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MIMICS Technical Reports

The MIMICS project of the Centre for High Performance Computing of the

University of Groningen is a project initiated by the International Study

Group for New Antimicrobial Strategies (ISGNAS). Its aim is to explore

computer simulation methods for the study of the intestinal microflora and its

interactions with the host. MIMICS technical reports are intended to explain

various technical issues involved in this modelling. As such, the main

readership are persons involved in the MIMICS project, other ISGNAS

projects, and those intending to implement similar models. Parts of the

contents may be reproduced in articles at a later date.
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1. Introduction

In any complex microbial ecosystem, such as the gut microflora, many different types of

interactions can take place. In this paper I propose a classification of interactions, and discuss

the appropriate ordinary differential equations belonging to each class. The steady state

behaviour of each class is considered in the binary case, i.e. interaction between just two

species. Stability analysis and dynamic behaviour are discussed in a number of cases. It is

also shown that similarities exist between interbacterial and host/bacterium interactions, and

that the mathematical behaviour of these interactions should be the same qualitatively.

Modelling can therefore be simplified, since the same equations can be used for two types of

interactions.

The classification of interactions is as follows:

1. Pure food competition. Two species may compete for the same food source which is

readily available to either bacterium in the absence of the other.

2. Parasitic food competition. If one species produces extracellular enzymes which lyse

macromolecules, other species may compete for the reaction products.

3. Symbiotic food interactions. One species may use the metabolites produces by another

as a limiting substrate. If the metabolites are inhibitory to the latter species, the

interaction becomes mutualistic.

4. Toxin production. Bacteria may produce toxins (bacteriocins) which kill or inhibit

others. Production of inhibitory metabolites is modelled in the same way. May lead to

multiple stable equilibria, and hence to irreversibility of changes in the intestinal

microflora.

5. Toxin inactivation. Resistant bacteria may remove or inactivate toxins, either by use in

their metabolisms, or by secretion of inactivating substances, protecting sensitive species.

6. Predator-prey interaction. One species may prey on another (e.g. Bdellovibrio,

Daptobacter).

7. Decoys for predators or phages. Bacteria resistant to phages or attack by predators may

act as decoys, reducing the effect on host or prey species by competitive inhibition.
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8. Direct binding site competition. Bacteria may compete for binding sites on the

intestinal epithelium. Competition may be through increased motility or chemotaxis,

which increase the number of collisions with the wall. Tighter binding by increased

affinity is an alternative mechanism.

9. Indirect binding site competition. Bacteria may produce substances which reduce the

affinity of other bacteria for wall sites. Lectins are suitable examples for this type of

interaction.

10. Biofilm gel production. Bacteria may secrete extracellular polymers which stabilize the

biofilm on the epithelium. Bacteria embedded in this mucus layer need not strictly be

bound to the epithelium, yet they are protected from sloughing.

11. Biofilm gel destruction. Bacteria may lyse extracellular polymers. Active destruction of

the biofilm gel is sometimes used by bacteria to dissociate from the surface when food is

scarce. Bacteria which bind tightly to the epithelium itself may use this method to rid

themselves from competition of gel-embedded competitors.

12. "Meta-adherence." Bacteria may bind to other bacteria already bound to the epithelium.

One example is the frequent observation of small rods or cocci bound to SFBs.

13. "Quorum sensing" and other "pheromone" mediated interactions. A comparatively

recent discovery is the ability of some bacteria to secrete substances which regulate gene

expression at the population level.

14. "Pathway clearing by copiotrophs." Bacteria may remove toxic levels of substrate,

allowing obligate oligotrophs to colonize. Once established, they may outcompete the

initial copiotrophs by further lowering of substrate levels.

Differential equations for each of these interactions, except 9 through 11 and 13 have been

drawn up. Many of these interactions also apply to the host-bacterium system:

1. Pure food competition. Host and bacteria compete for readily available resources such

as monosaccharides, amino acids, etc.

2. Parasitic food competition. The host may produce enzymes which lyse macromolecules,

yielding products for which a non-producing bacterium competes parasitically. The

reverse may also be the case (i.e., the bacterium is the enzyme producer).
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3. Symbiotic food interactions. Metabolites of the host may be used by bacteria, and vice-

versa (cf. short chain fatty acid use by enterocytes).

4. Toxin production. Bacterial toxins may harm the host, and the host may produce toxins

to kill bacteria.

5. Toxin inactivation. Bacteria may remove or inactivate substances toxic to the host.

6. Predator-prey interaction. Macrophages, etc., may be considered predators in the

mucosa.

7. Indirect binding site competition. The host may produce substances which reduce the

affinity of bacteria for wall sites.

8. Biofilm gel production. The host may secrete polymers which stabilize the biofilm on

the epithelium.

9. Biofilm gel destruction. The host may lyse polymers in the mucus, to actively remove

bacteria.

The reason for noting the equivalence between inter-bacterial interactions and host-

microflora interactions is that the same differential equations govern the behaviour of

equivalent interactions. Therefore, the same, or at least very similar programming techniques

can be used to simulate the two classes of interaction.

Differential equations for most of these interactions are drawn up in the following sections,

after a brief description of models of elementary reactions. The further discussion assumes

the reader is understands some of the basics of ordinary differential equations, and the

principles of stability analysis. Others may wish to consult one of many textbooks on

mathematical methods in (microbial) ecology [DeAngelis, 1992; Koch et al. 1997].

2. The Basic Components of Interactions

Most interactions can be built from a limited number of components: substrate uptake,

enzyme activity, inhibition and activation of reactions (metabolic pathways), secretion of

substances, and transport components. These components are described in the following

subsections.
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2.1 Enzyme activity, inhibition, and activation.

The celebrated Michaelis-Menten equation for the reaction rate v for an enzyme E acting on

single substrate (S) molecules is

( )V E S V
ES

K Smax
S

, =
+

, (1)

in which Vmax  is the maximum reaction rate per unit of enzyme and KS  is the saturation or

Michaelis-Menten constant. A simple generalization for reactions of n molecules of substrate

is

 ( )V E S V
ES

K Smax

n

S
n

, =
+

. (2)

Many enzymes have sites to which other substances may adhere, causing activation or non-

competitive inhibition of the enzyme. If an enzyme has n  such sites, equation (1) becomes

( )V E S V
ES

K S

K

K Imax
S

inh

inh
n

, =
+ +

, (3a)

( )V E S V
ES

K S

A

K Amax
S

n

act
n

, =
+ +

, (3b)

for inhibition by I and activation by A respectively.

Alternatively, substances may adhere to the active site, blocking the action of the enzyme,

causing competitive inhibition. In that case, (1) becomes

 ( )V E S V
ES

K S K Imax
S inh

, =
+ +

. (4)

If sufficient substrate is present, the maximum reaction rate may still be attained, unlike the

case of non-competitive inhibition.
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2.2 Substrate uptake

2.2.1 Single substrate uptake

Substrate uptake and growth are usually modelled using the Michaelis-Menten equation. It is

assumed that a single rate-limiting step determines the uptake and growth rate. In that case,

the uptake rate can be modelled through (1), with vmax  the maximum specific uptake rate.

The equation for growth of a bacterium X becomes

∂
∂

µ
X

t
Y V

S

K S
X

S

K S
XS max

S
max

S

=
+

=
+

, (5)

where YS  is the yield of bacterial biomass per unit of substrate, and µ max S maxY V≡  is the

maximum specific growth rate. At low substrate concentrations, (5) may be approximated by

∂
∂

µX

t K
SX a SXmax

S
S= = 0 ,    or    a

X S

X

t KS

S

max

S

0

0

1≡ =
=

∂
∂

∂
∂

µ
, (6)

with aS
0  the specific affinity. Equation (5) is usually referred to as the Monod equation.

However, in the case of predator-prey systems, where S now denotes the prey species, (5) is

referred to as the Holling type II equation.

Many other equations may be used instead of the Monod (Holling II) equation. All need to

share two features: (i) substrate limited growth at low substrate concentrations, and (ii)

saturation of growth rate at high substrate concentrations, due to internal limitations. An

early, purely heuristic model is that of Blackman [1905], which has two linear branches, and

a discontinuous first derivative where the two branches meet:

( )µ
µ

S
a S S K

S K

S S

S

=
<

≥





î

0

max

. (7)

Blackman's equation is problematic for two reasons: (i) it does not model real growth very

well, and (ii) it is computationally inefficient (comparisons are costly).
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A more interesting alternative is the model by Best [1955], which assumes that passive

diffusion of substrate limits growth. Use of substrate in the cell through a Michaelis-Menten

type irreversible enzyme mediated reaction creates a concentration gradient which maintains

the influx of substrate through diffusion. Best's equation for growth rate is

( )
( )

µ µS
S K J

J

SJ

S K J
max

S

S

=
+ +

− −
+ +











2

1 1
4

2
, (8a)

and

a
X S

X

t K JS

S

max

S

0

0

1≡ =
+

=

∂
∂

∂
∂

µ
(8b)

in which J is a parameter for diffusion through the cell wall. If diffusion is slow (J is large)

(8a) converges on the Blackman model, for very high diffusion rates the model converges on

the Monod case [Koch, 1997]. Best's model was largely ignored after the discovery of

transport proteins, since these supported Monod's model. However, Koch and Wang [1982]

have shown that diffusion through porins in the outer membrane may actually be a rate

limiting factor.

2.2.2 Multiple substrate uptake

Multiple substrate uptake can take two distinct forms: (i) uptake of substances which perform

different tasks within the cell (e.g. sources of carbon, nitrogen or phosphorus), and (ii) uptake

of different substrates which can essentially replace each other (e.g. glucose and lactose can

both be used as carbon source for Escherichia coli). In the first case, the uptake terms can be

either interactive or non-interactive. Interactive terms all limit growth to a certain extent.

Each substrate may be thought of as activator for each other substrate (as in eq. (3b)). For

two substrates, the interactive case is modelled as

( )µ
∂
∂

µS S
X

X

t

S

K S

S

K Smax
S S

1 2
1

1 1

2

2 2

1
,

, ,

≡ =
+ +

, (9)

which can be generalized to N substrates as



M.H.F. Wilkinson MIMICS technical Report Ordinary Differential Equations

7

( )µ µS S S
S

K SN max
i

S i ii

N

1 2
1

, , ,
,

� =
+=

∏ . (10)

In the non-interactive case, only one substrate is limiting, i.e., the substrate in shortest supply

relative to growth requirements dictates the speed of growth. The non-interactive case for

two substrates becomes

( )µ µS S
S

K S

S

K Smax
S S

1 2
1

1 1

2

2 2

, min ,
, ,

=
+ +









 , (11)

which can be generalized to N substrates as

( )µ µS S S
S

K SN max
i

N
i

S i i
1 2

1
, , , min

,

� =
+=

. (12)

If multiple substrates may be used for a similar function (e.g., carbon source), the growth

terms are simply a sum of different Monod terms

( )µ µ µS S
S

K S

S

K Smax
S

max
S

1 2 1
1

1 1
2

2

2 2

, ,
,

,
,

=
+

+
+

, (13)

or more generally

 ( )µ µS S S
S

K SN max i
i

S i ii

N

1 2
1

, , , ,
,

� =
+=

∑ . (14)

A further generalization is to allow the bacterium to adjust each maximum specific growth

rate µ max i,  as a function of substrate availability

( ) ( )µ µS S S S S S
S

K SN max i N
i

S i ii

N

1 2 1 2
1

, , , , , ,,
,

� �=
+=

∑ . (15)



M.H.F. Wilkinson MIMICS technical Report Ordinary Differential Equations

8

To ensure realism, the sum of all maximum specific growth rates must never exceed some

sum total maximum growth rate

( )µ µmax i N
i

N

maxS S S, , , ,1 2
1

�

=
∑ ≤ .    for all values of S S SN1 2, , ,� . (16)

2.3 Secretion

Two forms of secretion may be recognized: (i) secretion as a result of the basal metabolism

of bacteria, and (ii) secretion of metabolic by-products of the uptake of substrate S. The first

case is the simplest to model. Suppose that bacterium X secretes a substance M at a rate vM

per unit of bacterial biomass. The rate of production is then simply

∂
∂
M

t
v XM= , (17a)

and the growth rate of the bacterium must then be adapted to

( )( )∂
∂

µ µX

t
S XM= − , (17b)

in which µ M  is the part of the basal metabolism responsible for production of M. It is

possible to define a yield of M per unit of biomass lost to X as Y vM M M= µ .

In the second case, the rate of production of M is proportional to the uptake rate. Defining a

yield YM  of metabolite M per unit of substrate S used, we arrive at

( ) ( )∂
∂

µM

t
Y v S X Y

S

Y
XM M

S
= = . (18)

The growth rate ( )µ S  or uptake rate ( )v S  can take any of the forms described in the previous

subsection.
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2.4 Transport terms

In large scale models such as the MIMICS V.8 cellular automaton, modelling of transport

terms is done by highly complex routines which model both bulk flow and diffusion. The

important difference between transport and reaction terms is that transport terms should

neither source nor sink any of the substances involved, except material leaving or entering

the system through the boundaries. Analytical treatment of such systems is not

straightforward, so the transport terms are often simplified to the case of a well-mixed

chemostat, with dilution rate D  and a constant inflow of nutrients at a fixed concentration

Sin . The rate of change due to inflow of nutrients is

∂
∂

S

t
DSin= , (19a)

whereas rate of change is S due to the outflow

∂
∂

S

t
DS= − , (19b)

where S is the instantaneous concentration of substrate in the chemostat.

3. The Interactions Proper

3.1 Pure food competition.

Two species compete for the same limiting food source which is readily available to either

bacterium in the absence of the other. This is the simplest case, and well studied both in

theory and in (chemostat) experiments. It can be modelled using the Monod formalism.

Maximum specific growth rate, specific affinity and flow rate parameters determine the

outcome of this competition. Only one stable equilibrium in steady state chemostat type

ecosystem. When spatial extent is used in the model, motility and chemotaxis are also

important.

Determining which species survives in a chemostat model with pure food competition is

easy. The differential equation governing growth of a single species X on substrate S is
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( ) ( )∂
∂

S

t
D S S v S Xin= − − , (20a)

  ( )∂
∂

X

t
Y v S X DXS= − . (20b)

Solving for steady state we find

 ( )X Y S Seq S in eq= − , (21a)

  ( )v S
D

Yeq
S

= ,     or    ( )S v D Yeq S= −1 , (21b)

provided v−1 , which is the inverse of v, exists for an uptake rate of D YS . If multiple

species compete for the same substrate, the species that has the lowest equilibrium substrate

level Seq  will outcompete others.

3.2 Parasitic food competition.

Suppose we have fibre (F) digesting bacteria (X) which produce an external enzyme E which

degrades the fibre to usable substrate S, which is taken up by the bacteria. If these bacteria

are growing in a chemostat with dilution rate D we can model them using the following set of

differential equations:

( )∂
∂

F

t
D F F

v EF

K Fin
F

= − −
+

1  (22a)

∂
∂

S

t

v EF

K F

v XS

K S
DS

F S
=

+
−

+
−1 2  (22b)

∂
∂

X

t
Y

v XS

K S
DX v Xs

S
=

+
− −2

3  (22c)

∂
∂

E

t
DE v X= − + 3  (22d)
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Solving for steady state we find:

E
v X

Deq
eq= 3

 (23a)

S
D v

Y v D v
Keq

s
S= +

− −
3

2 3
 (23b)

( ) ( )
( )

( )

( )
( )

F

F K
v v Y

D D v
F K

v v Y

D D v
F K

v v Y F S

D D v

v v Y F S

D D v

eq

in F
S

in F
S

in F
S in eq

S in eq

=

− −
+

± − −
+









 + −

−

+













−
−

+













1 3

3

1 3

3

2
1 3

3

1 3

3

4 1

2 1

(23c)

X Y
F F S

v Deq s
in eq eq=

− −
+1 3

(23d)

At equilibrium eigenvalue equation is:

( ) ( )

( ) ( )

− −
+

−
+

− −
+

−
+

−
+

−

−
+ +

− −

=

D
v K E

K F

v K E

K F

D
v K X

K S

Y v K X

K S
D v

Y
v

v F

K F

v F

K F
D

F

F

F

F

S

S

S S

S

S

F F

1
2

1
2

2
2

2
2

3
3

1 1

0 0

0 0

0

0

0

λ

λ

λ

λ

(24)

It can be shown that all eigenvalues have negative real parts if the equilibrium concentrations

are all positive, and that this equilibrium is therefore stable under those conditions. Now let

us introduce a second species, which competes for S as limiting substrate. The set of

differential equations becomes

( )∂
∂

F

t
D F F

v EF

K Fin
F

= − −
+

1  , (25a)

∂
∂

S

t

v EF

K F

V X S

K S

V X S

K S
DS

F S S
=

+
−

+
−

+
−1 21 1

1

2 2 2

2

,

,

,

,
, (25b)

∂
∂
X

t
Y

V X S

K S
DX v XS

S

1
1

21 1

1
1 3 1=

+
− −,

,

,
, (25c)
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∂
∂
X

t
Y

V X S

K S
DXS

S

2
2

2 2 2

2
2=

+
−,

,

,
, (25d)

∂
∂

E

t
DE v X= − + 3 1  . (25e)

It can readily be shown that the (25c) and (25d) yield conflicting equilibrium substrate

concentrations (except for very rare cases):

S
D v

Y V D v
K

D

a
eq

S
S

S
,

, ,
,

,
1

3

1 21 3
1

1
0=

+
− −

≈ , (26a)

S
D

Y V D
K

D

a
eq

S
S

S
,

, ,
,

,
2

2 2 2
2

2
0=

−
≈ . (26b)

The approximation holds for dilution rates well below the maximum specific growth rate. It

can now be shown that there is no two-species equilibrium in this case, and that transient

introduction of a high specific affinity competitor may destabilize the single species

equilibrium of fibrolytic bacteria, even leading to their extinction. If low specific affinity

species cannot compete with the fibrolytic species. This explains why fibrolysis takes time:

only high specific affinity, low maximum growth rate bacteria can afford a fibrolytic

lifestyle.

The situation is different if the substrate S is used by other bacteria, but not as limiting

substrate. In that case the competing species are held at a constant level (e.g., dependent on

some other substrate), and only equation (22b) need be adapted to

( )∂
∂

S

t

v EF

K F

V X S

K S
D V X S

F S
=

+
−

+
− +1 21 1

1
2 2 2

,

,
, . (27)

The equilibrium is similar

E
v X

Deq
eq= 3

 (28a)

S
D v

Y v D v
Keq

s
S= +

− −
3

2 3
 (28b)
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( ) ( )
( )( )
( )

( )( )
( )

F

F K
v v Y

D D v
F K

v v Y

D D v
F K

v v Y F D V X S D

D D v

v v Y F D V X S D

D D v

eq

in F
S

in F
S

in F
S in eq

S in eq

=

− −
+

± − −
+









 + −

− +

+















−
− +

+















1 3

3

1 3

3

2
1 3 2 2 2

3

1 3 2 2 2

3

4 1

2 1

,

,

(28c)

( )
X Y

F F D V X S D

v Deq s
in eq eq

1
2 2 2

31,
,=

− − +
+

. (28d)

The equilibrium is again stable, though a higher input fibre concentration is needed to ensure

survival. This case is important because it is identical in behaviour to "parasitic" competition

by the host.

3.3 Toxin inactivation

Toxins of any kind (cidal or inhibitory) may be inactivated in two distinct ways: (i) by uptake

of the toxin (e.g., used as metabolite), and (ii) by secretion of enzymes or other inactivating

agents. The first case was modelled in the MIMICS pilot study [Wilkinson, 1997], in the

interaction between anaerobes and aerobes. In this case we have non-competitive inhibition

and/or cidal effect of oxygen (O) of anaerobes, and uptake of oxygen by aerobes. In the case

of inhibition the differential equations are

( )∂
∂

S

t
D S S V

S

K S

K

K O
X V

S

K S

O

K O
Xin max,

S

inh

inh
max,

S O

= − −
+ +

−
+ +1

1

1

1
1 2

2
2

,

,

, ,

, (29a)

  
∂
∂
X

t
Y V

S

K S

K

K O
X DXS max,

S

inh

inh

1
1

1

1

1
1 1=

+ +
−

,

,

,

. (29b)

   
∂
∂
X

t
Y V

S

K S

O

K O
X DXS max,

S O

2
2

2
2 2=

+ +
−

,

. (29c)

( )∂
∂

O

t
D O O V

S

K S

O

K O
X V

S

K S

O

K O
Xin max,

S inh
max,O

S O

= − −
+ +

−
+ +1

1 1
1

2
2

, , ,

. (29d)

In the purely cidal case we have

( )∂
∂

S

t
D S S V

S

K S
X V

S

K S

O

K O
Xin max,

S
max,

S O

= − −
+

−
+ +1

1
1 2

2
2

, ,

, (30a)
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  ( )∂
∂

κ
X

t
Y V

S

K S
X D O XS max,

S
tox

1
1

1
1 1=

+
− +

,

. (30b)

   
∂
∂
X

t
Y V

S

K S

O

K O
X DXS max,

S O

2
2

2
2 2=

+ +
−

,

. (30c)

( )∂
∂

β
O

t
D O O X O V

S

K S

O

K O
Xin tox max,O

S O

= − − −
+ +1

2
2

,

. (30d)

If inactivating enzymes (E) directed against an inhibitory toxin T are produced at a rate vE ,

we have

( )∂
∂

S

t
D S S V

S

K S

K

K T
X V

S

K S
Xin max,

S

inh

inh
max,

S

= − −
+ +

−
+1

1

1

1
1 2

2
2

,

,

, ,

, (31a)

  
∂
∂
X

t
Y V

S

K S

K

K T
X DXS max,

S

inh

inh

1
1

1

1

1
1 1=

+ +
−

,

,

,

. (31b)

   ( )∂
∂
X

t
Y V

S

K S
X D v XS max,

S
E

2
2

2
2 2=

+
− −

,

. (31c)

∂
∂

E

t
v X DEE= −2 . (31d)

( )∂
∂

T

t
D T T V

S

K S

T

K T
X V

ET

K Tin max,
S inh

max,T
T

= − −
+ +

−
+1

1 1
1

, ,

. (31e)

For a cidal toxin we have

( )∂
∂

S

t
D S S V

S

K S
X V

S

K S
Xin max,

S
max,

S

= − −
+

−
+1

1
1 2

2
2

, ,

, (32a)

  ( )∂
∂

κ
X

t
Y V

S

K S
X D T XS max,

S
tox

1
1

1
1 1=

+
− +

,

. (32b)

   ( )∂
∂
X

t
Y V

S

K S
X D v XS max,

S
E

2
2

2
2 2=

+
− −

,

. (32c)

∂
∂

E

t
v X DEE= −2 . (32d)
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( )∂
∂

β
T

t
D T T X T V

ET

K Tin tox max,T
T

= − − −
+1 . (32e)

The earlier, computer simulation work in the project has provided insight into this type of

interaction within a certain range of parameters [Wilkinson, 1997]. This showed that

situations may arise in which the toxin inactivating strain and toxin sensitive strains may

coexist, and that the trivial equilibrium without any bacteria is only unstable for invasion by

inactivators. Once these are present, the sensitive strains may arise. Both single species

equilibria can be stable, except for invasion by the other species. Only the two-species

equilibrium is truly stable, which is the reverse situation of that discussed in section 3.5 on

toxin production. Further analysis of the behaviour of the pure forms of this type of

interaction will be done in future work, however, the next section describes a combination of

this type of effect with another interaction, viz. production of substrate by the sensitive

species.

3.4 Symbiotic food interactions.

Here we model toxic metabolites and mutualism through use of those metabolites by other

bacteria. Suppose we have two species, X1  living off substrate S1 and producing metabolite

S2 , and X2  living off S2 . Maximum specific uptake rates and Michaelis-Menten constants

are v1 , v2 , K1 and K2 , respectively. The yield of biomass per unit of substrate is Ys  for

both species, and the yield of metabolite S2  by X1  per unit of substrate used is Ym,1.

Furthermore, we assume that growth of X1  is inhibited (non-competitively) by its metabolite

S2 , with an inhibition constant of KT . We then arrive at the following set of differential

equations:

( )∂
∂
S

t
D S S

v X S

K S

K

K Sin
T

T

1
1

1 1 1

1 1 2
= − −

+ +
(33a)

∂
∂
S

t
Y

v X S

K S

K

K S

v X S

K S
DSm

T

T

2
1

1 1 1

1 1 2

2 2 2

2 2
2=

+ +
−

+
−,  (33b)

∂
∂
X

t
Y

v X S

K S

K

K S
DXs

T

T

1 1 1 1

1 1 2
1=

+ +
−  (33c)
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∂
∂
X

t
Y

v X S

K S
DXs

2 2 2 2

2 2
2=

+
−  (33d)

Obviously, the second species can only survive if the first is present. The two-species

equilibrium is at:

S
DK

Y v Ds
2

2

2
=

−
(34a)

( )S
DK

Y v K K S Ds T T
1

1

1 2
=

+ −
 (34b)

( )X Y S Ss in1 1= −  (34c)

( )( )X Y X Y S Y Y S S Sm s s m in2 1 1 2 1 1 2= − = − −, ,  (34d)

The Jacobian is:

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )J =

− −
+ + + + + +

+ +
−

+ +
−

+
− −

+ + +

−
+ +

D
v X K

K S

K

K S
Y

v X K

K S

K

K S
Y

v X K

K S

K

K S
v X S

K S

K

K S
Y

v X S

K S

K

K S

v X K

K S
D Y

v X S

K S

K

K S
Y

v X K

K S
v S

K S

K

K S
Y

T

T
m

T

T
s

T

T

T

T
m

T

T
s

T

T
s

T

T

1 1 1

1 1
2

2
1

1 1 1

1 1
2

2

1 1 1

1 1
2

2

1 1 1

1 1 2
2 1

1 1 1

1 1 2
2

2 2 2

2 2
2

1 1 1

1 1 2
2

2 2 2

2 2
2

1 1

1 1 2

0,

,

m
T

T
s

T

T

s

v S

K S

K

K S
Y

v S

K S

K

K S
D

v S

K S
Y

v K

K S
D

,1
1 1

1 1 2

1 1

1 1 2
2 2

2 2

2 2

2 2

0

0 0

+ + + +
−

−
+ +

−





























at the point of equilibrium the eigenvalue equation becomes:

( ) ( ) ( ) ( ) ( )

− −
+

−
+ +

+
−

+
−

+
− − −

+ +

− −

− −

=

D
v X K

K S

D

Y S
Y

v X K

K S

D

Y S

v X K

K S

D

S
DX

Y K S
Y

DX

Y K S

v X K

K S
D

DX

K S
Y

v X K

K S
D

Y
Y

D

Y
D

Y

s
m

s

s T
m

s T T
s

s
m

s

s

1 1 1

1 1 1
1

1 1 1

1 1 1

1 1 1

1 1 1

1

2
1

1

2

2 2 2

2 2

2
1

2

2 2 2

2 2

2

1

0

0

0 0

0

λ

λ

λ

λ

,

,

,

(35)

It can be shown that all coefficients in the fourth order equation above are larger than zero,

provided all equilibrium concentrations are positive, and that therefore all real components of

the roots of this equation are negative. The equilibrium is therefore stable.
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3.5 Toxin production:

3.5.1 The action of bacteriocins

Frank [1994] has produced a theoretical model of competition through bacteriocins. He

found that two stable equilibria may be present,  unlike in the case of food competition.

However, his treatment uses logistic growth as a model for bacterial growth, which is not

satisfactory [Koch, 1997].

Consider a system of two species, one susceptible Xsusc , one resistant Xprod  and producing

a toxin T, competing for a single substrate S. Both species have the same uptake parameters

µ max , Vmax  and KS . As in the case of Frank [1994], we assume that Xprod  produces T at a

constant rate atox  per unit of biomass (basal metabolism), and T is cidal rather than

inhibitory. The yield is set at 1 without loss of generality. The toxin kills susceptibles at a

rate κ tox  per unit of biomass per unit of toxin. Toxin is removed from the system by this

reaction at a rate β tox  per unit of biomass per unit of toxin. Lysis of killed cells returns a

fraction Yκ  of the biomass as substrate. Using Monod formulation explicitly in a chemostat

at dilution rate D, we find that the appropriate set of differential equations is:

( )∂
∂

µ
X

t

S

K S
X D a X

prod
max

S
prod tox prod=

+
− + (36a)

( )∂
∂

βT

t
a X D X Ttox prod tox susc= − + (36b)

( )∂
∂

µ κ
X

t

S

K S
X D T Xsusc

max
S

susc tox susc=
+

− + (36c)

( ) ( )∂
∂

κκ
S

t
D S S V

S

K S
X X Y TXin max

S
susc prod tox susc= − −

+
+ + (36d)

As in the logistic case described by Frank, three non-trivial equilibria exist. One has only

susceptibles:

Xprod = 0 (37a)

S
D

D
K

max
S=

−µ
(37b)
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X
V

S
D

D
Ksusc

max

max
in

max
S= −

−








µ
µ

(37c)

T = 0 (37d)

Stability analysis shows that this solution is positive if the concentrations are all non-negative

in steady state, and hence µ max D>  and S
D

D
Kin

max
S≥

−µ
.

The next equilibrium has only producers:

Xsusc = 0 (38a)

( )S
D a

D a
Ktox

max tox
S=

+
− +µ

(38b)

( )X
V

D

D a
S

D

D a
Kprod

max

max tox
in

max tox
S=

+
−

− +










µ
µ

(38c)

( )T
a

D
X

V

a

D a
S

a

D a
Ktox

prod
max

max

tox

tox
in

tox

max tox
S= =

+
−

− +










µ
µ

(38d)

The stability requirement becomes:

( )

( )
( )

( )
( )

( )
( )

( )
( )( )

( ) ( )

λ κ λ

κ λ

κ κ λ

κ

4
2

3

2 2
2 2

2
2

2

2
2

2

2 2

2

2

+
+

+ + −










 +

+
+ +

+
+











 − +











 +

+
+











 − +

+
+ + −











 +

+
+

V
K X

K S
D T a

V
K X

K S
D a V

K X

K S
D T a D

V D
K X

K S
D T a V

K X

K S
D a D T a

V
K X

K S
D Da

max
S prod

S
tox tox

max
S prod

S
tox max

S prod

S
tox tox

max
S prod

S
tox tox max

S prod

S
tox tox tox

max
S prod

S
tox ( )tox toxT a− = 0

As in the above case, the system is stable only if the concentrations of the steady solution are

positive. In addition, only if
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κ κtox tox tox
prod

T a
X

D
> ⇔ >1 (39)

are all coefficients positive, and are all real parts of the roots negative. Therefore, only if a

sufficient number of producers are present in steady state can they outcompete the

susceptibles.  Since we can rewrite the condition as

( )
κ µ

µ
tox max

max

in

tox

S

max toxV

S

D a

K

D a+
−

− +








 >1, (40)

we see that this equilibrium is more stable as the input substrate concentration increases.

Finally we have coexistence of the two species:

T
atox

tox
=

κ
(41a)

( )S
D a

D a
Ktox

max tox
S=

+
− +µ

(41b)

( )
X

Y
D

D a
S

DK

D a
D

V

Y a

D a

susc

S tox
tox

in
S

max tox

tox tox tox
max

max

tox

tox

=
+

−
− +









 −

+ −
+

κ
µ

κ β κ
µ κ

(41c)

( )
X

Y
D

D a
S

DK

D a V

Y a

D a
D

V

Y a

D a

prod

S tox
tox

in
S

max tox

max

max

tox

tox

tox tox tox
max

max

tox

tox

=
+

−
− +









 + −

+








+ −
+

β
µ

µ

κ β κ
µ

κ

κ

1

(41d)

This equilibrium cannot be stable if the two single species equilibria are stable (stable and

unstable equilibria must alternate).

However, if we have an inhibitory bacteriocin the equations become (using non-competitive

inhibition), the differential equations become

( )∂
∂

µ
X

t

S

K S
X D a X

prod
max

S
prod tox prod=

+
− + (42a)
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∂
∂

T

t
a X DTtox prod= − (42b)

∂
∂

µ
X

t

S

K S

K

K T
X DXsusc

max
S

tox

tox
n susc susc=

+ +
− (42c)

( )∂
∂

S

t
D S S V

S

K S

K

K T
X Xin max

S

tox

tox
n susc prod= − −

+ +
+









 (42d)

The two single species equilibria are identical to the case above, but the two-species

equilibrium becomes:

( )S
D a

D a
Ktox

max tox
S=

+
− +µ

(43a)

T
K a

D
n tox tox= (43b)

X
D

a

K a

D
nprod

tox

tox tox= (43c)

( )X Y S S
D a

a

K a

D
nsusc S in

tox

tox

tox tox= − −
+

(43d)

In the case of n = 1 we have:

T
K a

D
tox tox= (44a)

X
K

aprod
tox

tox
= (44b)

( )X Y S S
D a

D
Ksusc S in

tox
tox= − −

+
(44c)

The stability requirement for the equilibrium with only producers (for n=1) reduces to

a
DT

K

a

K
X

X

Ktox
tox

tox

tox
prod

prod

tox
< = ⇔ >1 (45a)
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or

( )
µ

µ
max

tox max tox
in

max tox
SK V

D

D a
S

D

D a
K

+
−

− +








 >1 (45b)

The steady state behaviour is therefore similar to the logistic case discussed by Frank.

However, dynamic behaviour of Monod and logistic models can be very different

[Wilkinson, submitted].

3.5.2 Toxic by-products of substrate uptake

A modification is needed to model toxic substances produced in the course of uptake. In this

case the set of differential equations becomes

( )∂
∂

µ
X

t
a

S

K S
X DX

prod
max tox

S
prod prod= −

+
− (46a)

( )∂
∂

βT

t
a

S

K S
X D X Ttox

S
prod tox susc=

+
− + (46b)

( )∂
∂

µ κ
X

t

S

K S
X D T Xsusc

max
S

susc tox susc=
+

− + (46c)

( ) ( )∂
∂

κκ
S

t
D S S V

S

K S
X X Y TXin max

S
susc prod tox susc= − −

+
+ + (46d)

The equilibrium of only susceptibles is identical to that in the previous case. However, the

equilibrium of producers becomes

Xsusc = 0 (47a)

S
D

a D
K

max tox
S=

− −µ
(47b)

X
a

V
S

D

a D
Kprod

max tox

max
in

max tox
S=

−
−

− −








µ
µ

(47c)

T
a

a
X

a

V
S

D

a D
Ktox

max tox
prod

tox

max
in

max tox
S=

−
= −

− −








µ µ
(47d)

The stability requirement becomes:
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( )
( ) ( )

− −
−

−
− − − −

−
+

− −

−
+

−
+

− −

=

λ
µ

µ
κ λ β

µ
κ

λ

µ λ

κ

0

0

0 0 0

0 0

0

2 2

a V
D

a
a D

a
T T V

D

a
Y T

D

a
K X

K S
V

K X

K S
D

tox max
max tox

tox

max tox
tox tox max

max tox
tox

max tox
S prod

S
max

S prod

S

As in the above case, the system is stable only if the concentrations of the steady solution are

positive. In addition, only if

κ
µ

κtox
tox

max tox
tox

prod
T

a D

a

X

D
>

−
⇔ >1 (48)

This criterion is identical to the case of constant toxin production. However, if we fill in the

equilibrium value for Xprod , we have

κ
µ

µtox
max tox

max

input S

max tox

a

V

S

D

K

a D

−
−

− −






 >1. (49)

Though slightly different from the previous case, the overall behaviour is quite similar. The

effect of shunting down of the toxin production due to decreased substrate levels at

equilibrium is twofold: (i) toxic action towards competitors is reduced, and (ii) biomass

losses of the producer are reduced. These two effects clearly cancel out almost completely.

As long as atox  is small compared to µ max , it is κ tox  that determines the success of toxin

production strategies.

3.6 Predator-prey interactions

The prey species can be modelled using Monod formalism, the predator by Holling type II

(equivalent to Monod), or other scheme with predator satiation. Lotka-Volterra type

oscillations may occur. The set differential equation becomes

∂
∂

µ
X

t

S

K S
X V

X

K X
X DXmax

S
max

X

1
1

1
1 2

1

1
2 1=

+
−

+
−,

,
, (50a)
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∂
∂

µ
X

t

X

K X
X DXmax

X

2
2

1

1
2 2=

+
−, (50b)

( )∂
∂

S

t
D S S V

S

K S
Xin max

S

= − −
+,

,
1

1
1 (50c)

The equilibrium is at

X
DK

D
X

max
1

2
=

−µ ,
(51a)

S S K
V K

D
S K

V K

D
K Sin S

max X

max
in S

max X

max
S in= − −

−
± − −

−








 +















1

2
41

1

2
1

1

2

2

1,
,

,
,

,

,
,µ µ

(51b)

( )X
V V

S S Xmax

max

max

max
in2

2

2

1

1
1= − −











µ µ,

,

,

,

(51c)

The Jacobian is given by

( ) ( )

( ) ( )

J =

+
−

+
−

+
−

+

−
+ +

−

+
− −

+

























µ µ

µ

µ

max

S

max X

X

max X

X

max

S

max

X

max

X
max S

S

max S

S

S

K S

V K

K X
X D

K

K X
X

V S

K S

V X

K X

X

K X
D

K X

K S
D

V K X

K S

,

,

, , ,

,

, ,

, ,

,

, ,

,

1

1

2

1
2 2

2

1
2 2

1

1

2 1

1

2 1

1
1 1 1

1
2

1 1 1

1
2

0

0

, (52)

and the eigenvalue equation is

( ) ( )

( ) ( )

V DX

K X

K

K X
X

V S

K S

V D

K X

K S
D

V K X

K S

max

max X

max X

X

max

S

max

max

max S

S

max S

S

,

,

, ,

,

,

,

, ,

,

, ,

,

2 2

2 1

2

1
2 2

1

1

2

2

1 1 1

1
2

1 1 1

1
2

0

0

0

µ
λ

µ

µ
λ

µ
λ

+
−

+
−

+

− −

+
− −

+
−

= (53)

It can be shown that this equilibrium can be stable, unstable, or metastable, depending in

principle on the food supply, and especially the ratio of the input substrate concentrations to
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the Michaelis-Menten constants. As the ecosystem is enriched, it becomes more and more

unstable [DeAngelis, 1992]. Apart from predatory bacteria such as Bdellovibrio

bacteriovorus, these equations also hold for bacterium-phage systems.

3.7 Decoys in predator-prey interactions

A simple reasoning can show that species which cannot themselves act as prey, and do not

compete with the prey, can interfere in a predator-prey system [Wilkinson, submitted]. We

will now take the case of a three-species ecosystem: one prey species X1, one non-prey

species X2 , and a predator Y. Disregarding starvation, the predator can be in three states:

free, bound to X1, and bound to X2 . The assume the rate of collisions is r per unit of prey or

non-prey species per unit of predator. Since chemotaxis towards prey has not been observed

in Bdellovibrio spp. (8), this rate is assumed to be identical for prey and non-prey species.

Furthermore, the prey/predator complex dissociates at a rate of k1, and non-prey/predator

complex dissociates at a rate of k2 . However, only the dissociation of the first complex

yields new predators, with a yield of yx .

The central assumption of this theory is that after colliding with a non-prey cell, a predator

will briefly attach, before detaching. Such behaviour has been observed in the Neisseria

gonorrhoeae - B. bacteriovorus system [Drutz, 1976]. The rate constant k2  will therefore be

finite. This leads to the following set of differential equations:

[ ] ( ) [ ] [ ] [ ] [ ]( )[ ]∂

∂

Y

t
y k X Y k X Y r X X Y

free
x free= + + − +1 1 1 2 2 1 2 (54a)

[ ] [ ] [ ][ ]∂
∂
X Y

t
k X Y r X Y free

1
1 1 1= − + (54b)

[ ] [ ] [ ][ ]∂
∂
X Y

t
k X Y r X Y free

2
2 2 2= − + . (54c)

At steady state we have

[ ] [ ][ ]X Y
r

k
X Y free1

1
1=       and     [ ] [ ][ ]X Y

r

k
X Yfree2

2
2= .
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Remembering that the total predator content [ ]Y  is

[ ] [ ] [ ] [ ] [ ] [ ] [ ]Y X Y X Y Y
r

k
X

r

k
X Yfree free= + + = + +







1 2

1
1

2
21

and summing the equations (54a,b,c) we find a growth rate of:

[ ] [ ][ ]
[ ] [ ]

[ ][ ]
[ ] [ ]

∂
∂

µY

t

y k X Y

k r X k X k

X Y

K X K X
x x

x inh
=

+ +
=

+ +
1 1

1 1 1 2 2

1

1 2
, (55)

in which we recognize the standard form of competitive inhibition. Therefore, in an

extremely densely populated and diverse ecosystem, such as the intestinal microflora,

specialist predators would be in a serious disadvantage compared to generalists. We can

absorb the "decoy effect" into the Michaelis-Menten constant of the predator setting

[ ]K K K XX X inh
* = + 2 . (56)

This shows that the effective Michaelis-Menten constant increases, and that therefore the

ecosystem should become more stable (see previous section). Since instability is needed in

therapeutic use of phages or predatory bacteria, this effect may explain the frequent failure of

such schemes. The reasoning (and differential equations) used above can be used with little

or no adaptation for lytic bacteriophages, except they do not starve in the absence of food.

3.8 Direct binding site competition

Suppose bacteria can be in two states: (i) Xb  bound to the wall, and (ii) X f  free in the

lumen. Furthermore, suppose that N species are competing for a maximum of Xb,max

binding sites. Furthermore, suppose that a cell of species i bound to the wall has a Michaelis-

Menten constant Kb i, , and maximum specific growth rate µb i, . Similarly, for free cells we

have a Michaelis-Menten constant K f i, , and maximum specific growth rate µ f i, .

Furthermore, we assume that the probability of daughter cell of a bound cell binding to wall

immediately if there is a place available is p. The probability that a place is available is
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proportional to the number of free sites. The rest of the daughters of bound cells are shed into

the lumen. If the rate of attachment of free cells is rb,1 , the rate of sloughing of bound cells is

Dsl i, , and the dilution rate of the lumen is D, we arrive at the following set of differential

equations:

∂
∂

µ
X

t
p X

S

K S
X

r X X D X

b i
X b i

i

N

b i
b i

b i

b X b i
i

N

f i sl i b i

b,max

b,max

,
, ,

,
,

, , , , ,

= −










 +

+ −










 −

=

=

∑

∑

1

1

1

1

1
1

1

(57a)

∂
∂

µ µX

t
p X

S

K S
X

S

K S
X

r X X DX D X

f i
X b i

i

N
b i

b i
b i

f i

f i
f i

b i X b i
i

N

f i f i sl i b i

b,max

b,max

,
,

,

,
,

,

,
,

, , , , , ,

= − −






















 +

+
+

− −










 − +

=

=

∑

∑

1 1

1

1

1

1

1

(57b)

( )∂
∂

S

t
D S S V

S

K S
X V

S

K S
Xin b i

f i
b i

i

N

f i
f i

f i= − −
+

+
+

=
∑ ,

,
, ,

,
,

1

. (57c)

Even in the simple case of N=2, and using a number of simplifications, it has not been

possible to find analytical solutions to date. Further work is needed on this point.

3.9 Indirect binding site competition

The above interaction becomes even more complicated when bacteria can reduce the

probability of attachment of other species. The above set of differential equations must then

be modified, by allowing species X1  to secrete a substance T, which influences the

probability of attachment of other species. We assume that the secreted substance is

autoinhibitory, i.e., its production is inhibited by its presence. This prevents the concentration

of T becoming arbitrarily high.

Differential equations for this situation must still be developed.

3.10 Biofilm gel production

A further adaptation of the mucosal model divides each species of bacteria into three

compartments: lumen, free within biofilm gel, and bound to the wall. If we denote the
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luminal fraction of species Xi  and substrate S as Xl i,  and Sl , respectively, and retain the

notation in (57) for free living in the biofilm and bound bacteria, we have:

∂
∂

µ
X

t
p X

S

K S
X

r X X D X

b i
X b i

i

N

b i
b i

b i

b X b i
i

N

f i sl i b i

b,max

b,max

,
, ,

,
,

, , , , ,

= −










 +

+ −










 −

=

=

∑

∑

1

1

1

1

1
1

1

(58a)

( )

∂
∂

µ µX

t
p X

S

K S
X

S

K S
X

r X X D X X D X

f i
X b i

i

N
b i

b i
b i

f i

f i
f i

b i X b i
i

N

f i diff i f i l i sl i b i

b,max

b,max

,
,

,

,
,

,

,
,

, , , , , , , ,

= − −






















 +

+
+

− −










 − − +

=

=

∑

∑

1 1

1

1

1

1

1

, (58b)

( )∂
∂

µX

t

S

K S
X D X X DXl i l i l

l i l
l i diff i l i f i l i

, ,

,
, , , , ,=

+
− − − , (58c)

( )∂
∂

S

t
D S S V

S

K S
X V

S

K S
Xdiff S l b i

f i
b i

i

N

f i
f i

f i= − −
+

+
+

=
∑, ,

,
, ,

,
,

1

, (58d)

( )∂
∂
S

t
D S S V

S

K S
Xl

l in l l i
l

l i l
l i

i

N

= − −
+

=
∑, ,

,
,

1

. (58e)

In this model the diffusion constants Ddiff i,  determine the rate of exchange of material from

biofilm gel to the lumen. This diffusion constant can be made a function of biofilm

composition. By doing so, bacteria may influence this parameter by secreting polymers

which decrease diffusion.

Differential equations for this type of interaction have not yet been drawn up, analysis of the

steady state cannot yet be performed.

3.11 Biofilm gel destruction

Same case as above, except that bacteria may also degrade the polymers which decrease the

diffusion rate. This allows them to detach when conditions are adverse. Equations describing

this type of behaviour will be drawn up in the future.
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3.12 "Meta-adherence"

Bacteria may adhere to each other, creating very complex communities. Again, a species

which adheres to a wall bound bacterium may be modelled by splitting the species into

several compartments in the model. In the two species case we have

∂
∂

µX

t
p

S

K S
X r X D Xb X

X
b

b
b b

X
X f sl b

b

b,max

b

b,max

, ,

,
, , , , ,

, ,1 1

1
1 1 1 1 11 11 1= −



 +

+ −



 − (59a)

( )∂
∂

µ
ε ε

X

t
p

S

K S
X r X D D Xb X

X
b

b
b b

X
X f sl sl b

b

b,

b

b,

, ,

,
, , , , , ,

, ,2 2

2
2 2 2 1 2 21 12

1

2

1
= −



 +

+ −



 − + (59b)

∂
∂

µ µX

t
p

S

K S
X

S

K S
X

r X DX D X

f X
X

b

b
b

f

f
f

b
X

X f f sl b

b

b,max

b

b,max

, ,

,
,

,

,
,

, , , , ,

,

,

1 1

1
1

1

1
1

1 1 1 1 1

1 1

1

1

1

= − −









 +

+
+

− −



 − +

(59c)

( )

∂
∂

µ µ
ε

ε

X

t
p

S

K S
X

S

K S
X

r X DX D D X

f X
X

b

b
b

f

f
f

b
X
X f f sl sl b

b

b,

b

b,

, ,

,
,

,

,
,

, , , , , ,

,

,

2 2

2
2

2

2
2

2 2 2 1 2 2

1 1

1

2

1

2

1

= − −









 +

+
+

− −



 − + +

(59d)

( )∂
∂

S

t
D S S V

S

K S
X V

S

K S
Xin b i

f i
b i

i
f i

f i
f i= − −

+
+

+
=
∑ ,

,
, ,

,
,

1

2

. (59e)

Analytical treatment of steady state has not yet been performed.

3.13 "Quorum sensing"

Recent research has shown that bacteria can regulate gene expression at a population level

through rapidly diffusing signal molecules. These molecules can be treated in a similar

framework as secretion inhibitory or stimulatory substances (but now directed against the

own species), especially if allosteric inhibition is used to switch abruptly from one kind of

behaviour to another. Before any systematic analysis of this family of interactions can take

place, a more thorough knowledge of this phenomenon is needed.

3.14 Pathway clearing for strict oligotrophs by copiotrophs

Basically this is a form of pure food competition, but one with a twist. Suppose we have two

species of bacteria, both competing for the same limiting substrate, one with a low specific
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affinity but high specific growth rate (the copiotroph), and one with a high specific affinity

and low maximum specific growth rate, and which is inhibited at high substrate

concentrations (the strict oligotroph). This inhibition may take many forms, but here we will

follow Tan et al. [1996] who propose a form of competitive inhibition by the substrate itself.

The differential equations become

∂
∂
X

t
Y V

S

K S S K
X DXS max,

S inh

1
1

1
2 1 1=

+ +
−

,
, (60a)

   
∂
∂
X

t
Y V

S

K S
X DXS max,

S

2
2

2
2 2=

+
−

,
, (60b)

( )∂
∂

S

t
D S S V

S

K S S K
X V

S

K S
Xin max,

S inh
max,

S
= − −

+ +
−

+1
1

2 1 2
2

2
, ,

. (60c)

The single species equilibrium for the oligotroph becomes

( )S
K

D
Y V D Y V D D

K

K
inh

S max, S max,
S

inh
= − ± − −











2
41 1

2 2 1, , (61a)

( )X Y S SS in1 = − . (61b)

The lower root (if positive) is the stable equilibrium for S. The larger root is always unstable.

Suppose the equilibrium is stable, and that D is small compared to the maximum growth rate

of the oligotroph. If the input substrate level Sin  is large enough, the growth rate at that level

may be less than the dilution rate D:

Y V
S

K S S K
DS max,

in

S in in inh
1

1
2

, + +
< . (62)

This can be the case if the larger root in (61a) is smaller than Sin . In that case we have three

equilibria: (i) one stable (trivial) equilibrium with no bacteria, (ii) one unstable equilibrium

with a small number of bacteria, and (iii) one stable with a high number of bacteria.

The action of the copiotrophs may now become clear. The single species equilibrium for

them is
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S
DK

Y V D
S

S max,
=

−
,2

2
, (63a)

( )X Y S SS in2 = − . (63b)

Since the D is smaller than the maximum growth rate of the copiotroph (which is larger than

that of the oligotroph), and no inhibition occurs, the trivial equilibrium becomes unstable

against invasion of the copiotroph, because stable and unstable equilibria always alternate. If

we assume that D is much smaller than the maximum growth rate for both species, the two

single species equilibrium concentrations of substrate become:

S
DK

Y V

D

a

S

S max, S
≈ =,

,

1

1 1
0 ,    and     S

DK

Y V

D

a

S

S max, S
≈ =,

,

2

2 2
0 . (64)

Because the specific affinity of the oligotroph is higher than that of the copiotroph, the "only

copiotroph" equilibrium becomes unstable against invasion by oligotrophs in its turn.

Because the gut ecosystem has a low dilution rate, and high input substrate level, this

interaction may be important for the order of colonization and long term dynamics in the gut.

4. Discussion

In this report we have developed sets of differential equations for different types of

interactions which may occur in the gut. Some of them, like pure food competition and

predator prey interactions, are well-known interactions, but others such as the decoy effect,

and pathway clearing by copiotrophs in high input substrate level/low dilution-rate

environment are completely new. Others, such as binding competition and bacteriocins have

received some attention in the literature, but improved formalisms have been used to describe

them. Having a good analytical understanding of these interactions is essential both in

interpreting the results of simulations, and in debugging the large scale models. If the

simulations show totally different behaviour from the analytical solutions in steady state, the

presence of one or more bugs must be suspected.
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Further work is needed to solve the remaining differential equations analytically. Even so,

those sets of differential equations which have been solved already allow a wealth of

interactions to be modelled.
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