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A rapid and accurate method for the determination of transformation kinetics of volatile organic substrates
was developed. Concentrations were monitored by on-line gas chromatographic analysis of the headspace of
well-mixed incubation mixtures. With this method, the kinetics of transformation of a number of C1 and C2
halogenated alkanes and alkenes by Methylosinus trichosporium OB3b expressing particulate methane mono-
oxygenase or soluble methane monooxygenase (sMMO) were studied. Apparent specific first-order rate con-
stants for cells expressing sMMO decreased in the order of dichloromethane, vinyl chloride, cis-1,2-dichlo-
roethene, trans-1,2-dichloroethene, 1,1-dichloroethene, trichloroethene, chloroform, and 1,2-dichloroethane.
During the degradation of trichloroethene, cis-1,2-dichloroethene, trans-1,2-dichloroethene, and vinyl chloride,
the formation of the corresponding epoxides was observed. The epoxide of vinyl chloride and the epoxide of
trichloroethene, which temporarily accumulated in the medium, were chemically degraded according to first-
order kinetics, with half-lives of 78 and 21 s, respectively. Cells expressing sMMO actively degraded the epoxide
of cis-1,2-dichloroethene but not the epoxide of trans-1,2-dichloroethene. Methane and acetylene inhibited
degradation of the epoxide of cis-1,2-dichloroethene, indicating that sMMO was involved.

Trichloroethene (TCE), vinyl chloride (VC), 1,2-dichloro-
ethane, and other chlorinated ethenes and ethanes are impor-
tant environmental pollutants. TCE has been widely used as a
degreasing agent. VC and 1,1-dichloroethene (1,1-DCE) are
used for the synthesis of synthetic resins. Under aerobic con-
ditions, VC (16) and several chlorinated alkanes (19, 22) have
been shown to serve as sole sources of carbon and energy for
a bacterial culture. For TCE and DCEs, cometabolic degrada-
tion by organisms expressing monooxygenases or dioxygenases
during growth on methane (18, 28, 35, 37), propane (40),
propene (9), isoprene (10), ammonia (2), or toluene (26, 41)
has been reported. There is a strong interest in using such
organisms for the bioremediation of soil, groundwater, or air
contaminated with chlorinated aliphatics. TCE, VC, and cis-
1,2-DCE are of special importance in this respect since they
can also be produced anaerobically in contaminated sites from
perchloroethene.
Several factors determine the suitability of organisms for

application in a cometabolic remediation process. A broad
substrate range is desirable, since polluted groundwater or
other waste streams often contain more than one contaminat-
ing compound. The kinetics of degradation are also important
since high degradation rates may allow high volumetric degra-
dation capacities, and high substrate affinities make it easier to
obtain low effluent concentrations. However, the kinetics of
cometabolic conversion are often complex and can be influ-
enced by a number of factors. Cometabolic degradation can be
regarded as an unavoidable side reaction, and this can be a
disadvantage for the organism. Energy may be lost without any
benefit to the cell, as, for instance, in the use of NADH in
oxygenase reactions which yield products that are not further

metabolized. Competitive inhibition between the growth sub-
strate and the pollutant, resulting in a reduction of degradation
rates, can occur (1, 23). Furthermore, cometabolic transforma-
tion of chlorinated hydrocarbons can result in the generation
of reactive compounds that inactivate the cell and thus limit
the transformation capacity (1, 27). For important industrial
pollutants such as chloroform and TCE, however, cometabolic
transformation is the only available possibility for an aerobic
bioremediation process.
Methanotrophs are good candidates for such applications,

since they are capable of degrading a broad range of haloge-
nated aliphatics (1, 12, 27, 28, 35, 37). The methane monooxy-
genases (MMO) that are expressed by these organisms can be
divided into two classes. All methanotrophs tested are able to
form a particulate enzyme (pMMO). Under copper limitation,
only some strains such as Methylosinus trichosporium OB3b,
Methylococcus capsulatus (Bath) (34), andMethylomonas meth-
anica 68-1 (35) are able to form a soluble enzyme (sMMO),
which has a broader substrate range and is capable of oxidizing
TCE and other chlorinated aliphatics. Several bench-scale re-
actors have been constructed, such as biofilm reactors (3, 11)
and plug flow reactors (36), in which the removal of TCE by
these organisms has been studied.
The oxidation of chlorinated ethenes by sMMO results in

generation of the corresponding epoxides. These reactions are
similar to the oxidation of chlorinated ethenes by cytochrome
P-450 in eukaryotes. The epoxides are electrophilic com-
pounds, and from studies of eukaryotic systems, it is known
that a variety of secondary reactions, such as alkylation of
biomolecules or hydrolysis to vic-diols or acylhalides, may oc-
cur. The reactivity of the epoxides and their degradation prod-
ucts are considered to be responsible for the toxicity of chlo-
rinated ethenes. The metabolism of VC in mammals has been
studied extensively because of its mutagenic and carcinogenic
potential (24, 31). From the DNA alkylation products that
have been isolated from animals exposed to VC, it could be
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derived that the epoxide generated after the oxidation of VC,
chloroepoxyethane (VC epoxide), is the ultimate carcinogenic
product of VC. TCE is a suspected carcinogen, but little in-
formation is available about covalent modifications of DNA
due to the metabolism of this compound.
Toxicity related to conversion of chlorinated ethenes has

also been observed in bacteria (12, 27). However, little is
known about the kinetics of degradation of the epoxides, since
their instability in aqueous solutions makes it difficult to per-
form accurate quantitative analysis.
In this article, we describe the on-line monitoring of volatile

substrates and oxidation products by gas chromatography
(GC). The method was used to determine the kinetics of deg-
radation of various halogenated aliphatics by Methylosinus tri-
chosporium OB3b expressing pMMO or sMMO and made
possible the detection of the corresponding epoxides. The re-
sults showed that significant amounts of all epoxides, except
1,1-dichloroepoxyethane (1,1-DCE epoxide), leave the cell.
Furthermore, it was found that cis-1,2-dichloroepoxyethane
(cis-1,2-DCE epoxide) is actively transformed by sMMO,
whereas other structurally related epoxides are not substrates
for sMMO.

MATERIALS AND METHODS

Nomenclature. The following parameters are used in this paper: a, constant
relating peak area to substrate concentration; C, the substrate concentration
(micromolar); f, the fraction of oxidized chlorinated ethene that is converted to
epoxide (dimensionless); H, Henry’s gas-liquid partition coefficient (milliliters of
gas milliliter of liquid21); k1, the specific first-order degradation rate constant
(milliliters minute21 milligram of cells21); k, the chemical first-order degrada-
tion rate constant (minute21); kLa, mass-transfer rate coefficient (minute21);
Km, the Michaelis-Menten constant (micromolar); Ks, the Monod constant (mi-
cromolar); rmax, the maximal specific substrate conversion rate (micromoles
minute21 milligram of cells21); r, specific substrate conversion rate (micromoles
minute21 milligram of cells21); S, amount of substrate (micromoles); mmax, the
maximal specific growth rate (minute21); V, volume (milliliter); X, the concen-
tration of cells (milligram of cells [dry weight] milliliter21); Y, growth yield
(milligram of cells [dry weight] micromole21). Subscripts denote the following
parameters; g, gas phase; l, liquid phase; O, epoxide; S, substrate; X, biomass; 0,
at time zero.
Organism and growth conditions. Methylosinus trichosporium OB3b was ob-

tained from the National Collection of Industrial and Marine Bacteria, Aber-
deen, United Kingdom. The organism was grown continuously in a 3-liter fer-
mentor with methane as the sole carbon source at a dilution rate of 0.03 h21.
Mineral medium (MMF) was essentially the same as the medium described by
Janssen et al. (18). Only Na2HPO4 was replaced by KH2PO4, and the medium in
the supply vessel was acidified to pH 3.0 with H2SO4 to prevent formation of
precipitates. Copper was omitted from the medium to allow expression of
sMMO.
The pH was 6.9 and continuously regulated by titration with 1 N NaOH. Other

conditions were as follows: working volume, 2,350 ml; temperature, 308C; im-
peller speed, 1,250 rpm; methane flow rate, 6 to 8 ml min21; air flow rate, 55 to
60 ml min21. The dissolved oxygen tension was 25 to 50% air saturation. The
sterile air-methane mixture was bubbled through the fermentor. The biomass
concentration was 0.3 to 0.4 mg of cells ml21.
On-line monitoring of substrate concentrations and transformation experi-

ments. Degradation rates of chlorinated aliphatics were determined by on-line
analysis of their concentrations in the headspace of incubation mixtures. The
experimental setup consisted of a 120-ml jacketed glass incubation vessel that
was temperature controlled at 308C. Gas was continuously withdrawn from the
headspace with a micromembrane pump (model NMP 02LU; KNF Neuberger
GmbH, Freiburg-Munzingen, Germany). After passage through a Valco 6 port
sampling injector (Vici AG, Schenkon, Switzerland) to which a 35-ml sample
loop was connected, the gas was injected back into the magnetically stirred liquid
phase in the incubation vessel through an open-ended tube with an internal
diameter of 0.08 mm and a flow rate of approximately 200 ml min21. This
allowed rapid mass transfer between the gas and liquid phases. Stainless-steel
tubing and a glass-embedded magnetic stirrer were used, since sorption was
observed with synthetic materials. With time intervals of 0.25 to 1 min, the
contents of the sample loop were injected into the GC and analyzed isothermally
at 60 to 1308C. The GC (type CP 9001; Chrompack, Middelburg, The Nether-
lands) was equipped with a CPsil 5 CB column (Chrompack; length, 25 m; inner
diameter, 0.53 mm; film thickness, 5 mm) and a flame-ionization detector. He-
lium was used as the carrier gas (26 ml min21), and the flame ionization detector
was supplied with hydrogen (30 ml min21), air (270 ml min21), and N2 (30 ml
min21). The high sensitivity of the GC analysis allowed the determination of

concentrations as low as 0.05 mM in the headspace. Calibrations were carried out
by adding a well-defined amount of substrate to the incubation system. In this
way, errors in the estimations of the total mass and transformation rates were
minimized.
To evaluate the mass-transfer characteristics, the kLa was determined by

adding a pulse of TCE to the liquid phase or to the headspace of a reaction vessel
which contained 25 ml of MMF medium. The concentration in the headspace
was monitored until equilibrium was reached. The substrate concentration and
its dependence on the kLa in time are described by:

dCg
dt

5 2 kLa
Vi
Vg
SCgH 2

Stot
Vl

1
CgVg
Vl
D (1)

which can be solved to give:

Cg,t 5
HStot

Vl 1 HVg
1 SCg,0 2

HStot
Vl 1 HVg

D e2KLaS Vl
HVg

1 1D t (2)

where Cg,0 is 0 or StotlVg when TCE was added to the liquid phase or gas phase,
respectively.
The published Henry constants that were used for the calculations are as

follows: methane, 33 (29); dichloromethane, 0.11; chloroform, 0.19; VC, 1.26;
cis-1,2-DCE, 0.19; trans-1,2-DCE, 0.47; 1,1-DCE, 1.27; TCE, 0.51 (13). Other
Henry constants were determined by analyzing a series of closed bottles of equal
volume containing various amounts of MMF medium to which a fixed amount of
epoxide was added. The Henry constants were calculated from a plot of the
reciprocal peak area versus the liquid volume, which gives a straight line from
which H can be calculated with:

1
area

5 2
H 2 1
HP

aVl 1 a
Vtot
Stot

(3)

In this equation, a is a constant relating peak area to concentrations. The
resulting values for the Henry coefficient were 0.011, 0.049, and 0.011 for cis-
1,2-DCE epoxide, trans-1,2-dichloroepoxyethane (trans-1,2-DCE epoxide), and
epoxyethane, respectively.
In a typical transformation experiment, 25 ml of cell suspension freshly taken

from the fermentor was used. Formate and phosphate buffer (pH 6.9) were
added to a final concentration of 20 mM. The cell suspension was incubated for
5 min at 308C to allow the cells to generate enough reducing power to obtain the
maximal initial degradation rate. Assays were started by adding 0.1 to 3 mmol of
substrate either from a stock solution in water or as a gas. Cells were protected
from light, since it was observed that cells rapidly inactivate when illuminated
(38a). When cell densities did not exceed 0.5 mg of cells ml21, the activity of the
cells remained constant for at least 2 h.
Chloride levels were determined by the colorimetric method of Bergmann and

Sanik (5).
Calculation of transformation rates. At low substrate concentrations, where S

! Km, transformation follows first-order kinetics. In the case of equilibrium,
volatile substrates will be distributed over the headspace and liquid phase ac-
cording to the dimensionless Henry partition coefficient. In this case, the micro-
bial degradation of the substrate can be described with:

dCg
dt

5 2 k1XCgS Vl
Vl 1 HVg

D (4)

After integrating over time, this can be rewritten to:

Cg,t 5 Cg,0 e2k1X
Vl

Vl 1 HVg
t (5)

These equations are only valid when mass-transfer limitation does not occur.
When mass transfer plays a role, the headspace and liquid phase concentration
can be described by:

dCg
dt

5 2 kLa
Vl
Vg
SCgH 2 ClD (6)

dCl
dt

5 kLa SCgH 2 C1D 2 k1XCl (7)

The k1 can be obtained by fitting a data set of headspace concentrations to
equations 6 and 7. In case transformation proceeds according to Michaelis-
Menten kinetics, equation 8 was used instead of equation 7:

dCl
dt

5 kLa SCgH 2 ClD 2 rmax XS Cl
Cl 1 Km

D (8)

The concentration of epoxide over time is a function of the biological oxida-
tion rate of the chlorinated ethene that is described by equations 6 and 7, with an
extra factor f, which is the fraction of oxidized ethene that is converted to
epoxide, and a term for the (chemical) first-order degradation rate of the ep-
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oxide. Since chemical degradation of the epoxide will take place in the liquid
phase according to first-order kinetics, the headspace concentration can be
described by an equation analogous to equation 6, and the liquid-phase concen-
tration of epoxide can be described by:

dOl
dt

5 kLa SOgH 1 OlD 1 fk1 XCl 2 kOl (9)

in which Og was determined by fitting the equation to the measured peak areas
with a variable that related peak areas to concentrations.
In the case of competitive inhibition, the rate of substrate conversion is de-

scribed by:

r 5 rmax 1
Cl

Km S1 1
l
Ki
D 1 Cl2 (10)

If the transformation of a chlorinated substrate follows first-order kinetics and
transformation is competitively inhibited by methane, the relation between the
observed k1 and the methane concentration simplifies to:

k1,l 5 k1,0 S Ki
l 1 Ki

D (11)

The Ki of methane on the conversion of cis-1,2-DCE epoxide was obtained by
determining the k1 value of cis-1,2-DCE epoxide degradation in the presence of
various concentrations of methane. The methane concentrations in the liquid
phase were calculated with equations 6 and 8. Since the methane concentration
changed less than 5% as a result of bacterial consumption, it was assumed to be
constant.
Data were fitted to analytical equations by nonlinear regression analysis in

Sigma Plot (Jandel Scientific Software, San Rafael, Calif.) or by numerical
integration by use of the episode routine in Scientist for Windows 2.0 (Micro-
math Scientific Software, Salt Lake City, Utah).
Preparation of cis- and trans-1,2-DCE epoxide. The compounds cis- and trans-

1,2-DCE epoxide are not commercially available, and their half-lives in aqueous
solutions are 72 and 30 h, respectively. Chemical synthesis is time-consuming and
gives rather poor yields (14). We synthesized these epoxides with Methylosinus
trichosporium OB3b. For this, cells were harvested from a continuous culture,
centrifuged at 10,000 3 g for 5 min, and resuspended in 25 ml of MMF medium
containing 40 mM phosphate to a cell density of 20 mg of cells ml21. The
suspension was transferred to the incubation vessel, and 5 to 10 pulses of 5 ml of
cis- or trans-1,2-DCE were added. Degradation of the substrate and generation
of the epoxide were monitored continuously. Repeated addition of formate and
O2 enabled optimal transformation. Transformation was stopped by the addition
of HgCl2 (0.1 mg ml21). The epoxides were removed from the suspension by
bubbling N2 gas at a flow rate of 20 ml min21 through the suspension and
subsequently trapped in a glass U-tube kept in liquid nitrogen.
The identity and purity of the isolated compound were checked with 1H

nuclear magnetic resonance. Therefore, 10 ml of the isolated compound was
dissolved in 1 ml of CDCl3, and 20 ml of TCE was added as an internal standard.
The 1H nuclear magnetic resonance spectrum showed two singlets at 5.07 and
6.46 ppm, corresponding to trans-1,2-DCE epoxide and TCE, respectively. The
purity was estimated to be approximately 95%. The mixture was used to calibrate
the GC by determining the trans-1,2-DCE epoxide/TCE molar response ratio of
the flame ionization detector. This was calculated to be 0.43, meaning that the
response of the detector to 1 equivalent of trans-1,2-DCE epoxide is 0.43 times
the response caused by 1 equivalent of TCE. The response ratios of trans-1,2-
DCE epoxide and cis-1,2-DCE epoxide were assumed to be equal. In all exper-
iments, calibration with TCE was used to calculate the concentration of trans-
1,2-DCE epoxide or cis-1,2-DCE epoxide.
Identification of chlorinated ethene epoxides. The products of the oxidation of

chlorinated ethenes were identified by mass spectrometry with a type 5971 mass
selective detector connected to a model HP 5890 GC (Hewlett-Packard) that was
equipped with an HP5 column (length, 30 m; inner diameter, 0.25 mm; film
thickness, 0.25 mm). Helium was used as a carrier gas (0.9 ml min21). Samples
were taken from the headspace of degradation experiments as described for
on-line GC analysis. The identity of cis-1,2-DCE and trans-1,2-DCE epoxide was
confirmed by comparison of the retention times by GC with chemically synthe-
sized standards (18). The unstable intermediates that accumulated in the head-
space during degradation of VC and TCE were identified by the colorimetric
method of Barbin et al. (4). For this, a reaction tube containing 2 ml of 100 mM
4-(4-nitrobenzyl)pyridine (PNBP) in ethylene glycol was introduced in the recir-
culating gas flow during a degradation experiment, to trap the unstable inter-
mediates. Transformation experiments were carried out with 25 ml of cell sus-
pension (0.5 mg of cells ml21). Reactions were started by the addition of 4.0
mmol of VC or 2.6 mmol of TCE. After complete degradation of the substrate,
1 ml of a mixture of Tris-acetate buffer (pH 7.4), 1 ml of acetone, and 3.2 ml of
acetone-triethylamine (1:1, vol/vol) were added to the trapping mixture. The
identity of the PNBP adducts was determined by analysis of their absorption
spectra (200 to 700 nm) (data not shown).
The colorimetric assay was also used to estimate the concentration of epoxide

in the liquid phase during the degradation of VC and TCE. A series of serum
flasks containing a cell suspension was shaken vigorously. The cell density, the
initial substrate concentrations, and the ratio of gas volume to liquid volume
were identical to those used in the on-line experiments. The suspensions were
quenched at different time points with 1 volume of benzene, and the concentra-
tions of the epoxides were determined as described by Fox et al. (12). The
extinction coefficients of PNBP adducts used for quantitation are 24 mM21 cm21

at 565 nm and 24 mM21 cm21 at 540 nm for VC epoxide and 1,1,2-trichloro-
epoxyethane (TCE epoxide), respectively (12, 15).
Chemicals. All gases were obtained from AGA Gas B.V. (Amsterdam, The

Netherlands). Organic chemicals used in this study were obtained from Acros
Chimica (Gael, Belgium), from Sigma Chemical Co. (St. Louis, Mo.), or Aldrich
(Milwaukee, Wis.).

RESULTS

On-line headspace analysis. On-line headspace analysis is
an attractive method for the determination of cometabolic
transformation kinetics of volatile compounds. However, it is
essential to evaluate to what extent the course of headspace
and liquid-phase concentrations are influenced by mass-trans-
fer limitation. The rate of gas-liquid mass transfer is deter-
mined by the mass-transfer rate coefficient (kLa) and the
Henry coefficient. The kLa of the incubation vessel was mea-
sured for TCE by adding a pulse of TCE to the liquid phase or
the headspace (Fig. 1). The data were fitted with equation 2,
and the kLa values for TCE were calculated to be 3.8 and 3.4
min21 from fits of pulses added to the liquid phase and head-
space, respectively.
The kLa of a compound is dependent on its diffusity and can

be calculated for other compounds by multiplying the kLa
obtained for TCE with the third root of the molecular weight
of TCE relative to the molecular weight of the compound of
interest (29). The kLa values that could thus be calculated for
the other compounds used in this study are as follows: meth-
ane, 7.3 min21; epoxyethane, 5.2 min21; epoxypropane, 4.7
min21; 1,2-epoxybutane, 4.4 min21; cis-2,3-epoxybutane, 4.4
min21; trans-2,3-epoxybutane, 4.4 min21; VC, 4.6 min21; di-
chloromethane, 4.2 min21; 1,1-DCE, 4.4 min21; cis-1,2-DCE,
4.0 min21; trans-1,2-DCE, 4.0 min21; 1,2-dichloroethane, 4.0
min21; VC epoxide, 4.3 min21; cis-1,2-DCE epoxide, 3.8
min21; trans-1,2-DCE epoxide, 3.8 min21; TCE epoxide, 3.5
min21.

FIG. 1. Determination of kLa values for TCE in the on-line analysis system.
TCE was injected in the liquid phase (2.65 mmol) (F) or in the headspace (1.46
mmol) (E). The data were fitted with equation 2. Input parameters: H 5 0.51; Vl
5 25 ml; Vg 5 95.3 ml.
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The course of headspace and liquid-phase concentrations
also depends on the Henry coefficient. A higher Henry coeffi-
cient will result in a larger influence of mass transfer on the
course of the headspace concentration (i.e., a larger deviation
from equilibrium). This influence was studied for various com-
pounds with high or low Henry coefficients. For this, substrate
depletion curves with a k1 value of 0.25 min

21 and a biomass
concentration of 1.0 mg ml21, assuming equilibrium, were sim-
ulated with equation 5. The resulting simulated datum points
were fitted with equations 6 and 7 with various fixed kLa values.
In Fig. 2, the k1 values resulting from these fits are plotted as
a function of the kLa. For the compound used in this study with
the lowest Henry coefficient, cis-1,2-DCE epoxide (H5 0.011),
the error in the k1 value that is derived from the fit is less than
10% different from the k1 that is derived assuming equilibrium,
even if the kLa value was as low as 0.1 min

21 (0.4 times the
value of k1). For a compound with a very high Henry coeffi-
cient, such as VC (H 5 1.26), the kLa value resulting in an
error that is smaller than 10% is 2.0 min21 (8 times the value
k1). This illustrates that equilibrium may be assumed if the kLa
is about 10-fold larger than the value of k1X.
Experimental data were routinely fitted by numerical inte-

gration by use of the equations in which mass transfer was
implemented. Whenever possible, transformation experiments
were carried out with cell densities resulting in first-order
transformation rates at which mass-transfer limitation did not
significantly influence the course of the headspace concentra-
tions. Thus, problems due to inaccurate estimation of the kLa
were minimized.
Transformation of halogenated compounds by Methylosinus

trichosporium OB3b. The transformation kinetics of several C1
and C2 chlorinated aliphatics with cells expressing pMMO and
cells expressing sMMO were determined by on-line GC anal-
ysis. Except for dichloromethane conversion with cells express-
ing sMMO, transformation of all compounds followed first-
order kinetics at concentrations up to 30 mM.
As an example, substrate depletion curves obtained with

cells expressing pMMO or sMMO are shown in Fig. 3. The
conversion of dichloromethane with cells expressing pMMO
followed first-order kinetics (Fig. 3A) and was fitted to equa-
tions 6 and 7. From this fit, a specific first-order transformation
rate constant (k1) of 0.67 ml min

21 mg of cells21 was calcu-
lated. Transformation of dichloromethane with cells express-
ing sMMO did not follow first-order kinetics (Fig. 3B). By
fitting headspace data to equations 6 and 8, describing Michae-

FIG. 2. Influence of mass-transfer limitation on the estimation of specific
first-order transformation rate constants of compounds with different Henry
coefficients. Substrate depletion curves were simulated with equation 5, where k1
was set at 0.25 min21 and X was set at 1.0 mg ml21. The simulated substrate
depletion curves were then fitted with equations 6 and 7 assuming different kLa
values. The k1 values that were thus obtained are plotted as a function of the kLa.
The dotted lines indicate the 5 and 10% error values (k1 5 0.263 and 0.275 ml
mg21 min21, respectively).

FIG. 3. Transformation of dichloromethane by cell suspensions of Methylo-
sinus trichosporium OB3b and effect on parameter estimation. (A) Dichlo-
romethane (F) depletion curve obtained with cells expressing pMMO. Trans-
formation followed first-order kinetics, and the data were fitted with equations 6
and 7. Input parameters: H 5 0.11; kLa, 4.2 min21; Vg 5 94.8 ml; Vl 5 25.5 ml;
X 5 0.63 mg of cells ml21. An optimal fit was obtained with a with k1 of 0.67 ml
min21 mg of cells21. Inset, effect of the kLa on the estimation of the k1 (}). (B)
Dichloromethane (F) depletion curve obtained with cells expressing sMMO.
Transformation followed Michaelis-Menten kinetics, and the data were fitted
with equations 6 and 8. Input parameters: Hc 5 0.11; kLa, 4.2 min21; Vg 5 94.8
ml; Vl 5 25.5 ml; X 5 0.19 mg of cells ml21. An optimal fit was obtained with a
Km of 12 mM and an rmax of 0.093 mmol mg of cells21 min21 (solid line). The
broken line indicates the fit obtained by assuming first-order kinetics. Inset, effect
of the kLa on the estimation of the rmax ({) and Km (å).
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lis-Menten kinetics, the Km and rmax for cells expressing
sMMO were determined to be 12 mM and 0.093 mmol min21

mg of cells21, respectively.
The kLa value for dichloromethane in these experiments was

4.2 min21. The insets in Fig. 3 show the kinetic parameters that
were derived by assuming different kLa values. The results
indicated that the terms describing mass transfer in equations
6, 7, and 8 were not significantly influencing the outcome of
these experiments. Consequently, it can be concluded that
concentrations in the headspace and liquid phase were close to
equilibrium.
The values of the specific first-order rate constants that were

obtained for various chlorinated compounds are summarized
in Table 1. Cells expressing pMMO only showed significant
activity with dichloromethane, VC, and trans-1,2-DCE. The
highest rate was found with VC. The other chlorinated alkanes
and alkenes were poorly transformed or not transformed by
these cells.
All halogenated alkanes and alkenes tested were trans-

formed by cells expressing sMMO (Table 1). The specific first-
order rate constants decreased in the order of dichlorometh-
ane, VC, cis-1,2-DCE, trans-1,2-DCE, 1,1-DCE, TCE,
chloroform, and 1,2-dichloroethane.
Formation and degradation of epoxides. Formation of in-

termediates was observed during transformation of chlorinated
ethenes by Methylosinus trichosporium OB3b. The intermedi-
ates were identified by comparison of retention times, analysis
of the products of the reaction with PNBP, and GC-mass
spectrometry. The kinetics of formation and degradation were
studied.
During transformation of VC, the concomitant generation

of an unstable intermediate with a retention time longer than
that of VC was observed (Fig. 4A). Mass spectrometry showed
the presence of a compound with m/z (relative intensity) 78
(53)(M1), 50 (100)(M1-28, CClH3), and 43 (53)(M

1-35,
C2H3O). Mass spectra for VC epoxide have, to our knowledge,
not been reported. The spectrum is similar to the spectrum
published for chloroacetaldehyde (33), but this compound
clearly had a different retention time. These data indicate that
the intermediate is VC epoxide. The fragment with m/z 50 may
have been generated after rearrangement that is likely to occur

during mass spectrometric analysis. To confirm that the accu-
mulating intermediate was the epoxide and not one of its
degradation products, the compound was trapped with PNBP
as described in Materials and Methods. The adduct showed an

FIG. 4. Generation and degradation of unstable epoxides during degradation
of VC and TCE by cell suspensions ofMethylosinus trichosporium OB3b express-
ing sMMO. To allow a better comparison between the amount of chlorinated
ethene and chlorinated ethene epoxide in the incubation vessel, concentrations
are plotted as if all of the substrate was present in the liquid phase. Mass-transfer
limitation did significantly influence the course of liquid and headspace concen-
trations of the chlorinated ethene but not of the corresponding epoxides. The
amount of VC epoxide and TCE epoxide per liter of liquid phase was calculated
from headspace measurements assuming equilibrium. Insets, headspace concen-
trations of chlorinated ethene and the fitted substrate depletion curve. (A) GC
data of generation and degradation of VC epoxide during degradation of VC.
Symbols: F and solid line, VC; E, VC epoxide; h, VC epoxide as determined
colorimetrically with PNBP. The data obtained by on-line GC analysis were fitted
by using equations 6, 7, and 9. Input parameters: f 5 1; Hs 5 1.26; Ho 5 0.03; Vg
5 94.8 ml; Vl 5 25.5 ml; X 5 0.49 mg of cells ml21. Optimal fits were obtained
with a k1 of 8.1 min21 for VC transformation and a k of 0.53 min21 for VC
epoxide degradation. (B) GC data of generation and degradation of TCE ep-
oxide during degradation of TCE. Symbols: F and solid line, TCE; E, TCE
epoxide; h, TCE epoxide as determined colorimetrically with PNBP. GC data
were fitted with equations 6, 7, and 9. Input parameters: f 5 0.94; Hs 5 0.51; Ho
5 0.03; Vg 5 94.8 ml; Vl 5 25.5 ml; X 5 0.51 mg of cells ml21. Optimal fits were
obtained with a k1 of 3.5 min21 for TCE transformation and a k of 2.0 min21 for
TCE epoxide degradation.

TABLE 1. Kinetics of transformation of chlorinated hydrocarbons
and epoxides with cell suspensions of Methylosinus trichosporium

OB3b expressing sMMO or pMMO

Substrate
k1 (ml mg of cells21 min21)a

Cells expressing pMMO Cells expressing sMMO

Dichloromethane 0.7 6 0.1 8.0 6 0.2
Chloroform ,0.03 1.3 6 0.1
1,2-Dichloroethane ,0.03 1.0 6 0.0
VC 1.9 6 0.2 7.6 6 0.4
cis-1,2-DCE 0.06 6 0.02 4.9 6 0.1
trans-1,2-DCE 0.90 6 0.0 3.3 6 0.1
1,1-DCE ,0.03 3.2 6 0.4
TCE ,0.03 3.1 6 0.4
cis-1,2-DCE epoxide NDb 0.45 6 0.05
trans-1,2-DCE ND ,0.03
Epoxyethane ND 0.80 6 0.0
Epoxypropane ND ,0.03
cis-2,3-Epoxybutane ND ,0.03
trans-2,3-Epoxybutane ND ,0.03

a Specific first-order rate constants (k1) were determined in the presence of 20
mM formate. Values given are averages of duplicate measurements.
b ND, not determined.
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absorption maximum (lmax) at 570 nm, which is in close agree-
ment with the value of 560 nm for the PNBP-VC adduct
reported by Fox et al. (12).
The Henry coefficient for VC epoxide could not be deter-

mined easily and calibration of the GC is difficult, since the
compound is unstable in water. However, the epoxide concen-
trations could be derived by fitting the experimental data (Fig.
4A) with equations 6, 7, and 9 with the following assumptions:
(i) conversion of VC results in 100% generation of the corre-
sponding epoxide (12); (ii) the value of the Henry coefficient is
between 0.01 and 0.05 (based on the value for related ep-
oxides); and (iii) degradation is a chemical process. From this,
it was calculated that the half-life of VC epoxide was approx-
imately 78 s (k 5 0.53 min21). A Henry coefficient of VC
epoxide of 0.03 was used in the fits shown in Fig. 4A. A higher
Henry coefficient means that a greater fraction of the epoxide
is present in the headspace and thus is less susceptible to
hydrolysis by water. Changing the value of the Henry coeffi-
cient to between 0.01 and 0.05 resulted in less than 3% devi-
ation of the half-life giving the optimal fit, indicating that
within this range the obtained half-life is not significantly in-
fluenced by the presence of the headspace, since essentially all
epoxide is present in the liquid phase. Neglecting of mass-
transfer limitation would have influenced the outcome of this
experiment since the k1 of VC transformation would have been
significantly underestimated. The low Henry coefficient in
combination with a kLa value of 4.3 min

21 ensured that ep-
oxide concentrations were close to equilibrium.
The concentration of epoxide derived from these fits will be

valid only when the half-life of epoxide is not influenced by the
presence of cells due to either aspecific reactions with biomol-
ecules or enzymatic activity, and the diffusion over the mem-
brane is not rate limiting. Concentrations in the liquid phase
were determined with PNBP by quenching incubations at dif-
ferent time points with benzene (Fig. 4A). The concentrations
obtained with this method were about 40% lower than the
concentrations derived from the GC data.
An unstable intermediate was also detected in the head-

space during the conversion of TCE (Fig. 4B). Mass spectrom-
etry of this compound yielded fragments with m/z (relative
intensity) 111 (4)(M1-35, C2HCl2O), 82 (100)(M

1-64, CCl2),
63 (16)(M1-83, CClO), 48 (32)(M1-98, CHCl), and 35
(12)(M1-111, Cl), which is in agreement with published spec-
tra of TCE epoxide (21). The lmax of the complex with PNBP
was 560 nm. Previously, Fox et al. (12) reported a lmax of 520
nm for the complex of PNBP and TCE epoxide. The data were
fitted by use of equations 6, 7, and 9, as with VC and VC
epoxide, with the exception that oxidation of TCE results in
94% formation of epoxide (12) (Fig. 4B), and thus the half-life
of the epoxide was estimated to be 21 s (k 5 2.0 min21). The
determination of liquid-phase concentrations with PNBP
yielded similar values as the ones derived from headspace
analysis, but more scattering occurred, which may be due to the
high chemical instability. Neglecting mass-transfer limitation
would also have influenced the outcome of this experiment.
The k1 of VC transformation would have been slightly under-
estimated. Despite the high k value of TCE epoxide degrada-
tion, epoxide concentrations in the headspace and liquid phase
were close to equilibrium because of the low Henry coefficient
combined with a kLa of 3.5 min

21.
Conversion of trans-1,2-DCE resulted in a stoichiometric

formation of trans-1,2-DCE epoxide (data not shown). Mass
spectrometry showed the presence of a compound with m/z
(relative intensity) 112 (13)(M1), 83 (7)(M1-29, CHCl2), 63
(3)(M1-49, CClO), 48 (100)(M1-64, CHCl), and 35 (6)(M1,
Cl). The values are in agreement with published spectra of

chemically synthesized trans-1,2-DCE epoxide (14, 18). When
99% of the trans-1,2-DCE was degraded, the concentration of
trans-1,2-DCE epoxide did not decrease significantly for at
least 15 min, which was expected since Janssen et al. (18)
determined that the half-life of this compound is 31 h.
During conversion of 1,1-DCE, no intermediate accumu-

lated in the headspace. The epoxide that is presumably gener-
ated by oxidation by sMMO is very unstable and to our knowl-
edge has never been detected in biological systems.
Conversion of cis-1,2-DCE resulted in the concomitant gen-

eration of cis-1,2-DCE epoxide (Fig. 5). Mass spectrometry
showed the presence of a compound with m/z (relative inten-
sity) 112 (10)(M1), 83 (7)(M1-29, CHCl2), 63 (3)(M

1-49,
CClO), 48 (100)(M1-64, CHCl), and 35 (7)(M1, Cl). The
values are in agreement with published spectra of chemically
synthesized cis-1,2-DCE epoxide (14, 18).
After degradation of approximately 80% of the cis-1,2-DCE,

the concentration of cis-1,2-DCE epoxide started to decrease
again. This suggested that the epoxide was actively degraded,
since it is known to be relatively stable in aqueous solutions,
with a half-life of approximately 72 h (18). In a parallel exper-
iment HgCl2, a potent inhibitor of biological activity was added
3.5 min after the conversion of cis-1,2-DCE was started. This
immediately stopped the conversion of both cis-1,2-DCE and
cis-1,2-DCE epoxide, confirming that the epoxide was de-
graded biologically. Inhibition of sMMO activity with acety-
lene, a specific inhibitor of MMO (30, 34), also completely
stopped the degradation of these compounds (Fig. 5). This
indicated that cis-1,2-DCE epoxide was converted by sMMO.
Biologically synthesized cis-1,2-DCE epoxide was added to a
cell suspension freshly harvested from the fermentor to deter-
mine the transformation kinetics. The specific first-order rate
constant of this conversion was 0.45 ml min21 mg of cells21.
We tested whether other epoxides were also a substrate for

cells expressing sMMO. The transformation rate of trans-1,2-
DCE epoxide was below the detection limit of 0.03 ml min21

mg of cells21. Of the nonchlorinated epoxides that were tested,

FIG. 5. Formation and degradation of cis-1,2-DCE epoxide (open symbols)
during transformation of cis-1,2-DCE (closed symbols) by resting cell suspen-
sions of Methylosinus trichosporium OB3b (0.29 mg of cells ml21). Symbols:
triangles, control; circles, inhibition by 20% CH4; squares, inhibition by 1%
acetylene. Concentrations were calculated assuming equilibrium and plotted as if
the substrates were completely dissolved in the liquid phase to allow a better
comparison between the amounts of cis-1,2-DCE and cis-1,2-DCE epoxide.
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only epoxyethane was transformed with a k1 of 0.8 ml min
21

mg of cells21. For the structurally related epoxides epoxypro-
pane, cis-2,3-epoxybutane, and trans-2,3-epoxybutane, the k1
values were below the detection limit of 0.03 ml min21 mg of
cells21.
Addition of the natural substrate of sMMO, methane, low-

ered the degradation rate of cis-1,2-DCE epoxide, indicating
competition for the same enzyme by the two compounds. The
kinetics of inhibition of the conversion of cis-1,2-DCE epoxide
by methane was studied by determining the k1 values at various
methane concentrations (Fig. 6). The data were fitted with
equation 11, and an optimal fit was obtained by with a Ki of 56
mM. Values of Ks and Km for methane degradation found are
40 mM (6a) and 92 mM (27), respectively.
Conversion of cis-1,2-DCE epoxide appeared to inactivate

the cells, resulting in decreasing degradation rates. This indi-
cates that the oxidation product of cis-1,2-DCE epoxide is a
highly reactive compound (Fig. 7). A limitation in formate or
O2 is not the cause of this decrease, since cells did not lose
activity in control incubations after 2 h (data not shown). Chlo-
ride levels were determined during the degradation of cis-1,2-
DCE and cis-1,2-DCE epoxide (Fig. 7), since this is one of the
possible products of the conversion of cis-1,2-DCE epoxide.
Chloride was indeed liberated during the conversion of cis-1,2-
DCE epoxide. At the end of the experiment, 57% of the chlo-
rine added as cis-1,2-DCE was present as inorganic chloride.
At this time, degradation rates of cis-1,2-DCE epoxide had
almost stopped, and 28% of the chlorine was present as cis-
1,2-DCE epoxide. The remaining 15% might be present in
nonvolatile chlorinated compounds or in adducts to cellular
components.

DISCUSSION

Sorption, laborious extraction procedures, and high volatility
may interfere with the reliable estimation of microbial trans-
formation rate constants for halogenated aliphatic compounds.
The on-line monitoring of headspace concentrations with GC

described in this paper enabled the rapid determination of
conversion rates at practically relevant low substrate concen-
trations and allowed identification of unstable intermediates.
Mass-transfer limitation and sorption may influence the mea-
surements and therefore these factors were carefully analyzed
to ensure that kinetic parameters were determined accurately.
The transformation rates with cells expressing pMMO or

sMMO were determined. The k1 values found for 1,2-dichlo-
roethane, TCE, cis-1,2-DCE, and trans-1,2-DCE of cells ex-
pressing sMMO are similar to those reported by Oldenhuis et
al. (27). The value of k1 for 1,1-DCE reported previously was
threefold lower than the value of 3.2 ml min21 mg of cells21

that we found, which may be due to rapid inactivation of the
cells (38a). The value of k1 for chloroform of 1.3 ml min

21 mg
of cells21 is much lower than the value of 16 min21 mg of
cells21 determined previously (28). Few data are available
about the transformation kinetics of chlorinated compounds by
cells expressing pMMO. Complete degradation of 0.2 mM
1,2-dichloroethane and chloroform was observed previously
during 24 h of incubation with cell suspensions ofMethylosinus
trichosporium OB3b expressing pMMO (0.3 to 0.4 mg of cells
ml21) (28). However, in this study, we found that the trans-
formation rates of these compounds were below the detection
limit of 0.03 ml min21 mg of cells21.
Strain OB3b, grown either in the presence or absence of

copper, is capable of transformation of VC. Under anaerobic
conditions, the degradation rate of chlorinated ethenes de-
creases with increasing number of chlorine substituents (8, 39).
Hence, cis-1,2-DCE and VC often accumulate during anaero-
bic degradation of perchloroethene under field conditions, and
these compounds are frequently detected in groundwater that
was originally contaminated with perchloroethene. Mycobacte-
rium sp. strain L1 is the only strain described to date which
utilizes VC as a sole source of carbon and energy (16), but the
instability of enzymes involved in VC metabolism in this strain
does not favor its application in a bioremediation process.
Removal of VC with activated carbon is also less efficient
compared with removal of higher chlorinated ethenes, making

FIG. 6. Inhibition of the transformation of cis-1,2-DCE epoxide by methane.
Cell suspensions contained 0.42 mg of cells of Methylosinus trichosporium OB3b
expressing sMMO ml21. Specific first-order transformation rate constants in the
presence of various liquid-phase concentrations of methane were calculated. The
data were fitted with equation 11, yielding values of k1.0 of 0.39 ml min21 mg of
cells21 and Ki of 56 mM.

FIG. 7. Transformation of cis-1,2-DCE (F), generation and degradation of
cis-1,2-DCE epoxide (E), and liberation of chloride (å) by cell suspensions of
Methylosinus trichosporium OB3b (0.8 mg of cells ml21). Concentrations were
calculated assuming equilibrium and plotted as if the substrates were completely
dissolved in the liquid phase to allow comparison between the amounts of
cis-1,2-DCE, cis-1,2-DCE epoxide, and chloride.
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aerobic methods using methanotrophs for the treatment of
waste streams contaminated with VC an attractive option.
The transformation rates obtained with Methylosinus tricho-

sporium OB3b are among the highest observed for cometabo-
lism. Dichloromethane, 1,2-dichloroethane, and VC can also
serve as sole sources of carbon and energy for specialized
strains. The k1 for organisms growing on these compounds can
be derived from the specific growth rate, the Monod constant,
and the yield by using k1 5 mmax/YKs. This allows the compar-
ison of the degradation rates of these organisms with the co-
metabolic degradation rates determined for Methylosinus tri-
chosporium OB3b. The values for k1 for 1,2-dichloroethane
that can thus be calculated for Xanthobacter autotrophicus
GJ10 and Ancylobacter aquaticus AD25, 0.3 and 3.0 ml min21

mg of cells21, respectively (38), are similar to the value that we
found forMethylosinus trichosporiumOB3b.Mycobacterium sp.
strain L1 degraded VC with an approximately twofold-higher
k1 (16) as that found by us for cometabolic transformation with
Methylosinus trichosporium OB3b. The higher k1 value, 53 ml
min21 mg of cells21, that can be calculated for dichlorometh-
ane degradation by Hyphomicrobium sp. strain GJ21 (7) in
comparison with the cometabolic degradation rate of Methylo-
sinus trichosporium OB3b expressing sMMO or pMMO is due
mainly to the low-affinity constant, 10 mM, of strain GJ21.
The on-line analysis of headspace concentrations also made

it possible to study the formation and degradation of the cor-
responding epoxides. The accumulation of epoxides was ob-
served during transformation of all chlorinated ethenes except
1,1-DCE. The somewhat different lmax values that we found
for the PNBP adducts of the epoxides in this study compared
with the values reported by Fox et al. (12) may be due to the
use of benzene in the previous study for extraction of the
epoxides whereas we directly trapped the epoxide in ethylene
glycol in which PNBP was dissolved. The half-lives that we
determined for VC epoxide, 78 s, and TCE epoxide, 21 s, are
in good agreement with the values of 1.5 min (20) and 12 s
(25), respectively, found in the absence of cells, indicating that
these compounds are mainly chemically degraded. Our results
show that during transformation of pulses of VC and TCE, the
corresponding epoxides accumulate in the medium at signifi-
cant concentrations before they disappear as a result of spon-
taneous hydrolysis, rearrangement reactions, or reactions with
biomolecules.
To our knowledge, this is the first time that TCE epoxide has

been detected in a microbial whole-cell system. Previously,
TCE epoxide formation has only been reported as occurring
during oxidation of TCE in vitro by purified sMMO by Fox et
al. (12), who found that 94% of the TCE that was oxidized was
converted to TCE epoxide. Both TCE epoxide and some of its
degradation products, such as acyl chlorides, are highly reac-
tive compounds that rapidly react with nucleophiles (21). The
covalent modification of cellular components by these com-
pounds limits the transformation capacity of cell suspensions
(1, 27). Experiments using 14C-labelled TCE revealed that
TCE conversion products reacted nonspecifically with cellular
components but not with methanol dehydrogenase, which sug-
gested that the epoxide may not reach the periplasm (27). The
results found here indicate that the epoxide must leave the cell
and diffuse through the periplasm. Recently, it was reported
that glucose fermentation by yeast cells was inhibited in the
presence of Xanthobacter Py2 cells degrading TCE, indicating
that toxic metabolites occurred in the medium (32).
cis-1,2-DCE is an important groundwater pollutant that is

generated from perchloroethene and TCE by dechlorination
under anaerobic conditions. However, few data about the aer-
obic degradation of cis-1,2-DCE are available compared with

the data about degradation of other chlorinated ethenes. We
found that cis-1,2-DCE epoxide formed by oxidation of cis-1,2-
DCE is actively degraded by cells expressing sMMO. The effect
of methane and acetylene and the competitive inhibition of
cis-1,2-DCE epoxide degradation by methane strongly indi-
cated that sMMO was involved. Surprisingly, epoxyethane was
also degraded, while related epoxides such as epoxypropane
cis-2,3-epoxybutane, trans-2,3-epoxybutane, and trans-1,2-DCE
epoxide were not substrates for these cells, suggesting that
unlike for halogenated alkenes and alkanes, the substrate
range of sMMO for epoxides is rather small. The nature of the
reaction is not clear. Lewis acid-like interactions catalyzed by
the heme iron in its Fe(III) state have been postulated to cause
the rearrangement of TCE epoxide to chloral in cytochrome
P-450 (17). It is unlikely that a similar mechanism holds for the
conversion of cis-1,2-DCE epoxide by the diferrous cluster in
sMMO, since a rearrangement of the epoxide to dichloroacet-
aldehyde is inconsistent with the liberation of chloride that was
observed.
Castro et al. (6), using 13C and 14C nuclear magnetic reso-

nance suggested that the VC epoxide that is formed after the
oxidation of VC byMethylosinus trichosporium OB3b is further
degraded via three different pathways. The major pathway was
reduction to epoxyethane and a subsequent hydrolysis to eth-
ylene glycol. They postulated that both reactions are catalyzed
by the organism. However, the epoxides were not detected,
probably because the steady-state concentrations were too low.
VC epoxide might also be hydrolyzed biologically or chemi-
cally, yielding glycolaldehyde, or chemically rearranged to
chloroacetaldehyde.
The toxicity of chlorinated ethene epoxides and their deg-

radation products suggests that active conversion to nonreac-
tive compounds may reduce or prevent such toxic effects. How-
ever, no activity of microbial enzymes that are involved in the
metabolism of epoxides with chlorinated ethene epoxides has
been reported. The conversion of cis-1,2-DCE epoxide cata-
lyzed by sMMO does not seem to reduce toxic effects, since the
conversion clearly inactivated the cells.
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