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A Generalized One-Factor Term Structure Model and
Pricing of Interest Rate Derivative Securities

George J. Jiang 1

May, 1997

Abstract

The purpose of this paper is to propose a nonparametric interest rate term
structure model and investigate its implications on term structure dynam-
ics and prices of interest rate derivative securities. The nonparametric spot
interest rate process is estimated from the observed short-term interest rates
following a robust estimation procedure and the market price of interest rate
risk is estimated as implied from the historical term structure data. That is,
instead of imposing a priori restrictions on the model, data are allowed to
speak for themselves, and at the same time the model retains a parsimo-
nious structure and the computational tractability. The model is implemented
using historical Canadian interest rate term structure data. The parametric
models with closed form solutions for bond and bond option prices, namely
the Vasicek (1977) and CIR (1985) models, are also estimated for compari-
son purpose. The empirical results not only provide strong evidence that the
traditional spot interest rate models and market prices of interest rate risk
are severely misspecified but also suggest that different model specifications
have significant impact on term structure dynamics and prices of interest rate
derivative securities.
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1. Introduction

The framework of modeling term structure dynamics of interest rates in modern

continuous-time finance theory is to postulate the whole yield curve as determined

by a small set of state variables (factors) which are assumed to follow diffusion

processes.2 Dynamics of term structure and prices of interest rate derivative securities

can then be projected from either solving (analytically or numerically) a partial

differential equation (PDE) which is derived through Itô’s lemma following a no-

arbitrage argument or in a general equilibrium framework, or performing Monte

Carlo simulations along a risk-neutral process of the underlying state variables.

Over the past few decades, theoretical development of modeling term structure

dynamics has been mainly along the following two directions. One direction is,

while keeping a simple, tractable, and parsimonious structure, to extend the model

through more flexible specification in order to better describe the dynamics of state

variables and project the term structure movements. Development along this direction

is evidenced in various one-factor models.3 Extension of the one-factor model reflects

both the desire to incorporate nonlinearity in the spot rate process and to avoid the

difficulty involved in solving high-dimensional PDEs. However, one-factor models

have been criticized for: first, it implies perfect correlation of the local price move-

2 See Vetzal (1994) for a comprehensive survey of parametric continuous-time interest rate term
structure models and also Chan, et al (1992) for an empirical comparison of various parametric interest
rate term structure models.

3 For example, the parametric models by Merton (1973), Cox (1975), Vasicek (1977), Dothan (1978),
Courtadon (1982), Marsh and Rosenfeld (1983), Cox, Ingersoll and Ross (1985) (hereafter CIR), Brown
and Schaefer (1991), Chan, et al (1992), Constantinides (1992), and Duffie and Kan (1993), the semi-
parametric model by Aı̈ t-Sahalia (1996), and the nonparametric models by Jiang and Knight (1995) and
Stanton (1996).
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ments of bonds of all maturities, and second, the implied yield curves are constrained

in terms of their shapes due to particular functional specifications of the model.

Hence the one-factor models sometimes only provide a poor fit to the observed term

structure. In order to better model the term structure dynamics, several authors have

extended the model along a different direction by including more state variables in

the term structure representation. Development along this direction can be seen from

many multiple-factor models.4 But the gains of more generality are achieved at the

cost of greater complexity which is reflected in the general lack of analytic solutions

for the valuation PDE. It appears that those assume Ornstein-Uhlenbeck processes

for all factors or unrealistically assume stochastic independence among factors are

the only models which have closed form solutions. The difficulty of solving higher

than two-dimensional PDEs has prevented general multi-factor models from being

implemented.

Goes even further along the second direction are the non-Markov and time-inhomo-

geneous models which are designed to perfectly replicate the current term structure.5

The non-Markov model due to Heath, Jarrow and Morton (1992) has the advantage

that it can fit forward rate volatilities at all times, but this advantage is achieved

at considerable cost, making the implementation of such model a formidable task.

The trick used in the time-inhomogeneous models is to specify the parameters of

4 Examples are the Brennan and Schwartz (1979), Langetieg (1980), Schaefer and Schwartz (1984),
CIR (1985), Chen and Scott (1992), Longstaff and Schwartz (1992), Chaplin and Sharp (1993), and
Kraus and Smith (1993).

5 Examples are the models by Ho and Lee (1986) (a discrete time model), Heath, Jarrow, and Morton
(1992), Black, Derman and Toy (1990), Hull and White (1990, 1993), Jamshidian (1990, 1991), and
Black and Karasinski (1991).
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stochastic processes as time-dependent, which can be adjusted to fit the current term

structure as accurately as desired. Although the time-inhomogeneous models are

often used by practitioners, they have been proved to fail providing a consistent

fundamental model for the future (out-of-sample) behavior of interest rates and term

structure. They are also criticized for ignoring the evidence that there are persistent

arbitrage opportunities present in the observed term structure of interest rates. By re-

estimating the model every day in order to retain the exact fit to the current yield curve,

the model is prone to undermining the fundamental arbitrage-free assumptions and

misprice interest rate options (see e.g. Backus, Foresi and Zin, 1995, and Canabarro,

1995). On the contrary, models which do not take the entire yield curve as given but

are based on the no-arbitrage argument have a potential advantage of detecting such

arbitrage opportunities. Moreover, since models of any kind have to be estimated

from the sampling observations of the stochastic variables, never their populations,

a procedure which promises to fit exactly into input data is liable to be severely

misleading.

Contribution of this paper is along the combination of aforementioned both direc-

tions: First, we extend the spot rate process through nonparametric specifications of

both the drift function and diffusion function to better model the dynamics of spot

rates; Second, we specify the market price of interest rate risk as an implied non-

parametric function so that the model generated term structure has the best fit into

the historical term structures. In other words, instead of imposing a priori restrictive

functional forms for the drift function, the diffusion function, and the market price
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of risk, nonparametric estimation allows data to speak for themselves. The model

precludes arbitrage opportunities, preserves a simple structure and the computational

tractability, and at the same time allows for maximal flexibility in fitting into the data.

The paper is organized as follows. Section 2 outlines the spot rate approach of mod-

eling term structure dynamics; Section 3 summarizes two well known one-factor

models, i.e., the Vasicek (1977) model and the CIR (1985) model, and examines

the behavior of these models and their closed form solutions for bond and bond

option prices; In Section 4, consistent estimators of the nonparametric drift func-

tion, diffusion function and market price of risk are proposed. Procedures to obtain

nonparametric prices of interest rate derivative securities by either solving the PDE

numerically or performing Monte Carlo simulations along the risk-neutral process

are proposed as well. In Section 5, the nonparametric model is implemented using

historical Canadian interest rate term structure data. Empirical results not only pro-

vide strong evidence that the traditional spot interest rate models and market price of

interest rate risk are misspecified but also suggest that different model specifications

have significant impact on the term structure dynamics and prices of interest rate

derivative securities. A brief conclusion is contained in Section 6.

2. Spot Rate Term Structure Model and Pricing of Derivative Securities

The spot interest rate term structure modeling approach assumes that spot interest

rates are sufficient statistics for the stochastic movement of current term structure,

and therefore the prices of interest rate derivative securities can be derived in terms of
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the spot interest rates. Although this framework can allow in principle for an arbitrary

finite number of state variables, in practice the number of factors is usually restricted

to one 6, i.e., the short-term interest rate r(t). The basic assumptions on the market in

a one-factor model can be summarized as: (a) the spot interest rate follows a diffusion

process; (b) the price of a pure discount bond depends only on the spot rate over its

term; and (c) the market is efficient.

2.1. Term Structure Model: The Spot Rate Process and Market Price of Risk

Consider a continuous trading market with no taxes, transactions costs, or short

sale constraints, uncertainty in this economy is represented by the complete filtered

probability space (�, F, {Ft}, Q), where � is the sample space, F is the σ -algebra

of measurable events, {Ft} is a right-continuous filtration {Ft , t ≥ 0} generated by

a standard Brownian motion in R, and Q is a probability measure. The dynamics

of the spot interest rate process is assumed to be represented by the following time-

homogeneous stochastic differential equation (SDE):

dr(t) = µ(r(t))dt + σ(r(t))d W(t) (1)

with initial condition r(0) = r0, where µ(·) and σ 2(·) are respectively the instanta-

neous mean and variance of the process, and W(t) is the standard Brownian motion

or Wiener process. In traditional spot interest rate models, µ(·) and σ 2(·) are specified

6 As Vetzal (1994) pointed out, the general problem with multi-factor models lies not in their
construction but in their implementation. It is very difficult to solve the valuation PDE when there are
more than two state variables. Strictly speaking, the problem in the case of the term structure is excessive
computer time. The prices of interest rate derivative securities may be solved in principle by using Monte
Carlo methods. The situation is, however, more difficult when Monte Carlo methods are not applicable
to the pricing of some types of derivatives.
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as simple parametric functions for pure simplicity and tractability. Most parametric

specifications of the spot interest rate models are nested in the model by Chan, et al

(1992) which specifies µ(r(t)) = α0 + α1r(t), σ(r(t)) = σ r(t)γ . Special cases of

this model are the Vasicek (1977) model with restriction γ = 0, the Cox, Ingersoll

and Ross (1985) (hereafter, CIR) model, the Brown and Dybvig (1986) model, and

the Gibbons and Ramaswany (1993) model with γ = 1/2, the Courtadon (1982)

model with γ = 1, the Merton (1973) model with α1 = 0, γ = 0, the Dothan (1978)

model with α0 = α1 = 0, γ = 1, and the Cox (1975) and Cox, Ingersoll and Ross

(1980) model with α0 = α1 = 0, γ = 3/2. Aı̈ t-Sahalia (1996) extends the model by

specifying µ(·) as a linear mean-reverting function, and σ 2(·) as a semi-parametric

function determined by µ(·) and the marginal density function of the process. Stanton

(1996) proposed nonparametric estimation of the drift function and diffusion function

based on their approximations. In this paper we further extend the spot interest rate

model by assuming both µ(·) and σ 2(·) are robust nonparametric functions. That is,

no a priori restrictions are imposed on the structure of spot interest rate process,

data are allowed to speak for themselves. Moreover, the model can be either strictly

stationary or stationary only in the asymptotic sense.

The strongest implication of the one-factor term structure model is that the whole

yield curve is endogenous. Even though the one-factor model is criticized for various

reasons, it is still very attractive to both practitioners and academics mainly because:

First, it promises to offer a consistent model, with parsimonious structure, for the

fundamental behavior of interest rates and term structure; Second, it provides an
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unifying tool for the pricing of many interest rate derivative securities; and Third,

most importantly, the model is easy to implement from a computational point of view

since the underlying model is a one-dimensional Markov process. Given the spot rate

r(t) at time t , r(t) = r , and its dynamics described by (1), let P(r(t), t, T) represent

the price at t of any interest rate derivative security maturing at T . From Itô’s Lemma,

the instantaneous return on the bond is

d P/P = [µ(r)
∂ P

∂r
+ ∂ P

∂ t
+ 1

2
σ 2(r)

∂2 P

∂r2
]/Pdt + σ(r)

∂ P

∂r
/Pd W(t) (2)

In efficient markets, the instantaneous expected rate of return (including the cash flow

rate) for any asset can be written as the risk free return, r(t), plus a risk premium 7.

Let ξ(r(t), t, T) be the instantaneous expected rate of return and ν(r(t), t, T) be the

instantaneous standard deviation of the interest rate derivative security, the absence

of arbitrage implies that

ξ(r(t), t, T) = r(t)+ λ(r(t))ν(r(t), t, T) − d(r(t), t) (3)

where λ(·) is the risk premium factor or market price of interest rate risk, the existence

of which is a necessary condition for absence of arbitrage, and d(r(t), t) is the cash

flow rate of the security. It is noted that since there is only a single factor which affects

bond returns, this implies that the instantaneous returns on bonds of all maturities are

locally perfectly correlated.

It must be noted that the above representations depend on certain technical conditions

7 The main concern here is simply the absence of arbitrage opportunities. It is usually assumed that
agents are restricted to self-financing strategies that are adapted to {Ft} (which means that at any point
in time a strategy can depend only on information known at that time) and for which the discounted
value of the portfolio under an equivalent probability measure is a martingale.
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on µ(·), σ(·), and λ(·). Regularity conditions on the drift and diffusion terms are that

µ(·) and σ(·) each must be Borel measurable and satisfy Lipschitz conditions and

growth conditions (see e.g. Wong (1971), p.150). These conditions are imposed to

ensure the existence of a unique strong (non-exploding) solution to the SDE of

r(t). Similarly, restrictions must be placed on the market price of risk to guarantee

the existence of the equivalent martingale measure. In the traditional models, the

functional forms of the market price of risk are also specified for pure simplicity and

tractability, examples are λ(r(t)) = λ in Vasicek (1977), λ(r(t)) = λr(t)1/2/σ in CIR

(1985), λ(r(t)) = 0 in Chan, et al (1992), and λ(r(t)) = λ in Aı̈ t-Sahalia (1996a).

As CIR (1985) point out, the arbitrage approach does not imply that every choice

of the functional form for the market price of risk will lead to bond prices which

do not admit arbitrage opportunities. Indeed CIR (1985) showed with an example

that a linear functional form for λ(r(t))σ(r(t)) can lead to internal inconsistency. In

addition to condition (3), Duffie (1988, pp.227-228) provided regularity conditions

that the market price of risk must satisfy in order for the model to be consistent, i.e.,

λ(·) must be a predictable process satisfying
∫ u

t λ2(r(s))ds < ∞, a.s. ∀ u ≥ t ,

and E[exp{ 1
2

∫ T

t λ2(r(s))ds}] < ∞. It is easy to verify that the example in CIR

(1985) fails to satisfy the regularity conditions. In this paper, instead of imposing a

priori restrictions on the functional form of the market price of risk, we will specify

the market price of risk as a general function which satisfies the above regularity

conditions. Its specific form or shape is determined by forcing the term structures

implied by the model to best fit the observed term structures. Therefore instead of

totally ignoring the information contained in the current term structure or to another
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extreme taking the entire yield curve as given, the major information contained in the

historical term structures is extracted to determine the functional form of the market

price of risk.

2.2. Pricing of Bonds and Other Derivative Securities: The PDE Approach and

Monte Carlo Approach

Equalling both the expected rate of return and instantaneous standard deviation of the

interest rate derivative security in (3) and those in the SDE of P(r, t, T) in (2) yields

∂ P(r, t, T)

∂ t
+ 1

2
σ 2(r)

∂2 P(r, t, T)

∂r2
+ {µ(r)− λ(r)σ(r)}∂ P(r, t, T)

∂r

−r(t)P(r, t, T)+ d(r, t)P(r, t, T) = 0 (4)

This is the fundamental equation for the price of any contingent claim whose value

depends solely on the spot rate, r(t), and the time to maturity, τ = T − t . The PDE

can be solved for the price P(r, t, T) with certain given conditions: the continu-

ous payment rate d(r, t), the initial (or final) condition, and boundary condition(s)

depending on the particular security considered (e.g., call, put, cap, floor, swap, etc.).

Solutions of PDEs of the parabolic or elliptic type, such as (4), can be represented in

an integral form in terms of an underlying stochastic process. Under regularity condi-

tions, the PDE for the derivative security prices has a unique solution or representation

given by

P(r, t, T) = ∫ +∞
0 0(r, t, T : ω, 0, T )φ(ω)dω

+ ∫ t

T

∫ +∞
0 0(r, t, T;ω, s, T )ψ(ω, s, T )dωds (5)

where 0(r, t, T;ω, s, T ) is the fundamental solution of L P(r, t, T) = ψ(r, t, T) in
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the sense that for r, ω > 0 and T ≥ t ≥ s ≥ 0, 0(r, t, T;ω, s, T), as function of r

and t , solves L P = 0 for every (ω, s) in R+×[0, T ], and φ(r) = P(r, T, T), where L

is a natural differential operator defined as L P(r, t, T) = ∂ P(r,t,T )

∂τ
− 1

2
σ 2(r) ∂2 P(r,t,T )

∂r2 −
{µ(r)− λ(r)σ(r)} ∂ P(r,t,T )

∂r + r P(r, t, T).

An alternative way of solving for the prices of derivative securities is based on

performing Monte Carlo simulations of the sample paths of the risk-neutral process

dr̃(t) = (µ(r̃(t))− λ(r̃(t))σ(r̃(t)))dt + σ(r̃(t))d W(t) (6)

which is also a time-homogeneous diffusion process, with the drift term modified for

the market price of interest rate risk. The sample paths, all starting at r(t) = r at

date t and finishing at date T , can be simulated from (6). The conditional expectation

under the risk-neutral dynamics gives the prices

P(r(t), t, T) = Et [b(r̃(T ))exp{− ∫ T

t r̃(u)du}

+ ∫ T

t exp{− ∫ τ

t r̃(u)du}d(r̃(τ), τ)dτ |r̃(t) = r(t)] (7)

where b(·) is the final payoff at maturity. The price P(r(t), t, T) can then be obtained

by averaging the argument of the conditional expectation over the simulated sample

paths. For example, a zero-coupon bond price with face value P(r(t), T, T) = 1 is

given by

P(r(t), t, T) = Et [exp{−
∫ T

t

r̃(u)du}|r̃(t) = r(t)]

and the price of a call option on a zero coupon bond of maturity T − t with strike
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price K and exercise date t1, t ≤ t1 ≤ T , is given by

C0(P(r(t), t, T), K, t1) = Et [exp{−
∫ t1

t

r̃(u)du}

max[P(r(t1), t1, T )− K, 0]|r̃(t) = r(t)]

Simulations of the sample path can be performed using the Euler scheme or alter-

natively the Milshtein scheme with discretization step T/n over the time interval

[0, T ]. It is noted that the Milshtein scheme has better convergence rates than the

Euler scheme for the convergence in L p(�) and the almost sure convergence (see

Talay, 1996). In financial applications of the Monte Carlo simulation methods, a

number of variance reduction methods have been proposed, e.g. the control variate

approach, the antithetic variate method, the moment matching method, the impor-

tance sampling method, the conditional Monte Carlo methods, and quasi-random

Monte Carlo methods (see, e.g. Boyle, Broadie and Glasserman, 1996). It is noted

that Monte Carlo simulation is also one of the often used approach to solving the

PDE in (4). The Monte Carlo method seems to be disadvantageous when a finite

difference method, a finite element method, a finite volume method, or a suitable

deterministic algorithm is numerically stable and does not require too long compu-

tational time. However, in the financial applications a Monte Carlo algorithm may

be interesting when one wants to compute the option prices at only a few points or

when the PDE approach is difficult to implement due to the complexity of the problem.

3. Parametric Models and Closed Form Solution of Bond and Bond Option

Prices
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In order to have closed form solutions for bond or bond option prices, most authors

have chosen simple parametric specifications for the spot interest rate model and the

market price of risk. The following are two well known parametric models which lead

to closed form solutions of bond and bond option prices. The first set of parametric

specifications is as following:

(i) µ(r(t)) = β(α − r(t)); σ(r(t)) = σ ; and λ(r(t)) = λ

where β(> 0), α, σ(> 0) and λ are constants, i.e. the spot interest rate model is

specified as an Ornstein-Uhlenbeck process (as in Vasicek (1977) and Jamshidian

(1989)), and the market price of risk as a constant. Under certain initial and boundary

conditions, the PDE (4) has known solutions. For instance, the price of pure discount

bond, i.e. P(r, T, T) = 1, with maturity T − t , as derived in Vasicek (1977), is given

by

P(r, t, T) = exp[A(T − t)(R(∞)− r)− (T − t)R(∞)− σ 2

4β
A(T − t)2] (8)

where t ≤ T, R(∞) = α + σλ/β − 1
2σ

2/β2, A(T − t) = 1
β
(1 − e−β(T−t)). Or

equivalently, the term structure of interest rates takes the form

R(t, T ) = R(∞)+ (r(t)− R(∞))
A(T − t)

(T − t)
+ σ 2 A(T − t)2

4β(T − t)
, t ≤ T (9)

The yield curve is monotonically increasing for values of r(t) smaller or equal to

R(∞) − 1
4ρ

2/α2, and monotonically decreasing for values of r(t) larger than or

equal to R(∞)+ 1
2ρ

2/α2. For values of r(t) larger than R(∞)− 1
4ρ

2/α2 but below

R(∞) + 1
2ρ

2/α2, the yield is a humped curve. The value at time t of an European

call option, given that r(t) = r , on a pure discount bond with maturity T − t with
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exercise price K and expiration date S, t ≤ S ≤ T , as derived in Jamshidian (1989),

is given by:

P(r, t, S; T, K )= P(r, t, T)N(h)− K P(r, t, S)N(h− σp) (10)

where h = ln[P(r, t, T)/P(r, t, S)K ]/σp+σp/2, σp = σ(1−e−β(T−S))( 1−e−2β(T−t)

2β3 )1/2,

and N(·) is the CDF of standard normal distribution.

The discount yield curve implied by this model is obviously restricted in its shape.

Apart from that, the Ornstein-Uhlenbeck process is also often criticized for allowing

negative interest rates, as r(t) is defined over (−∞,+∞). Moreover, the following

analysis will show that the Ornstein-Uhlenbeck process imposes very strong unreal-

istic restrictions on the structure of spot interest rate. If r(t) follows an O-U process,

then we have (see Appendix for a brief derivation), E[r(t)] = α, Var[r(t)] =
σ 2

2β
, Cov(r(t + τ), r(t)) = σ 2

2β
e−βτ , or Corr(r(t + τ), r(t)) = e−βτ which is positive

for all τ , decreases as τ increases, and approaches 1 as τ goes to 0. For δ-period dif-

ference of the stochastic process, 1δr(t) = r(t)− r(t − δ), we have E[1δr(t)] = 0,

Var[1δr(t)] = σ 2

β
(1−e−βδ), and Cov(1δr(t+τ), 1δr(t)) = − σ 2

2β
e−β(τ−δ)(1−e−βδ)2,

where τ ≥ δ, or

Corr(1δr(t + τ), 1δr(t)) = −1

2
e−β(τ−δ)(1− e−βδ), τ ≥ δ

which is always negative. When τ = δ, the first-order autocorrelation of the δ-period

difference of the spot interest rate is Corr(1δr(t + δ), 1δr(t)) = − 1
2(1 − e−βδ)

which is negative and bounded between 0 and−1/2. When τ = 2δ, the second-order

autocorrelation is Corr(1δr(t + 2δ), 1δr(t)) = − 1
2 e−βδ(1 − e−βδ) which is also
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negative and bounded between 0 and −1/8.

The second set of parametric specifications is as following:

(ii) µ(r(t)) = β(α − r(t)); σ(r(t)) = σ r1/2(t); and λ(r(t)) = λr1/2(t)/σ

where β(> 0), α, σ(> 0) and λ are constants, which is specified in CIR (1985). The

PDE (4) with certain initial and boundary conditions also has known solutions. For

instance, the price of a pure discount bond with maturity T − t , as derived in CIR

(1985), is of the form

P(r, t, T) = A(t, T )e−B(t,T)r (11)

with A(t, T ) ≡ [ φ1exp(φ2(T−t))
φ2[exp(φ1(T−t))−1]+φ1

]φ3 , B(t, T) ≡ exp(φ1(T−t))−1
φ2[exp(φ1(T−t))−1]+φ1

, where φ1 ≡
[(β + λ)2 + 2σ 2]1/2, φ2 ≡ (β + λ + φ1)/2, and φ3 ≡ 2βα/σ 2. The bond price is a

decreasing convex function of the spot interest rate. Or equivalently, the term structure

of interest rate takes the form

R(t, T ) = 1

T − t
(B(t, T)r(t)− ln A(t, T )) (12)

which is an increasing function of r(t) cross section and is either an increasing,

humped or decreasing function of T − t cross maturity depending on the value of

r(t). Similarly, the value at time t of an European call option, given that r(t) = r , on

a pure discount bond of maturity T − t with exercise price K and expiration date S,

t ≤ S ≤ T , as derived in CIR (1985), is given by:

P(r, t, S; T, K ) = P(r, t, T)χ 2(2r∗(φ + ψ + B(S, T)); 4βα

σ 2 ,

2φ2reγ(S−t)

φ+ψ+B(S,T)
) − K P(r, t, S)χ 2(2r∗(φ + ψ); 4βα

σ 2 , 2φ2reγ(S−t)

φ+ψ
)(13)
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where γ ≡ φ1, φ ≡ 2γ

σ 2(eγ(S−t)−1)
, ψ ≡ (β + λ + γ )/σ 2, χ 2(·; ·, ·) is the noncentral

chi-square distribution with 4βα

σ 2 degrees of freedom and parameter of noncentrality

2φ2γ er(S−t)

φ+ψ
, and r∗ ≡ [ln( A(S,T)

K
)]/B(S, T ) is the critical interest rate below which

exercise will occur, i.e., K = P(r∗, S, T ).

Different from the O-U process, the CIR squared-root process only allows for non-

negative interest rates as zero is a reflecting barrier of the process. However, similar

to the O-U process, the CIR squared-root process also imposes very strong unre-

alistic restrictions on the structure of the spot interest rates. If r(t) follows a CIR

squared-root process, then we have (see Appendix for a brief derivation), E[r(t)] =
α, Var[r(t)] = ασ 2

2β
, Cov(r(t+τ), r(t)) = ασ 2

2β
e−βτ , and Corr(r(t+τ), r(t)) = e−βτ

which is always positive, decreases to 0 as τ increases, approaches 1 as τ goes to 0. For

δ-period difference of the process, 1δr(t) = r(t)− r(t− δ), we have E[1δr(t)] = 0,

Var[1δr(t) = ασ 2

β
(1−e−βδ), and Cov(1δr(t+τ), 1δr(t) = − ασ 2

2β
e−β(τ−δ)(1−e−βδ)2,

where τ ≥ δ, or

Corr(1δr(t + τ), 1δr(t) = −1

2
e−β(τ−δ)(1− e−βδ) τ ≥ δ

It imposes the same restrictions as the O-U process on the pattern of the autocorre-

lation of the δ-period difference of the spot interest rate. That is, the autocorrelation

of the δ-period difference of the process is always negative with the first-order auto-

correlation bounded between −1/2 and 0, the second-order autocorrelation bounded

between −1/8 and 0, and so on.

Apart from the above two sets of parametric specifications, the models specified by
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Dothan (1978) and Brown and Schaefer (1991) also give closed form solutions for

bond and bond option prices. However, Dothan’s model implies that both the interest

rate itself and its log returns are nonstationary processes. The Brown and Schaefer

model restricted the closed form solution of bond prices to the Vasicek and CIR

type, i.e. P(r, t, T) = A(t, T )exp[−B(t, T)r], and the underlying model of the state

variable is defined as the risk-neutralized process based on its equivalent probability

measure. Even so, A(t, T ) and B(t, T) do not always have explicit solutions given

the stochastic process of the spot interest rate. In addition to models with closed

form solutions, bond and bond option prices have been computed by Hull and White

(1990) based on time-inhomogeneous models, and by Aı̈ t-Sahalia (1996) based on

a spot rate model with parametric drift and semi-parametric diffusion, to list only a

few. Since assumptions made on different models are different from one to another,

the pricing formulas are different as well. In Hull and White (1990), prices of call

options on a 5-year bond are computed based on different parametric models 8. For

instance, the prices of out-of-the-money call options with strike price 105.00 (par

value of bond is 100.00) and maturities of 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0 years are

respectively 0.05, 0.16, 0.22, 0.22, 0.12, and 0.01 for extended Vasicek model and

0.04, 0.13, 0.17, 0.17, 0.08, and 0.00 for CIR model. The differences are generally

over 20 %. Aı̈ t-Sahalia (1996) also found that the prices based on his model are

significantly different from those calculated from the Vasicek model and CIR model,

especially for deep out-of-the-money long-maturity options.

8 The parameters are set as arbitrary values (not estimated from actual data) but are ensured that the
initial short-term interest rate volatilities are equal among different models.
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4. Nonparametric Model and Numerical Solution of Bond and Bond Option

Prices

The fact that different models generate different prices for bond and other interest

rate derivative securities naturally raises the question that which of the models should

be employed. Or in other words, which of the competing models made the most

reliable assumptions about the spot interest rate process and the market price of risk.

Before looking at the data, this question cannot be answered with any credibility as

the data set is different from one to another and one model fitting one data set well

does not necessarily mean fitting another data set also well. That is, either we can

first specify the model with a priori restrictions, then subject the model to empirical

test to determine whether the model should be rejected or not, or alternatively we

can impose least restrictions on the model and let the data determine what kind of

structure the model should have. The approach adopted in the traditional spot interest

modeling is exactly the first one. Unfortunately the models are implemented in most

cases without subjecting to empirical tests. The nonparametric approach proposed in

this paper to modeling term structure dynamics is the alternative. That is, instead of

specifying simple functional forms for the drift function, diffusion function and the

market price of risk for pure simplicity and tractability, the model specification is

determined by the specific data set.

With the coefficient functions µ(r(t)) and σ(r(t)) in (1) specified as elements of a

family of general functions, the diffusion function σ(r(t)) can be estimated using
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the following consistent nonparametric estimator from discretely observed high fre-

quency data (see Jiang and Knight, 1995, for proof of consistency):

σ̂ 2(r) =
∑n−1

i=1 n K ( ri−r
hn

)(ri+1 − ri)
2∑n

i=1 T K ( ri−r
hn

)
(14)

where, without loss of generality, {ri : i = 1, 2, ..., n} are assumed to be equispaced n

observations over the time period [0, T ] with T > 0 and sampling interval 1n = T/n,

K (·) is a positive kernel density function satisfying regularity conditions, and hn is the

window-width of the nonparametric estimator (see Appendix for admissible window-

width conditions of the estimator).9 The above nonparametric estimator of diffusion

function requires only mild regularity conditions and works for very general (both

stationary and nonstationary) diffusion processes and the drift term is a nuisance

coefficient function. As hn → 0, n → ∞, nhn → ∞, and nh3
n → 0, σ̂ 2(r) is a

pointwise consistent estimator of σ 2(r) and asymptotically normally distributed. The

variance of σ̂ 2(r) can be consistently estimated by V̂ [σ̂ 2(r)] = σ̂ 4(r)/
∑n

i=1 K ( ri−r
hn

).

Direct estimation of the drift function µ(r(t)) without any restrictions on the under-

lying structure of the diffusion process is impossible in general from discretely

observed data either over a short time interval (no matter how frequent the data is) or

with fixed frequency (no matter how long period it is spanned). It’s approximations

from high frequency data are possible, as suggested by Stanton (1996), but they can

be extremely non-robust in that the estimates are very sensitive to the sampling path.

9 Choice of hn based on cross-validation (CV) rule is proved to be asymptotically optimal w.r.t. the
averaged squared error (ASE) rule or integrated squired error (ISE) rule by Kim and Cox (1996). A
condition required in their proof is strong-(α-) mixing which is less restrictive than the often required
uniform-(φ-) mixing condition. While the uniform-mixing condition is quite satisfactory for most
Markovian processes, it is too strong to apply to Gaussian processes.
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A robust nonparametric estimator of the drift function is developed in Jiang and

Knight (1995) as well using information contained in the marginal density function

through the following relationship. A consistent estimator of the nonparametrically

specified drift function µ(r(t)) can be obtained from

µ̂(r) = 1

2
[
dσ̂ 2(r)

dr
+ σ̂ 2(r)

p̂′(r)

p̂(r)
] (15)

which is derived from the Kolmogorov forward equation under the condition that

the diffusion process is either strictly stationary or has a limiting probability density

function, where p̂(r) is the kernel estimator of the marginal density function of the

stochastic process.

Following above identification and estimation procedure, both the nonparametric

diffusion function and drift function can be identified and estimated. The empirical

results in this paper not only confirm that the above identification and estimation

procedure provides robust estimation results for the spot interest rate process but also

suggest there are strong evidence that the traditional spot interest rate models are

misspecified.

To learn about the functional form of the market price of interest rate risk, we have to

resort to the information contained in the term structure data of interest rates or the

information contained in the cross-sections data of any other interest rate derivative

security. A direct way of observing λ(·) empirically is proposed in Vasicek (1977)

using the following equality:

∂Y(r(t), τ)

∂τ
|τ=0 = 1

2
(µ(r(t)) − σ(r(t))λ(r(t))) (16)
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where Y(r(t); τ) is the yield at t with instantaneous risk free rate r(t) and maturity τ .

The advantage of using above equality is that the coefficient of ∂ P(r,t,T )

∂r in the valuation

PDE (4) can be replaced by 2 ∂Y (r(t),τ )

∂τ
|τ=0. By doing so, we can actually avoid directly

estimating the market price of risk λ(r(t)) and even the drift function µ(r(t)) of

the spot rate process. However, estimating ∂Y (r(t),τ )

∂τ
|τ=0 requires observations of the

yields with very short maturities for different levels of instantaneous risk free rates.

Apart from the fact that this kind of observations is very difficult to collect, such

data set is not desirable for estimation and statistical inference due to the spurious

microstructure effects associated with yields of short maturities and unavoidable

measurement errors. Moreover, this equality only uses the information of the yield

curve close to the origin, some important information contained in the entire yield

curve might be ignored. In this paper, we first observe the market price of risk

λ(r(t), t) by fitting the implied yield curve of the model to the historical yield curve

10, then estimate the time-stationary market price of risk curve λ(r(t)) using the

smoothing technique:

λ̂(r) =
∑t=tn

t=t0
K ( r(t)−r

hn
)λ(r(t), t)∑t=tn

t=t0
K ( r(t)−r

hn
)

(17)

where {t0, t1, ..., tn} are the points of time at which the historical yield curves are

observed, K (·) is a kernel function satisfying regularity conditions, and hn is the

smoothing parameter which can be chosen to minimize the IMSE of λ̂(r) (see

Appendix for the algorithm of calculating the smoothing parameter). As the non-

parametric estimator is smooth and bounded, it is easy to verify that the estimated

10 In practice, λ(r(t), t) can be obtained by minimizing, e.g., the sum of squared deviations across
maturities between the given historical yield curve and the yields produced by the model.

20



market price of risk satisfies the regularity conditions in section 2.1, and hence the

model is internally consistent and precludes any arbitrage opportunities.

With nonparametrically estimated µ(·), σ(·) and λ(·), the prices of discount bonds

and other derivative securities P(·, ·) can be obtained by either solving the PDE

numerically or performing Monte Carlo simulations along the sample path of risk

neutral process, as discussed in section 2.2. By assuming λ(·) is given or conditional

on λ(·), the asymptotic distribution and asymptotic variance of the derivative security

prices P(·; ·) are derived (see Jiang (1996)). In practice, the block-wise bootstrap

technique proposed in Künsch (1989) can be used to compute the standard derivations.

Similarly, standard derivations in the case of Monte Carlo simulations can also be

straightforwardly computed, which can be used to monitor the errors of the Monte

Carlo simulations.

The advantages of the above nonparametric term structure model include: (i) the

model is nonparametrically specified, allowing for non-linearity and maximal flexi-

bility in fitting into the data; (ii) the model precludes any arbitrage opportunities; (iii)

the model is time-homogeneous and provides a consistent framework to study the

fundamental behavior of interest rates and term structure; and (iv) the model retains

a parsimonious structure and the computational tractability.

5. Implications of Nonparametric Model on Term Structure Dynamics and

Option Prices

In this section, we will estimate the nonparametric term structure model using the

21



historical Canadian interest rate term structure data and investigate its implications

on term structure dynamics and prices of interest rate derivative securities. The

Vasicek (1977) and CIR (1985) models are also estimated using GMM for comparison

purpose. The market prices of risk for both the Vasicek (1977) and CIR (1985) models

are estimated by fitting into the average yield curve over the sample, while the market

price of nonparametric risk is estimated using the smoothing technique proposed

in Section 4.11 The estimates of µ(·), σ(·) and λ(·) then are plugged into the PDE

(4) which is solved analytically or numerically for bond prices and the risk-neutral

process (6) based on which the Monte Carlo simulations are performed to compute

the bond option prices.

5.1. The Data

The observed interest rate term structure data is provided by Statistics Canada and

plotted in Figure 1, which presents the historical movements of Canadian Treasury bill

rates with maturities of 1-month, 3-month, 6-month, and 1-year, as well as Canadian

bond yields with maturities of 2-year, 3-year, 5-year, 10-year, and 30-year. The data

are weekly and cover the period from June 2, 1982 to March 1, 1995, providing 666

observations in total. All the data are quoted as the average rates of the business days

in a week and are expressed in annualized form as continuously compounded yield

11 λ(·) = 0 under the assumption that the local expectations hypothesis holds, i.e., the expected return
on all interest rate-sensitive contingent claims is the riskless rate. Many theories have been presented
to explain the relation among interest rates on bonds of various maturities in an uncertain economy.
One of the earliest theories is known as the expectations hypothesis. In continuous-time models, the
expectations hypothesis plays the same pivotal role that risk neutrality does for option pricing. Of the
various versions of expectations hypotheses, the local expectations hypothesis is the only one acceptable
as a statement of equilibrium in continuous-time models. Other versions of expectations hypothesis all
lead to arbitrage opportunities.
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Table 1.
Summary Statistics of the Term Structure Data and Stationarity Test

(a) Summary Statistics b

Variablesa N Mean Std. Dev. ρ1 ρ3 ρ5 ρ7 ρ9 ρ11

r1m
t 666 0.0891 0.0267 0.990 0.967 0.942 0.916 0.887 0.856

r1m
t+1 − r1m

t 665 -1.24E-4 2.61E-3 0.014 0.067 0.058 0.081 0.036 -0.046
r3m

t 666 0.0910 0.0260 0.991 0.967 0.940 0.913 0.883 0.853
r3m

t+1 − r3m
t 665 -1.17E-4 2.33E-3 0.189 0.045 0.075 0.099 0.033 0.003

r6m
t 666 0.0927 0.0252 0.989 0.961 0.931 0.900 0.870 0.838

r6m
t+1 − r6m

t 665 -1.20E-4 2.79E-3 0.097 0.028 0.074 0.052 0.063 0.013
r1y

t 666 0.0946 0.0240 0.988 0.957 0.922 0.887 0.854 0.819
r1y

t+1 − r1y
t 665 -1.19E-4 2.80E-3 0.090 0.028 0.020 0.019 0.063 0.009

r2y
t 666 0.0937 0.0210 0.987 0.954 0.915 0.876 0.836 0.798

r2y
t+1 − r2y

t 665 -1.10E-4 2.48E-3 0.068 0.109 0.037 0.053 0.030 0.016
r3y

t 666 0.0943 0.0196 0.987 0.952 0.909 0.866 0.823 0.782
r3y

t+1 − r3y
t 665 -1.02E-4 2.31E-3 0.103 0.131 0.020 0.034 0.008 0.027

r5y
t 666 0.0962 0.0187 0.987 0.954 0.916 0.875 0.834 0.796

r5y
t+1 − r5y

t 665 -1.04E-4 2.09E-3 0.051 0.113 0.031 0.041 -0.011 0.015
r10y

t 666 0.0994 0.0180 0.987 0.957 0.921 0.883 0.847 0.812
r10y

t+1 − r10y
t 665 -1.02E-4 1.83E-3 0.066 0.096 0.059 0.036 -0.007 0.060

r30y
t 666 0.1024 0.0175 0.988 0.960 0.927 0.891 0.858 0.826

r30y
t+1 − r30y

t 665 -1.01E-4 1.72E-3 0.038 0.085 0.070 0.023 -0.025 0.031

(b) Augmented Dickey-Fuller Stationarity Test of the 1-Month T-Bill Rates
H0: Test Statistic c Critical Value (10%)

Nonstationarity -2.83 -2.57

Note: a. r1m
t , r3m

t , r6m
t , r1y

t , r2y
t , r3y

t , r5y
t , r10y

t , r30y
t denote respectively the weekly observations of 1-, 3-,

6-month, and 1-year Canadian Treasury bill rates, as well as 2-, 3-, 5-, 10-, and 30-year Canadian bond
yields. r1m

t+1−r1m
t , r3m

t+1−r3m
t , r6m

t+1−r6m
t , r1y

t+1−r1y
t , r2y

t+1−r2y
t , r3y

t+1−r3y
t , r5y

t+1−r5y
t , r10y

t+1−r10y
t , r30y

t+1−r30y
t

denote the corresponding week-to-week change of the weekly Treasury bill rates and bond yields;
b. ρj denotes the autocorrelation coefficient of order j ;
c. The lag order for the augmented Dickey-Fuller nonstationarity test of the 1-month t-bill rates is 9, see
Harvey (1993) for description of the test statistic, and Phillips (1987) for the justification of using the
Dickey-Fuller table when the residuals are heteroskedastic and possibly serially dependent.

to maturity 12. The short-term interest rate used for estimating the spot rate process is

12 When calculating Treasury bill rates and bond yields, the rate of coupon bonds is first converted
to the zero coupon bond rate, then the bond equivalent yields are transformed to the continuously
compounded yields to maturity. It is also noted that the measurement error of Treasury bill rates or bond
yields for different days within a week due to different maturity lengths which is caused by fixed auction
day is averaged out and therefore minimal.
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the weekly Canadian 1-month Treasury bill rates which capture the volatility of the

short-term interest rates from week to week. The rates as a time series are the first

intersection of the term structure data as plotted in Figure 1.

Table 1 reports the means, standard deviations, and part of the first eleven autocor-

relations of the weekly rates and the weekly changes in the rates for all different

maturities. The unconditional average level of the weekly observations for 1-month,

3-month, 6-month, 1-year Treasury bill rates and 2-year, 3-year, 5-year, 10-year, 30-

year bond yields are respectively 0.0891, 0.0910, 0.0927, 0.0946, 0.0937, 0.0943,

0.0962, 0.0994, and 0.1024, which is generally increasing with maturity, with stan-

dard deviations of 0.0267, 0.0260, 0.0252, 0.0240, 0.0210, 0.0196, 0.0187, 0.0180,

and 0.0175, which is generally decreasing with maturity. Although the autocorrela-

tions in the interest rate level decays very slowly, those of the week-to-week changes

are generally small and are not consistently positive or negative. It is also noted that

the autocorrelations of different orders of the first difference of the Treasury bill rates

and bond yields seem more likely to be positive than negative, suggesting that neither

the O-U process nor the CIR process can be used as a reasonable representation of

any of the series, as both models only allow negative autocorrelations for the δ-period

difference of the process. The result of a formal augmented Dickey-Fuller nonsta-

tionarity test for the one month Treasury bill rates is also reported in Table 1. The null

hypothesis of nonstationarity is rejected at the 10% significance level. Since the test

is known to have low power which is the probability of rejecting the null hypothesis

when it is not true, even a slight rejection means that stationarity of the series is very
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Table 2.
Correlation Matrix and Principal Components of Weekly Changes in OTR Yields

(a) Correlation Matrix
r1m

t r3m
t r6m

t r1y
t r2y

t r3y
t r5y

t r10y
t r30y

t

r1m
t 1.000 0.994 0.977 0.955 0.909 0.879 0.840 0.770 0.705

r3m
t 1.000 0.993 0.978 0.934 0.905 0.863 0.789 0.718

r6m
t 1.000 0.994 0.959 0.933 0.893 0.820 0.747

r1y
t 1.000 0.978 0.957 0.921 0.853 0.781

r2y
t 1.000 0.994 0.976 0.930 0.873

r3y
t 1.000 0.990 0.955 0.907

r5y
t 1.000 0.984 0.951

r10y
t 1.000 0.989

r30y
t 1.000

(b) Eigenvalues’ Absolute (10E04) and Relative (%) Magnitudes
Absolute 1.70 2.23 2.84 4.16 5.28 7.65 20.10 31.70 424.36
Relative 0.34 0.46 0.57 0.83 1.06 1.53 4.02 6.34 84.87

(c) Orthonormal Basis of Eigen-vectors
Maturity v9 v8 v7 v6 v5 v4 v3 v2 v1
0.083 0.0 -0.02 -0.14 0.29 0.21 0.05 0.52 -0.73 0.22
0.25 0.02 0.03 0.37 -0.71 -0.29 -0.00 -0.08 -0.40 0.32
0.50 0.04 -0.05 -0.19 0.44 -0.51 -0.29 -0.47 -0.16 0.43
1.0 -0.05 0.12 -0.15 -0.13 0.75 -0.08 -0.43 0.00 0.44
2.0 -0.01 -0.05 0.62 0.36 0.03 0.54 0.01 0.20 0.38
3.0 0.07 -0.42 -0.57 -0.24 -0.14 0.45 0.17 0.24 0.35
5.0 -0.37 0.74 -0.16 -0.04 -0.18 -0.03 0.32 0.26 0.30
10 0.79 0.08 0.09 -0.02 0.05 -0.36 0.31 0.26 0.25
30 -0.48 -0.50 0.20 -0.01 0.07 -0.53 0.30 0.23 0.22

Notes:
The variance-covariance matrix of changes in yields over one-week intervals is decomposed into an
orthonormal basis of eigen-vectors. The directions of the eigen-vectors are chosen to maximize the
associated variance.

likely.

5.2. Principal Components Analysis

In Table 2, the correlation matrix shows a strong correlation between each two of

the Treasury bill rates or the bond yields with different maturities, suggesting the
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one-factor spot rate model could very well represent the co-movements of the whole

yield curve. Correlation between the front- and back-ends of the yield curve is 0.705.

Table 2 also shows the results of a principal components analysis of the variance-

covariance matrix of weekly par yield changes over the observation period. There

is a dominant first principal component that explains 84.87% of the total variation.

There are also two less important second and third principal components accounting

respectively for 6.34% and 4.02% of the total variation. The direction of the first

principal component is essentially of a parallel shift across maturities, which can

be interpreted as the level effect. The directions of the second and third principal

components are associated respectively with changes in the discrepancy of the long-

and short-end rates of the yield curve and the change of the slope of the yield curve,

which can be interpreted as the steepness effect and curvature effect. It is noted that

the principal components analysis is essentially based on a static framework, while

the one-factor term structure models are dynamic structural models. The one-factor

model only implies that the changes of yields with various maturities are locally

perfectly correlated. Changes of yields with various maturities may not be perfectly

correlated over a given non-small time interval due to nonlinearity of both the drift

term and diffusion term. Our empirical results show that the nonparametric term

structure model can effectively mimic the level effect and steepness effect.

5.3. The Estimation Results

The estimation results of the parametric models as well as nonparametric models are

reported in Table 3 and Figures 2.1, 3.1, and 4.1. Both parametric spot interest rate
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models are estimated using GMM based on the exact moment conditions derived

from the continuous-time model rather than the moment conditions derived from the

discretized version of the model as in most finance literature (see Appendix for a list

of both conditions). The estimators based on the discretized version of the continuous-

time model are known to be biased due to misspecification. The nonparametric spot

interest rate model is estimated using Gaussian kernels and the window-width which

minimizes the IMSE of each functional estimator. The data of the short-term spot

interest rate is the weekly observations of the one-month Treasury bill yields. We

checked the robustness of the estimation results by using different kernels, different

window-width, and different time series of short-term interest rates. The choice of

the kernel function proves to be of little importance, and the estimation results are

not very sensitive to small changes of window-width around the optimal values.

Moreover, the estimation results for both diffusion function and drift function based

on the daily 3-month Treasury bill rates are very close to our reported results in terms

of their functional shapes.

Figure 2.1 plots the nonparametric estimator, with 95% pointwise confidence band,

of the diffusion function and Figure 2.2 plots the diffusion functions estimated from

different models. Noticeable features of the nonparametric diffusion function and

its important difference from the parametric diffusion functions include: First, the

95 % pointwise confidence band is narrower in the middle but tends to get wider

dramatically towards two ends (below 2% and above 18% ) for the lack of enough

observations around the high and low level of interest rates. Second, the diffusion
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Table 3.
Estimation Results of Alternative Interest Rate Term Structure Models

(a) Estimation of the Spot Rate Processes
Model Estimation Method Drift Function Diffusion Function

Vasicek O-U GMM α =0.0695 β=0.4205 σ 2=3.0682 10−4

Process (5.047) (1.987) (6.620)
CIR SR GMM α =0.0593 β=0.3294 σ 2=2.8586 10−3

Process (2.758) (1.601) (6.588)
Nonparametric Nonparametric Nonp Drift Nonp Diffusion

Process Figure 3.1 Figure 2.1

(b) Estimation of the Market Prices of Interest Rate Risk
Model Estimation Method Market Price of Risk Parameter

Vasicek O-U Curve-fitting λV AS = -0.9412
Process (-5.795)
CIR SR Curve-fitting λC I R = -0.1598
Process (-10.760)

Nonparametric Nonparametric Nonp Market Price of Risk Function
Process Smoothing Figure 4.1

Note: The numbers in brackets are t-ratios of the above estimates.

function exhibits noticeable variations from low to high values, which provides the

evidence to reject the constant or flat diffusion function specification in the Vasicek

(1977) model. Third, not only does the diffusion function not look flat, it does not look

linear either. Rather it shows the shape of a “smile", with both low and high interest

rates showing higher volatility and the medium interest rates showing relatively lower

volatility. This provides the evidence to reject the CIR (1985) squared-root model

specification which expects that high interest rates should vary more than low interest

rates.

The nonparametric estimator of the drift function, with its 95% pointwise confidence

band which is computed using blockwise bootstrap technique proposed in Künsch

(1989), is plotted in Figure 2.1 and compared with parametric drift function estimators
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in Figure 2.2. The nonparametric drift function predicts the highest long-term mean

for spot interest rate, i.e. around 8.6% which is very close to the unconditional

mean of the observation 8.91%, while both the Vasicek and CIR models predicts

much lower long-term means at the level of 6.95% and 5.93% respectively. All three

drift functions exhibit consistent mean reverting property, i.e. the drift function is

consistently positive for interest rate level below the long-term mean and consistently

negative otherwise. While the magnitude of the pulling force is proportional to the

deviation of the interest rate level from the long-term mean (i.e. β is constant) for both

parametric models, the nonparametric drift function exhibits a pulling force whose

magnitude has a varying proportion to the deviation of the interest rate level from its

long-term mean. The proportion is consistently increasing as the deviation gets larger

in its absolute value, first slowly when the interest rate level is close to the long-term

mean and then rapidly when the interest rate level is far away from the long-term

mean. And in general the pulling force is smaller than that of both parametric models,

with Vasicek having the most significant mean reverting property.

The market price of risk λ of the Vasicek model and λr1/2/σ of the CIR model

are estimated by minimizing the deviation of the model implied yield curve from

the average zero-coupon yield curve over the sample. The smoothing functional

estimator λ̂(r) is obtained using the Gaussian kernel and the smoothing parameter

which minimizes its IMSE. The nonparametric estimator of the market price of risk

is plotted in Figure 4.1, with its 95% pointwise confidence band, and compared with

other market prices of risk in Figure 4.2. It is noted that the nonparametric market
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price of risk is essentially non-zero, pointwise significantly negative, and appears to

be neither a constant nor a squared-root function of short-term interest rate.

5.4. Implications on Term Structure Dynamics

Having estimated the drift function, diffusion function, and market price of risk, our

aim is now to utilize these estimates to investigate implications of model specification

on term structure dynamics and prices of interest rate derivative securities. Figures

5.1, 5.2 and 5.3 plot the yield curves computed from the Vasicek model, the CIR model

and the nonparametric model with short-term interest rate levels equal to 4%, 10%

and 16%. The yields of various maturities are converted from the discount bond prices

which are computed using the analytical solutions for the CIR and Vasicek models

and by numerically solving PDE (4) for the nonparametric model with the boundary

and final conditions specified in the Appendix.13 Pointwise 95% confidence band of

the nonparametric yield curves, computed using the blockwise bootstrap technique,

are also plotted 14. It is easy to see that the nonparametric model and the Vasicek

and CIR models imply significantly different yields curves, especially for low- and

high-level of short-term interest rates. As indicated previously, the bond and bond

option prices are determined through PDE (4) by the drift term, the diffusion term

and the market price of risk. For example, the short-term bond prices mostly reflect

the differences in the risk-neutral first-moment of the underlying process, as a result,

13 Accuracy of the numerical algorithm of solving the parabolic PDE is examined by comparing the
numerical solutions with analytical solutions for the Vasicek and CIR models, and the errors are found
to be small.

14 The data block size is set as 52, equivalent to one year’s observations, based on the autocorrelation
coefficients (ρ52 = 0.5461). The number of replication is 1000.
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even for the short-end yield curves, the nonparametric model can imply very different

results than the Vasicek and CIR models. Since the models are fitted into the observed

yield curves differently, consequently the CIR and Vasicek yield curves are relatively

close to each other, while the nonparametric prices are mostly significantly different

from the parametric yield curves. The difference is more visible for both high and

low short-term interest rate level and longer-end yield curves.

Inspection of historical Canadian term structures reveals that the yield curve tends to

be upward sloping and steeper at the short end (0-5 years), relatively flat for maturities

in excess of 5 years. This is in general consistent with the yield curves computed

from the nonparametric term structure model. Moreover, the overall impact of the

short rate r(t) on the yield curve is also as expected: an increase in r(t) tends to shift

the whole yield curve up but flattens the curve, while a drop in r(t) tends to shift the

whole yield curve down but steepens the curve, mimicking both the level effect and

steepness effect.

The term structures replicated by the nonparametric model based on the historical

short-term interest rates (i.e. calculating Y(r(t), τ) by plugging in observed r(t) for

various τ ) prove to be a very good fit of the historical observations of term structures.

As Figure 6.3 indicates, the absolute biases or residuals between the historical term

structures and the nonparametric model generated term structures are generally very

small, and much smaller than their counterparts in the CIR and Vasicek models, as

plotted in Figures 6.1 and 6.2. Further calculation also indicates that the nonparametric

model can replicate not only the term structure of yields but also the term structure

31



of yield volatilities, i.e. the yields generated by the nonparametric model also have a

downward-slope volatility curve against the term.

5.5. Implications on Option Prices

Table 4 reports the 2- and 4-year call option prices with various strike prices on a

5-year discount bond 15 for the nonparametric, CIR, and Vasicek models based on

Monte Carlo simulations. The strike prices are expressed as percentages of current

bond prices with corresponding maturities. In performing the simulations, 1,000

risk-neutral interest rate paths are simulated using 100 time periods per day, and

the variability of the results is reduced using the antithetic variate approach. The

Monte Carlo integration involves two approximations: one is the Monte Carlo error

due to replacing the expectation operator with the “sample" average over certain

number of replications, and the other is the discretization error due to replacing

the continuous-time sample path with a discrete-time sample path using certain

discretization interval. In principle, the Monte Carlo error can be reduced to any

desired level with significantly large number of replications. However, the rate of

convergence is only squared root of the number of replications, so reducing the error

by half would require four times of computation. Similarly, the discretization error

can be reduced with a smaller discretization step, but due to computational time,

this approximation error should be balanced with the Monte Carlo error (see, e.g.

Duffie, 1992, pp201-202). Our exercises show that the antithetic variate technique can

15 Even if early exercise of the option is allowed (American option), it will never be optimal to exercise
it because the underlying pure discount bond pays no coupon. If the underlying bond is a coupon bond,
then American options would be valued differently from European options.
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Table 4
Call Option Prices on a Five-Year Zero-Coupon Bond Under Alternative Models

Option Expiration Annualized Strike Prices
Time (years) Spot Rate 96% 98% 100% 102% 104%

2 0.04 0.2270 0.0541 0.0096 0.0017 0.0006
(0.0074) (0.0032) (0.0012) (0.0003) (0.0002)
0.2104 0.0484 0.0081 0.0008 0.0000
0.2182 0.0520 0.0088 0.0010 0.0001

0.16 4.7596 3.6329 2.7557 1.8721 1.1137
(0.1155) (0.0814) (0.0651) (0.0411) (0.0307)
4.9560 3.8662 2.8268 1.9874 1.1961
4.5607 3.5704 2.5986 1.6941 0.9451

4 0.04 0.3147 0.0287 0.0011 0.0005 0.0002
(0.0091) (0.0017) (0.0003) (0.0002) (0.0001)
0.2875 0.0241 0.0005 0.0000 0.0000
0.2992 0.0250 0.0006 0.0000 0.0000

0.16 3.9579 2.9268 1.9978 0.9833 0.2690
(0.1003) (0.0874) (0.0605) (0.0346) (0.0079)
4.2054 3.0663 2.1268 1.1274 0.3071
3.8289 2.8198 1.8135 0.8664 0.2266

Note: All call option prices correspond to a 5-year discount bond with face value of $100. The exercise
price is expressed as percentage of the current bond price with corresponding maturities for each model.
The four elements of each cell from top to bottom are: the nonparametric price, its standard error (in
parentheses) calculated from simulations, and the Vasicek and CIR prices.

largely reduce the variance of the estimates. Overall, the accuracy of the Monte Carlo

simulation can be monitored by computing the standard derivations of the estimates.

Table 4 also report the standard derivations computed from the simulations for the

nonparametric option prices. 16

The option prices computed from the nonparametric model and the CIR and Vasicek

16 Again, accuracy of the Monte Carlo simulation results are examined by comparing the Monte
Carlo results with the analytical solutions of the Vasicek model and the numerical solutions of CIR and
nonparametric models, and the errors are also found to be small. Numerically solving the European
call option prices from PDE (4) consists in a two-stage procedure. First, the equilibrium value of the
underlying bond at the maturity date of the option P(r, T, S) is computed by solving the valuation PDE
(4) subject to the terminal and boundary conditions of bond prices. Then this value is substituted into
the boundary conditions as specified in the Appendix for the option and the valuation PDE solved a
second time subject to this latter condition.
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models are in general different, with out-of-the-money options showing the largest

percentage discrepancies. By eliminating differences in the prices of the underlying

bonds, differences in bond option prices can be attributed to differences in the volatil-

ity of the underlying bonds. The volatility of the risk-neutral bond price can be derived

as σ 2(r(t))( ∂ P
∂r )2 according to Itô’s lemma or equation (2), which is proportional to

the diffusion function of the spot interest rate and the sensitivity of bond price to

the spot interest rate. The results show that among all the factors which affect option

prices of short-term bonds, the diffusion function, or the second moment, of the spot

interest rate appears to play the most important role. For low level of interest rate at

4%, the volatility of the nonparametric model is higher than that of the Vasicek model

which is in turn higher than that of the CIR model, as a result, option prices show the

same order that the nonparametric option prices are higher than the Vasicek prices

which in turn are higher than the CIR prices. For high level of interest rate at 16%, the

volatility of the CIR model is higher than that of the nonparametric model which is

in turn higher than that of the Vasicek model, as a result, the option prices are ranked

accordingly. This second-moment effects are more visible for deep-out-of-the-money

options. It is noted that for the deep out-of-the-money options, the CIR and Vasicek

prices generally fall outside of two or more standard deviations of the nonparametric

prices.

6. Conclusion

In this paper, we extended the interest rate term structure model through nonpara-
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metric specification of the drift function, diffusion function, and the market price of

risk. The model precludes any arbitrage opportunities, retains a simple structure and

the computational tractability, and allows for maximal flexibility in fitting into the

data. Data are allowed to speak for themselves. The model is implemented using the

historical Canadian term structure data. Implications of the nonparametric model on

term structure dynamics and prices of interest rate derivative securities are investi-

gated through comparison with the parametric models, i.e. the Vasicek (1977) and

CIR (1985) models. The empirical results in this paper not only provide strong evi-

dence that the traditional spot interest rate models and market prices of interest rate

risk are misspecified, but also suggest that model specification has significant eco-

nomic impact on the dynamics of term structure and prices of interest rate derivative

securities. Since the model can capture the true volatility of the spot interest rates,

and the historical term structures can be best fitted by the model with a flexible

functional form of market price of risk, such a model can be used for various tests

based on market quotes of option prices. For instance, it can be used to test whether

the general assumptions made about the market in the pricing framework are valid or

not, or equivalently to test whether the market itself is efficient or not. Moreover, the

methodology developed in this paper can easily be employed for the pricing of other

options or the options based on other financial instruments. Finally, further research

on the dynamics of interest rate term structure can be undertaken via a nonparametric

or semi-parametric two-factor models.
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Appendix:

1. The Ornstein-Uhlenbeck Process: The transitional density function of the O-U process
is a Gaussian kernel with conditional mean and variance E[r(t + τ)|r(t)] = r(t) + (1 −
e−βτ )(α − r(t)), V ar[r(t + τ)|r(t)] = σ 2

2β
(1− e−2βτ ). In order for the process to be station-

ary, the initial marginal density function must be set equal to the final limiting density function
of the process, i.e., the marginal density function of the O-U process is also a Gaussian kernel
with mean and variance E[r(t)] = α, V ar[r(t)] = σ 2

2β
, the covariance of r(t + τ) and r(t)

can be calculated from

Cov(r(t + τ), r(t)) = E[r(t + τ)r(t)] − α2

= Er(t)[r(t + τ)r(t)|r(t)] − α2

= Er(t)[r(t)[r(t)+ (1− e−βτ )(α − r(t))]] − α2

= σ 2

2β
e−βτ

And hence Corr(r(t + τ), r(t)) = e−βτ . For δ-period difference of the O-U process,
1δr(t) = r(t)− r(t − δ), we have E[1δr(t)] = 0,

V ar[1δr(t)] = V ar[r(t)] + V ar[r(t − δ)]− 2Cov(r(t), r(t − δ))

= σ 2

β
(1− eβδ)

and for τ ≥ δ,

Cov(1δr(t + τ), 1δr(t)) = E[(r(t + τ)− r(t + τ − δ))(r(t) − r(t − δ))]
= − σ 2

2β
e−β(τ−δ)(1− e−βδ)2

or Corr(1δ r(t + τ), 1δr(t)) = − 1
2e−β(τ−δ)(1− e−βδ).

2. The CIR squared-root Process: The transitional density function of the CIR process
is a non-central χ2 distribution with conditional mean and variance E[r(t + τ)|r(t)] =
r(t)+ (1−e−βτ )(α− r(t)), V ar[r(t + τ)|r(t)] = σ 2

β
(e−βτ −e−2βτ )r(t)+α( σ 2

2β
)(1−e−βτ )2.

Due to the same reason as for the O-U process, the marginal density function of the CIR
process is a Gamma distribution with mean and variance E[r(t)] = α, Var[r(t)] = ασ 2

2β
.

Similarly, the covariance of r(t) and r(t) can be calculated from

Cov(r(t + τ), r(t)) = E[r(t + τ)r(t)] − α2

= Er(t)[E[r(t + τ)r(t)|r(t)]] − α2

= Er(t)[r(t)[r(t)+ (1− e−βτ )(α − r(t))]] − α2

= ασ 2

2β
e−βτ

And Corr(r(t + τ), r(t)) = e−βτ . For δ-period difference of the CIR process, 1δr(t) =
r(t)− r(t − δ), we have E[1δr(t)] = 0,
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V ar[1δr(t)] = V ar[r(t)] + V ar[r(t − δ)]− 2Cov(r(t), r(t − δ))

= ασ 2

β
(1− eβδ)

and for τ ≥ δ,

Cov(1δr(t + τ), 1δr(t)) = E[(r(t + τ)− r(t + τ − δ))(r(t) − r(t − δ))]
= −ασ 2

2β
e−β(τ−δ)(1 − e−βδ)2

or Corr(1δ r(t + τ), 1δr(t)) = − 1
2e−β(τ−δ)(1− e−βδ).

3. Choices of Kernel Function and Window-Width for Diffusion Function and Drift
Function Estimation: The regularity condition of the kernel function of order r for both
diffusion function and drift function estimation are as follows:

(i) The kernel K (·) is symmetric about zero, continuously differentiable to order r on R,
belongs to L2(R), and

∫ +∞
−∞ K (x)dx = 1;

(ii) K (·) is of order r:
∫ +∞
−∞ xi K (x)dx = 0, i = 1, ..., r − 1, and

∫ +∞
−∞ xr K (x)dx 6= 0,∫ +∞

−∞ |x|r |K (x)| dx <∞.

The regularity conditions for the admissible window-width are as follows: as the sample size
n→∞, and the sampling interval 1n(= 1/ ln(n))→ 0,

(i) hn → 0, nhn →∞, and nhr+1
n → 0 for the diffusion function estimation;

(ii) hn → 0, nln(n)hn →∞, and nh2r+1
n → 0 for the marginal density function estimation;

and

(iii) hn → 0, nln(n)h3
n →∞, and nh2r+1

n → 0 for the first derivative of the marginal density
function estimation, both the marginal density function and its derivative are required in the
drift function estimation.

The above conditions ensure that for all cases, the bias in the estimator is asymptotically neg-
ligible and at the same time the variance of the estimator goes to zero as sample size increases
to infinity. The actual choice of the kernel for all cases is the standard Gaussian kernel with
order r = 2, i.e K (x) = 1√

2π
e−x2/2. The window-width sequence chosen is hn = cnn−1/3 for

the diffusion function estimation and hn = cnn−1/5 for the estimation of both the marginal
density function and its first derivative, where cn = c/ ln(n), and c is chosen to minimize the
IMSE of each functional estimator. Exponential and Epanechnikov kernels were also used
for the estimation and produced very similar results. The estimation results are also robust
to small changes of the window-width around the optimal values and different time series of
short-term interest rates.

4. Choice of Kernel Function and Smoothing Parameter for Market Price of Risk: Choice
of the smoothing kernel for the market price of risk is also the standard Gaussian kernel. The
algorithm of obtaining the optimal smoothing parameter which minimizes the IMSE of λ̂(r)
using cross-validation method is as follows (see, e.g. Härdle and Vieu (1987):
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Step 1: Compute the leave-one estimate

λ̂hn , j (rj )

at the observation points rj , j = 1, 2, ..., n;

Step 2: Construct the cross validation function

CV (hn) = 1
n

n∑
j=1

(λj − λ̂hn , j (rj ))
2w(rj )

where w denotes a weight function which is set as a constant in our estimation;

Step 3: Find the optimal window-width as

ĥ = argmin{hn }|CV(hn)|

5. GMM Estimation of the Vasicek (1977) and CIR (1985) Models: The GMM estimates
of (α, β, σ 2) for the Vasicek (1977) and CIR (1985) models are obtained from the following
four exact (first and second order) moment conditions:

GN (α, β, σ 2) = 1

N − 1

N−1∑
i=1

Fi (α, β, σ 2)

with

Fi (α, β, σ 2) =


εi+1

εi+1ri

ε2
i+1 − E[ε2

i+1|ri ]
(ε2

i+1 − E[ε2
i+1|ri])ri


where εi+1 = (ri+1− ri )− E[(ri+1 − ri )|ri ] with E[(ri+1 − ri )|ri ] = (1− e−β1ti )(α − ri ) for
both models, 1ti is the ith sampling interval. The exact conditional variance of interest rate
changes over time interval of length 1ti is given by E[ε2

i+1|ri ] = V [ri+1|ri], with

E[ε2
i+1|ri ] = (σ 2/2β)(1 − e−2β1ti )

for the Vasicek model; and

E[ε2
i+1|ri ] = (σ 2/β)(e−β1ti − e−2β1ti )ri + (σ 2/2β)(1 − e−β1ti )2α

for the CIR model. These moment conditions correspond to transitions of length 1ti and
are not subject to discretization bias. In our estimation, 1t = 1/52 for weekly data and
1t = 1/252 for daily data. Since these GMM systems are overidentified, we weighted the
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criterion optimally (see Hansen (1982)).

It is noted that in most financial economics literature, parameter estimation of the diffusion
processes using GMM technique consists in first discretizing the continuous-time diffusion
process, then based on the discrete model deriving moment conditions. The GMM approach
no longer requires that the distributionof interest rate changes be normal, but only requires that
the conditional instantaneous variance of the residual is proportional to the length of sampling
interval, i.e., E[ε2

i+1|rt ] = σ 2(·)1ti ; the asymptotic justification for the GMM procedure
requires only that the distribution of interest rate changes be stationary and ergodic and that
the relevant expectations exist. The moment conditions are as follows:

Fi (α, β, σ 2) =


εi+1

εi+1ri

ε2
i+1 − σ 2rγ

i 1ti

(ε2
i+1 − σ 2rγ

i 1ti)ri


with γ = 0 for the Vasicek model, and γ = 1 for the CIR model, with εi+1 = ri+1−ri−β(α−
ri)1ti where 1ti = ti+1 − ti , and 1ti = T0/N in the case of equispaced sampling interval.
Misspecification of the model and biasedness or inconsistency of the parameter estimators
due to “discretization" are known facts in the literature.

6. Final and Boundary Conditions for Bond and Bond Option Prices: The initial (or final)
condition and boundary conditions for bond price and bond option price are as follows:

Let P(r, t, T ) be the price of a pure discount bond with face value 100 and maturity date T
when the spot interest rate is r at date t . It corresponds to the following coupon payment
or dividend payment and initial (or final) and boundary conditions: d(r, t) = 0(no payment),
P(r, T, T ) = 100 for all r ≥ 0 (final condition), and limr→+∞ P(r, t, T ) = 0 for all
0 ≤ t ≤ T (boundary condition).

For a call option which expires at date T , has an exercise (or strike) price K , and the
underlying discount bond matures at date S where T ≤ S. Let P(r, t, T ; S, K ) be its
price at date t when the spot interest rate is r. It corresponds to the following coupon
payment or dividend payment and initial (or final) and boundary conditions: d(r, t) = 0
(no payment), P(r, T, T ; S, K ) =max (0, P(r, T, S) − K ) for all r ≥ 0 (final condition),
limr→+∞ P(r, t, T ; S, K ) = 0 for all 0 ≤ t ≤ T (boundary condition).
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