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Pricing of Interest Rate Derivative Securities
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Abstract

The purpose of this paper is to propose a nonparametric interest rate term
structure model and investigate its implications on term structure dynam-
ics and prices of interest rate derivative securities. The nonparametric spot
interest rate process is estimated from the observed short-term interest rates
following a robust estimation procedure and the market price of interest rate
risk is estimated as implied from the historical term structure data. That is,
instead of imposing a priori restrictions on the model, data are allowed to
speak for themselves, and at the same time the model retains a parsimo-
nious structure and the computational tractability. The model isimplemented
using historical Canadian interest rate term structure data. The parametric
models with closed form solutionsfor bond and bond option prices, namely
the Vasicek (1977) and CIR (1985) models, are aso estimated for compari-
son purpose. The empirical results not only provide strong evidence that the
traditional spot interest rate models and market prices of interest rate risk
are severely misspecified but also suggest that different model specifications
have significant impact on term structure dynamics and prices of interest rate
derivative securities.
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1. Introduction

The framework of modeling term structure dynamics of interest rates in modern
continuous-time finance theory is to postulate the whole yield curve as determined
by a small set of state variables (factors) which are assumed to follow diffusion
processes.? Dynamicsof term structure and prices of interest rate derivative securities
can then be projected from either solving (anayticaly or numerically) a partia
differential equation (PDE) which is derived through 1t&’'s lemma following a no-
arbitrage argument or in a general equilibrium framework, or performing Monte

Carlo smulations along arisk-neutral process of the underlying state variables.

Over the past few decades, theoretica development of modeling term structure
dynamics has been mainly aong the following two directions. One direction is,
while keeping a simple, tractable, and parsimonious structure, to extend the model
through more flexible specification in order to better describe the dynamics of state
variablesand project the term structure movements. Devel opment along thisdirection
isevidenced in various one-factor models.® Extension of the one-factor model reflects
both the desire to incorporate nonlinearity in the spot rate process and to avoid the
difficulty involved in solving high-dimensional PDEs. However, one-factor models

have been criticized for: first, it implies perfect correlation of the local price move-

2 See Vetza (1994) for a comprehensive survey of parametric continuous-time interest rate term
structure models and also Chan, et al (1992) for an empirical comparison of various parametric interest
rate term structure models.

3 For example, the parametric models by Merton (1973), Cox (1975), Vasicek (1977), Dothan (1978),
Courtadon (1982), Marsh and Rosenfeld (1983), Cox, Ingersoll and Ross (1985) (hereafter CIR), Brown
and Schaefer (1991), Chan, et a (1992), Constantinides (1992), and Duffie and Kan (1993), the semi-
parametric model by Ait-Sahalia (1996), and the nonparametric models by Jiang and Knight (1995) and
Stanton (1996).



mentsof bonds of all maturities, and second, the implied yield curves are constrained
in terms of their shapes due to particular functiona specifications of the model.
Hence the one-factor models sometimes only provide a poor fit to the observed term
structure. In order to better model the term structure dynamics, several authors have
extended the model along a different direction by including more state variables in
the term structure representation. Devel opment along this direction can be seen from
many multiple-factor models.* But the gains of more generality are achieved at the
cost of greater complexity which isreflected in the genera lack of analytic solutions
for the valuation PDE. It appears that those assume Ornstein-Uhlenbeck processes
for all factors or unrealistically assume stochastic independence among factors are
the only models which have closed form solutions. The difficulty of solving higher
than two-dimensional PDESs has prevented general multi-factor models from being

implemented.

Goes even further aong the second direction are the non-Markov and time-inhomo-
geneous models which are designed to perfectly replicate the current term structure.®
The non-Markov model due to Heath, Jarrow and Morton (1992) has the advantage
that it can fit forward rate volatilities at al times, but this advantage is achieved
a considerable cost, making the implementation of such mode a formidable task.

The trick used in the time-inhomogeneous models is to specify the parameters of

4  Examplesarethe Brennan and Schwartz (1979), Langetieg (1980), Schaefer and Schwartz (1984),
CIR (1985), Chen and Scott (1992), Longstaff and Schwartz (1992), Chaplin and Sharp (1993), and
Kraus and Smith (1993).

5 Examplesarethe modelsby Ho and Lee (1986) (adiscretetime model), Heath, Jarrow, and Morton
(1992), Black, Derman and Toy (1990), Hull and White (1990, 1993), Jamshidian (1990, 1991), and
Black and Karasinski (1991).
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stochastic processes as time-dependent, which can be adjusted to fit the current term
structure as accurately as desired. Although the time-inhomogeneous models are
often used by practitioners, they have been proved to fail providing a consistent
fundamental model for the future (out-of-sample) behavior of interest rates and term
structure. They are aso criticized for ignoring the evidence that there are persistent
arbitrage opportunities present in the observed term structure of interest rates. By re-
estimatingthemodel every day in order toretain theexact fit tothe current yield curve,
the model is prone to undermining the fundamenta arbitrage-free assumptions and
mispriceinterest rate options (see e.g. Backus, Foresi and Zin, 1995, and Canabarro,
1995). On the contrary, models which do not take the entire yield curve as given but
are based on the no-arbitrage argument have a potential advantage of detecting such
arbitrage opportunities. Moreover, since models of any kind have to be estimated
from the sampling observations of the stochastic variables, never their populations,
a procedure which promises to fit exactly into input data is liable to be severely

misleading.

Contribution of this paper is aong the combination of aforementioned both direc-
tions: First, we extend the spot rate process through nonparametric specifications of
both the drift function and diffusion function to better model the dynamics of spot
rates; Second, we specify the market price of interest rate risk as an implied non-
parametric function so that the model generated term structure has the best fit into
the historical term structures. In other words, instead of imposing a priori restrictive

functiona forms for the drift function, the diffusion function, and the market price



of risk, nonparametric estimation alows data to speak for themselves. The model
precludes arbitrage opportunities, preserves asimple structure and the computational

tractability, and at the sametimeallowsfor maximal flexibility infitting into the data.

The paper is organized as follows. Section 2 outlines the spot rate approach of mod-
eling term structure dynamics; Section 3 summarizes two well known one-factor
models, i.e., the Vasicek (1977) model and the CIR (1985) model, and examines
the behavior of these models and their closed form solutions for bond and bond
option prices; In Section 4, consistent estimators of the nonparametric drift func-
tion, diffusion function and market price of risk are proposed. Procedures to obtain
nonparametric prices of interest rate derivative securities by either solving the PDE
numericaly or performing Monte Carlo simulations aong the risk-neutral process
are proposed as well. In Section 5, the nonparametric model is implemented using
historica Canadian interest rate term structure data. Empirical results not only pro-
vide strong evidence that the traditional spot interest rate models and market price of
interest rate risk are misspecified but aso suggest that different model specifications
have significant impact on the term structure dynamics and prices of interest rate

derivative securities. A brief conclusion is contained in Section 6.

2. Spot Rate Term Structure Model and Pricing of Derivative Securities

The spot interest rate term structure modeling approach assumes that spot interest
rates are sufficient statistics for the stochastic movement of current term structure,

and therefore the prices of interest rate derivative securities can be derived in terms of



thespot interest rates. Although thisframework can alow in principlefor an arbitrary
finite number of state variables, in practice the number of factorsis usualy restricted
toone®, i.e, the short-terminterest rater (t). The basic assumptionson the market in
aone-factor model can be summarized as: () the spot interest rate followsadiffusion
process; (b) the price of a pure discount bond depends only on the spot rate over its

term; and (c) the market is efficient.
2.1. Term Structure Modd: The Spot Rate Process and Market Price of Risk

Consider a continuous trading market with no taxes, transactions costs, or short
sale constraints, uncertainty in this economy is represented by the complete filtered
probability space (2, F, {F}, Q), where Q is the sample space, F isthe o-dgebra
of measurable events, {F} is a right-continuous filtration {F;,t > 0} generated by
a standard Brownian motion in R, and Q is a probability measure. The dynamics
of the spot interest rate process is assumed to be represented by the following time-

homogeneous stochastic differential equation (SDE):
dr(t) = p(r®)dt + o (r (t))dW(t) 1

with initial conditionr (0) = ro, where (-) and o2(-) are respectively the instanta-
neous mean and variance of the process, and W(t) is the standard Brownian motion

or Wiener process. In traditional spot interest rate models, .(-) and o'?(-) are specified

6 As Vetzal (1994) pointed out, the general problem with multi-factor models lies not in their
construction but in their implementation. It is very difficult to solve the valuation PDE when there are
more than two state variables. Strictly speaking, the problemin the case of theterm structureis excessive
computer time. The pricesof interest rate derivative securitiesmay besolved in principle by using Monte
Carlo methods. The situation is, however, more difficult when Monte Carlo methods are not applicable
to the pricing of sometypes of derivatives.



as simple parametric functions for pure simplicity and tractability. Most parametric
specifications of the spot interest rate models are nested in the model by Chan, et a
(1992) which specifies u(r (t)) = ap + asr (t), o(r(t)) = or(t)”. Specia cases of
this model are the Vasicek (1977) model with restriction y = 0, the Cox, Ingersoll
and Ross (1985) (hereafter, CIR) model, the Brown and Dyhbvig (1986) model, and
the Gibbons and Ramaswany (1993) model with y = 1/2, the Courtadon (1982)
model with y = 1, the Merton (1973) model with@; = 0, y = 0, the Dothan (1978)
mode with g = @y = 0, y = 1, and the Cox (1975) and Cox, Ingersoll and Ross
(1980) model with g = ay = 0, y = 3/2. Ait-Sahalia (1996) extends the model by
specifying () as alinear mean-reverting function, and o(-) as a semi-parametric
function determined by .(+) and themargina density function of the process. Stanton
(1996) proposed nonparametric estimation of thedrift function and diffusion function
based on their approximations. In this paper we further extend the spot interest rate
model by assuming both 4.(-) and o2(-) are robust nonparametric functions. That is,
no a priori restrictions are imposed on the structure of spot interest rate process,
data are allowed to speak for themselves. Moreover, the model can be either strictly

stationary or stationary only in the asymptotic sense.

The strongest implication of the one-factor term structure model is that the whole
yield curve is endogenous. Even though the one-factor model is criticized for various
reasons, it is still very attractive to both practitioners and academics mainly because:
First, it promises to offer a consistent model, with parsimonious structure, for the

fundamental behavior of interest rates and term structure; Second, it provides an



unifying tool for the pricing of many interest rate derivative securities; and Third,
most importantly, the model is easy to implement from a computational point of view
sincethe underlying mode! isaone-dimensional Markov process. Given the spot rate
r(t) atimet, r (t) = r, and itsdynamics described by (1), let P(r (t), t, T) represent
thepriceat t of any interest rate derivative security maturing at T. From [t0'sLemma,

the instantaneous return on the bond is

P 9P 1 , 9%P 9P
dP/P = [M(r)a—r tort Eaz(r)ﬁ]/Pdt + a(r)a—r/PdW(t) )

In efficient markets, theinstantaneous expected rate of return (including the cash flow
rate) for any asset can be written as the risk free return, r (t), plus arisk premium .
Let £(r (1), t, T) betheinstantaneous expected rate of return and v(r (t), t, T) bethe
instantaneous standard deviation of the interest rate derivative security, the absence

of arbitrage impliesthat

Er),t, T =r®) +ar®)v(r®),t, T) —dr ), t) (©)

where (-) istherisk premium factor or market price of interest raterisk, theexistence
of which is a necessary condition for absence of arbitrage, and d(r (t), t) isthe cash
flow rate of the security. It isnoted that since thereisonly asinglefactor which affects
bond returns, thisimpliesthat the instantaneous returns on bonds of all maturitiesare

locally perfectly correlated.

It must be noted that the above representations depend on certain technical conditions

7 Themain concern here is simply the absence of arbitrage opportunities. It is usually assumed that
agents are restricted to self-financing strategies that are adapted to {F;} (which meansthat at any point
in time a strategy can depend only on information known at that time) and for which the discounted
value of the portfolio under an equivalent probability measureis a martingale.



onu(-), o(-),and A(-). Regularity conditionson the drift and diffusion termsare that
u(-) and o (-) each must be Borel measurable and satisfy Lipschitz conditions and
growth conditions (see e.g. Wong (1971), p.150). These conditions are imposed to
ensure the existence of a unique strong (non-exploding) solution to the SDE of
r(t). Similarly, restrictions must be placed on the market price of risk to guarantee
the existence of the equivalent martingale measure. In the traditional models, the
functiona forms of the market price of risk are also specified for pure simplicity and
tractability, examplesare A(r (t)) = A inVasicek (1977), A(r (t)) = Ar (1)?/o inCIR
(1985), A(r (t)) = 0in Chan, et a (1992), and A(r (t)) = A in Ait-Sahdia (1996a).
As CIR (1985) point out, the arbitrage approach does not imply that every choice
of the functional form for the market price of risk will lead to bond prices which
do not admit arbitrage opportunities. Indeed CIR (1985) showed with an example
that alinear functiona form for A(r (t))o (r (t)) can lead to internal inconsistency. In
addition to condition (3), Duffie (1988, pp.227-228) provided regularity conditions
that the market price of risk must satisfy in order for the model to be consistent, i.e.,
A(-) must be a predictable process satisfying ft“ A2(r(s))ds < oo, a.s.V u >t,
and E[exp{% ftT A2(r(s))ds}] < oo. It is easy to verify that the example in CIR
(1985) fails to satisfy the regularity conditions. In this paper, instead of imposing a
priori restrictions on the functional form of the market price of risk, we will specify
the market price of risk as a general function which satisfies the above regularity
conditions. Its specific form or shape is determined by forcing the term structures
implied by the moddl to best fit the observed term structures. Therefore instead of

totally ignoring the information contained in the current term structure or to another



extremetaking the entire yield curve as given, the major information contained in the
historical term structures is extracted to determine the functional form of the market

price of risk.

2.2. Pricing of Bonds and Other Derivative Securities: The PDE Approach and

Monte Carlo Approach

Equalling both the expected rate of return and instantaneous standard deviation of the
interest rate derivative security in (3) and thosein the SDE of P(r,t, T) in (2) yields

AP, t,T) 1, 3%P(r,t,T) AP(r,t, T)
1 T30 Oz T ) —AOe (M ———

—r@®Pr,t, T)+dr, t)Pr,t, T)=0 4
Thisisthe fundamental equation for the price of any contingent claim whose value
depends solely on the spot rate, r (t), and the time to maturity, r = T —t. The PDE
can be solved for the price P(r,t, T) with certain given conditions. the continu-
ous payment rate d(r, t), theinitial (or final) condition, and boundary condition(s)

depending on the particular security considered (e.g., call, put, cap, floor, swap, etc.).

Solutions of PDES of the parabolic or éliptic type, such as (4), can be represented in
anintegra formintermsof an underlying stochastic process. Under regul arity condi-
tions, the PDE for the derivative security prices has auniquesol ution or representation

given by

P(r,t,T) = [Tt T o,0, THg(w)dw

+ T, T 0,8, Ty (@, s, Tydeds — (5)

whereI'(r,t, T; w, S, T) isthe fundamental solutionof LP(r,t, T) = ¥ (r,t, T) in



thesensethatforr,w > 0and T >t >s>0,I'(r,t, T; w, S, T), asfunction of r
andt, solvesL P = Oforevery (w, S)in R x [0, T],and¢(r) = P(r, T, T),where L
isanatural differential operator definedas L P(r, t, T) = ZF0LD — %az(r)% —
{u(r) = A(No (N} +r P, t, T).

An aternative way of solving for the prices of derivative securities is based on

performing Monte Carlo simulations of the sample paths of the risk-neutral process
dr(t) = (u(F(t)) — A(Ft)o (F(t))dt + o (F(t)dW(t) (6)

whichis also atime-homogeneous diffusion process, with the drift term modified for
the market price of interest rate risk. The sample paths, dl startingat r(t) = r at
datet and finishing at date T, can be simulated from (6). The conditional expectation

under the risk-neutral dynamics gives the prices

P(r(t),t,T) = E[b(F(T))exp{— [ F(u)du}

+ [T exp{— [T F(wdu}d(F (v), t)dz|F(t) =r ()] (7

whereb(.) isthefina payoff at maturity. The price P(r (t), t, T) can then be obtained
by averaging the argument of the conditional expectation over the simulated sample
paths. For example, a zero-coupon bond price with face value P(r(t), T, T) = 1is

given by
.
Pr®,t,T)= Et[eXp{—f Fudul|f(t) =r ()]
t
and the price of a cal option on a zero coupon bond of maturity T — t with strike

10



price K and exercise datet;, t <t; < T,isgivenby

t1
COP(r(t),t, T), K, t)) = Et[exp{—f f(u)du}
t

max[P(r (t), t, T) — K, O]F (t) = r (V)]

Simulations of the sample path can be performed using the Euler scheme or alter-
natively the Milshtein scheme with discretization step T/n over the time interva
[0, T]. It is noted that the Milshtein scheme has better convergence rates than the
Euler scheme for the convergence in LP(2) and the amast sure convergence (see
Taay, 1996). In financia applications of the Monte Carlo smulation methods, a
number of variance reduction methods have been proposed, e.g. the control variate
approach, the antithetic variate method, the moment matching method, the impor-
tance sampling method, the conditional Monte Carlo methods, and quasi-random
Monte Carlo methods (see, e.g. Boyle, Broadie and Glasserman, 1996). It is noted
that Monte Carlo simulation is also one of the often used approach to solving the
PDE in (4). The Monte Carlo method seems to be disadvantageous when a finite
difference method, a finite element method, a finite volume method, or a suitable
deterministic algorithm is numericaly stable and does not require too long compu-
tationa time. However, in the financia applications a Monte Carlo agorithm may
be interesting when one wants to compute the option prices at only a few points or

whenthe PDE approachisdifficult toimplement dueto the complexity of the problem.

3. Parametric Models and Closed Form Solution of Bond and Bond Option

Prices

11



In order to have closed form solutions for bond or bond option prices, most authors
have chosen simple parametric specifications for the spot interest rate model and the
market price of risk. Thefollowing are twowell known parametric model swhich lead
to closed form solutions of bond and bond option prices. Thefirst set of parametric
specificationsis as following:

() nr®) = Bl@—r®); o) =o;andr(r(t)) =1

where (> 0), o, 0 (> 0) and A are constants, i.e. the spot interest rate model is
specified as an Ornstein-Uhlenbeck process (as in Vasicek (1977) and Jamshidian
(1989)), and the market price of risk asaconstant. Under certain initial and boundary
conditions, the PDE (4) has known solutions. For instance, the price of pure discount
bond,i.e. P(r, T, T) = 1, withmaturity T —t, as derived in Vasicek (1977), isgiven

by
2
P(r,t, T) = exp[A(T — t)(R(c0) — ) — (T — t)R(c0) — Z—ﬂA(T —t? (@8

wheret < T,R(c0) = a + oA/ — 307/ AT —1) = (L —e’T). Or

equivaently, the term structure of interest rates takes the form

AT —t) o?AT —1)?

Rt T) = R(00) + (1) = RO~ + a5

t<T (9

The yield curve is monotonically increasing for values of r(t) smaller or equal to
R(c0) — 2p?/a?, and monotonically decreasing for values of r(t) larger than or
equal to R(co) + 3p?/a. For values of r (t) larger than R(co) — Zp?/a? but below
R(c0) + 2p?/a?, theyield is a humped curve. The value at time t of an European

call option, given that r (t) = r, on a pure discount bond with maturity T — t with

12



exercise price K and expirationdate S,t < S< T, as derived in Jamshidian (1989),

isgiven by:
Pr,t,S T, K)= P(r,t, T)N(h) — KP(r,t, SN(h - op) (20)

whereh = In[P(r,t, T)/P(r,t, §K]/op+0p/2, 0 = 0 (1—e P T-9) ()12,

and N (-) isthe CDF of standard normal distribution.

The discount yield curve implied by this model is obviously restricted in its shape.
Apart from that, the Ornstein-Uhlenbeck processis a so often criticized for alowing
negative interest rates, asr (t) is defined over (—oo, +00). Moreover, the following
analysiswill show that the Ornstein-Uhlenbeck processimposes very strong unreal-
istic restrictions on the structure of spot interest rate. If r (t) followsan O-U process,
then we have (see Appendix for a brief derivation), E[r(t)] = «, Var[r(t)] =
g—;, Cou(r(t +1),r(t)) = g—;e‘ﬂf, or Corr (r (t 4+ 1), r(t)) = e which is positive
for al t, decreases as t increases, and approaches 1 as t goesto 0. For §-period dif-
ference of the stochastic process, Asr (t) = r(t) —r(t —§), wehave E[Asr (1)] = 0,
Var[Asr (t)] = £ (1—e),and Cov(Asf (t+1), Ayt (1) = —L e (1—e )2,

wheret > §, or

1
Corr (Asr (t+ 1), Asr (1) = —Ee‘ﬂ("’”(l —e?), >4

whichisaways negative. When t = §, thefirst-order autocorrelation of the §-period
difference of the spot interest rate is Corr (Ar (t + ), Asr (t)) = —2(1 — )
which is negative and bounded between 0 and —1/2. When t = 2§, the second-order

autocorrelation is Corr (Asr (t + 28), Asr (1)) = —%e‘ﬂs(l — e %% which is dso

13



negative and bounded between 0 and —1/8.

The second set of parametric specificationsis as following:

(i) u(r () = Bla —r(); o(r ) = orV4(t); and A(r (t)) = Arv/4(t) /o

where 8(> 0), a, o (> 0) and A are constants, which is specified in CIR (1985). The
PDE (4) with certain initial and boundary conditions also has known solutions. For
instance, the price of a pure discount bond with maturity T — t, as derived in CIR

(1985), is of the form

P(r,t, T) = A, T)e B&Dr (11)

i _ $rexp@(T-1) 14 _ __exp@u(T-t)-1 _
with AT, T) = [gpoaa ol B& T = srpiao -u Where ¢, =
[(B4+ 12+ 2072, ¢ = (B+ A+ ¢1)/2, and ¢35 = 2Ba/c?. The bond priceisa
decreasing convex function of thespot interest rate. Or equivalently, theterm structure

of interest rate takesthe form
1
Rt, T) = T—_t(B(t, Tr) —InA¢, T)) (12

which is an increasing function of r(t) cross section and is either an increasing,
humped or decreasing function of T — t cross maturity depending on the value of
r(t). Similarly, the value at timet of an European call option, giventhatr (t) =r, on
apure discount bond of maturity T — t with exercise price K and expiration date S,

t < S<T,asderivedinCIR (1985), isgiven by:

P(r,t,S T, K) = P(r,t, T)x22r* (¢ + v + B(S T)); 4:4?,

o) — KP(1,t, 9x22r (¢ + ); L, #1e-13)

14



S
o2(er(SH—1)?

wherey = ¢y, ¢ = v = (B+ A+ y)/o? x?(; -, ) isthe noncentral

chi-square distribution with “:%* degrees of freedom and parameter of noncentrality

222 and 1 = [In(A$™)]/B(S, T) is the critical interest rate below which

exercisewill occur, i.e, K = P(r*, S T).

Different from the O-U process, the CIR squared-root process only alows for non-
negative interest rates as zero is a reflecting barrier of the process. However, similar
to the O-U process, the CIR squared-root process also imposes very strong unre-
alistic restrictions on the structure of the spot interest rates. If r(t) followsa CIR
squared-root process, then we have (see Appendix for abrief derivation), E[r (t)] =
a, Var[r(t)] = %, Cou(r (t+1), (1)) = 4e™, and Corr (r (t+1), r (t)) = e
whichisawayspositive, decreasesto 0 ast increases, approaches 1 ast goesto0. For
3-period difference of theprocess, Asr (t) = r(t) —r (t—38), wehave E[A;r (1)] = O,
Var[Ar (t) = 22 (1—e7),and Cov(A,T (t+7), Ayf (t) = —4-e FT=D (1—e #)?,

wheret > §, or

1
Corr(Agr(t 4+ 1), Agr (1) = —Ee‘ﬂ("’”(l —e?y >4

It imposes the same restrictions as the O-U process on the pattern of the autocorre-
lation of the §-period difference of the spot interest rate. That is, the autocorrelation
of the é-period difference of the process is aways negative with the first-order auto-
correlation bounded between —1/2 and 0, the second-order autocorrelation bounded

between —1/8 and 0, and so on.

Apart from the above two sets of parametric specifications, the models specified by
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Dothan (1978) and Brown and Schaefer (1991) aso give closed form solutions for
bond and bond option prices. However, Dothan's model impliesthat both the interest
rate itself and its log returns are nonstationary processes. The Brown and Schaefer
mode restricted the closed form solution of bond prices to the Vasicek and CIR
typei.e. P(r,t, T) = A(t, T)exp[—B(t, T)r], and the underlying mode of the state
variableis defined as the risk-neutralized process based on its equiva ent probability
measure. Even so, A(t, T) and B(t, T) do not always have explicit solutions given
the stochastic process of the spot interest rate. In addition to models with closed
form solutions, bond and bond option prices have been computed by Hull and White
(1990) based on time-inhomogeneous models, and by Ait-Sahalia (1996) based on
a spot rate model with parametric drift and semi-parametric diffusion, to list only a
few. Since assumptions made on different models are different from one to another,
the pricing formulas are different as well. In Hull and White (1990), prices of call
options on a 5-year bond are computed based on different parametric models 8. For
instance, the prices of out-of-the-money call options with strike price 105.00 (par
value of bond is 100.00) and maturities of 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0 years are
respectively 0.05, 0.16, 0.22, 0.22, 0.12, and 0.01 for extended Vasicek model and
0.04, 0.13, 0.17, 0.17, 0.08, and 0.00 for CIR model. The differences are generaly
over 20 %. Ait-Sahadia (1996) aso found that the prices based on his model are
significantly different from those cal culated from the Vasicek model and CIR model,

especialy for deep out-of-the-money long-maturity options.

8 The parameters are set as arbitrary values (not estimated from actual data) but are ensured that the
initial short-term interest rate volatilities are equal among different models.

16



4. Nonparametric Moddl and Numerical Solution of Bond and Bond Option
Prices

The fact that different models generate different prices for bond and other interest
rate derivative securities naturally rai ses the question that which of the models should
be employed. Or in other words, which of the competing models made the most
reliable assumptions about the spot interest rate process and the market price of risk.
Before looking at the data, this question cannot be answered with any credibility as
the data set is different from one to another and one model fitting one data set well
does not necessarily mean fitting another data set also well. That is, either we can
first specify the model with a priori restrictions, then subject the model to empirica
test to determine whether the model should be rejected or not, or aternatively we
can impose least restrictions on the model and let the data determine what kind of
structurethe model should have. The approach adopted in thetraditional spot interest
modeling is exactly the first one. Unfortunately the models are implemented in most
cases without subjecting to empirical tests. The nonparametric approach proposed in
this paper to modeling term structure dynamics is the dternative. That is, instead of
specifying simple functional forms for the drift function, diffusion function and the
market price of risk for pure simplicity and tractability, the model specification is

determined by the specific data set.

With the coefficient functions . (r (t)) and o (r (t)) in (1) specified as elements of a

family of genera functions, the diffusion function o (r (t)) can be estimated using
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the following consistent nonparametric estimator from discretely observed high fre-
guency data (see Jiang and Knight, 1995, for proof of consistency):
YK (B (g — )2

YL TR

where, without lossof generdlity, {r; : i =1, 2, ..., n} areassumed to be equispaced n

G2(r) =

(14)

observationsover thetimeperiod [0, T]withT > Oand samplinginterval A, = T/n,
K (-) isapositivekernel density function satisfying regul arity conditions, and h,, isthe
window-width of the nonparametric estimator (see A ppendix for admissiblewindow-
width conditions of the estimator).® The above nonparametric estimator of diffusion
function requires only mild regularity conditions and works for very general (both
stationary and nonstationary) diffusion processes and the drift term is a nuisance
coefficient function. Ash, — 0,n — oo, nh, — oo, and nh? — 0,5%(r) isa
poi ntwise consi stent estimator of o-?(r) and asymptotically normally distributed. The

variance of 62(r ) can be consistently estimated by V[62(r)] = 64(r)/ > K(% .

Direct estimation of the drift function w(r (t)) without any restrictions on the under-
lying structure of the diffusion process is impossible in general from discretely
observed data either over ashort timeinterval (no matter how frequent the datais) or
with fixed frequency (no matter how long period it is spanned). It's approximations
from high frequency data are possible, as suggested by Stanton (1996), but they can

be extremely non-robust in that the estimates are very sensitive to the sampling path.

9 Choice of hy, based on cross-validation (CV) rule is proved to be asymptotically optimal w.r.t. the
averaged squared error (ASE) rule or integrated squired error (ISE) rule by Kim and Cox (1996). A
condition required in their proof is strong-(«-) mixing which is less restrictive than the often required
uniform-(¢-) mixing condition. While the uniform-mixing condition is quite satisfactory for most
Markovian processes, it is too strong to apply to Gaussian processes.
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A robust nonparametric estimator of the drift function is developed in Jiang and
Knight (1995) as well using information contained in the margina density function
through the following relationship. A consistent estimator of the nonparametrically

specified drift function w.(r (t)) can be obtained from

L 1deAr) L, P
a0 = Sl=g— + O3

] (15)

which is derived from the Kolmogorov forward equation under the condition that
the diffusion processis either strictly stationary or has alimiting probability density
function, where p(r) is the kernel estimator of the margina density function of the

stochastic process.

Following above identification and estimation procedure, both the nonparametric
diffusion function and drift function can be identified and estimated. The empirica
results in this paper not only confirm that the above identification and estimation
procedure provides robust estimation resultsfor the spot interest rate process but also
suggest there are strong evidence that the traditional spot interest rate models are
mi sspecified.

To learn about the functional form of the market price of interest rate risk, we haveto
resort to the information contained in the term structure data of interest rates or the
information contained in the cross-sections data of any other interest rate derivative
security. A direct way of observing A(-) empirically is proposed in Vasicek (1977)

using the following equality:

aY(r(), )

1
3 li—o = Zz(u(r ) —o(r®)Ar(r())) (16)
T 2
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where Y(r (t); t) istheyield at t with instantaneousrisk freerater (t) and maturity .
Theadvantage of using above equality isthat the coefficient of w inthevaluation
PDE (4) can bereplaced by ZWEO. By doing so, we can actually avoid directly
estimating the market price of risk A(r (t)) and even the drift function w(r (t)) of
the spot rate process. However, estimating Wlfzo requires observations of the
yields with very short maturities for different levels of instantaneous risk free rates.
Apart from the fact that this kind of observations is very difficult to collect, such
data set is not desirable for estimation and statistical inference due to the spurious
microstructure effects associated with yields of short maturities and unavoidable
measurement errors. Moreover, this equality only uses the information of the yield
curve close to the origin, some important information contained in the entire yield
curve might be ignored. In this paper, we first observe the market price of risk
A(r (t), t) by fitting the implied yield curve of the model to the historical yield curve
10) then estimate the time-stationary market price of risk curve A(r(t)) using the

smoothing technique:
Yy KEEDAr ). 1)
Z: =ty K(f(t) r

where {to, ty, ..., t,} are the points of time at which the historical yield curves are

Ar) = (17)
observed, K(-) is a kernel function satisfying regularity conditions, and h, is the
smoothing parameter which can be chosen to minimize the IMSE of A(r) (see
Appendix for the algorithm of calculating the smoothing parameter). As the non-

parametric estimator is smooth and bounded, it is easy to verify that the estimated

10 In practice, A(r (t), t) can be obtained by minimizing, e.g., the sum of squared deviations across
maturities between the given historical yield curve and the yields produced by the model.
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market price of risk satisfies the regularity conditions in section 2.1, and hence the

mode isinternally consistent and precludes any arbitrage opportunities.

With nonparametrically estimated w.(+), o(-) and A(-), the prices of discount bonds
and other derivative securities P(-, -) can be obtained by either solving the PDE
numericaly or performing Monte Carlo simulations along the sample path of risk
neutral process, as discussed in section 2.2. By assuming A(-) is given or conditional
on A(+), the asymptotic distribution and asymptotic variance of the derivative security
prices P(-; -) are derived (see Jiang (1996)). In practice, the block-wise bootstrap
techniqueproposed in Kiinsch (1989) can beused to computethe standard derivations.
Similarly, standard derivations in the case of Monte Carlo simulations can aso be
straightforwardly computed, which can be used to monitor the errors of the Monte

Carlo simulations.

The advantages of the above nonparametric term structure model include: (i) the
mode is nonparametrically specified, allowing for non-linearity and maximal flexi-
bility infitting into the data; (ii) the model precludes any arbitrage opportunities; (iii)
the model is time-homogeneous and provides a consistent framework to study the
fundamental behavior of interest rates and term structure; and (iv) the model retains

aparsimonious structure and the computational tractability.

5. Implications of Nonparametric Model on Term Structure Dynamics and

Option Prices

In this section, we will estimate the nonparametric term structure model using the
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historical Canadian interest rate term structure data and investigate its implications
on term structure dynamics and prices of interest rate derivative securities. The
Vasicek (1977) and CIR (1985) model sare a so estimated using GMM for comparison
purpose. The market prices of risk for both the Vasicek (1977) and CIR (1985) models
are estimated by fitting into the average yield curve over the sample, whilethe market
price of nonparametric risk is estimated using the smoothing technique proposed
in Section 4.1 The estimates of u(-), o(-) and A(-) then are plugged into the PDE
(4) which is solved anayticaly or numerically for bond prices and the risk-neutral
process (6) based on which the Monte Carlo simulations are performed to compute

the bond option prices.
5.1. The Data

The observed interest rate term structure data is provided by Statistics Canada and
plottedin Figure 1, which presentsthe historical movementsof Canadian Treasury bill
rates with maturities of 1-month, 3-month, 6-month, and 1-year, as well as Canadian
bond yields with maturities of 2-year, 3-year, 5-year, 10-year, and 30-year. The data
are weekly and cover the period from June 2, 1982 to March 1, 1995, providing 666
observationsintotal. All the data are quoted as the average rates of the businessdays

in aweek and are expressed in annualized form as continuously compounded yield

11 () = Ounder the assumptionthat the local expectationshypothesisholds, i.e., the expected return
on al interest rate-sensitive contingent claims is the riskless rate. Many theories have been presented
to explain the relation among interest rates on bonds of various maturities in an uncertain economy.
One of the earliest theories is known as the expectations hypothesis. In continuous-time models, the
expectations hypothesis plays the same pivotal role that risk neutrality does for option pricing. Of the
variousversionsof expectations hypotheses, the local expectationshypothesisis the only one acceptable
as a statement of equilibrium in continuous-time models. Other versions of expectations hypothesisall
lead to arbitrage opportunities.
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Table 1.

Summary Statistics of the Term Structure Dataand Stationarity Test

(a) Summary Statistics®

Variables? N Mean Std. Dev. 01 03 05 07 09 P11
rm 666 | 0.0891 | 0.0267 | 0.990 | 0.967 | 0.942 | 0.916 | 0.887 | 0.856
rim —rlm | 665 | -1.24E-4 | 2.61E-3 | 0.014 | 0.067 | 0.058 | 0.081 | 0.036 | -0.046
rm 666 | 0.0910 | 0.0260 | 0.991 | 0.967 | 0.940 | 0.913 | 0.883 | 0.853
rdm —r3 | 665 | -117E-4 | 2.33E-3 | 0.189 | 0.045 | 0.075 | 0.099 | 0.033 | 0.003
rom 666 | 0.0927 | 0.0252 | 0.989 | 0.961 | 0.931 | 0.900 | 0.870 | 0.838
rém —rf™ | 665 | -1.20E-4 | 2.79E-3 | 0.097 | 0.028 | 0.074 | 0.052 | 0.063 | 0.013
rey 666 | 00946 | 0.0240 | 0.988 | 0.957 | 0.922 | 0.887 | 0.854 | 0.819
ref,—rY | 665 | -1.19E-4 | 2.80E-3 | 0.090 | 0.028 | 0.020 | 0.019 | 0.063 | 0.009
reY 666 | 0.0937 | 0.0210 | 0.987 | 0.954 | 0.915 | 0.876 | 0.836 | 0.798
r?, —r? | 665 | -1.10E-4 | 2.48E-3 | 0.068 | 0.109 | 0.037 | 0.053 | 0.030 | 0.016
reY 666 | 00943 | 0.0196 | 0.987 | 0.952 | 0.909 | 0.866 | 0.823 | 0.782
rf,—r | 665 | -102E-4 | 2.31E-3 | 0.103 | 0.131 | 0.020 | 0.034 | 0.008 | 0.027
reY 666 | 00962 | 0.0187 | 0.987 | 0.954 | 0.916 | 0.875 | 0.834 | 0.796
rf,—re’ | 665 | -1.04E-4 | 2.09E-3 | 0.051 | 0.113 | 0.031 | 0.041 | -0.011 | 0.015
ri% 666 | 00994 | 0.0180 | 0.987 | 0.957 | 0.921 | 0.883 | 0.847 | 0.812
ey —ri” | 665 | -1.02E-4 | 1.83E-3 | 0.066 | 0.096 | 0.059 | 0.036 | -0.007 | 0.060
r2o 666 | 0.1024 | 0.0175 | 0.988 | 0.960 | 0.927 | 0.891 | 0.858 | 0.826
o —r?” | 665 | -1.01E-4 | 1.72E-3 | 0.038 | 0.085 | 0.070 | 0.023 | -0.025 | 0.031
(b) Augmented Dickey-Fuller Stationarity Test of the 1-Month T-Bill Rates
Ho: Test Statistic® | Critical Vaue (10%)
Nonstationarity -2.83 -2.57

Note: a 2™ r3™, rom v 1 v 1 1! r® denote respectively the weekly observationsof 1-, 3-,
6-month, and 1-year Canadian Treasury bill rates, aswell as 2-, 3-, 5-, 10-, and 30-year Canadian bond

; Im _ . Im (3m _(3m (6m _.6m o1y _ .y .2y .2y 3y 8 By 5y oy 10y .30y 30y
yields.re =™, rn = e =T P = e T =T T =T T =T T =T w T — T

denote the corresponding week-to-week change of the weekly Treasury bill rates and bond yields;

b. p; denotesthe autocorrelation coefficient of order j;

c. Thelag order for the augmented Dickey-Fuller nonstationarity test of the 1-month t-bill ratesis 9, see
Harvey (1993) for description of the test statistic, and Phillips (1987) for the justification of using the
Dickey-Fuller table when the residuals are heteroskedastic and possibly serially dependent.

to maturity *2. The short-term interest rate used for estimating the spot rate processis

12 When calculating Treasury bill rates and bond yields, the rate of coupon bondsis first converted
to the zero coupon bond rate, then the bond equivalent yields are transformed to the continuously
compoundedyieldsto maturity. It is also noted that the measurement error of Treasury bill rates or bond
yieldsfor different dayswithin aweek dueto different maturity lengthswhichis caused by fixed auction
day is averaged out and therefore minimal.
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the weekly Canadian 1-month Treasury bill rates which capture the volatility of the
short-term interest rates from week to week. The rates as a time series are the first

intersection of the term structure data as plotted in Figure 1.

Table 1 reports the means, standard deviations, and part of the first eleven autocor-
relations of the weekly rates and the weekly changes in the rates for al different
maturities. The unconditional average level of the weekly observations for 1-month,
3-month, 6-month, 1-year Treasury bill rates and 2-year, 3-year, 5-year, 10-year, 30-
year bond yields are respectively 0.0891, 0.0910, 0.0927, 0.0946, 0.0937, 0.0943,
0.0962, 0.0994, and 0.1024, which is generaly increasing with maturity, with stan-
dard deviations of 0.0267, 0.0260, 0.0252, 0.0240, 0.0210, 0.0196, 0.0187, 0.0180,
and 0.0175, which is generally decreasing with maturity. Although the autocorrela
tionsintheinterest rate level decays very slowly, those of the week-to-week changes
are generaly small and are not consistently positive or negative. It is also noted that
the autocorrel ations of different orders of thefirst difference of the Treasury bill rates
and bond yields seem morelikely to be positivethan negative, suggesting that neither
the O-U process nor the CIR process can be used as a reasonabl e representation of
any of the series, asboth models only allow negative autocorrel ationsfor the §-period
difference of the process. The result of a formal augmented Dickey-Fuller nonsta-
tionarity test for the one month Treasury bill ratesisa so reported in Table 1. Thenull
hypothesis of nonstationarity is rejected at the 10% significance level. Since the test
is known to have low power which is the probability of rejecting the null hypothesis

when it isnot true, even aslight rejection means that stationarity of the seriesisvery

24



Table 2.

Correlation Matrix and Principa Components of Weekly Changesin OTR Yields

(a) Correlation Matrix

im
e

3m
e

6m
e

1
reY

2
reY

rY

reY

1
ri%

r2o

1.000 0.994 0.977
1.000 0.993
1.000

0.955
0.978
0.994
1.000

0.909
0.934
0.959

0.978
1.000

0.879
0.905
0.933

0.957
0.994
1.000

0.840
0.863
0.893

0.921
0.976
0.990
1.000

0.770
0.789
0.820
0.853
0.930
0.955
0.984
1.000

0.705
0.718
0.747

0.781
0.873
0.907
0.951
0.989
1.000

(b) Eigenvalues' Absolute (10E04) and Relative (%) Magnitudes

Absolute | 1.70 223 284 416 528 7.65 2010 31.70 424.36
Relative | 0.34 046 057 083 106 153 402 634 8487
(c) Orthonormal Basis of Eigen-vectors

Maturity | v9 v8 V7 V6 v5 v4 v3 v2 vl
0.083 00 -002 -014 029 021 005 052 -073 022
0.25 002 003 037 -071 -029 -0.00 -0.08 -040 0.32
0.50 004 -005 -019 044 -051 -029 -047 -0.16 043
1.0 -0.05 012 -015 -013 075 -008 -043 0.00 044
2.0 -001 -005 062 036 003 054 001 020 038
3.0 007 -042 -057 -024 -014 045 017 024 035
5.0 -037 074 -016 -004 -018 -003 032 026 0.30
10 079 008 009 -002 005 -036 031 026 025
30 -048 -050 020 -001 007 -053 030 023 022
Notes:

The variance-covariance matrix of changes in yields over one-week intervals is decomposed into an

orthonormal basis of eigen-vectors. The directions of the eigen-vectors are chosen to maximize the
associated variance.

likely.
5.2. Principal Components Analysis
In Table 2, the correlation matrix shows a strong correlation between each two of

the Treasury bill rates or the bond yields with different maturities, suggesting the

25



one-factor spot rate model could very well represent the co-movements of the whole
yield curve. Correlation between the front- and back-ends of theyield curveis 0.705.
Table 2 adso shows the results of a principa components analysis of the variance-
covariance matrix of weekly par yield changes over the observation period. There
isadominant first principa component that explains 84.87% of the total variation.
There are aso two less important second and third principal components accounting
respectively for 6.34% and 4.02% of the total variation. The direction of the first
principal component is essentialy of a paralel shift across maturities, which can
be interpreted as the level effect. The directions of the second and third principal
components are associated respectively with changes in the discrepancy of the long-
and short-end rates of the yield curve and the change of the slope of the yield curve,
which can be interpreted as the stegpness effect and curvature effect. It is noted that
the principal components analysisis essentially based on a static framework, while
the one-factor term structure models are dynamic structural models. The one-factor
model only implies that the changes of yields with various maturities are locally
perfectly correlated. Changes of yields with various maturities may not be perfectly
correlated over a given non-small timeinterval due to nonlinearity of both the drift
term and diffusion term. Our empirica results show that the nonparametric term

structure model can effectively mimic the level effect and steepness effect.
5.3. The Estimation Results

The estimation results of the parametric models aswell as nonparametric modelsare

reported in Table 3 and Figures 2.1, 3.1, and 4.1. Both parametric spot interest rate
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models are estimated using GMM based on the exact moment conditions derived
from the continuous-timemodel rather than the moment conditions derived from the
discretized version of the model asin most finance literature (see Appendix for alist
of both conditions). The estimators based on the di scretized version of the continuous-
time model are known to be biased due to misspecification. The nonparametric spot
interest rate model is estimated using Gaussian kernel s and the window-width which
minimizes the IMSE of each functional estimator. The data of the short-term spot
interest rate is the weekly observations of the one-month Treasury bill yields. We
checked the robustness of the estimation results by using different kernels, different
window-width, and different time series of short-term interest rates. The choice of
the kernel function proves to be of little importance, and the estimation results are
not very sensitive to small changes of window-width around the optima values.
Moreover, the estimation results for both diffusion function and drift function based
onthedaily 3-month Treasury bill rates are very close to our reported resultsin terms

of their functional shapes.

Figure 2.1 plots the nonparametric estimator, with 95% pointwise confidence band,
of the diffusion function and Figure 2.2 plots the diffusion functions estimated from
different models. Noticeable features of the nonparametric diffusion function and
its important difference from the parametric diffusion functions include: First, the
95 % pointwise confidence band is narrower in the middle but tends to get wider
dramatically towards two ends (below 2% and above 18% ) for the lack of enough

observations around the high and low level of interest rates. Second, the diffusion
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Table 3.

Estimation Results of Alternative Interest Rate Term Structure Models

(a) Estimation of the Spot Rate Processes

Model Estimation Method Drift Function Diffusion Function
Vasicek O-U GMM « =0.0695 B=0.4205 | 02=3.068210~*

Process (5.047) (1.987) (6.620)

CIRSR GMM o =0.0593 B=0.3294 | 52=2.8586 103

Process (2.758) (1.601) (6.588)
Nonparametric Nonparametric Nonp Drift Nonp Diffusion

Process Figure3.1 Figure2.1

(b) Estimation of the Market Prices of Interest Rate Risk

Model Estimation Method Market Price of ~ Risk Parameter
Vasicek O-U Curvefitting Avas = -0.9412

Process (-5.795)

CIRSR Curvefitting Acir= -0.1598

Process (-10.760)
Nonparametric Nonparametric Nonp Market Price  of Risk Function

Process Smoothing Figure4.1

Note: The numbersin brackets are t-ratios of the above estimates.

function exhibits noticeable variations from low to high values, which provides the
evidence to regject the constant or flat diffusion function specification in the Vasicek
(1977) model. Third, not only doesthe diffusion function not | ook flat, it does not look
linear either. Rather it shows the shape of a“smil€", with both low and high interest
rates showing higher volatility and the medium interest rates showing rel atively lower
volatility. This provides the evidence to reject the CIR (1985) squared-root model
specification which expects that high interest rates should vary morethan low interest

rates.

The nonparametric estimator of the drift function, with its 95% pointwise confidence
band which is computed using blockwise bootstrap technique proposed in Kiinsch

(1989), isplottedin Figure 2.1 and compared with parametric drift function estimators
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in Figure 2.2. The nonparametric drift function predicts the highest long-term mean
for spot interest rate, i.e. around 8.6% which is very close to the unconditional
mean of the observation 8.91%, while both the Vasicek and CIR models predicts
much lower long-term means at the level of 6.95% and 5.93% respectively. All three
drift functions exhibit consistent mean reverting property, i.e. the drift function is
consistently positivefor interest rate |level below thelong-term mean and consistently
negative otherwise. While the magnitude of the pulling force is proportiona to the
deviation of theinterest ratelevel from thelong-term mean (i.e. 8 isconstant) for both
parametric models, the nonparametric drift function exhibits a pulling force whose
magnitude has a varying proportion to the deviation of the interest rate level from its
long-term mean. The proportionis consistently increasing asthe deviation getslarger
initsabsolute value, first slowly when the interest rate level is close to the long-term
mean and then rapidly when the interest rate level is far away from the long-term
mean. And in general the pullingforceissmaller than that of both parametric models,

with Vasicek having the most significant mean reverting property.

The market price of risk A of the Vasicek model and Ar%/?/o of the CIR model
are estimated by minimizing the deviation of the model implied yield curve from
the average zero-coupon yield curve over the sample. The smoothing functional
estimator A(r) is obtained using the Gaussian kernel and the smoothing parameter
which minimizesits IMSE. The nonparametric estimator of the market price of risk
isplotted in Figure 4.1, with its 95% pointwise confidence band, and compared with

other market prices of risk in Figure 4.2. It is noted that the nonparametric market
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price of risk is essentialy non-zero, pointwise significantly negative, and appearsto

be neither a constant nor a squared-root function of short-term interest rate.
5.4. Implicationson Term Structure Dynamics

Having estimated the drift function, diffusion function, and market price of risk, our
aimisnow to utilizethese estimatesto investigateimplicationsof model specification
on term structure dynamics and prices of interest rate derivative securities. Figures
5.1,5.2and 5.3 plot theyiel d curves computed from the Vasi cek model, the CIR model
and the nonparametric model with short-term interest rate levels equal to 4%, 10%
and 16%. Theyields of various maturitiesare converted from the discount bond prices
which are computed using the analytical solutions for the CIR and Vasicek models
and by numerically solving PDE (4) for the nonparametric model with the boundary
and final conditions specified in the Appendix.t® Pointwise 95% confidence band of
the nonparametric yield curves, computed using the blockwise bootstrap technique,
are also plotted . It is easy to see that the nonparametric model and the Vasicek
and CIR modelsimply significantly different yields curves, especialy for low- and
high-level of short-term interest rates. As indicated previously, the bond and bond
option prices are determined through PDE (4) by the drift term, the diffusion term
and the market price of risk. For example, the short-term bond prices mostly reflect

the differencesin therisk-neutra first-moment of the underlying process, as aresult,

13 Accuracy of the numerical algorithm of solving the parabolic PDE is examined by comparing the
numerical solutionswith analytical solutions for the Vasicek and CIR models, and the errors are found
to be small.

14 Thedatablock sizeis set as 52, equivalent to one year's observations, based on the autocorrelation
coefficients (s, = 0.5461). The number of replication is 1000.
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even for the short-end yield curves, the nonparametric model can imply very different
resultsthan the Vasicek and CIR models. Since the model sarefitted into the observed
yield curves differently, consequently the CIR and Vasicek yield curves arerelatively
close to each other, while the nonparametric prices are mostly significantly different
from the parametric yield curves. The difference is more visible for both high and

low short-term interest rate level and longer-end yield curves.

Inspection of historical Canadian term structures reveals that theyield curve tendsto
beupward sloping and steeper at the short end (0-5 years), rel atively flat for maturities
in excess of 5 years. Thisis in general consistent with the yield curves computed
from the nonparametric term structure model. Moreover, the overall impact of the
short rater (t) on theyield curve isaso as expected: an increaseinr (t) tendsto shift
thewholeyield curve up but flattens the curve, whileadrop in r (t) tends to shift the
whole yidld curve down but steepens the curve, mimicking both the level effect and

steepness effect.

The term structures replicated by the nonparametric model based on the historical
short-term interest rates (i.e. calculating Y(r (t), ) by plugging in observed r (t) for
various t) proveto be avery good fit of the historical observations of term structures.
As Figure 6.3 indicates, the absolute biases or residual s between the historical term
structures and the nonparametric model generated term structures are generdly very
small, and much smaller than their counterparts in the CIR and Vasicek models, as
plottedin Figures6.1and 6.2. Further cal cul ation a so indicatesthat the nonparametric

model can replicate not only the term structure of yields but aso the term structure

31



of yield volatilities, i.e. the yields generated by the nonparametric model also have a

downward-slope volatility curve against the term.
5.5. Implications on Option Prices

Table 4 reports the 2- and 4-year cal option prices with various strike prices on a
5-year discount bond *° for the nonparametric, CIR, and Vasicek models based on
Monte Carlo simulations. The strike prices are expressed as percentages of current
bond prices with corresponding maturities. In performing the simulations, 1,000
risk-neutral interest rate paths are simulated using 100 time periods per day, and
the variability of the results is reduced using the antithetic variate approach. The
Monte Carlo integration involves two approximations: one is the Monte Carlo error
due to replacing the expectation operator with the “sample” average over certain
number of replications, and the other is the discretization error due to replacing
the continuous-time sample path with a discrete-time sample path using certain
discretization interval. In principle, the Monte Carlo error can be reduced to any
desired level with significantly large number of replications. However, the rate of
convergence isonly squared root of the number of replications, so reducing the error
by half would require four times of computation. Similarly, the discretization error
can be reduced with a smaller discretization step, but due to computationa time,
this approximation error should be balanced with the Monte Carlo error (see, e.g.

Duffie, 1992, pp201-202). Our exercises show that the antithetic variate technique can

15 Evenif early exerciseof the optionisallowed (American option), it will never be optimal to exercise
it because the underlying pure discount bond pays no coupon. If the underlying bond is a coupon bond,
then American options would be valued differently from European options.
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Table4
Call Option Prices on aFive-Year Zero-Coupon Bond Under Alternative Models

Option Expiration | Annualized Strike Prices
Time (years) Spot Rate 96% 98% 100% 102% 104%
2 0.04 02270 0.0541 0.0096 0.0017  0.0006

(0.0074) (0.0032) (0.0012) (0.0003) (0.0002)
02104 00484 00081 00008  0.0000
02182 00520 00088 00010  0.0001

0.16 47596 36329 27557 18721  1.1137

(0.1155) (0.0814) (0.0651) (0.0411) (0.0307)
49560 3.8662 28268 19874  1.1961
45607 35704 25986 16041  0.9451

Z 0.04 03147 00287 00011  0.0005  0.0002
(0.0091) (0.0017) (0.0003) (0.0002) (0.0001)
02875 00241 00005 00000  0.0000
02992 00250 0.0006 00000  0.0000
0.16 39579 29268 19978 09833  0.2690
(0.1003) (0.0874) (0.0605) (0.0346) (0.0079)
42054 30663 21268 11274 03071
38280 28198 18135 08664 0.2266

Note: All call option prices correspond to a 5-year discount bond with face value of $100. The exercise
priceis expressed as percentage of the current bond price with corresponding maturities for each model.
The four elements of each cell from top to bottom are: the nonparametric price, its standard error (in
parentheses) calculated from simulations, and the Vasicek and CIR prices.

largely reduce the variance of the estimates. Overall, the accuracy of the Monte Carlo
simulation can be monitored by computing the standard derivations of the estimates.
Table 4 also report the standard derivations computed from the simulations for the

nonparametric option prices. 1

The option prices computed from the nonparametric model and the CIR and Vasicek

16 Again, accuracy of the Monte Carlo simulation results are examined by comparing the Monte
Carlo resultswith the analytical solutions of the Vasicek model and the numerical solutions of CIR and
nonparametric models, and the errors are also found to be small. Numerically solving the European
call option prices from PDE (4) consists in a two-stage procedure. First, the equilibrium value of the
underlying bond at the maturity date of the option P(r, T, S) is computed by solving the valuation PDE
(4) subject to the terminal and boundary conditions of bond prices. Then this value is substituted into
the boundary conditions as specified in the Appendix for the option and the valuation PDE solved a
second time subject to this latter condition.
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models are in general different, with out-of-the-money options showing the largest
percentage discrepancies. By eliminating differences in the prices of the underlying
bonds, differences in bond option prices can be attributed to differencesin the vol atil-
ity of theunderlying bonds. Thevolatility of therisk-neutral bond price can bederived
aso?(r (t))(";—f’)2 according to 1té’s lemma or equation (2), which is proportional to
the diffusion function of the spot interest rate and the sensitivity of bond price to
the spot interest rate. The results show that among al the factors which affect option
prices of short-term bonds, the diffusion function, or the second moment, of the spot
interest rate appears to play the most important role. For low level of interest rate at
4%, the volatility of the nonparametric model is higher than that of the Vasicek model
whichisinturn higher than that of the CIR model, as a result, option prices show the
same order that the nonparametric option prices are higher than the Vasicek prices
whichin turn are higher than the CIR prices. For highlevel of interest rate at 16%, the
volatility of the CIR model is higher than that of the nonparametric model whichis
in turn higher than that of the Vasicek model, as aresult, the option prices are ranked
accordingly. This second-moment effects are morevisiblefor deep-out-of-the-money
options. It is noted that for the deep out-of-the-money options, the CIR and Vasicek
prices generally fall outside of two or more standard deviations of the nonparametric

prices.

6. Conclusion

In this paper, we extended the interest rate term structure model through nonpara-
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metric specification of the drift function, diffusion function, and the market price of
risk. The model precludes any arbitrage opportunities, retains a simple structure and
the computational tractability, and allows for maximal flexibility in fitting into the
data. Data are alowed to speak for themselves. The model isimplemented using the
historical Canadian term structure data. Implications of the nonparametric model on
term structure dynamics and prices of interest rate derivative securities are investi-
gated through comparison with the parametric models, i.e. the Vasicek (1977) and
CIR (1985) models. The empirical resultsin this paper not only provide strong evi-
dence that the traditional spot interest rate models and market prices of interest rate
risk are misspecified, but also suggest that model specification has significant eco-
nomic impact on the dynamics of term structure and prices of interest rate derivative
securities. Since the model can capture the true volatility of the spot interest rates,
and the historical term structures can be best fitted by the model with a flexible
functional form of market price of risk, such amodel can be used for various tests
based on market quotes of option prices. For instance, it can be used to test whether
the genera assumptions made about the market in the pricing framework are valid or
not, or equivalently to test whether the market itself is efficient or not. Moreover, the
methodol ogy devel oped in this paper can easily be employed for the pricing of other
options or the options based on other financial instruments. Finaly, further research
on thedynamics of interest rate term structure can be undertaken viaa nonparametric

or semi-parametric two-factor models.
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Figure 5.1. Nonp, Vasicek and CIR Term Structures with r(t)=0.04
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Appendix:

1. The Ornstein-Uhlenbeck Process: The transitional density function of the O-U process
is a Gaussian kernel with conditional mean and variance E[r(t + 7)|r(t)] = rt) + (1 —
e —r), Var[rt + 0)rit)] = ;—;(1 — e2f7), In order for the process to be station-
ary, theinitial marginal density function must be set equal tothefina limiting density function
of the process, i.e., themarginal density function of the O-U processisa so aGaussian kernel
with mean and variance E[r (t)] = «, Var[r(t)] = ;—;, the covariance of r (t + ) and r (t)
can be calculated from

Cov(r(t +1),r(t)) =E[rt+ori)]—a?
= Eqlrt+ormir®] —o?
= Eolror® + A - e —rm)]] - o?
= ;—ﬂe_ﬂr
And hence Corr(r(t + 1),r(t)) = e #*. For §-period difference of the O-U process,
Asrt) =r(t) —r(t —8), wehave E[Asr (1)] =0,

Var[Asr(t)] = Var[rt)] + Var[rt — )] — 2Cou(r(t), r(t —8))
=T (1-e)

andfort > §,

Cov(Asrt + 1), Astr(t)) =E[rt+1)—rt+7-=8))E) —rt—293))]
= _g_;e—ﬂa—a) (1— e P52
or Corr(Asr (t + 1), Asr () = —3e7 =9 (1 — ).

2. The CIR squared-root Process. The transitiona density function of the CIR process
is a non-central x? distribution with conditional mean and variance E[r(t + 7)|r(t)] =
r(t)+1—e )@ —r), Var[rt+o)rt)] = 5 —e?r) +a(5)(1—e 2.
Due to the same reason as for the O-U process, tﬁe marginal density function of the CIR
process is a Gamma distribution with mean and variance E[r (t)] = «, Var[r(t)] = “2—‘;2.
Similarly, the covariance of r(t) and r (t) can be calculated from

E[rt +o)r®)] —a?
Ero[Elr t + Dr)r®)]] — o2
ErolrOr®) + @ —e )@ —r)]] — o?

— 0‘_‘72e—,5"5

=%

Cou(r(t + 1), r(t))

And Corr(r(t + 1), r(t)) = e #*. For §-period difference of the CIR process, Asr (t) =
r) —r( —38), wehave E[Asr (t)] =0,
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Var[Asr(t)] = Var[rt)] + Var[rt — )] — 2Cou(r(t), r(t —3))
=1

andfort > §,

Cov(Asrt + 1), Astr(t)) =E[rt+1)—rt+7-=8))E) —rt—293))]
_ _az_aﬂze—ﬂ(r—a)(l Y

or Corr(Asr (t + 1), Asr () = —3e P09 (1 — ).

3. Choices of Kernel Function and Window-Width for Diffusion Function and Drift
Function Estimation: The regularity condition of the kernel function of order r for both
diffusion function and drift function estimation are as follows:

(i) The kernel K(-) is symmetric about zero, continuoudly differentiable to order r on R,
belongsto L2(R), and /"2 K (x)dx = 1;

(i) K() isof order r: [TX K()dx = 0,i = 1,....r — 1, and [T x"K(x)dx # 0,
S IXI K (0] dx < oc.

The regularity conditionsfor the admissible window-width are as follows: as the sample size
n — oo, and thesampling interval A,(= 1/In(n)) — O,

(i) hy — 0, nh, — oo, and nhi*1 — O for the diffusion function estimation;

(ii) hn — 0, nin(n)h, — oo, and nh2*1 — 0 for the margina density function estimation;
and

(iii) hn — 0, nin(n)h? — oo, and nh¥+1 — 0O for thefirst derivative of the marginal density
function estimation, both the margina density function and its derivative are required in the
drift function estimation.

The above conditionsensure that for al cases, the biasin the estimator isasymptotically neg-
ligibleand at the same time the variance of the estimator goesto zero as sample size increases
to infinity. The actual choice of the kernel for al cases is the standard Gaussian kernel with
orderr =2,i.eK(x) = \/%_ne‘xz/z. The window-width sequence chosen ish,, = c,n~%3 for
the diffusion function estimation and h, = ¢,n~/® for the estimation of both the marginal
density function and itsfirst derivative, where ¢, = ¢/In(n), and ¢ ischosen to minimize the
IMSE of each functiona estimator. Exponential and Epanechnikov kernels were also used
for the estimation and produced very similar results. The estimation results are aso robust
to small changes of the window-width around the optimal values and different time series of
short-term interest rates.

4. Choiceof Kernel Function and Smoothing Parameter for Market Price of Risk: Choice
of the smoothing kernel for the market price of risk is also the standard Gaussian kernel. The
algorithm of obtaining the optimal smoothing parameter which minimizes the IMSE of A(r)
using cross-validation method is as follows (see, e.g. Hardle and Vieu (1987):
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Step 1. Compute the leave-one estimate
A, (1))
at the observation pointsrj, j = 1,2, ..., n;

Step 2: Construct the cross validation function

1d A
CV(hn) = =3 0 = hn, j (1)) w ()
j=1

where w denotes aweight function which is set as a constant in our estimation;
Step 3: Find the optimal window-width as

h = argming,,|CV (hy)|

5. GMM Estimation of the Vasicek (1977) and CIR (1985) Models. The GMM estimates
of (a, B, 0?) for the Vasicek (1977) and CIR (1985) models are obtained from the following
four exact (first and second order) moment conditions:

1 Nt
Gn (a, B, 0%) = N_1 Z Fi(e, B, 0%
i1

with
€i+1

: 2y €iy1li
R = 2 Een)

(6i2+1 — E[ei2+1|ri])ri

wheree€i11 = (fiy1 — 1) — E[(rix1 — r)In] with E[(fiy1 — ri)[ri] = (1 — e P2%) (o —ry) for
both models, At; isthe it sampling interval. The exact conditional variance of interest rate
changes over time interval of length At isgivenby E[e? ,|ri] = V[riy1ri], with

Ele’1Iri] = (0%/28)(1 — e 22%)

for the Vasicek model; and
E[e?1Iri] = (02/B) (€ P2 —e 21 + (07/28)(1 — e 242
for the CIR model. These moment conditions correspond to transitions of length At; and

are not subject to discretization bias. In our estimation, At = 1/52 for weekly data and
At = 1/252 for daily data. Since these GMM systems are overidentified, we weighted the
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criterion optimally (see Hansen (1982)).

It is noted that in most financial economics literature, parameter estimation of the diffusion
processes using GMM technique consists in first discretizing the continuous-time diffusion
process, then based on the discrete model deriving moment conditions. The GMM approach
nolonger requiresthat thedistributionof interest rate changes benormal, but only requiresthat
the conditional instantaneousvariance of theresidual is proportional to the length of sampling
interva, i.e., E[eiz+l Ir] = o?(-)At;; the asymptotic justification for the GMM procedure
requires only that the distribution of interest rate changes be stationary and ergodic and that
the relevant expectations exist. The moment conditionsare as follows:

€1
) 2y _ €ifi
Fi@ p,0% = et — ol AL
(6i2+1 — ozri” At)ri

withy = Ofor theVasicek model, andy = 1forthe CIRmodel, withej 1 =ri 1 —ri —B(a—
ri)At; where Aty = tj,1 — tj, and At = To/N in the case of equispaced sampling interval.
Misspecification of the model and biasedness or inconsistency of the parameter estimators
dueto “discretization" are known factsin the literature.

6. Final and Boundary Conditionsfor Bond and Bond Option Prices: Theinitia (or final)
condition and boundary conditions for bond price and bond option price are as follows:

Let P(r,t, T) bethe price of apure discount bond with face value 100 and maturity date T
when the spot interest rate isr at date t . It corresponds to the following coupon payment
or dividend payment and initial (or final) and boundary conditions. d(r, t) = 0(no payment),
P, T, T) = 100 for dl r > 0 (find condition), and lim;_, ;o P(r,t, T) = O for all
0 <t < T (boundary condition).

For a call option which expires at date T, has an exercise (or strike) price K, and the
underlying discount bond matures at date S where T < S. Let P(r,t, T; S, K) be its
price at date t when the spot interest rate is r. It corresponds to the following coupon
payment or dividend payment and initial (or find) and boundary conditions: d(r,t) = 0
(no payment), P(r, T, T; S, K) =max (0, P(r, T, S) — K) for al r > 0 (fina condition),
lim_ 0 P(r,t, T; S, K)=0foral 0 <t < T (boundary condition).
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