them. If a is
unobservable we are still able to get the desired be-
haviour! However, if b is unobservable the control
objectives become undecidable and we cannot derive
it.

5 TUncontrollable events

An event can only be blocked if it is controllable.
Some events occur spontaneously and cannot be
blocked. Such events are called uncontrollable. In
general, the blocking event set in a control objec-
tive does not contain controllable only events. In
these terms, the main problem to solve is to trans-
form control objectives with uncontrollable events
into control objectives where only controllable events
are present. Given a system P, we know the set of
controllable events, denoted by ¢P and the set of un-
controllable events eP, sometimes called exogenous
events, see [5].

A control objective in which the blocking set contains
only controllable events is called a controllable con-
trol objective (CCO). An uncontrollable control ob-
jective (UCOQ) is defined by [B, a] where a € eP.

The only way to derive a CCO from an UCO is

to back-propagate the blocking of the uncontrollable
event in the plant, i.e., instead of blocking the desired
uncontrollable event, one or more controllable events
that occur earlier in the behaviour of the plant should
be blocked, so the uncontrollable event cannot occur
anymore.
For example, if the only possible behaviour is abc and
the control objective [B,c] results in B(ab) = true
then ¢ should be blocked. If ¢ is uncontrollable, we
should block earlier, i.e., block b, if b is controllable.
For this, we cannot use the same condition B, but
should change it accordingly to B’, such that B'(a) =
B(ab) returns true and b is blocked.



Definition 4 For a set of control objectives O(P) =
[B,a] we define the set of one step back-propagated
control objectives by

bco(O) = {[bco.(B),e] : e € before(a)}

where the before-set of event a is given by

before(a)
{a':a’ €aP A (3t,u € (aP)* : ta'au € bP)}
U init(a)

with

o _ [ {e} ifaebP
init(a) = { @  otherwise

before(a) is the set of events that occur just before
the occurrence of the event a and it includes the trig-
ger event in the case the system can start from the
event a,

and the back-propagated condition is

_ [ B(se) ifeec dom(B)
bco.(B)(s) = { B(s) ife ¢ dom(B)

where dom(B) is the set of events from which strings
are made of in order to evaluate the condition B, i.e.,
normally dom(B) = aP but dom(oco(B)) = oP.

Remark that beo.(B)(S) = B(s) if s is not in the
domain of the function B, i.e, if we do not use events
like e to evaluate the conditions.

Notice that, because we assume bP to be pre-
fix closed, the string u in the definition of before(a)
can be omitted. Also notice that the “event” e, as
introduced here, corresponds to an unlabelled arrow
pointing the initial state of a state graph.! The set
before(a) can be computed easily in the case P is
regular and is represented by a finite state automa-
ton. The following informally described algorithm
can then be used:

1. construct the reverse graph of the automaton,
i.e., reverse the directions of all arrows.

2. compute, in the reversed automaton, all events
that can occur after the occurrence of the event
a. This can be done in some recursive way
and is a finite process because the automaton
contains only finite number of states and finite
number of transitions.

3. add the trigger event € in case the original sys-
tem starts from the event a.

Le as event is the trigger event, € also can denote a string:

the empty string. This evident double meaning should not
lead to confusion.

4. the computed set of events is the before-set of
the original graph.

If we use finitely recursive processes to model the sys-
tem, the before-set is again derived from the model.
In this case the desired behaviour may not be repre-
sented by a finite automaton. Since the representa-
tion and the number of events are finite the calcula-
tion of the set is again a finite process.

Next we prove that back-propagating control ob-
jectives does not lead to undesired behaviour:

Property 6

bPh oo C bPo

(@)

proof: We give the proof only in the case the
before-set does not contain the trigger event €. If so,
an additional condition should be taken into account
which only complicates the expressions, but does not
contribute to the proof. If @ = [B, a] then:

beco(@)
= {t:t€bP A tsatbco(O)}
= {t:t€bP A (Ve € before(a) : tsat[bco.B,e])}
= [ Consider ¢t = sbu |
{t:tebP A
(Ve € before(a) : bco.B(s) A b#e)}
= {t:tebPA
(Ve € before(a) : B(se) A b#e)}
C  [lets =se]
{t:tebP AbeaP A B(s') = b#a}
= [t=s'bu]
{t:t€bP A tsatO}
= bPs

As stated before, some control objectives are not
needed and do not contribute to the controlled sys-
tem when blocking conditions never return true. The
following property shows, that these control objec-
tives, after back-propagation, still do not contribute
and are not needed.

Property 7
(Vs:=B(s)) = (Vs,e : mbco.(B)(s))

proof: Directly from definition 4.

When an uncontrollable objective exists, we proceed
as follows: we compute the back-propagated control
objectives for the uncontrollable events, and repeat
back-propagating until all objectives become control-
lable. However, proceeding in this way may lead
to infinite repetitions, because first, before(a) may



contain a again, and second, before the occurrence
of an event a in the behaviour of P an uncontrol-
lable loop (loop with uncontrollable events) may be
present.

The first case is technical and we can deal with it

as described in [4]. However, when an uncontrollable
loop exists the back-propagated procedure is finite
only when the model is represented by a finite au-
tomaton where this loop can be identified. Then the
loop can be avoided as it is described in [4]. When
no finite state representation is available (for exam-
ple the system is “dynamic” and is modelled by a
finitely recursive process) the loop cannot be iden-
tified and therefore the back-propagation is not effi-
cient.
Only if the existence of the loop is known a priori
from the model, a computable result can be derived.
However, this is consistent with the same assumption
given in [6].

It is worth mentioning here that the complexity of
the back-propagated algorithm depends on the num-
ber of the events of the model and on the complexity
of the associated conditions.

6 Combination of results

Now suppose the alphabet of P contains both
controllable/uncontrollable events and observ-
able/unobservable events. In this case we can
combine the results of the previous sections.

If @ = {[By,,a]} for an a € aP, then we have the
following possibilities:

1. a is both controllable and observable:
© need not be changed

2. a is controllable but is unobservable:

O is replaced by: oco(@) = {oco(B),a]}

3. a is uncontrollable but observable:

O is replaced by: beo(@) = {[bco.(B),e] : e €
before(a)}

4. a is both uncontrollable and unobservable:
There are two ways to proceed: we may first
deal with the unobservability or first deal with
the uncontrollability. First dealing with unob-
servability leads to:

bco(oco(Q)) =
{[bco.(0oco(B)),e] : e € before(a)}
while first dealing with uncontrollability leads
to:
oco(bco(0)) =

{[oco(bco.(B)),e] : e € before(a)}

The following property shows that both ways
lead to the same set of control objectives (if all
observable control objectives are decidable):

Property 8 For decidable control objectives:
oco(bco.(B)) = bco.(oco(B))

proof: First suppose e € oP, then:
bco.(oco(B))(s[oP)

= oco(B)(s[oPe)

B(se)

bco.(B)(s)

= oco(bco.(B))(s[oP)

Next, suppose e € oP, then e ¢ dom(oco(B)) and:
bco.(oco(B))(s[oP)

= oco(B)(s[oP)

B(s)

= bco.(B)(s)

= oco(bco.(B))(s[oP)

This last property says that we can solve the control
problem using separation of concerns.

7 Conclusions

The control of a DES is introduced based on spec-
ifications involving predicates and blocking events.
Algorithmic derivation involves partial observations
and uncontrollability and it is shown that, under this
formalism, these two issues can be formulated inde-
pendently and solved separately.
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