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MIMICS Technical Reports

The MIMICS projectof the Centrefor High PerformanceComputingof the
University of Groningenis a project initiated by the International Study
Group for New Antimicrobial Strategies(ISGNAS). Its aim is to explore
computersimulationmethoddor the studyof theintestinalmicrofloraandits
interactionswith the host. MIMICS technicalreportsare intendedto explain
various technical issuesinvolved in this modelling. As such, the main
readershipare personsinvolved in the MIMICS project, other ISGNAS
projects, and those intending to implement similar models. Parts of the

contents may be reproduced in articles at a later date.
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1. Introduction

In any complexmicrobial ecosystemsuch as the gut microflora, many different types of

interactions can take place. In this papproposea classificationof interactionsanddiscuss
the appropriateordinary differential equationsbelongingto each class. The steadystate
behaviourof eachclassis consideredn the binary case,i.e. interactionbetweenjust two

species Stability analysisand dynamic behaviourare discussedn a numberof caseslt is

alsoshownthat similarities exist betweeninterbacterialand host/bacteriumnteractions,and
that the mathematicalbehaviourof theseinteractionsshould be the same qualitatively.
Modelling canthereforebe simplified, sincethe sameequationsanbe usedfor two typesof

interactions.

The classification of interactions is as follows:

1. Pure food competition. Two speciesmay competefor the samefood sourcewhich is

readily available to either bacterium in the absence of the other.

2. Parasitic food competition. If one speciesproducesextracellularenzymeswhich lyse

macromolecules, other species may compete for the reaction products.

3. Symbiotic food interactions. Onespeciegnay usethe metabolitegproduceshy another
as a limiting substrate.lf the metabolitesare inhibitory to the latter species,the

interaction becomes mutualistic.

4. Toxin production. Bacteriamay producetoxins (bacteriocins)which kill or inhibit
others.Productionof inhibitory metabolitess modelledin the sameway. May lead to
multiple stable equilibria, and henceto irreversibility of changesin the intestinal

microflora.

5. Toxin inactivation. Resistanbacteriamay removeor inactivatetoxins, eitherby usein

their metabolisms, or by secretion of inactivating substances, protecting sensitive species.

6. Predator-prey interaction. One speciesmay prey on another (e.g. Bdellovibrio,

Daptobacter).

7. Decoysfor predatorsor phages. Bacteriaresistanto phagesor attackby predatoramay

act as decoys, reducing the effect on host or prey species by competitive inhibition.
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10.

11.

12.

13.

14.

Direct binding site competition. Bacteria may compete for binding sites on the
intestinal epithelium. Competition may be through increasedmotility or chemotaxis,
which increasethe numberof collisions with the wall. Tighter binding by increased

affinity is an alternative mechanism.

Indirect binding site competition. Bacteriamay producesubstancesvhich reducethe
affinity of other bacteriafor wall sites.Lectins are suitable examplesfor this type of

interaction.

Biofilm gel production. Bacteriamay secreteextracellularpolymerswhich stabilizethe
biofilm on the epithelium.Bacteriaembeddedn this mucuslayer neednot strictly be

bound to the epithelium, yet they are protected from sloughing.

Biofilm gel destruction. Bacteriamay lyse extracellularpolymers.Active destructionof
thebiofilm gelis sometimesusedby bacteriato dissociatedrom the surfacewhenfood is
scarce Bacteriawhich bind tightly to the epitheliumitself may usethis methodto rid

themselves from competition of gel-embedded competitors.

"Meta-adherence." Bacteria may bind totherbacteriaalreadyboundto the epithelium.

One example is the frequent observation of small rods or cocci bound to SFBs.

"Quorum sensing” and other "pheromone” mediated interactions. A comparatively
recentdiscoveryis the ability of somebacteriato secretesubstancewhich regulategene

expression at the population level.

" Pathway clearing by copiotrophs.” Bacteriamay removetoxic levels of substrate,
allowing obligate oligotrophsto colonize. Once establishedthey may outcompetethe

initial copiotrophs by further lowering of substrate levels.

Differential equationdor eachof theseinteractionsexcept9 through11 and 13 havebeen

drawn up. Many of these interactions also apply to the host-bacterium system:

1.

2.

Pure food competition. Host and bacteriacompetefor readily availableresourcesuch

as monosaccharides, amino acids, etc.

Parasitic food competition. The host may produce enzymes which Iysecromolecules,
yielding productsfor which a non-producingbacterium competesparasitically. The

reverse may also be the case (i.e., the bacterium is the enzyme producer).
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3. Symbiotic food interactions. Metabolitesof the hostmay be usedby bacteriaandvice-

versa (cf. short chain fatty acid use by enterocytes).

4. Toxin production. Bacterialtoxins may harmthe host,andthe hostmay producetoxins

to kill bacteria.
5. Toxin inactivation. Bacteria may remove or inactivate substances toxic to the host.

6. Predator-prey interaction. Macrophagesetc., may be consideredpredatorsin the

mucaosa.

7. Indirect binding site competition. The hostmay producesubstancesvhich reducethe

affinity of bacteria for wall sites.

8. Biofilm gel production. The hostmay secretepolymerswhich stabilizethe biofilm on

the epithelium.

9. Biofilm gel destruction. The hostmay lyse polymersin the mucus,to actively remove

bacteria.

The reason for noting the equivalencebetween inter-bacterial interactions and host-
microflora interactionsis that the same differential equationsgovern the behaviour of
equivalentinteractionsTherefore the sameor atleastvery similar programmingechniques
can be used to simulate the two classes of interaction.

Differential equationgor mostof theseinteractionsare drawnup in the following sections,
after a brief descriptionof modelsof elementaryreactions.The further discussionassumes
the readeris understandsome of the basicsof ordinary differential equations,and the
principles of stability analysis.Others may wish to consult one of many textbookson
mathematical methods in (microbial) ecology [DeAngelis, 1992; Kkbeh 1997].

2. The Basic Components of Interactions

Most interactionscan be built from a limited numberof components:substrateuptake,
enzymeactivity, inhibition and activation of reactions(metabolic pathways),secretionof
substancesand transportcomponents.These componentsare describedin the following

subsections.
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2.1 Enzyme activity, inhibition, and activation.

The celebratedvichaelis-Menterequationfor the reactionratev for an enzymeE actingon

single substrateé§f molecules is

ES

v(E,s)zvmaxm,

(1)

in which V,__ is the maximumreactionrate per unit of enzymeand Kg is the saturationor

Michaelis-MenterconstantA simplegeneralizatiorfor reactionsof n moleculesof substrate
is
ES"

v(E,s):vmaxw.

(2)

Many enzymeshavesitesto which other substancesnay adhere causingactivationor non-

competitive inhibition of the enzyme. If an enzyme hasuch sites, equation (1) becomes

ES Kinh
" KS-*-SKinh-i-In

V(E,S)=V : (3a)

V(E,S)=V,. ES A
Ks +S K,y + A"

: (3b)
for inhibition byl and activation byA respectively.
Alternatively, substancesnay adhereto the active site, blocking the action of the enzyme,

causing competitive inhibition. In that case, (1) becomes

V(E,S)=V,, ES :
KS +S+ KinhI

(4)

If sufficientsubstratas presentthe maximumreactionrate may still be attained,unlike the

case of non-competitive inhibition.



M.H.F. Wilkinson MIMICS technical Report Ordinary Differential Equations

2.2 Substrate uptake

2.2.1 Single substrate uptake

Substrateiptakeandgrowth areusuallymodelledusingthe Michaelis-Menterequation .t is
assumedhat a singlerate-limiting stepdetermineshe uptakeand growth rate.In that case,

the uptakerate canbe modelledthrough(1), with vy,5 the maximumspecific uptakerate.

The equation for growth of a bacterivfrbecomes

X = X, 5
t SmaxKS+S ()

where Yg is the yield of bacterialbiomassper unit of substrateand u, . =YV, is the

maximum specific growth rate. At low substrate concentrations, (5) may be approximated by

= Bre (6)

with ag the specific affinity. Equation(5) is usually referredto as the Monod equation.

However,in the caseof predator-preysystemswhereS now denoteshe prey species(5) is
referred to as the Holling type Il equation.

Many otherequationanay be usedinsteadof the Monod (Holling 1) equation.All needto
sharetwo features:(i) substratelimited growth at low substrateconcentrationsand (ii)
saturationof growth rate at high substrateconcentrationsdue to internal limitations. An
early, purely heuristicmodelis that of Blackman[1905], which hastwo linear branchesand

a discontinuous first derivative where the two branches meet:

Hads  S<Ks
=0

(s (7)

HJmax Sz KS

Blackman'sequationis problematicfor two reasons{i) it doesnot modelreal growth very

well, and (ii) it is computationally inefficient (comparisons are costly).
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A more interestingalternativeis the model by Best [1955], which assumeghat passive
diffusion of substratdimits growth. Useof substraten the cell througha Michaelis-Menten
type irreversibleenzymemediatedreactioncreatesa concentratiorgradientwhich maintains

the influx of substrate through diffusion. Best's equation for growth rate is

S+K.+J 4S) 0
u(S)=p,,———0- 1-——— 0 (8a)
(5) 2] %\/ (S+KS+J)ZH
and
ag;ia_a_x = _Hm (8b)
XaSat| , Kg+J

in which J is a parametefor diffusion throughthe cell wall. If diffusion is slow (J is large)
(8a) converge®n the Blackmanmodel,for very high diffusion ratesthe modelconvergesn
the Monod case[Koch, 1997]. Best'smodel was largely ignored after the discovery of
transportproteins,sincethesesupportedMonod'smodel. However,Koch and Wang [1982]
have shown that diffusion through porins in the outer membranemay actually be a rate

limiting factor.

2.2.2 Multiple substrate uptake

Multiple substrate uptake can take two distinct for(suptakeof substancewhich perform
different tasks within the cell (e.g. sources of carbon, nitrogen or phosphorus), and (ii) uptake
of different substratesvhich canessentiallyreplaceeachother(e.g.glucoseandlactosecan
bothbe usedascarbonsourcefor Escherichia coli). In thefirst case the uptaketermscanbe
either interactive or non-interactive. Interactivetermsall limit growth to a certain extent.
Eachsubstratenay be thoughtof as activatorfor eachothersubstratgasin eq. (3b)). For

two substrates, the interactive case is modelled as

0 X 3 5 ©)

10X _
M8 S)= o T sk v

which can be generalized kbsubstrates as
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_ 5 S
H(Sl’SZ"“’SN)_umaxlz Ko +S (10)

In the non-interactivease only onesubstrates limiting, i.e., the substraten shortessupply
relative to growth requirementglictatesthe speedof growth. The non-interactivecasefor

two substrates becomes

_ 0 s s L
H(S.S)= K mmgKSJ S K., 45, C (11)

which can be generalized kbsubstrates as

U(Sl’sz’-'-’SN):Umaxrﬁlilnlf—;S' (12)

If multiple substratesnay be usedfor a similar function (e.g., carbonsource),the growth

terms are simply a sum of different Monod terms

S S5 (13)

u(s.s)= Hmax,lm + K, +S

or more generally

H(Susz’---’sw)zzlumax”(s?—;s- (14)

A further generalizations to allow the bacteriumto adjusteachmaximumspecific growth

rate 4., as a function of substrate availability

S

H(Sl’sz""’SN):Zumx,i(sl’%""’SN)m' (15)
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To ensurerealism,the sum of all maximumspecific growth ratesmust neverexceedsome

sum total maximum growth rate

N

> Mo (S.,S;1+,Sy) S M for all values ofS,,S, ..., S, . (16)

2.3 Secretion

Two forms of secretionmay be recognized(i) secretionasa resultof the basalmetabolism
of bacteriaand(ii) secretionof metabolicby-productsof the uptakeof substrates. Thefirst

caseis the simplestto model. SupposéhatbacteriumX secretes substancé/ at a rate vy,

per unit of bacterial biomass. The rate of production is then simply

6_“:' =y X, (17a)

and the growth rate of the bacterium must then be adapted to

25 = (WS- nm)x. (170)

in which py, is the part of the basalmetabolismresponsiblefor productionof M. It is
possible to define a yield & per unit of biomass lost as Yy, = vy /K -

In the secondcase the rateof productionof M is proportionalto the uptakerate.Defining a

yield Yy, of metaboliteM per unit of substrat8 used, we arrive at

%—“:':YMV(S)X:YM@x. (18)

Ys

The growth ratgu(S) or uptake rate/(S) can take any of the forms described in the previous

subsection.
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2.4 Transport terms

In large scalemodelssuchasthe MIMICS V.8 cellular automatonmodelling of transport
termsis doneby highly complexroutineswhich model both bulk flow and diffusion. The
important difference betweentransportand reactionterms is that transportterms should
neithersourcenor sink any of the substancesvolved, exceptmaterialleaving or entering
the system through the boundaries. Analytical treatment of such systemsis not
straightforward,so the transportterms are often simplified to the caseof a well-mixed
chemostatwith dilution rateD anda constantinflow of nutrientsat a fixed concentration

Sn- The rate of change due to inflow of nutrients is

0S
—=DS§,, 19a
31 Sn (19a)

whereas rate of changeSslue to the outflow

(3]

S

——=-DS, 19b
T (19b)

whereSis the instantaneous concentration of substrate in the chemostat.

3. Thelnteractions Proper

3.1 Purefood competition.

Two speciescompetefor the samelimiting food sourcewhich is readily availableto either
bacteriumin the absenceof the other. This is the simplestcase,and well studiedboth in
theory and in (chemostat)experiments.t can be modelled using the Monod formalism.
Maximum specific growth rate, specific affinity and flow rate parametersdeterminethe
outcomeof this competition.Only one stable equilibrium in steadystate chemostattype
ecosystemWhen spatial extentis usedin the model, motility and chemotaxisare also

important.

Determiningwhich speciessurvivesin a chemostatmodel with pure food competitionis

easy. The differential equation governing growth of a single spg@essubstrat&is
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2= D(Sh - 9)-u9X, (20a)
‘2_1( = Yav(S)X - DX . (20b)

Solving for steady state we find

Xeq = Ys{Sn ~ ). (212)
v(Sq)= Y—z, or Sy =V H(D/Ys), (21b)

provided v1 | which is the inverseof v, existsfor an uptakerate of D/Ys. If multiple

speciexcompetefor the samesubstratethe specieghat hasthe lowestequilibrium substrate

level S will outcompete others.

3.2 Parasitic food competition.

Suppose waavefibre (F) digestingbacteria(X) which produceanexternalenzymek which
degradeghe fibre to usablesubstrateS, which is takenup by the bacteria.lf thesebacteria
are growing in a chemostat with dilution rteave can model them using the following set of

differential equations:

OF (R, -F)--4EF (22a)
t Ke +F

a_S: VlEF _ V2XS -DS (22b)

ot Kg+F Kg+S

0X v, Y2XS _py_y.x (22¢)

ot Ks+S

%—'tz = —DE +v3X (22d)

10
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Solving for steady state we find:

V3X
Eequeq (23a)
D+V3
=—— 2 K 23b
%q YSVZ—D—Vg S ( )
_ _ V1V3Ys U _ V1V3Ys u _ V1V3YS(FIH SEQ)E
Ffin = KF D(D+V3)_\/Dm P D(D+vs) +4F'”KF§ D(D+vs) H (23c)
Feq =
ZD ~ V1V3Ys(':|n - Seq)%
D(D +v3) H
Fin = Feg -
—y, in~Fea % (23d)

€S 1+vy/D

At equilibrium eigenvalue equation is:

_ V1K|:E - V1K|:E 0 0
2 2
(KF + F) (KF + F)
0 _ V2 st Y Y8V2 st 0
2 2
(KDS+S) (Ks+S) =0 (24)
+
0 _2TYs -\ Vs
Ys
_ VlF VlF 0 D=\
Ke +F Ke +F

It can be shown thatll eigenvaluefiavenegativereal partsif the equilibriumconcentrations
areall positive,andthatthis equilibriumis thereforestableunderthoseconditions.Now let

us introduce a secondspecies,which competesfor S as limiting substrate.The set of

differential equations becomes

o0F viEF
~ _=D(F.-F)- , 25a
(Fin—F) < iF (25a)
V51X1S Vr5X5S
aS: ViEF V21%19 V2249 -DS, (25b)

E K|:+F K31+S KS,2+S

0 Xl v, V2,1X18

—DXq —vaXq, 25¢c
T S'lKS,1+S 1~ V3Xg (25c¢)

11
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0 X2 v, V2,2XZS

-DX,, 25d
ot S2 K32+S 2 ( )

a—tE =-DE +V3X1 . (258)

It can readily be shown that the (25c¢) and (25d) yield conflicting equilibrium substrate

concentrations (except for very rare cases):

D +V3 D
= Ko =——), 26a
S Yg1Vo1—-D-v3 st agl (262)
D ye,=D (26b)

2= =
Yg2\Vo 2 - D S agz

The approximatiorholdsfor dilution rateswell below the maximumspecificgrowthrate. It
cannow be shownthat thereis no two-speciesequilibrium in this case,and that transient
introduction of a high specific affinity competitor may destabilize the single species
equilibrium of fibrolytic bacteria,evenleadingto their extinction. If low specific affinity
speciescannotcompetewith the fibrolytic speciesThis explainswhy fibrolysis takestime:
only high specific affinity, low maximum growth rate bacteriacan afford a fibrolytic
lifestyle.

The situationis different if the substrateS is usedby other bacteria,but not as limiting
substrateln that casethe competingspeciesare held at a constantevel (e.g.,dependenbn

some other substrate), and only equation (22b) need be adapted to

0S_ MEF _V21%4S_ (D+Vo2%)S. (27)
ot Kgp+F Kg1+S ’

The equilibrium is similar
g = (282)
Sy = YSVZE)_+[\)/3L v Ks (28b)

12
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_ _ V1V3YS | _ _ V1V3YS EF D_V1V3YS(FIFI_(D+V2,2x2)%q/D)E
Fin KE = (D rug) £ 0 TKF T p(p vy +AFnKe DD +v H (28c)
3 3 0 3 O
Fony =
= 2':' _ V1V3Ys(':m - (D +V2,2X2)Seq/D)E
E D(D +vs) H

Fin — Feq —(D+V2,2X2)Seq/D |

1+vg/D (28d)

Xl,eq = YS

The equilibriumis againstable thougha higherinput fibre concentrations neededo ensure
survival. This caseis importantbecausét is identicalin behaviourto "parasitic"competition
by the host.

3.3 Toxin inactivation

Toxins of any kind (cidal or inhibitory) may be inactivated in two distinct ways: (i) by uptake
of thetoxin (e.g.,usedas metabolite),and(ii) by secretionof enzymesor otherinactivating
agents.The first casewas modelledin the MIMICS pilot study [Wilkinson, 1997], in the
interactionbetweenanaerobesndaerobeslin this casewe havenon-competitiveinhibition
and/orcidal effectof oxygen(O) of anaerobesanduptakeof oxygenby aerobeslin the case

of inhibition the differential equations are

S S K S o)

~——~=D(S,-9)-V,, Xy =V X,, (29a)

ot ( ) ' Ke; +SKpp, +O *Kg, +SKy+0 2
X K,

0%, _ AV S Ml X, - DX,. (29b)
ot ’ KS,l +S Kinh,l +0

0%, _ AV S © X, = DX,. (29¢)
ot ?Kg, +SKy +0

90 D(O, = 0) =V, uu S © X, =V o S © X,. (29d)
ot ' Kes + SKiy +O ©Ks, +SKo +0

In the purely cidal case we have

?;D S x S 0 (30a)

S,-S)-V_,——X, -V
(|n ) max,1 KS’1+S 1 max,2 KS’2+S KO+O 2

13
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0 X, S
=YV, u——— X, - (D+ X,. 30b
6'[ S ¥ max1 KS’l + S 1 ( Ktoxo) 1 ( )
0 X, =YV o S © X, — DX,. (30c)
ot “Ks, +SKy+0
CASI O, = 0) =B X;0 =V 0o S © X, . (30d)
ot ® Kg, +S Ky +0

If inactivatingenzymegE) directedagainstan inhibitory toxin T areproducedat a rate v,

we have
K,
95 _p(s, -9) -V, — mi_yooy S x (31a)
at KS,1+S K|nhl+T KS,Z +S
K,
0 X, =YV mar S ml_ X, - DX,. (31b)
ot Ks; +SK +T
0 X S
atz S AV < +Sx2 -(D-v)X,. (31c)
S,2
‘Z_f =v. X, - DE. (31d)
T = DTy = T) Vi e X, Vg (31e)
ot " Kgy *SKip  +T KT
For a cidal toxin we have
9S_ D(S, - S)—VML X, -V . S X,, (32a)
ot T Kg, *+S “Kg, +S
0 X S
5 tl :st”‘ax’lK—st X, = (D +K o T)X,. (32b)
S1
0 X S
atz =YV, < +Sx2 -(D-v.)X,. (32c)
S,2
‘Z_f =v. X, - DE. (32d)

14
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ET
—=D(T_-T)- XT-V_ ——. 32e
(m ) Btox 1 max,T KT+T ( )

The earlier,computersimulationwork in the project hasprovidedinsightinto this type of
interaction within a certain range of parameters[Wilkinson, 1997]. This showed that
situationsmay arise in which the toxin inactivating strain and toxin sensitivestrainsmay
coexist,andthatthe trivial equilibriumwithout any bacteriais only unstablefor invasionby
inactivators.Once theseare present,the sensitivestrains may arise. Both single species
equilibria can be stable,exceptfor invasion by the other species.Only the two-species
equilibriumis truly stable,which is the reversesituationof that discussedn section3.5 on
toxin production. Further analysisof the behaviourof the pure forms of this type of
interactionwill bedonein futurework, however the nextsectiondescribesa combinationof
this type of effect with anotherinteraction,viz. productionof substrateby the sensitive

species.

3.4 Symbiotic food interactions.

Here we modeltoxic metabolitesand mutualismthroughuseof thosemetabolitesby other
bacteria.Supposeve havetwo species,X; living off substrateS andproducingmetabolite
Sy, and X, living off S,. Maximum specific uptakeratesand Michaelis-Menternconstants
are vy, Vo, Ky and K,, respectively.The yield of biomassper unit of substratds Yg for
both species,and the yield of metabolite S, by X; per unit of substrateusedis Y.
Furthermore, wassumehatgrowthof X; is inhibited (non-competitivelypy its metabolite

Sy, with an inhibition constantof K. We thenarrive at the following setof differential

equations:
93 _ _ey_ XS Ky
ot P(Sin = 1) Ki+§ Kp+S (332)
0 _y XS Ky XS _ DS, (33b)

1
ot K +§K+S Kp+S
aX1:YSV1X1SL Kt

ot Ki+§ Kr+$

DX, (33¢)

15
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ot

_y V2X2S _
S
K2+
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(33d)

Obviously, the secondspeciescan only survive if the first is present.The two-species

equilibrium is at:

DK

S=—=— (34a)
YSV2 -D
DK
= 1 (34b)
Yovi Kt /(K1 +S) -
X1 = Ys(sm - Sl) (34c)
X2 = Ym1X1 ~ Ys& = Ys(Ym1(Sn - S1) - S2) (34d)
The Jacobian is:
O~ WXKs Ky XK Ky XKy Ky E
0 (K1+5_L)2 Kr+S (K1+5_L)2 Kr+$ S(K1+S_'L)2 Kr+S 0
0 wXS Ky . ias Ky o WXk 5y WXS Ky XKy O
320 KrS(e+sf  KFS (K +S) (Kot S) K (K +5)  C(K+S) g
0O _ws  Kr v, s Ky Ms K 0 0
B Ki+SKr+S ™MK tS Kr+S “K+SKr+S B
0 0 -2 0 v,—2K2__p
0 Ko +S Ko+S O
at the point of equilibrium the eigenvalue equation becomes:
XK, D lelK1 D Vi X, K; D
K, +S V.S K,+S V.S K,+S'S
DX, Dx1 VXK, DX, v, X,K, (35)
Y,(K; +8) +Sz) V(K +S) (K, +S) (K +S) “(k,+s)| -,
D v.D _A 0
YS YS
0 -2 0 -A
YS

It canbe shownthatall coefficientsin the fourth orderequationabovearelargerthanzero,

provided all equilibrium concentrations are positive, and that therafioreal component®f

the roots of this equation are negative. The equilibrium is therefore stable.
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3.5 Toxin production:

3.5.1 The action of bacteriocins

Frank [1994] has produceda theoreticalmodel of competition through bacteriocins.He
found that two stableequilibria may be present, unlike in the caseof food competition.
However, his treatmentuseslogistic growth asa model for bacterialgrowth, which is not
satisfactory [Koch, 1997].

Considera systemof two speciespnesusceptibleXgys: , oneresistantXpyroq andproducing

atoxin T, competingfor a single substrateS. Both specieshavethe sameuptakeparameters
Hmax Vmax andKs. As in the case of Frank [1994], \aesumehat Xroq producesT ata
constantrate a;, per unit of biomass(basal metabolism),and T is cidal rather than

inhibitory. Theyield is setat 1 without loss of generality.The toxin kills susceptiblesat a

rate K igx per unit of biomassper unit of toxin. Toxin is removedfrom the systemby this
reactionat a rate 3;ox per unit of biomassper unit of toxin. Lysis of killed cells returnsa
fraction Y, of the biomassassubstratelsing Monod formulation explicitly in a chemostat

at dilution rateD, we find that the appropriate set of differential equations is:

0 X

prod _ S 3
TR Umaxmxprod (D+atox)xprod (36a)
oT
9t tox Xprod ~ (D + BroxXsusc )T (36D)
0 X S

aTSC = U e Kors Xause ~ (D +K 1ox T ) Xsusc (36¢)
0S S
ot = D(Sn - S) ~ Vimax m(xsusc + Xprod ) + YeK tox TXsusc (36d)

As in the logistic casedescribedby Frank, three non-trivial equilibria exist. One hasonly

susceptibles:

Xprod =0 (37a)
s=— P2 . (37b)
Hmax — D
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Hmax H D 0
Xsuse = - Ksl 37c
e Vinax Eﬁn Hmax — D >0 (579

T=0 (37d)

Stability analysis shows that this solution is positive ifdcbecentrationgareall non-negative

in steady state, and henpgx > D and §,, 2 b Ks.
max — D
The next equilibrium has only producers:
XSUSC =0 (38a)
D+
S= Gox kg (38b)
M max (D + atox)
0 0
Xprog = Bmaxpg D g _ D KO (38¢)
Vimax 0D + 84ox Ilmax_(D+atox) 0]
T = Box ¢ od = M max E Gtox S - Gtox KSE (38d)
D P Vimax 0D + 84ox Ilmax_(D+atox) 0]
The stability requirement becomes:
l K aX l
A+ Virax > pr0012 +2D +K 1ox T~ 8tox ag +
5 (Kg+S
0 K <X 0 K aX 0 0
wrrax S—pmdz(ZD + atox) + E{‘/max S—prodz + 2D§K tox T — atox) +D?EA% +
5 (Ks+9) (Ks+S

1] K o X U KeX H
e D=+ D2 1T = )+ Vi g (2D + By (D +K 1o T = Bt )h +
an (Ks+$) (Ks+3)

KeX
max ﬁ(ZDZ + Datox)(K tox | ~ atox) =0

<

As intheabovecase the systemis stableonly if the concentrationsf the steadysolutionare

positive. In addition, only if
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X
prod S

5 1 (39)

Ktox T > 8ox ind K tox

areall coefficientspositive,andareall real partsof the roots negative.Therefore,only if a
sufficient number of producersare presentin steady state can they outcompetethe

susceptibles. Since we can rewrite the condition as

[l K [l
K tox 1 max 0 Sn S O>1, (40)
Vimax D +a&iox  Hmax _(D+atox)D

we seethat this equilibrium is more stableas the input substrateconcentrationincreases.
Finally we have coexistence of the two species:

T = 2o (41a)
K tox
D+
S= Gox kg (41b)
Ilrrlax_(D+atox)
YK 7 P - DKs E—D
S tox n
. umax YKa'tOX
Kiox ¥ Biox _KtoxTW
YB E D S _ DKS E'FEJL— umax YKatox D
MDA, " M —(D*ag)0 O Vi D+agl .
X s = (41d)
Hmax Y o
Ktox +I3tox _Ktoxr D+at

This equilibrium cannotbe stableif the two single speciesequilibria are stable(stableand
unstable equilibria must alternate).
However,if we havean inhibitory bacteriocinthe equationsbecome(usingnon-competitive

inhibition), the differential equations become

0 Xprod -
ot

S
Umaxmxprod _(D+ a*tox)xprod (42a)
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6 T
—— = @oxXprod ~ DT (42b)
0 Xsusc S Kitox
= - DX 42c

3t M max KS+SKt0x+Tn SuSC SUSC (42c)
S s O K [
~—~=D S H oX + X 42d
at (Sm ) max Kg + SHKtox LN Xsusc prod% ( )

The two single speciesequilibria are identical to the case above, but the two-species

equilibrium becomes:

S= D+ aiox Ks (43a)
Mmax ~ (D + atox)

T = KtOXatOX (43b)
J D
Xprod = D %/ Ktox8tox (43c)
8tox D
Xao = Yo(Sn =)= 1 oo (430)
Btox

In the case of = 1 we have:

K
T - tox a'tOX (44a)
D

K

Xprod = tox (44b)
3tox

D + 8y0x
Xsusc = YS(Sn B S) T Db Ktox (44c)

The stability requirement for the equilibrium with only producers rffdr) reduces to

X
DT _ atox X prod - prod >1 (45a)

Aiox <
Ktox

Ktox  Ktox
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or

0O 0O
Mmax D Sn - D KgO>1 (45b)

KtoxVmax 0D + a¢ox Mmax ~ (D + atox) O

The steadystate behaviouris thereforesimilar to the logistic casediscussedby Frank.
However, dynamic behaviour of Monod and logistic models can be very different
[Wilkinson, submitted].

3.5.2 Toxic by-products of substrate uptake

A modificationis neededo modeltoxic substanceproducedn the courseof uptake.In this

case the set of differential equations becomes

‘”;_ptrod = (Umax - atox)%_*_sxlﬂrooI ~ DXprod (462)
%_1- = Stox %4-8 Xprod - (D * Biox XSUSC)T (46b)
° );TSC = Hmax %’FSXSUSC ~ (D +K 1oxT)Xusc (46¢)
?3_:[3 = D(Sn ~S) = Vinax %—}-S(XSUSC + Xprod)+ YeK tox TXsusc (46d)

The equilibrium of only susceptibless identicalto thatin the previouscase.However,the

equilibrium of producers becomes

XSUSC =0 (47a)
S= D Ks (47b)
Hmax ~atox — D
Hmax ~ 8tox K D C

X o = mex ~Stox g KsE 47¢

prod Vimex Eﬁn Hmax ~aox ~ D °C 49
U] [

T=_ 2o Xprod = tox [Bn - 0 Ksl (47d)
Mmax ~ @tox Vimax U Hmax ~8ox =D ~0

The stability requirement becomes:
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D
-\ 0 & “Vyax ——————
5 o maxI:F;max_atox
Gox
0 ———— —KioxT = A BioxT “Vipax——————+ % Kiox T
M max ~ 8ox o 1o max“max_atox K=o
Kox 0 -D-A K XO
S od S od
(Umax_atox)—prz 0 0 _Vmax—prz_D_)‘

As intheabovecase the systemis stableonly if the concentrationsf the steadysolutionare
positive. In addition, only if

aox D Xprod
Kiox T >———— = K tox >

Mmax ~ 8tox D

1 (48)

This criterionis identicalto the caseof constantoxin production.However,if we fill in the

equilibrium value forXpoq , We have

— & K (l
Mmax ~ 8tox Eﬁnput _ S O>1. (49)
Vimax U D Hmax ~8x ~ DU

K tox
Thoughslightly differentfrom the previouscase the overall behaviouris quite similar. The
effect of shunting down of the toxin production due to decreasedsubstratelevels at
equilibrium is twofold: (i) toxic action towardscompetitorsis reduced,and (ii) biomass
lossesof the producerarereduced.Thesetwo effectsclearly cancelout almostcompletely.

As long as a;x IS smallcomparedo M ax, it IS K 1o thatdetermineghe succes®f toxin

production strategies.

3.6 Predator-prey interactions

The prey speciescan be modelledusing Monod formalism, the predatorby Holling type Il
(equivalentto Monod), or other schemewith predator satiation. Lotka-Volterra type

oscillations may occur. The set differential equation becomes

0 X X
L= > Xl_VmaXZ :
T Ky + X,

X, - DX, (50a)
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a X, X,
= — X, - DX 50b
6'[ umax,Z KX + Xl 2 2 ( )
0S
—=D(S, = S) Vi S X, (50c)
ot " Kg, +S
The equilibrium is at
Hmax,2 ~ D
(l ]
1 Vinaxa K x N Viraxa Kx DZ 0
=25, —Kg, ——™= X 4 5 -Kg, ——=2 X [ +4K,S, (51b)
2 S1 TR ES S1 My, — DO s,1S O
D l
0 (l
X, =ome et (g g)- X[ (51¢)
Vmax,Z max,1 H
The Jacobian is given by
%U-max,ls_ Vimax 2K x X, -D H max,2Kx X, ~ VimaxaS E
DKS’1+S (KX +X1)2 (KX +X1)2 KS’1+S l
a Vimax,2X1 M max,2 X1 A
J=0 LS —maxetl _p 0 0 (52)
O] KX + Xl KX + Xl O
0 HmeaKsiX 0 _p- YmexaKs1Xs o
2 2
@ (Ksl + S) (KS,l + S) @
and the eigenvalue equation is
Vimax2DXo H max,2Kx X, _ VimaxaS
Kmax,2(Kx +%1) (Ky + %) Kg1+S
V, D
__max,2 A 0 =0 (53)
H max,2
Kgq X V, Kgq X
M max,1 3121 0 _p_ Ymax1 3121_)\

It canbe shownthat this equilibrium can be stable,unstable,or metastabledependingin

principle on the food supply,andespeciallythe ratio of the input substrateconcentrationgo
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the Michaelis-MentenconstantsAs the ecosystenis enriched,it becomesnore and more
unstable [DeAngelis, 1992]. Apart from predatory bacteria such as Bdelovibrio

bacteriovorus, these equations also hold for bacterium-phage systems.

3.7 Decoysin predator-prey interactions

A simplereasoningcan showthat specieswvhich cannotthemselvesct as prey, and do not
competewith the prey, caninterferein a predator-preysystem[Wilkinson, submitted].We

will now take the caseof a three-speciegcosystemone prey species X;, one non-prey
speciesX,, and a predatorY. Disregardingstarvation,the predatorcan be in three states:
free, bound toX;, and bound taX, . The assume the rate of collisions {ger unit ofpreyor

non-preyspecieger unit of predator.Sincechemotaxigowardsprey hasnot beenobserved
in Bdellovibrio spp.(8), this rateis assumedo be identicalfor prey and non-preyspecies.

Furthermore the prey/predatorcomplexdissociatesat a rate of k;, and non-prey/predator
complexdissociatesat a rate of k,. However,only the dissociationof the first complex
yields new predators, with a yield gf, .

The centralassumptiorof this theoryis that after colliding with a non-preycell, a predator
will briefly attach,before detaching.Such behaviourhas beenobservedin the Neisseria

gonorrhoeae - B. bacteriovorus system[Drutz, 1976]. The rateconstantk, will thereforebe

finite. This leads to the following set of differential equations:

i [:;f;ee] = (yx + Dka[XaY] + ko[ X2 Y] = r([Xa] +[Xz ])[Yf r68] (542)
0 [;(tlY] = kg [Xq Y]+ r[X] Yiree] (54b)
i [:fY] = ko[ X Y]+ X2 [ Vireo] (54¢)

At steady state we have

[xlv]:kLl[xl][Yfree] and [XZY]:k—rZ[xz][Yfree].
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Remembering that the total predator con{éfitis
[
[¥]= D]+ oY)+ o] = o D)+ [ Ve

and summing the equations (54a,b,c) we find a growth rate of:

o[Y] _ yxki[ X1 ][Y] _ M [X][Y]

= , 55
ot ky/r+[Xg]+ka[Xo]/ ke Ky +[Xa]+ Kinn[X2] (®5)

in which we recognizethe standardform of competitive inhibition. Therefore,in an
extremely densely populatedand diverse ecosystem,such as the intestinal microflora,
specialistpredatorswould be in a seriousdisadvantageeomparedto generalistsWe can

absorb the "decoy effect" into the Michaelis-Menten constant of the predator setting
KX = KX+Kinh[X2]' (56)

This showsthat the effective Michaelis-Mentenconstantincreasesand that thereforethe
ecosystenshouldbecomemore stable(seeprevioussection).Sinceinstability is neededn
therapeutic use of phages or predatory bacteria, this effgoexplainthe frequentfailure of
suchschemesThe reasoningand differential equationslusedabovecanbe usedwith little

or no adaptation for lytic bacteriophages, except they do not starve in the absence of food.

3.8 Direct binding site competition
Supposebacteriacan be in two states:(i) X, boundto the wall, and (i) X; freein the
lumen. Furthermore,supposethat N speciesare competingfor a maximum of X yax

binding sitesFurthermoresupposehata cell of species boundto thewall hasa Michaelis-

MentenconstantKp ; , and maximumspecificgrowthrate py, ;. Similarly, for free cells we
have a Michaelis-Menten constant Ky ;, and maximum specific growth rate g ;.

Furthermorewe assumehatthe probability of daughtercell of a boundcell binding to wall

immediatelyif there is a place available is p. The probability that a placeis availableis
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proportional to the number of free sites. The rest of the daughters of bouratresiisdinto

the lumen. If the rate of attachment of free cellg)ig, the rate of sloughing of bourellsis

Dy i, andthe dilution rate of the lumenis D, we arrive at the following setof differential

equations:
0 Xpi _ g 1 - 0 S
T—p% Xb’m;Xb,lﬁJbl Ky +S b,i
' (57a)
0 L N 0
+fb1§l— X be,i %ﬁ‘ i ~ Dy i Xp,i
N
IX,: W O N N g 'S
M=hopl- 1 ZXbimub" Xp,i + st Xt,i
ot Xbxmaxi_l ’ %Kb,ﬁs ’ Kf,i+S '
- (57b)
0 N 0
—fbﬁl X be,i ﬁxf,i — DX i +Dg i Xp,i
=1
9S N s s
=D -S)- \ W Xni +Vs Xs . 57c
ot (Sn ) I_Zl b,i Kf,i +S b,i fi Kf,i +S fi ( )

Evenin the simple caseof N=2, and using a numberof simplifications, it has not been

possible to find analytical solutions to date. Further work is needed on this point.

3.9 Indirect binding site competition

The above interaction becomeseven more complicated when bacteria can reduce the

probability of attachmenbf otherspeciesThe abovesetof differential equationgnustthen

be modified, by allowing species X; to secretea substanceT, which influences the

probability of attachmentof other species.We assumethat the secretedsubstanceis

autoinhibitory, i.e., its production is inhibited by its presence. ptesentshe concentration
of T becoming arbitrarily high.

Differential equations for this situation must still be developed.

3.10 Biofilm gel production

A further adaptationof the mucosal model divides each speciesof bacteriainto three

compartmentsiumen, free within biofilm gel, and bound to the wall. If we denotethe
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luminal fraction of speciesX; andsubstrateS as X ; and §,

Ordinary Differential Equations

respectively,andretainthe

notation in (57) for free living in the biofilm and bound bacteria, we have:

X, H , & F S
6'[ _pa‘ Xb,max;-)(bllﬁ-lbl K |+S b.i
i (58a)
0 L N O
+rb1§l‘ X be,i %ﬁ‘ i —Dgi Xp,
R
OXti _B_H_ 1 < % Hp,iS HtiS
=4~ P X Z b,i i Xt
o e &5 FHKp +S Kfi+S
i , (58b)
o, N
~ i %‘ Xo o Z Xp,| ﬁxf,i = D | (Xf,i _Xl,i)+ D4i Xp,
=l
0Xi _ H||S
ot K;+S§ ,‘Ddiff,i(x|,i—Xf,i)—DX|,i, (58¢)
N
0S
T -9)-H U +Vi | Xt i, 58d
PR aitt, (S - Z b, ik, +s (58d)
N
0
a_s Sm M X,i - (58e)
t =1

In this modelthe diffusion constantsDg;ss ; determinethe rate of exchangeof materialfrom

biofilm gel to the lumen. This diffusion constantcan be made a function of biofilm

composition.By doing so, bacteriamay influence this parameterby secretingpolymers

which decrease diffusion.

Differential equationdor this type of interactionhavenot yet beendrawnup, analysisof the

steady state cannot yet be performed.

3.11 Biofilm gel destruction

Samecaseasabove,exceptthat bacteriamay alsodegradehe polymerswhich decrease¢he

diffusion rate.This allowsthemto detachwhenconditionsare adverse Equationsdescribing

this type of behaviour will be drawn up in the future.
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3.12 "Meta-adherence"

Bacteriamay adhereto eachother, creatingvery complex communities.Again, a species
which adheresto a wall bound bacteriummay be modelledby splitting the speciesinto

several compartments in the model. In the two species case we have

0 Xb,l _ B Xb’l ublS
ot Xp,max Kb,l +S

aXbZ % aXblﬁwLXb2+rb2% 3Xbl%<f2 (Ds|1+Ds|2)Xb2 (59b)

axm:@_ - Xo1 FH HbaS o | Mi1S

X
Xpa + rb,l%_ Xb::x %Xf 1~ Dg1Xp1 (59a)

bl Xt1
Xb,max Kb,l +S Kf,1+S (590)
X
- fb,1%— Xb::x %(f,l ~ DXt 1+Dg1Xp1
X S S
2 =§_p%_ Xb,z Hb,2 Xp 5 + Hf2 X;
€ b,1 Kb,2 +S ! Kf,2 +S ! (Sgd)
X
~Ib,2 %—sx—ki%(f,z —-DXi2+ (Dsl 1t DsI,Z)Xb,Z
0S S
— = D Vi +V i Xsi. 59e
ot Z b| _ fi Kf,i+S f,i ( )

Analytical treatment of steady state has not yet been performed.

3.13 "Quorum sensing"

Recentresearchhasshownthat bacteriacan regulategeneexpressiorat a populationlevel
through rapidly diffusing signal molecules. Thesemoleculescan be treatedin a similar
frameworkas secretioninhibitory or stimulatory substancegbut now directedagainstthe
own species)especiallyif allostericinhibition is usedto switch abruptly from onekind of
behaviourto another.Before any systematicanalysisof this family of interactionscantake

place, a more thorough knowledge of this phenomenon is needed.

3.14 Pathway clearing for strict oligotrophs by copiotrophs

Basicallythis is a form of purefood competition,but onewith a twist. Supposeve havetwo

specienf bacteria,both competingfor the samelimiting substratepnewith a low specific
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affinity but high specificgrowth rate (the copiotroph),and one with a high specific affinity
and low maximum specific growth rate, and which is inhibited at high substrate
concentrationgthe strict oligotroph). This inhibition may takemanyforms, but herewe will
follow Tanet al. [1996] who proposea form of competitiveinhibition by the substratatself.

The differential equations become

% = YsVimax 1 Kep + SfSZ/Kmh X1 —DXq, (60a)

% = YaVimax,2 KS; X2 DX, (60b)

‘;—f’ = D(Sn ~ S)~ Vimax1 " sfsz Tk X Va2 Ks,28+ SXe. (60c)
The single species equilibrium for the oligotroph becomes

S= Kzigh E{Svmax,l -D+ \/(YSVmax,l - D)2 -4D? % E, (61a)

X1 :YS(Sm _S)- (61b)

The lower root (if positive) is thstableequilibriumfor S Thelargerrootis alwaysunstable.
Supposehe equilibriumis stable,andthatD is smallcomparedo the maximumgrowthrate

of the oligotroph. If thenput substratdevel S, is largeenoughthe growthrateatthatlevel

may be less than the dilution rdde

Shn
YsVimax1 <D. (62)
KS,l + Sn + Szn/Kinh

This canbethe casef thelargerrootin (61a)is smallerthan §;,. In thatcasewe havethree

equilibria: (i) onestable(trivial) equilibriumwith no bacteria,(ii) one unstableequilibrium
with a small number of bacteria, and (iii) one stable with a high number of bacteria.
The action of the copiotrophsmay now becomeclear. The single speciesequilibrium for

them is
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DK
Sz 2% (63a)
YsVimax2 —= D
X2 = YS(SI‘I - S) (63b)

Sincethe D is smallerthanthe maximumgrowthrate of the copiotroph(which is largerthan
that of the oligotroph), and no inhibition occurs,the trivial equilibrium becomesunstable
againstinvasionof the copiotroph,becausestableandunstableequilibria alwaysalternate If
we assumdhat D is muchsmallerthanthe maximumgrowth rate for both speciesthe two

single species equilibrium concentrations of substrate become:

DK DK
St oD g s=_—S2 - D (64)

YSVmax,l asgq YSVmax,Z a02
S S

Becausehe specificaffinity of the oligotrophis higherthanthatof the copiotroph,the "only
copiotroph™ equilibrium becomes unstable against invasion by oligotrophs in its turn.
Becausethe gut ecosystemhas a low dilution rate, and high input substratelevel, this

interaction may be important for the order of colonization and long term dynamics in the gut.

4. Discussion

In this report we have developedsets of differential equationsfor different types of

interactionswhich may occur in the gut. Some of them, like pure food competitionand
predatorprey interactions are well-known interactions but otherssuchasthe decoyeffect,
and pathway clearing by copiotrophsin high input substratelevel/low dilution-rate
environmeniarecompletelynew. Others,suchasbinding competitionand bacteriocinshave
received some attention in the literature, but improved formalismshesreisedto describe
them. Having a good analytical understandingof theseinteractionsis essentialboth in

interpreting the results of simulations,and in debuggingthe large scale models. If the
simulationsshowtotally differentbehaviourfrom the analyticalsolutionsin steadystate,the

presence of one or more bugs must be suspected.
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Furtherwork is neededo solve the remainingdifferential equationsanalytically. Even so,
those sets of differential equationswhich have been solved already allow a wealth of
interactions to be modelled.
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