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Numerical Simulation of a Turbulent Flow in a
Channel with Surface Mounted Cubes

R.W.C.P. VERSTAPPEN and A.E.P. VELDMAN
Department of Mathematics, University of Groningen, P.O. Box 800, 9700 AV Groningen,
The Netherlands

Abstract. In this paper we report on a fourth-order, spectro-consistent simulation of a complex
turbulent flow. A spatial discretization of a convection-diffusion equation is termed spectro-consistent
if the spectral properties of the convective and diffusive operators are preserved, i.e. convection↔
skew-symmetric; diffusion↔ symmetric positive definite. We consider a fully developed flow in a
channel, where a matrix of cubes is placed at a wall of the channel. The Reynolds number (based on
the channel width and the mean bulk velocity) is equal to Re= 13,000. The three-dimensional flow
around the surface mounted cubes has served at a test case at the 6th ERCOFTAC/IAHR/COST work-
shop on refined flow modeling (Delft, June 1997). Here, mean velocity profiles as well as Reynolds
stresses at various locations in the channel have been computed without using any turbulence models.
The results agree well with the available experimental data.

AMS Mathematics Subject Classifications (1991):76F10, 76M25, 65M06.

Key words: direct numerical simulation, turbulent (channel) flow, bluff bodies.

1. Introduction

Kim et al. [1] were among the first who performed numerical simulations of a
fully developed channel flow based on the incompressible Navier–Stokes equations
without using any turbulence models. The data-base resulting from their simulation
has been studied intensively; we mention Mansour et al. [2]. The generally received
opinion about simulations that do not use any turbulence models is that these sim-
ulations are so computationally expensive that they have to be restricted to simple
flows at relatively low Reynolds numbers. In the foreseeable future, however, these
limitations will become weaker due to the enormous pace at which the costs of
computer simulations go down.

Since a significant part of the reduction of these costs is due to improvements of
computational algorithms for fluid flows, it is important to have well-defined test
cases so that the algorithmic efficiency of Navier–Stokes solvers can be evaluated
regularly. The 6th ERCOFTAC/IAHR/COST workshop on refined flow modeling
(Delft, June 1997) offered such a test case: a fully developed flow in a channel,
where a matrix of 25× 10 cubes is placed regularly at a wall of the channel. The
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Reynolds number based on the channel width and the mean bulk velocity is equal
to Re= 13,000.

Originally, this test case was proposed to evaluate the performance of turbulence
models for complex flows. Yet, the complex geometry of this test case makes it also
interesting from a computational point of view. Indeed, the pseudo-spectral method
(with Fourier-modes in the streamwise and spanwise directions and Chebychev
polynomials in the normal direction) that Kim et al. [1] applied to discretize their
channel flow cannot be applied here. Thus, other cheap(er) and accurate discretiza-
tion methods have to be considered. Such methods must be used in combination
with nonuniform grids, i.e. stretched grids with high densities of grid points near
the walls.

On nonuniform grids various ways exist to discretize convective and diffusive
operators. Some examples of higher-order discretization methods can be found in
[3–8]. In Section 2, we focus on a fourth-order, spectro-consistent discretization
method. In such an approach, the spectral properties of the convective and dif-
fusive operators are preserved, i.e. convection↔ skew-symmetric; diffusion↔
symmetric positive definite.

We have applied the fourth-order, spectro-consistent discretization of the in-
compressible Navier–Stokes equations (without any turbulence models) to com-
pute the flow in the channel with an array of surface mounted cubes. Computations
have been performed on two different grids. Mean velocities and Reynolds stresses
at various locations in the channel are compared to those of RANS computations
and to those measured by Meinders et al. [9] (Section 3).

2. Simulation Method

In this section, the main lines of the simulation method are described concisely.
Section 2.1 concerns the computational domain and the grid. The time-integration
method is discussed in Section 2.2. The spectro-consistent discretization is briefly
outlined in Section 2.3. For a more detailed discussion of the numerics the reader
is referred to [10].

2.1. COMPUTATIONAL DOMAIN AND GRID

We consider the flow in a channel, where a matrix of cubes is placed regularly at
one wall of the channel. The matrix consists of 25× 10 cubes in the streamwise
and the spanwise direction, respectively. The width of the channel is 3.4h, where
h denotes the width of a cube. The pitch of the cubes is 4h, both in the streamwise
and in the spanwise direction. Flow measurements (of Meinders et al. [9]) at the
mid height of the channel around a cube at the 18th row from the inlet showed
that the influence of the in- and outlet can be neglected there: a fully developed
and symmetrical state was observed at this location. This justifies to confine the
computational domain to a sub-channel unit of dimension 4h × 3.4h × 4h with
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Figure 1. Top- and side-view of the sub-channel unit.

periodic boundary conditions in the streamwise and in the spanwise direction. Fig-
ure 1 displays the sub-channel unit. It may be noted that the sub-channel unit may
be translated arbitrary in stream- and spanwise direction. We have chosen the sub-
channel unit in such way that the computational domain contains only one cube,
since this eases the implementation of the boundary conditions in our simulation
code. No-slip conditions are imposed at the surfaces of the cubes and at the walls
of the channel.

For the Reynolds number considered here, we have computed solutions of the
incompressible Navier–Stokes equations on two grids, a coarse grid and a finer
grid. The coarse grid uses 603 grid points to cover the sub-channel unit; the finer
grid has 1003 grid points. Both grids are staggered and stretched away from the
walls using a sinh. This holds for all walls, of the channel as well as of the cubes.
For the 603-grid, the first grid point away from a wall is located at one hundredth
of the channel width. The first mesh point of the 1003-grid is spaced 40% nearer to
the wall. A cube is represented by 20 grid points in each direction on the 603-grid,
and by 40 grid points on the 1003-grid. The largest grid size is approximately three
(1003-grid) to four (603-grid) times the smallest.

2.2. ONE-LEG TIME-INTEGRATION METHOD

The conservation laws for momentum and mass of an incompressible fluid read

∂

∂t

∫
�

u d�−
∮
∂�

f(u)n ds +
∮
∂�

pn ds = 0, (1)

∮
S

u · n ds = 0, (2)

where� is an arbitrary volume with boundary∂�; S is an arbitrary surface;n
denotes the unit normal vector on the surface of integration. The vectoru denotes
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the velocity; the scalarp is the pressure. The fluxf(u) consists of a convective and
a diffusive part.

The pressure in Equation (1) and the incompressibility constraint (2) are treated
implicitly in time to keep the integration method stable. The flux is integrated by
means of the following second-order one-leg method∫

�

((
α + 1

2

)
un+1− 2αun +

(
α − 1

2

)
un−1

)
d�

− δt
∮
∂�

f((1+ α)un − αun−1)n ds = 0, (3)

where we have takenα = 0.05 to optimize the (convective) stability of the method
[10].

The pressure gradient is added to the solution of Equation (3), where the pres-
sure is solved from a Poisson equation. Here, it may be stressed that the streamwise
boundary conditions for the pressure are not periodical, since the mass flow rate
through the sub-channel unit is prescribed (such that the Reynolds number is kept
constant at Re= 13,000). We satisfy this condition by computing a pressure
dropδp, which depends on time, but not on space. To compute the pressure drop
without iteration, the pressurep is written asp = q + sδp, whereq satisfies a
Poisson equation with periodic boundary conditions in the streamwise direction,
and the scalars satisfies a Laplace equation, wheres at the outflow boundary
is one unit smaller thans at the inflow. The partq of the pressure is computed
every time step, namely in such a way that the divergence of the corresponding,
discrete, velocity field is zero; the time-independent parts is computed only once
(before the time integration starts). The discrete Poisson equations forq ands are
solved numerically using a conjugate gradient method with a modified incomplete
Choleski preconditioner.

2.3. SPECTRO-CONSISTENT DISCRETIZATION

On nonuniform grids various ways exist to discretize convective and diffusive
operators. This section concerns spectro-consistent discretization methods, i.e. dis-
cretizations that preserve the spectral properties of the underlying continuous op-
erators: convection↔ skew-symmetric; diffusion↔ symmetric positive definite.
Both second-order and fourth-order versions are considered. The second-order
method can be found in [11]. The fourth-order method follows from a Richard-
son extrapolation with a second-order discretization applied to a larger-sized grid.
Using a doubly-sized grid, the discretization of convection and diffusion becomes
(in 1D)

hi
∂u

∂x
i ≈ 1

2
(−ui+2+ 8ui+1 − 8ui−1 + ui−2), (4)
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Figure 2. The global error as a function of the mean mesh size.

hi
∂2u

∂x2 i
≈ 8

(
ui+1 − ui
xi+1 − xi −

ui−1− ui
xi−1− xi

)
−
(
ui+2 − ui
xi+2 − xi −

ui−2− ui
xi−2− xi

)
, (5)

wherehi = (1/2) (−xi+2 + 8xi+1 − 8xi−1 + xi−2).
On a uniform grid we obtain the usual fourth-order method, but on nonuniform

grids the method differs. It is easy to show that, in the absence of diffusion, this
method conserves quadratic quantities.

Figure 2 shows a comparison of the fourth-order spectro-consistent method
(4–5) with the traditional discretization methods. For this comparison, an exact
solution of the following steady, one-dimensional convection-diffusion equation
with a boundary-layer character has been considered:

∂u

∂x
− k ∂

2u

∂x2
= 0 (0< x < 1) u(0) = 0, u(1) = 1. (6)

The diffusion coefficient is equal tok = 0.001. Two types of grids have been exam-
ined: piecewise-uniform grids (which consist of two parts, in each of which the grid
is taken uniform) and exponentially stretched grids. In both cases half of the grid
points are located in a layer with thicknessd = O(k). Four discretization meth-
ods have been investigated: (2L) the traditional Lagrangian second-order method;
(2S) the second-order spectro-consistent method; (4L) the traditional fourth-order
Lagrangian method where we have implemented exact boundary conditions to cir-
cumvent the problem of the difference molecule that is too large near the boundary;
(4S) the method defined by Equations (4–5) where the problems due to the ‘miss-
ing’ boundary conditions are solved by using the second-order discretization in the
end points.

The numerical experiments with the four discretization methods show that often
the fourth-order Lagrangian method is not more accurate than its second-order
counterpart, especially when the number of grid points is not abundant. Further,
when the number of grid points is low Lagrangian discretization is much less
accurate than spectro-consistent discretization. Though the local order of 2S and
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4S is only one at the grid-transition point of the abrupt grids, the global error of
2S and 4S is smaller than that of the Lagrangian methods 2L and 4L. As can be
seen in Figure 2, the spectro-consistent discretization method behaves smoothly
on all grids. In contrast, the fourth-order Lagrangian method nearly breaks down
on the exponential grid if the stretching factor is 0.72 (which is not extreme; for
this stretching factor 4S is already very accurate, with an error around 10−5). This
bad result of the Lagrangian method 4L is due to an eigenvalue crossing the imag-
inary axis close to the origin. For a mean grid size of 0.1 some eigenvalues of the
coefficient matrix of both 2L and 4L are located in the unstable halfplane. Upon
grid-refinement some of these eigenvalues will cross the imaginary axis. If they do
so close to the origin, the discrete system is (almost) singular, and consequently,
the global truncation error – which is the product of the inverse of the coefficient
matrix and the local truncation error – may become large. This cannot happen with
a spectro-consistent discretization, since in such an approach all eigenvalues lie
where they belong: in the stable halfplane.

The above ideas have been implemented in a simulation method for solving
the incompressible Navier–Stokes equations in three spatial dimensions. To this
end, the Navier–Stokes equations are discretized on a staggered grid, where the
velocities and pressure are defined on the grid as proposed by Harlow and Welsh
[12]. The spatial integrations in the time-discrete momentum equation (3) are ap-
proximated by means of the midpoint rule. The leading term of the local truncation
error of the approximation consists of second-order terms. To eliminate the leading
term of the truncation error, the momentum equations are also integrated over three
times larger control volumes. On a staggered grid we have to use three times larger
control volumes, and not two times larger as in Equations (4–5), since three times
larger volumes are the smallest ones possible that have exactly the same properties
as the original volumes.

For more details about the fourth-order spectro-consistent method, we refer to
[10]. In that paper, we have also compared the results of the fourth-order spectro-
consistent method and the underlying second-order method for a direct numerical
simulation of the flow in a cubical lid-driven cavity at Re= 10,000. In this exam-
ple, the fourth-order results are clearly superior to the second-order results, whereas
the computational effort is about 20 times less.

3. Results and Discussion

We have applied the fourth-order, spectro-consistent method that is outlined in the
previous section to compute mean velocity profiles as well as Reynolds stresses at
various locations in a sub-unit of a channel with surface mounted cubical obstacles.
The distance between the walls of the channel is 3.4 times the length of a cube. The
pitch of the cubes is four cube lengths in both the streamwise and the spanwise
direction. The Reynolds number based on the width of the channel and the bulk
velocity is equal to Re= 13,000.
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Figure 3. Comparison of the mean streamwise velocity near the flat wall of the channel.
Here, the profiles of the mean velocity are nondimensionalized by the wall-shear velocity.
The distance to the wall is measured in wall coordinates. The doted lines represent the law of
the wall and the log law. The markers correspond to the 603 and 1003 simulation; the dashed
lines are taken from the ERCOFTAC Database (short dashes: DNS of Kim et al. [1]) and from
the Japanese DNS Data Base of Turbulent Transport Phenomena (DNS of Gilbert and Kleiser
[13]).

The initial velocity field is taken constant (u = 1, v = w = 0). The sampling
of data for the computation of the first- and second-order statistics of the flow
started after a transitional period of 100 time units (nondimensionalized by the
bulk velocity and the channel width). All averages have been computed over 200
nondimensional time units and over the two symmetrical halves of the sub-channel
unit. Samples have been taken at each time step.

3.1. HOW ACCURATE IS THE603 SIMULATION COMPARED TO 1003?

The flow has been simulated at two grids; see Section 2.1. Including start-up and
sampling time, the 1003 simulation took about 100 hours on one vector-processor
of a CRAY C90. The 603 simulation took about one tenth of the CPU-time of the
1003-simulation. Half of this reduction results from a doubling of the time step
(which is restricted by the CFL-condition).

Figure 3 displays a comparison between the mean streamwise velocities near
the flat wall of the channel of the fine grid simulation, the coarse grid simulation,
the DNS of Kim et al. [1] and the DNS of Gilbert and Kleiser [13]. The latter two
are added for comparison. It may be noted that the flow conditions are not exactly
equal: Kim et al. and Gilbert and Kleiser have considered a turbulent channel flow
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without surface-mounted cubes. Their Reynolds numbers are 5,600 and 6,600,
respectively.

Here, it may be remarked that theu+ of 603 and 1003 simulations are obtained
by averaging over the time and the streamwise direction, but not over the spanwise
direction since the data needed for that was not stored during the simulations.
Therefore, the mean-velocity profiles are computed at the cross section that bisects
the cubes.

The markers in Figure 3 indicate the computed values at the 603 and 1003 grid.
The first grid point of the 603 is located aty+ = 5.490982; the first grid point of
the 1003 grid lies aty+ = 3.140607. Hence, the first grid point of the coarse grid
lies just outside the viscous sublayer (y+ < 5), while the 1003 grid has only one
grid point inside. Yet, all computational results follow the the linear law of the wall
in the sublayer: the computed values ofu+ at the first grid point of the 603 and
1003 grid are 5.490982 and 3.140607, respectively.

In the logarithmic layer, however, the results on the two grids differ signifi-
cantly. The 603 simulation does not follow the log law, while the fine grid simu-
lation (like the DNSs of Kim et al. and Gilbert and Kleiser) follows the log law,
where we have used 5.5 for the additive constant instead of 5 to compensate for the
relatively low Reynolds number (see also [1] and [14]). From this it is clear that the
603 grid is not fine enough to capture all the details of the flow near the flat wall
of the channel. One of the main shortages of the 603 simulation seems to be the
misprediction of the wall-shear velocity that is used to scale the velocity profiles.
Using the wall-shear velocity of the 1003 simulation to scale the velocities of the
603 simulation improves the results somewhat, yet not enough to approximate the
log law with an error smaller than 5%.

It may noted that the DNS of Kim et al. [1] and the DNS of Gilbert and Kleiser
[13] use a much finer grid near the wall than we do. Both Kim et al. and Gilbert
and Kleiser use approximately 10 grid points to cover the viscous sublayer, while
the 1003 grid has only one grid point inside the viscous sublayer. Nevertheless, the
values of the mean velocities and the turbulence intensities of the 1003 simulation
agree well with the available experimental data. The computed value of the root-
mean-square of the fluctuating streamwise velocityurms near the wall, for example,
equals 0.31 (normalized by the mean streamwise velocityu); the experimental
results reported in [15] lie in the range 0.3–0.32. The experiments show thaturms/u

is almost constant in the viscous sublayer.
Next, we will consider the flow in a cross section of the channel with surface

mounted cubical obstacles. Here, all quantities are normalized by the channel width
and the bulk velocity. The mean-square of the fluctuating spanwise velocity of the
fine grid simulation, the coarse grid simulation and the experiments of Meinders et
al. [9] are shown in Figure 4. As can be seen in Figure 4, the 1003 simulation pre-
dicts the mean-square of the fluctuating velocity correct, while the 603 simulation is
far off. It predicts the extremal values of the mean-square of the fluctuating velocity
wrong. The peak ofw′w′ near the cube of the 603 simulation is approximately 70%
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Figure 4. A comparison of the mean-square of the fluctuating spanwise velocity at a cross
section of the channel. The cross section is taken perpendicular to the spanwise direction and
bisects the cube. The geometry is drawn to scale. The continuous line corresponds to the 1003

simulation; the dashed line denotes the 603 result; the experimental data is depicted by the
dots.

of that of the 1003 simulation. The peak near the flat wall of the channel is about
100% larger than that of the 1003 simulation.

So, in conclusion, the 603 simulation cannot compete with the 1003 simulation
in terms of accuracy.

3.2. COMPARISON WITH RANS

We have merely pursued the 603 simulation to challenge Reynolds-averaged
Navier–Stokes (RANS) computations, not to challenge DNS. We think that a
RANS computation of this flow has to be performed on a grid that is comparable
to the 603 grid in order to represent the geometry sufficiently accurate. Here, it
may be recalled that a cube is represented by as little as 20 grid points in each
direction on the 603 grid. Thus, regarding the spatial resolution a 603 computation
of Navier–Stokes without using any turbulence models may challenge RANS. In
fairness it must be said that this does not necessarily hold with regard to the tempo-
ral resolution, since a RANS computation need not to be time-accurate, while our
603 simulation is time-accurate.

The flow in the channel with surface mounted cube was one of the test cases at
the 6th ERCOFTAC/IAHR/COST Workshop on Refined Flow Modelling (Delft,
June 1997). There were four groups who presented results of their RANS compu-
tations of the flow in the channel with surface mounted cubes. Here, we restrict
ourselves to the submission (of Dr. S. Jansson from the Department of Fluid Me-
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Figure 5. Comparison of the mean streamwise velocity at half cube height. The flow comes
from below. The horizontal corresponds to the spanwise direction. The dashed vertical lines
are lines of symmetry. The distance between them is two cube lengths. The lowermost profiles
are located at 0.3 cube lengths before the front of the cube; the middlemost profiles are located
at 0.3 cube lengths after the front. The uppermost profiles are located at one cube length after
the middlemost. The velocity scale is shown for the uppermost profiles only; the other profiles
have the same vertical scale. All velocities are normalized by the bulk velocity.

chanics of Vattenfall Entvecklung AB in Sweden) that, among the RANS, agreed
the best with the available experimental data. This RANS computation was per-
formed on a stretched, orthogonal grid of 67 by 72 by 57 points in the streamwise,
the normal and the spanwise direction, respectively. The grid points that are located
closest to a wall were taken aty+ = 2–5. The results of this RANS as well as those
of all the other submitted computations can be found in the proceedings of the
workshop [16]. It may be noted that there were no results of large-eddy simulations
submitted to this workshop, nor have there been any reported elsewhere.
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Figure 6. An instantaneous flow field at two planes through the centre of the cubes. In both
pictures the flow is directed from left to right.

The best RANS result was based on a second-order, cell-centred, finite-volume
method. It applied the SIMPLEC solution technique and a Rhie and Chow inter-
polation method. The QUICK scheme was used for the velocities and the turbulent
quantities were integrated by means of a second-order accurate scheme with a
Van Leer limiter. Periodic boundary conditions were applied in the streamwise
direction; the period was taken equal to four cube lengths. Symmetry conditions
were applied in the spanwise directions. The spanwise boundaries were taken two
cube lengths apart. Dirichlet conditions were applied at the solid walls, except for
the dissipation rateε: the normal derivative ofε was put to zero at solid walls.
The turbulence model consisted of a two-layer eddy-viscosity combined with a
standardk–εmodel. The transport equation for the dissipation rateε was not solved
in near-wall regions, but instead it was computed explicitly from a predicted length
scale.

Mean streamwise velocity of the best RANS computation are compared to those
of the 603 and the 1003 Navier–Stokes computation in Figure 5. Here, the experi-
mental data of Meinders et al. [9] forms the frame of reference. On a corresponding
grid, the mean velocities computed from the Reynolds averaged Navier–Stokes
equations agree less with the experimental data than the results of the 603 Navier–
Stokes computation. The velocity profiles of the RANS computation are much too
smooth. In addition, the maxima of the velocities are located in the symmetry-plane
between two cubes, which is in distinct disagreement with the experimental data.
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Figure 7. A comparison of first-order statistics (upper picture) and second-order statistics
(lower picture) of the DNS with experimental data. Shown are the mean streamwise velocity
u (upper picture) andu′u′ (lower picture) in the plane parallel to the streamwise direction
that cuts the cubes in two equal halfs. The continuous lines correspond to the DNS; the
experimental data is depicted by the dots.

3.3. MORE RESULTS OF THE1003 SIMULATION

From the previous two sections it is obvious that the results of the 1003 simulation
are closer to the measurements than those of the 603 simulation. Therefore, we will
focus on the 1003 simulation in this final section.

Figure 6 shows an instantaneous flow field. The visualization has been made
by means of the spot noise technique. For details on this technique the reader is
referred to [17]. It may be noted that large structures of recirculating flow behind
the cubes are not present in Figure 6, nor have they been observed in any of the
snapshots of this flow. These regions can only be seen if the flow is averaged over
a long period in time.

First- and second-order statistics of the flow at the cross section of the channel
that bisects a cube are compared to experimental data of Meinders et al. [9] in
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Figure 7. As before, the averages are computed over 200 (nondimensional) time
units. The profiles are also averaged over the two symmetrical halves of the compu-
tational domain. The profiles of the mean streamwise velocity and the mean-square
of the fluctuating streamwise velocity are in good agreement with the experiments,
except in front of a cube, where some discrepancies between the mean-squares of
the fluctuating streamwise velocities exists.
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