7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Unification of box shapes in molecular simulations
Bekker, H.

Published in:
Journal of Computational Chemistry

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1997

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Bekker, H. (1997). Unification of box shapes in molecular simulations. Journal of Computational Chemistry,
18(15), 1930-1942.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/d38aedaa-fad3-48e0-b7c1-cf5cd1578a6c

Unification of Box Shapes in
Molecular Simulations

H. BEKKER

Department of Computing Science, University of Groningen, 9700 AV Groningen, The Netherlands

Received 3 June 1996; accepted 23 June 1997

ABSTRACT: In molecular simulations with periodic boundary conditions the
computational box may have five different shapes: triclinic; the hexagonal
prism; two types of dodecahedrons; and the truncated octahedron. In this
article, we show that every molecular simulation, formulated in one of these
boxes, can be transformed into a simulation in one of the other ones. The
transformation can be done in a preprocessing phase. The simulation in the new
box is exactly identical to the simulation in the original one. This means that
every molecular simulation may be done in the same type of box. Because the
triclinic box is the easiest one to implement, we pay special attention to how to
transform the other four box types into triclinic boxes. As a consequence,
simulations in the often used truncated octahedron are superfluous; they may
be done in a much simpler way in a triclinic box. © 1997 John Wiley & Sons,
Inc.] Comput Chem 18: 1930-1942, 1997

Keywords: molecular simulation; periodic boundary conditions; box shape;
lattice

Introduction

T o mitigate finite system effects most molecu-
lar simulations are done on systems with
periodic boundary conditions (PBC). This means
that the computational box is surrounded in a
space-filling way by replica boxes, with identical
content. In terms of the crystallographic Bravais
lattices we consider only triclinic systems (i.e.,
systems without symmetry elements).

Fejes T6th! showed that, in three-dimensional
(3-D) space, there are five convex' box types (see
Fig. 1) that can be stacked in a space-filling way;
that is, there are five possible types of boxes which
may serve as a computational box: the triclinic
box; the hexagonal prism; two types of dodecahe-
drons; and the truncated octahedron. For brevity,
we will designate these box types PCT1, PCT2,
PCT3, PCT4, and PCT5, where PC stands for
“primitive cell,” and T stands for “type”. The

"This property is not strictly necessary, but image calcula-
tions would become very complex for a nonconvex box.

Journal of Computational Chemistry, Vol. 18, No. 15, 1930-1942 (1997)

© 1997 John Wiley & Sons, Inc.

CCC 0192-8651 /97 / 151930-13

PCT1 PCT2 PCT3

PCT4 PCT5 PCT5R

FIGURE 1. Instances of the triclinic box, the hexagonal
prism, two types of dodecahedrons, the truncated
octahedron, and the most regular instance of the
truncated octahedron, in this article designated by PCT1,
PCT2, PCT3, PCT4, PCT5, and PCT5R, respectively.

notion “primitive cell” will be explained later. The
rectangular instance of PCT1 will be designated by
PCT1R and the most regular instance of PCT5 by
PCT5R. We will use PC to designate, in general,
one of the boxes PCT1, PCT1R, PCT2, PCT3,
PCT4, PCT5, PCT5R. In the molecular simulation
world, PCT5R is often called ““the truncated octa-
hedron,” but as we will show later it is only the
most regular instance of a broader class of boxes.

In the early years of molecular simulation
PCT1R was used. Later, PCT3 was introduced,’
and then PCT5R.! Complex-shaped boxes were
introduced because it was believed (erroneously)
that this was the only way to get a minimal vol-
ume simulation. An implicit condition was that
the box should contain an unfragmented molecule.
This superfluous implicit condition has led to the
use of complex-shaped boxes. As will become clear
from this article, it is not forbidden that the
molecule is stored in the box in pieces, provided
that the molecule is reconstructed when the boxes
are stacked.

In current implementations of molecular simu-
lation algorithms, the shape of the computational
box has to be taken into account at many places in
the algorithm, notably in neighbor searching, in
nonbonded force calculations, in bonded force cal-
culations, and in the part in which particles are
reset into the box. For the boxes PCT2...PCT5,
which have a complex shape, calculating the posi-
tion of image particles outside the box as a func-
tion of their position in the box is complex. For this
reason, in most molecular simulation packages,
only a limited set of box shapes has been imple-

UNIFICATION OF BOX SHAPES

mented; for instance, in the molecular dynamics
package GROMOS/? only limited instances of PCT1
and PCT5R have been implemented.

In this article we will show that every molecular
simulation that is formulated in one of the boxes
PCT1...PCT5, can be transformed into a simula-
tion in any one of the other boxes. Thus, a simula-
tion formulated in PCT2...PCT5 can be trans-
formed into a simulation in PCT1 or PCT1R. These
transformations can be done in a preprocessing
stage of a molecular simulation, so the actual sim-
ulation can take place in, for example, PCT1 or
PCT1R, including neighbor searching, nonbonded
force calculations, bonded force calculations, reset-
ting particles into the box, pressure scaling, etc.
The simulation in the new box is exactly identical
to a simulation in the initial, untransformed box.
So, for example, the number of particles and inter-
actions to be evaluated is exactly the same in all
cases.

It is possible to transform molecular simulations
in a simple box into a simulation in a complex-
shaped box. However, because for molecular sim-
ulations such a transformation is of little interest
we will not discuss such transformations.

The structure of this article is as follows. In the
next section we define the shape of PCT1...PCT5
in an algebraic way by a lattice and a metric. The
lattice-and-metric way of defining PCT1...PCT5
is not suitable for geometrical considerations.
Therefore, we introduce a different but equivalent
representation of PCT1...PCT5. Using this repre-
sentation, we show that PCT1...PCT4 are degen-
erate instances of PCT5. We then show how a
tiling of the space with PCT5 defines a lattice. We
define a PCT1 and a PCT1R in terms of a given
PCT5 such that PCT1 and PCT1R define the same
lattice as PCT5. Because PCT1...PCT4 are degen-
erate instances of PCT5, the same expressions may
be used to define a PCT1 and a PCT1R in terms of
PCT1...PCT4.* The fourth section shows how to
transform a simulation in some box into a simula-
tion in another box. Special attention is paid to
transforming particles from one box into the other
one. As an example, in the fifth section, we show
how a simulation, formulated in PCT5R is trans-
formed into PCT1 and PCT1R.

The fact that every simulation, formulated in
some box may be transformed into a simulation in
an other box, clarifies a number of unresolved

¥ Obviously, transforming PCT1 into PCT1 is an identity
transformation. But because of the generic character of the
algorithms we propose, we do not have to exclude this transfor-
mation.

JOURNAL OF COMPUTATIONAL CHEMISTRY

1931

BEKKER

matters—notably, the pressure scaling of simula-
tions in an PCT2...PCT5 box, controlling the long
range order of molecular systems, and the maxi-
mum allowed cut-off radius. These matters and
more are discussed in the last section.

The methods presented in this article may be
used to transform existing molecular simulations,
formulated in PCT2...PCT5, into a simulation in,
for example, PCT1 or PCT1R. That is, however,
not the best way to set up a new simulation
because then, complex box shapes are still used to
set up a simulation. In the subsection ““How to Set
Up a Simulation,” it is shown how to do so with-
out using complex boxes.

We feel that the methods as presented in this
article to do molecular simulations in a simple
box, together with the efficient method presented
elsewhere,® will result in faster and simpler molec-
ular simulation software with a wider range of
features. All this is brought about, not by improv-
ing existing implementations, but by revising the
basic concepts of MD simulation.

Defining Boxes

The most natural way to introduce the box
types PCT1...PCT5 is by way of a lattice and a
metric. In 3D space, a lattice, &, is the set of
points:

Z(K,L,M) =n K+ n,L+n,M,

with ny, n,,n; € Z (1)

where K, L, and M are three independent vectors,
called the basis vectors. We define a lattice vector
as a vector connecting two lattice points; therefore,
because the origin is a lattice point, lattice vectors
are also given by eq. (1). Two points, 1 and 2, are
called corresponding points when their positions are
related by:

r, + lattice vector = r, (2

In Euclidean space the squared distance
d*(p,, p,) between two points p; and p, is given

by
d*(py, py) = (py — Pz)Tm(P1 - p2) (3)

with m a positive definite matrix. Using the metric
m, the space can now be partitioned in Voronoi
regions or primitive cells, where a primitive cell is
defined as the set of points closer to some lattice

point than to any other lattice point. In this way a
tiling of the space is generated with identical tiles.
Depending on the value of m and the lattice vec-
tors K, L, M, the shape of the tiles is one of the
box types PCT1...PCT5.° In Figure 2, two 2D
examples are given of a primitive cell defined by
the same lattice but by different distance functions.

It has been shown* that a primitive cell, as we
defined it, is centrally symmetric, and that it is
bounded by pairs of parallel faces. A face is a
centrally symmetric hexagon or parallelogram. The
edges of a primitive cell consist of groups of paral-
lel lines. In the following we will assume that the
primitive cells considered are centered at the ori-
gin or are adjacent to an origin-centered primitive
cell.

A primitive cell defined as above is an open set
of points, because, in our definition of a primitive
cell, we do not consider points with the same
distance to two lattice points. This would mean
that a point with an equal distance to two or more
lattice points is not in any primitive cell at all. For
molecular simulation this is undesirable; every
point in the infinite PBC system should belong to
exactly one (image) box. Therefore, it is necessary
that we define a primitive cell as a half-open,
half-closed set of points, so that tiling the space
with primitive cells covers every point of space
exactly once. How this is implemented is of no
importance in later discussions.

Using a lattice and metric to define a primitive
cell is conceptually elegant, but not very well
suited for geometrical considerations. Therefore,
we will now introduce another way to describe the
shape and size of boxes.

We describe PCT5 by giving its edge vectors
b,c defg (see Fig. 3). These six vectors com-
pletely define PCT5, because it consists of 36 edges,
which can be grouped into six groups of six paral-
lel edges each. When the vectors b, ¢, d, e, f, g were
independent, PCT5 would have 6 X 3 = 18 de-
grees of freedom. However, the vectors defining
the hexagonal planes should be coplanar. This gives
four conditions: |c,e,gl =0 |b,d, gl =0, lc, d,f| =
0; and |b,e,f| = 0. So, of PCT5, the shape, size,

FIGURE 2. Two primitive cells defined by the same
lattice but two different distance functions.

1932

VOL. 18, NO. 15

FIGURE 3. An instance of PCT5 defined by the six
edges b,c,d,e,f, g.

and orientation, but not its position, can be de-
scribed by 18 — 4 = 14 parameters.

The boxes PCT4...PCT1 can be obtained by
degenerating PCT5 as shown in Figure 4. To de-
generate PCT5 into PCT4, only the length of vector
g should go to zero because the direction of g is
not free. This is because g is the intersection of the
planes defined by the vectors ¢,e and b, d. So,
PCT4 has one degree of freedom less than PCT5
(i.e., 14 — 1 = 13). In the same way, PCT4 can be
degenerated into PCT3 by letting f — 0. Again,
because f is the intersection of two planes, de-
fined by the vectors ¢, d and b, e, only the length
of f can be changed. So, PCT3 can be described by
13 — 1 = 12 parameters. PCT2 can be obtained
from PCT3 by choosing the vectors ¢, d, e to be
linearly dependent. This condition brings the num-
ber of degrees of freedom of PCT2 to 12 — 1 = 11.
PCT1 can be obtained from PCT2 by e — 0. The
vector e is not completely free; it should be in the
plane defined by the vectors ¢, d. So it has two
degrees of freedom. This brings the number of

PCT5

PCT4

UNIFICATION OF BOX SHAPES

degrees of freedom of PCT1 to 11 — 2 =9, which
is what may be expected from a triclinic box.

The whole process of going from PCT5 to PCT1
can be written concisely as:

rcTs 225 peta £29% peTs3
ledel>0, peT2 £2% PCTI (4)

This shows that PCT1...PCT4 are degenerate in-
stances of PCT5, that PCT1...PCT3 are degener-
ate instances of PCT4, etc. So, PCT5 is the generic
space filler. Therefore, in the following paragraphs
we only consider transformations of PCT5 Some
properties of PCT5...PCT1 are given in Table L

Again, something about notation: Until now we
only have been speaking about different box fypes.
In this and the following sections different ways to
describe boxes are introduced. We will denote a
box described by the vectors b, ¢, d, e, f, g as PCDg.
The D stands for ““described,” and g stands for
“general,” because this is the most general way to
describe a primitive cell. The box PCDg can be of
any type. Later, two other ways to describe boxes
will be introduced.

Constructing Simple Boxes

In this section, we will propose two boxes, a
triclinic and a rectangular one, generating the same

TABLE 1.
Some Properties of PCT5...PCT1.

PCT5 PCT4 PCT3 PCT2 PCT1
No. faces 14 12 12 8 6
No. rhombi 6 8 12 6 6
No. hexagons 8 4 0 2 0
No. edges 36 28 24 18 12
No. vertices 24 18 14 12 8
Degrees of 14 13 12 11 9

freedom

e—>0

PCT3 PCT2 PCT1

FIGURE 4. PCT5, PCT4 created by letting g — 0 of PCT5, PCT3 created by letting f — 0 of PCT4, PCT2 created by
letting |cde| — 0 of PCT3, PCT1 created by letting e — 0 of PCT2. Thick lines go to zero.

JOURNAL OF COMPUTATIONAL CHEMISTRY

1933

BEKKER

lattice as an initial box PCDg. We will first derive
expressions for the lattice vectors of the lattice
generated by a box PCDg.

We assume that a box PCDg is centered at the
origin and that three translated copies of it are
fitted along whole faces to it. The centers of these
three copies are at:

K=(g+d+e+f), L=(g+b+e)),
M=(f—-c+e) (5)

The original box and two surrounding copies are
shown in Figure 5.

With some patience, it can be verified that every
other replica box fitted to the original box is shifted
over an integer linear combination of K, L, M. So,
the whole space can be tiled with copies of the original
box centered at the lattice points defined by K, L, M. As
long as the vectors b, ¢, d are linearly independent
the expressions [eq. (5)] for K,L,M are meaning-
ful; that is, they also hold for the boxes PCT1...
PCT4.

With the lattice vectors K, L, M we can define a
primitive cell which generates the lattice defined
by K,L,M, namely the triclinic box spanned by
the lattice vectors themselves. We will call a box
defined by the vectors K,L, M, “PCDKLM.” The
box PCDKLM can only be of the type PCT1.

Now we will introduce a rectangular box that
generates the lattice defined by the vectors K, L, M.
First, the vectors K,L,M have to be reordered
such that:

IK| > |L| = IM]| (6)

FIGURE 5. The vectors K, L, M defined by PCT5 with
three replica boxes fitted along whole faces. It can be
seen by inspectionthat K=(g+d+e+f),L=(g+b
+e), M= (f— c +e) (not visible).

As we will show in Appendix B this simplifies
some calculations in a later stage. Using the re-
ordered vectors K, L, M, the vectors U, V,W
spanning a rectangular primitive cell are given by
a Gram-—Schmidt orthogonalization process (see
Fig. 6):

A

U=K, V=L - (L-K)K,
W=(M-KXLKXL 7)

with 4 = a/a and with b X ¢ = b X ¢/|b X c|. The
second expression means that V is perpendicular
to K, also to U, and that it is in the plane defined
by K and L. The third expression means that W is
perpendicular to the plane defined by K and L,
which implies that it is perpendicular to the plane
defined by U and V. Analogously with the nomen-
clature already introduced, we will call the primi-
tive cell described by the vectors U, V,W PC-
DUVW. The box PCDUVW can only be of the type
PCT1R.

Boxes should be centered at lattice points, and
thus, should be stacked with relative shifts over the
lattice vectors K, L, M. This means that, in a tiling
with the boxes PCT1R, the boxes are not fitted
along whole faces (see Fig. 7). This last fact may
look a bit strange because, with the primitive cells
PCT1...PCT5, the space could be tiled by fitting
these boxes along whole faces. A way out of this
seemingly strange property of PCT1R is by taking
it as a PCT5, with some of its faces in the same
plane. In general PCT5 has contact along whole
faces with 14 adjacent boxes, just like PCDUVW.
So, by taking PCT1R as a special instance of PCT5
the anomaly is explained.

Let us now briefly look at the volume of the
primitive cells. For a given lattice, defined by the
vectors K, L, M, the volume of the primitive cells

L

L

K’U

FIGURE 6. A rectangular primitive cell PCDUVW (thick
lines), and the PCDKLM from which it is derived (thin
lines), both centered around the same point.

1934

VOL. 18, NO. 15

FIGURE 7. The box PCT1R has to be centered at
lattice points, resulting in a tiling that is seemingly not a
tiling along whole faces. However, by taking PCT1R as
a special instance of PCT5, this tiling may be taken as a
face-to-face tiling. This is indicated by the fact that every
box PCT1R is directly surrounded by 14 boxes, just like
a tiling with a general PCT5.

PCDg, PCDKLM, and PCDUVW is the same, and is
given by determinant |K, L, M|. That is because to
every lattice point belongs one primitive cell, no
matter the shape of this primitive cell. So, in terms
of lattice and metric, the volume of a primitive cell
does not depend on the metric.

Transforming Molecular Simulations

In the previous section we showed how any PC
from PCT1...PCT5 can be transformed into a
PCT1 and PCT1R defining the same lattice as PC.
We will now look at these boxes as molecular
simulation boxes; that is, as boxes filled with parti-
cles, and show how to transform such a box PC
with particles into another box PC' with particles,
such that there is no difference between the molec-
ular simulation of these two systems.

Let us first define when two molecular systems
are identical. Therefore, we consider two boxes,
PC and PC’, where both boxes contain the same
set of particles. With IS and IS" we mean the two
infinite molecular systems, generated by tiling the
space with PC and PC/, respectively, including the
particles they contain. The molecular simulations
in PC and PC’ are called identical when the parti-
cles in IS and IS’ coincide.

We can now formulate a relation between PC
and PC’, and a relation between the position of the
particles in PC and PC’, such that the simulations
in PC and PC’ are identical. These relations are the
cornerstones of this article.

UNIFICATION OF BOX SHAPES

Theorem

Two molecular simulations, formulated in two boxes,
PC and PC', are identical when:

= PC and PC' define the same lattice; and
= the particles in PC and PC’ are at correspond-
ing positions.

Proof: Assume that IS is generated by tiling the
space with PC with particles. Let us look at a
particle 7 in PC. r; may be located outside PC’, but
there is a unique shift over a lattice vector translat-
ing r; into PC'. The position of i in PC' will be
called r}. (The shift is unique because a primitive
cell does not contain corresponding points.)

We now tile the space with PC’, containing the
possibly shifted particle i. Because r; and r; only
differ by a lattice vector, and tiling the space
implies shifts over all lattice vectors, the set of
points generated by all lattice shifts of r; and the
set of points generated by all lattice shifts of r;
coincide. This proof also holds when going from
PC' to PC.

In the previous sections we saw how to trans-
form the boxes PC and PC’ into each other. The
remaining problem is how to transform particles
from the initial box PC into the box PC'. According
to the second part of the theorem, particles should
be shifted over lattice vectors. In general, it is
difficult to give an explicit expression for the re-
quired shift. Therefore, we will not use a direct
method to find the required shift over a lattice
vector, but rather try lattice vectors. This can be
done because it is possible to give an upper bound
of the order of the required shift; that is, if the
required shift is n, K + n, L + nyM, it is possible
to give an upper bound of n,, n,, n5. In Appendix
A it is proved that particles in PCDg have to
undergo, at most, first order shifts to be translated
into PCDKLM G.e., —1 < ny, n,, n; < 1). This way
of determining the required lattice vectors is not
the most efficient, but it is general. Because the
process of translating particles from PC into PC’ is
done in a preprocessing stage of the actual molecu-
lar simulation, the inefficiency is no problem.

Algorithm for Translating Particles

We will now discuss an algorithm to move
particles from PCDg into the related PCDKLM.
(The algorithm to translate particles into PCDUVW
is analogous.)

JOURNAL OF COMPUTATIONAL CHEMISTRY

1935

BEKKER

A naive implementation would consist of a triple
loop, generating all linear combinations of the lat-
tice vectors K, L, and M. However, such an im-
plementation would be inefficient, because the
most improbable shifts, being shifts over long lat-
tice vectors, are tried first, whereas the most prob-
able shift, being no shift, is tried last. Later, we
will encounter a case where the maximum shift is
more than one, which results in even more ineffi-
ciency. Therefore, we give an algorithm which
starts with trying zeroth order shifts. Then, the
second most probable shifts are tried, which are
shifts over lattice vectors in the first layer around
the origin. Then, if max_order > 1, the third most
probable shifts are tried, and so on.

We assume that we have a boolean function
| NPCDKLM r) , which determines whether r is in
the box PCDKLM. With this function, and using
the boundedness of the required translations, the
algorithm to move a particle from PCDg into PCD-
KLM is as follows:

procedure PutintoPCDKLMvar r: vector);
var
j,a, b, maxRadius: integer;
procedure tryShiftingIntoBox(n1, n2, n3: integer);
var
shift: vector;
begin {note vector operations}
shift := n1*k + n2*1 + n3*m;
if InPCDKLMr + shift) then begin
r :== r + shift;
exit(PutlntoPCDKLM);
end; {if}
if InPCDKLMr-shift) then begin
r = r-shift;
exit(PutIntoPCDKLM);
end; {if}
end; {tryShiftingIntoBox}

begin{PutIntoPCDKLM
maxRadius := 100;
for j == 0 to maxRadius do begin {try further
and further away}
for a .= —j toj do begin
for b := —j to j do begin
tryShiftingIntoBox(a, b, j);
end; {for b}
end; {for a}
for a .= —j to j do begin
forb:= —j+ 1toj— 1 do begin
tryShiftingIntoBox(a, j, b);
end; {for b}

end; {for a}
fora:= —j+ 1toj— 1 do begin
forb:= —j+ 1toj— 1 do begin
tryShiftingIntoBox(j, b, a);
end; {for b}
end; {for a}
end; {for j}
FatalError(‘Max radi us overfl ow));
end; {PutIntoPCDKLM

Comments on this pseudo code: Note that we
use vector operators in this code. The code consists
of three similar blocks, each consisting of a nested
loop over a and b. In the first block, all lattice
points in the top and bottom plane of a cube with
“radius” j are visited. In the second block, the
lattice points in the left and right plane are visited.
In the third block, the lattice points in the front
and back plane are visited.

In Appendix B it is shown that particles in
PCDKLM have to undergo, at most, second order
shifts to be translated into PCDUVW. This means
that the procedure proposed in this subsection can
also be used for that case, with of course the
exception that, in the algorithms, maxQr der = 2.
Later we will encounter a case where the maxi-
mum order of the translation is unbounded, but
still zero shifts are the most probable ones with
decreasing probability outward.

Example Transformation of
a Simulation

In the MD simulation package GROMOS, two
box shapes are implemented: PCT1R and PCT5R.
In this section, as an example application of the
theory, we will show how a simulation, formu-
lated in PCT5R, can be transformed into a simula-
tion in PCT1 and PCT1R.

PCT5R is obtained by cutting away pieces of a
cube with edge lengths h. This results in a PCT5R
with edge vectors b, ¢, d, e, f, g given by:

0 0 —1p
b=|"th|, c=| th | a=| 1| ®
—1y _1
1 4 0
.y 1 Y
e=|-1lp|, f=(0 |, g=| 0 9
1 1
0 ih —sh

1936

VOL. 18, NO. 15

Applying (5) gives the vectors K, L, M:

—h _%h _%h
K=|0|, L=|—-%h|, M=|—-3h| (10)
0 _1 1

2 2

Applying (7) gives the vectors U, V, W

_ 0 0
h 1 1
u=|o0|, v=|-2t|, w=|-21| 1
0 —3h 3h

It can be checked that the volume of each of these
three figures (PCT5R, PCT1, PCT1R) is %h3.

In Figure 8a, PCT5R is shown with a (fancy)
spherical molecule. The molecule is mapped into
PCT1 according to the theorem in the previous
section (see Fig. 8b). The fact that the molecule is
“cut into pieces” in PCT1 indicates that the atoms
of the molecule are shifted over different lattice
vectors when translated from PCT5R into PCT1.

PCT5R is the most regular instance of PCT5.
Consequently, as can be seen in eq. (10), the lattice
vectors K, L, M are also special; that is, to create
image particles surrounding the original box
PCT5R the particles in the box have to undergo
regular shifts. The regularity of these shifts is ex-
ploited in ref. 5 to calculate, in a simple way, the
required shifts. Quite appropriately, this shift pat-
tern is called the ““checkerboard” periodic bound-
ary condition. However, this shift method is only
applicable to PCT5R, and the actual simulation is
still done in PCT5R.

We have made some software available® as both
Turbo Pascal and C code with executables. In
DEML, the primitive cells PCT1...PCT5 can be
(randomly) generated, and visualized (in X). In

FIGURE 8. (a) PCT5R with a (fancy) spherical molecule.
(b) PCT1 derived from PCT5R, with the molecule mapped
into it. It is instructive to copy (b) on a transparent sheet,
and to fit this copy at various faces to its original. It can
then be seen that the molecule is reconstructed.

¥ Can be obtained by anonymous ftp from ft p. cs. rug. nl
in the directory pub/ ndbox.

UNIFICATION OF BOX SHAPES

DEM? the process of moving particles from PCT5R
into PCDKLM and PCDUVW is implemented. DEM2
can thus be used by the MD community to trans-
form existing simulations, formulated in PCT5R,
into a simulation in PCDKLM and PCDUVW.

Related Topics

PRESSURE SCALING

The pressure of a molecular system can be rep-
resented by a 3 X 3 tensor P. The scalar pressure P
is defined as:

P = —trace(P). 12)

1
3
In many MD simulations, every now and then the
MD system—that is, the box and particle positions
—is scaled depending on the most recently calcu-
lated pressure. In case the computational box is
triclinic, it is well known how to scale the system'’:
in case only the scalar pressure is calculated, the
box and particles are scaled in every dimension
with the same factor. In case the pressure is calcu-
lated per dimension, the system is scaled per di-
mension, proportional to the components of the
pressure vector. In case the full tensorial pressure
is used, the system is scaled by multiplying all
particle position and box vectors with the scaled
pressure tensor. As a result of the last two types of
pressure scaling, the angles of the system may
change.

With the notions developed in this article, it is
clear how to scale the system when the computa-
tional box is one of PCT2...PCT5 and pressure
scaling per dimension or a full tensorial pressure is
used. Then, just as in the case of a triclinic box, the
system may be scaled by scaling box vectors and parti-
cle positions per dimension by multiplying box vectors
(b...g) and particle positions with a scaled tensor P,
respectively. This is because relations (5) and (7)
are linear.

LATTICE REDUCTION

Until now our attention has been focused on
transforming simulations in a complex box into
simulations in a simple box; that is, on transforma-
tions between different box types. We will now
discuss a transformation from one PCT1 into an-
other PCT1, both defining the same lattice.

Let us suppose that a 2D simulation of a long
thin molecule is set up as shown in Figure 9a. In

JOURNAL OF COMPUTATIONAL CHEMISTRY

1937

BEKKER

@ . . . by .

FIGURE 9. A 2-D example of two primitive cells of the
same type (parallelogram), defining the same lattice.
Applying lattice reduction to (a) gives (b), resulting in a
cell with shorter spanning vectors than the original
primitive cell. The molecule in (a) is mapped into (b)
according to Theorem 2.

principle, the simulation may be done in this box,
but for a number of practical reasons this may be
unattractive; for example, the cut-off sphere may
then be located in many boxes at the same time. To
improve this situation, a general technique, called
lattice reduction,® may be applied.

According to the theorem given earlier, a simu-
lation may be done in every box that defines the
same lattice as the original box. When we assume
that the original box defines the lattice basis vec-
tors K, L, the same lattice is defined by the basis
vectors K, L — nK with r € Z. So, the simulation
may just as well be done in a box defined by the vectors
K, L — nK. When the particles are moved from the
original box to the new one this results in the
system as shown in Figure 9b. This method may
be generalized to 3D.

Let us now be a bit more precise. For a given
box, PCT1, spanned by the vectors K, L, M, we
look for three vectors K’, L', M’, such that the
vectors K', L', M' define the same lattice as the
vectors K, L, M. Moreover, the vectors K', L', M’
should span a “nice” box, where nice means some-
thing like “as cubic as possible.” The process of
transforming the vectors K, L, M into the vectors
K', L', M' is called lattice reduction. Many differ-
ent notions of “reduced’” exist in the literature,
but, roughly speaking, they all mean that the cell
K’, L', M’ is as cubic as possible. It has been shown®
that, in 3D, the three shortest, linearly independent
lattice vectors are a basis of the lattice. Therefore,
we will define a reduced basis as: a reduced basis
consists of the three shortest, linearly independent lat-
tice vectors.

After the process of lattice reduction, particles
from the box K, L, M should be mapped into the
box K', L', M'. This should be done according to
the theorem; that is, particles should be shifted
over lattice vectors. Which lattice basis is used,
K,L,M or K',L', M', does not matter because

both are a basis of the same lattice. The algorithm
given earlier may be used to shift particles over
the required lattice vectors, although, unlike the
situation in this section, now there is no upper
limit on the required shift (called max_shift in
the algorithm).

Lattice reduction may be used to answer the
question: for a given triclinic box spanned by the
(unreduced) vectors K, L, M, how large may the cut-off
radius be at most, such that no particle has interactions
with two corresponding particles? This may be refor-
mulated as: how large may the cut-off sphere be at
most, such that it does not contain corresponding
points? As can be seen in Figure 10a, it is not
enough that maxR_, = Tmin (K|, | LI, |IM)). Using
our foregoing definition of ““reduced basis,” the
answer is:

maxR,, = smin (|K'|,|L1,IM’]) (13)

that is, the cut-off radius should be less than half
the length of the shortest reduced lattice basis vec-
tor (Figure 10b).

LONG-RANGE ORDER

Stacking boxes in a space-filling way introduces
a well-defined long-range order in the infinite sys-
tem. This long-range order may influence the re-
sults of a simulation. For example, when the box
shape is chosen such that it defines a long-range
order close to the long-range order of ice, it may
happen that, in a simulation of pure water, the
water freezes above 0°C. By simulating water in a
box with a long-range order incompatible with the
long-range order of ice, the water may be liquid
below 0°C. Probably, for every solvent, and de-
pending on the type of simulation, there is an
optimal long-range order, so that the solvent be-
haves normally. So, when setting up a simulation,
the resulting lattice must be compatible with the

FIGURE 10. (a) A 2-D example of an unreduced
primitive cell. When R, is chosen as half the length of
the shortest vector spanning the primitive cell, the cut-off
sphere still contains corresponding particles. (b) When
R, is chosen as half the length of the shortest vector
spanning the reduced primitive cell, the cut-off sphere
does not contain corresponding particles.

1938

VOL. 18, NO. 15

desired long-range order. This means that the
shape of the computational box is not completely
free any longer.

HOW TO SET UP A SIMULATION

From the foregoing it will be clear that a molec-
ular simulation can be done without using com-
plex boxes. We will now show that setting up a
simulation can also be done without using com-
plex boxes; that is, we will show that it is not
necessary to set up a simulation in a complex box
which is subsequently transformed into a simula-
tion in a simple box.

Let us assume that one single large molecule
has to be simulated in a solvent. The molecule has
been given, and the solvent has to be added when
a box has been constructed around the molecule.
We will designate this molecule by “mol” (Fig.
11). In general, a molecule is not allowed to inter-
act with its own image molecules, so, in the infi-
nite system, the smallest distance between two
atoms of two different images of mol should be at
least R, apart. For this purpose we surround mol
by an enlarged convex hull, such that no atom of
mol is closer than 1/2 R, to this enlarged hull. We
will designate this enlarged hull of mol by MOL.
Three replicas of MOL, with the same orientation
as MOL, are designated by MOL, MOL’, and
MOL".

FIGURE 11. To find a computational box with a minimal
volume, containing a single molecule, MOL, three
translates of MOL have to be fitted to MOL, defining
three vectors K, L, M, such that the volume of box
defined by K, L, M is minimal. After finding such a
minimal box, the atoms of MOL can be translated into
this box by shifts over lattice vectors, where the lattice is
defined by K, L, M.

UNIFICATION OF BOX SHAPES

To set up a PBC simulation with a minimal
amount of solvent means that we have to find the
densest lattice packing of translations of MOL. A
practical approach to this minimization problem is
to fit MOL' ... MOL"” to MOL, such that the vol-
ume of the tetrahedron defined by these four
molecules is minimal. More exactly, when we de-
fine the vector K as the vector connecting the
center of MOL with the center of MOL, the vector
L as the vector connecting MOL with MOL’, and
the vector M as the vector connecting MOL with
MOL", the problem boils down to: minimize
|K, L, M| subject to the condition that each of the
molecules MOL...MOL" is touched! by the other
three. This is a minimization problem in three
parameters. It can be seen as follows: because
MOL' has to touch MOL, the position of MOL' is
determined by two angles, say 6 and ¢, where the
origin of these two angles is somewhere in MOL.
MOL" should touch MOL and MOL, so there is
only one degree of freedom in the placement of
MOL". Finally, MOL" has to touch the first three,
so the placement of MOL" is completely deter-
mined by the positions of MOL... MOL".

Thus, we have a minimization problem in three
variables (minimize |K, L, M|) subject to six con-
tact conditions (contact between every pair of
MOL...MOL"). A near minimal solution can be
found by a standard minimization procedure such
as, for example, NAG routine EO4UCF. When a
minimal volume configuration of MOL...MOL"
has been found, the vectors K, L, M are the vec-
tors defining the triclinic simulation box." By shifts
over lattice vectors, the atoms of mol can now be
brought into this triclinic box, and the empty space
can be filled with solvent. Of course, if desired,
this box can be transformed into a rectangular box
as described earlier in this article.

WHICH BOX TO USE: TRICLINIC
OR RECTANGULAR?

The main message of this article is that com-
plex-shaped boxes with particles, as, for example,
PCT5 and its degenerates PCT4...PCT2, can be
transformed into simpler ones; that is, into PCD-
KLM and PCDUVW. Which one of these last two is
the best one as a simulation box is not very clear.

I't is a well-known property of the densest lattice packing
of convex figures that every figure is touched by 12 others.

! Obviously, when the simulation has to be set up with a
predefined long-range order the optimization process may be
skipped.

JOURNAL OF COMPUTATIONAL CHEMISTRY

1939

BEKKER

The choice may be influenced slightly by some
parts of the simulated system and the simulation
methods used. We will briefly discuss some of
these aspects. Still, this discussion will not lead to
a strong preference.

Neighbor searching as has been shown in Ref. 7,
using a grid search technique significantly im-
proves the efficiency of neighbor searching. The
essence of the grid search technique is that a grid
is constructed in the computational box, and that
for every particle it is determined in which grid
cell it is located. Neighbor searching for a given
particle then boils down to inspecting its own and
directly neighboring grid cells for neighboring par-
ticles. In Ref. 7 it was shown that a grid size of
L = 1R, gives an optimal neighbor searching
speed, which is six times faster than neighbor
searching without using a grid. However, as far as
we can now see, the grid search technique can
only work efficiently when the grid cells are rect-
angular or, even better, cubic. Obviously, a rectan-
gular box can be partitioned in cells in a natural
way. This does not hold for the nonrectangular
box, PCDKLM, because then many grid cells will
be empty. Therefore, we think that, in case neigh-
bor searching is implemented with the grid search
technique, the rectangular box is to be preferred
over the triclinic box. Of course, although the box
is rectangular, image particles are created by shift-
ing particles over lattice vectors, and not over the
orthogonal vectors U, V, W.

The function inbox(r). Every now and then
during an MD simulation, particles that moved
outside the computational box have to be reset
into the box. To check whether a particle is inside
or outside the computational box, the boolean
function, i nbox(r), is used. When r is inside the
box the function returns true. Obviously, when
PCT1R is used as a computational box, and the
directions of U, V, W coincide with the x, y, z axes,
i nbox(r) can be implemented by checking inde-
pendently in three directions in what range the
components of r are. This does not work that easily
in case of a nonrectangular triclinic box. In that
case, a linear transformation on r has to be done,
or some other more complex calculation. So, for
the implementation of i nbox(r) it is desirable to
work with PCDUVW.

Full pressure scaling. As we explained before,
three kinds of pressure scaling are possible in an
MD simulation: uniform in every direction; scaling
per dimension; and by using the full pressure
tensor. In general, the last two ways of pressure
scaling will change the directions of the vectors

spanning the computational box. This means that,
when PCDUVW is used as a computational box,
the angles between the vectors U, V,W will
change, that is, afterwards, the box will not be
rectangular any longer. Then, in principle, the
function i nbox(r) will not work properly, and
the search grid will no longer be rectangular.
However, the computational effort of recalculating
the vectors U, V, W and resetting particles is small,
so possibly pressure scaling will not be an obstacle
for using a rectangular box.

Summarizing one may say that a rectangular
box simplifies the implementation of some parts of
molecular algorithms [grid search, i nbox(r)], but
causes small complications in the implementation
of other parts.

Conclusion

In this article we studied the possible shapes of
the computational box of molecular simulations
with PBC. For this purpose, five types of boxes are
suitable: triclinic; the hexagonal prism; two types
of dodecahedrons; and the truncated octahedron
(for short PCT1...PCT5). We showed that
PCT1...PCT4 are degenerate instances of PCT5.

The main purpose of this article is to show that,
for every simulation in some type of box, simula-
tions in the other four types can be devised that
give exactly the same simulation result; that is, it
is shown that a simulation in a box with a complex
shape may be done in a box with a simple shape.
Therefore, we first showed how to transform the
complex-shaped box into a triclinic one, and how
to transform the triclinic one into a rectangular
one. Then we showed how to map particles from
the complex-shaped box into the simpler ones.

Important conceptual tools in this article are
lattices and primitive cells. It was shown that a
simulation box may be taken as a primitive cell.
Tiling the space with a box with particles gives an
infinite molecular system. In the theorem pre-
sented in the fourth section, conditions are formu-
lated on the transformations of boxes and particles.

Although most of this article is about transform-
ing simulations in boxes with a complex shape
with particles into simple-shaped boxes, this does
not mean that a molecular simulation should be
set up in a complex box which is subsequently
transformed into a simpler box. On the contrary,
because every simulation in a complex box can be
transformed in a simpler one in a triclinic box,

1940

VOL. 18, NO. 15

nothing is lost when a simulation is set up right
away in a triclinic box. In the subsection, “How to
Set Up a Simulation,” it is explained how this can
be done.

With the concepts developed in this article, some
matters are clarified. These include, among others,
pressure scaling in a complex box and the long-
range order introduced by the shape of the box.

Acknowledgments

This research was initiated by the insights of
Berend Reitsma. Discussions with Wim Hesselink
led to the use of an alternative metric. The discus-
sions with Michael Renardus about the text and
the figures improved this article significantly. The
comments of a referee made this article more read-
able.

UNIFICATION OF BOX SHAPES

Let us now give a more formal proof. Using the
3D nomenclature, we give the proof for the 2D
case, but it is simple to extend it to 3D. We start
with PCDg and its eight first order images. We
will call this arrangement of nine tiles “F” (Fig.
13). In this same figure the related PCDKLM is
drawn. It is constructed by scaling the rhombus
A,B,C,D with a factor 1/2. The rhombus defined
by AB,CD is in F because the boundary of the
rhombus A,B,C,D is in F. This last fact is because,
when two space fillers (either 2D or 3D) are fitted
face to face, the line connecting their centers of
symmetry lies in these two figures. Because PCD-
KLM is in the rhombus A,B,C,D, it is also in F. The
particles in F are shifted from PCDg over at most
first order lattice vectors; therefore, the particles in
PCDg have to be shifted over, at most, first order
shifts to be located in PCDKLM.

Appendix A

We will prove that particles in the box PCDg
have to be shifted, at most, over first order shifts;
that is, over mK + n,L + n;M, with —1 <
1y, N,, M, <1, to be located in the related PCD-
KLM. It is instructive to see that this does not hold
in general (see Fig. 12); that is, particles in a
primitive cell, PC, potentially require infinite shifts
to be located in a related PC’, where “related”
means that the cells define the same lattice.

The reason that between PCDg and PCDKLM at
most first order shifts are required, has to do with
the special choice of K, L, M. Consequently, when
PCDg is long and thin, PCDKLM is also long and
thin and is oriented in the same direction. In this
way, PCDg and PCDKLM have a large overlap, so
that, in going from one to the other cell, only
limited particle shifts are required.

FIGURE 12. Particles in PC have to be shifted over
more than first order shifts to be translated into PC'.

Appendix B

In this appendix we will show the necessity of
ordering the vectors K, L, M before calculating
U, V, W. We first show what may go wrong when
this is not done. Just as in Appendix A, using the
3D nomenclature, we will do this for 2D.

Suppose that we have a PCDKLM as shown in
Figure 14. We can construct a rectangular primi-
tive cell from PCDKLM in two ways: by U = K
and V L U (Fig. 14a); and by U=L and V L U.
(Fig. 14b). From these figures it is clear that PC-
DUVW has a large overlap with PCDKLM when the
longest one of the pair K, L is defined as U. So,
ordering K, L, M prevents possibly infinite shifts
of particles going from PCDKLM into PCDUVW.

FIGURE 13. Every point in PCDKLM is also in F.

JOURNAL OF COMPUTATIONAL CHEMISTRY

1941

BEKKER

FIGURE 14. (a) When the vectors K, L, M are not
ordered such that |K| > |L| > |M|, the boxes PCDKLM
and PCDUVW possibly have little overlap, so it is also
possible that particles require shifts over high order
lattice vectors to be moved from one box into another.
(b) The boxes PCDKLM and PCDUVW have a large
overlap because the longest box vector is called K.

Z /

J 7 7
S N NS
VA AR

FIGURE 15. When the vectors K, L, M are ordered
such that |K| > |L| > |M]|, every point belong to PCDUVW
is also in F.

Now, just like in Appendix A, we will deter-
mine the maximum shift required to bring a parti-
cle from PCDKLM into PCDUVW. We suppose that
the vectors K and L are ordered; that is, | K| > | L|.
We define ““F”’ as the array of nine cells, created by
all possible first order shifts of PCDKLM (Fig. 15).

To show that every point of PCDUVW is in F it is
sufficient to show that C’ is in F. This last state-
ment can be reformulated as: show that the dis-
tance of C' to C is less than the distance C to D.
This last statement is true because CC’ < CE < DC.
So, at most, first order shifts are required to bring
particles from PCODKLM into PCODUVW.

For the 3D case, the above reasoning can be
applied twice. Thus, in 3D, at most, second order
shifts are required to bring particles from PCDKLM
into PCDUVW.

References

1. Fejes Toth, Regular Figures, Pergamon Press, London, 1964,
pp- 114-119.

2. W. F. van Gunsteren and H. J. C. Berendsen, Groningen
Molecular Simulation (GROMOS) Library Manual, Biomos,
Groningen, The Netherlands, 1987.

3. H. Bekker, E.]. Dijkstra, H. J. C. Berendsen, and M. K. R.
Renardus, Mol. Sim., 14, 137 (1995).

4. H. Minkowski, Allgemeine Lehrsitze iiber die konvexen
Polyeder, Nachr. Ges. Wiss. Gottingen, Math.-Phys. KI., or in
the collected works Gesammelte Abhandlungen, Chelsea Press,
New York, 1967.

5. W. Dzwinel, J. Kitowski, and J. MoScinski, Mol. Sim., 7, 171
(1991).

6. Handbook of Convex Geometry, Vol. B, P. M. Gruber and J. M.
Wills, Eds., North-Holland, Amsterdam, 1993.

7. H. Bekker, H. J. C. Berendsen, E.]J. Dijkstra, S. Achterop,
R. van Drunen, D. van der Spoel, A. Sijbers, H. Keegstra, B.
Reitsma, and M. K. R. Renardus, in Conference Proceedings
Physics Computing '92, World Scientific Publishing Co. Sin-
gapore, 1992, p. 257.

8. D.]J. Adams, Chem. Phys. Lett., 62, 329 (1979).

9. 5. S. Wang and J. A. Krumhansl, J. Chem. Phys., 56, 4287
(1972).
10. H.J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A.
DiNola, and J. R. Haak, J. Chem. Phys., 81, 3684 (1984).

1942

VOL. 18, NO. 15

