
1. Landau theory for polydisperse
copolymer melts

1.1 Introduction

The weak segregation regime

For many monomer pairs A and B the net interaction in an incompressible system is

unfavorable, that is, ε ε εAB AA BB− + >1
2 0( ) , where εαβ is the contact energy between a

monomer of type α , and a monomer of type β . Consequently, in many cases a polymer

system containing two or more monomer types will undergo a phase separation if the

interaction strength is increased relative to k TB , which can be achieved simply by lowering the

temperature (kB  is Boltzmanns constant). If the different monomer types are chemically

bonded in the same chain to form (block) copolymers, the phase separation can give rise to a

microscopic structure. Typically, it consists of domains which are alternately rich in A and rich

in B. Depending on the degree of separation between A and B, three regimes can be

distinguished: the weak segregation regime (WSR), the intermedeate segregation regime2,7

(ISR), and the strong segregation regime8 (SSR). In the SSR the separation between the A-

and the B-monomers is complete, and the only A/B-interactions take place at the thin interfaces

between the domains. The chains are strongly stretched9 in order to minimize the interfacial

area. In the WSR the difference in composition between the A-rich and the B-rich domains is

small, and the thickness of the interface is comparable to the size of the domains. The

concentration profile is more or less sinusoidal. Due to their limiting character, both the SSR

and the WSR allow for analytical calculations. Although traditionally these calculations have a

quite different nature, recently succesfull attempts10 have been made to unify the WSR with the

SSR.

Landau theory

In this thesis the phase behavior of polydisperse copolymer melts is studied in the WSR. This

phase behavior can be described within the framework of classical statistical mechanics.

However, taking into account all microscopic details of its chemical constituents is an

impossible task. Fortunately, this is also not necessary. It is known from experiments that
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polymer systems having quite different chemical compositions may exhibit very similar

behavior. The influence of the microscopic (i.e. on the level of the atoms) details can be caught

in a small number of parameters, such as the Flory-Huggins χ-parameter,11 the excluded

volume υ  per segment (a segment is a flexible piece of chain), and the stiffness of the chain.

Apart from these parameters it is the molecular architecture on the level of the blocks which

determines the phase behavior. Therefore, a model to explain the phase behavior need not (and

should not) take into account the microscopic details. Landau theory12 has proven to be a

usefull tool in these cases, because it avoids dealing with the underlying microscopic theory by

working with a coarse grained description. We start with giving a rough sketch of the idea

underlying the Landau theory.

Since copolymer melts are almost incompressible, we can study them using the canonical

ensemble, which assumes constant volume and temperature. In this ensemble, the partition

function Z is defined as the integral of the Boltzmann factor e E k TB−  over the positions and

momenta of all particles present in the system. Quite generally, it is possible to factorize Z into

a contribution from the momenta, and a contribution from the positions. The integral over the

momenta is a function of the temperature, and will not be considered any more, since it is of no

use for the determination of the phase behavior. The integral over the positions is called the

configurational partition function, and is denoted by Z. The probability that a certain

configurational microstate occurs is proportional to its Boltzmann factor e E k TB− , where E

does not include kinetic energy. However, we are not interested in microscopic states, but in

coarse grained states. For example, if we study binary blends containing A- and B-particles, we

are interested in whether the system is homogeneously mixed, or phase separated, and not in

the exact positions of all particles. Each coarse grained state represents a large number of

microstates. In order to find the probability of a coarse grained state, one has to add the

probabilities (i.e. Boltzmann factors) of all microstates it represents. The coarse grained states

are often chosen in such a way that most of the microstates it represents have the same energy

content, and, therefore, the same probability of occurrence. In that case the (unnormalized)

probability P to find the system in a certain coarse grained state is equal to the Boltzmann

factor per microstate, multiplied with the number Ω  of microstates, that is,

P e e

F E TS S k

E k T F k T

L

B BL∝ =

= − = −

− −Ω

Ω, ln
                                  (1.1.1)



Landau theory

5

The quantity FL  is called the Landau free energy of the coarse grained state (although in fact it

is not a free energy in the true sense of the word), and S is its entropy. One can expect that the

system will be found in the coarse grained state for which P attains its maximum value. At low

temperatures the system prefers a state with low energy, whereas at high temperatures it

prefers a state with high entropy. In many cases these two conditions cannot be satisfied

simultaneously, and in rising the temperature there could be a phase transition from a low-

energy state to a high-entropy state. In order to describe these phase transitions, it is useful to

have an expression for the partition function Z. As a first step, write Z as a summation over the

coarse grained states s, in the following way:

Z e F kT

s

L
s

= −∑                                                  (1.1.2)

If it is assumed that the most probable state ~s  (which is the one with the lowest value for FL )

is completely dominant over all other states, the free energy of the system can be approximated

by

F kT e FF kT

s
L
sL

s

= − ≅−∑ln
~
                                      (1.1.3)

This is called the saddle point approximation, and the resulting theory is equivalent to mean-

field theory. Usually the coarse grained states s are characterized by the value of an order

parameter. In the most simple case the order parameter is a single variable. In the Ising model,

for instance, it is the average magnetization m. For copolymer melts the situation is more

complicated, and the order parameter is a function of space,13 thus representing infinitely many

variables.

The main purpose of this chapter is to derive an expression for the Landau free energy FL  for

all sorts of polydisperse block copolymers, the only restriction being that the molecules are

linear or tree-like (the study of the phase behavior of ring copolymer melts is much harder,

because rings in the melt state do not obey random walk statistics14). However, there is the

restriction that Landau theory is only applicable in the region where the order parameter is

small, which, in the case of copolymer melts, corresponds to the region where the interaction-

induced separation is small (weak segregation regime, WSR). In the remainder of this

introduction we first discuss the choice of the order parameter, and then we present a coarse

grained description of block copolymer chains, which ignores the (for our purpose irrelevant)
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microscopic details. In paragraph 1.2 we define the so-called correlation functions, which play

an important role in the calculation of the Landau free energy in paragraph 1.3. The expression

for the Landau free energy obtained in this chapter forms the basis for the rest of this thesis,

where it is used to calculate the phase diagram of polydisperse multiblock copolymers in

various approximations.

The choice of the order parameter

In Landau theory one has to make a choice for the order parameter. There is not a strict rule

which fixes the order parameter for a given system, but generally it should be a slow degree of

freedom which comes to equilibrium only after all other degrees of freedom have come to

equilibrium. In AB-copolymer melts the usual choice13,15 is the concentration profile ψ( )
r
x ,

which is defined as the deviation of the A-monomer fraction from the average value.

ψ ρ
ρ

( )
( )r
r

x
x

fA= −                                                (1.1.4)

where ρ  is the average total monomer density (including the B-monomers). Since

incompressibility is assumed throughout (implying a constant density), there is only one

independent concentration profile. The profile ψ( )
r
x  as defined in 1.1.4 is not a smooth

function. On the length scale corresponding to the size of a monomer, its value fluctuates

between ( )1− f  (if there is an A-monomer present at position 
r
x ) and − f  (if there is a B-

monomer present at 
r
x ). However, Landau theory does not deal with properties on this length

scale, and in fact one should take for ψ( )
r
x  the coarse grained profile. Coarse graining means

getting rid of short-scale fluctuations, which makes the profile smooth. Technically, coarse

graining can be accomplished by introducing a cut-off value Λ  for the vectors in Fourier

space,16 that is, by setting the Fourier coefficients ψ A q( )
r

 for | |
r
q > Λ  equal to zero. The value

of Λ  should be chosen such that Λ−1  is small compared to the radius of gyration17 of the

blocks (which is the characteristic length scale in a block copolymer melt), but on the other

hand Λ−1  should be large compared to the size of the monomers. Nevertheless, in calculations

one usually takes the limit Λ → ∞ . This can lead to divergencies in the integrals over Fourier

space (see for instance chapter 5), but it will now be clear that these divergencies have no

physical meaning.
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A coarse grained model for block copolymer melts

Consider a copolymer system containing two chemical building blocks (monomers) A and B. A

microscopic description of the (configurational) state of this system would involve giving the

position in space of all monomers. Instead, we choose a coarse grained description, which is

possible provided that there are long sequences of like monomers present in the molecules. To

define the coarse grained state of the chain we proceed as follows. The persistence length Lp of

the chain is defined as the distance, measured along the chain, over which the directional

correlations vanish. Roughly speaking, pieces of chain which are shorter than Lp are stiff,

whereas pieces of chain which are longer than Lp are flexible. A piece of chain with length Lp is

called a segment. On the level of the segments the chain behaves like a random walk (the

random walk behavior of chains in the melt will be discussed in paragraph 1.2). In a coarse

grained description the chain of monomers can be regarded as a chain of segments. The length

of the blocks should be much larger than the lengths of the segments, otherwise the theory

described in this thesis is not applicable. Often the Kuhn segment18 is regarded as the building

block for the coarse grained chain. It is defined in the following way. Consider a flexible chain.

Approximate this chain by a model chain of N freely jointed segments with fixed length aK ,

such that the model chain has the same radius of gyration Rg and the same contour length L as

the real chain. These conditions fix the values of N and aK  via

L Na R NaK Kg= =2 1
6

2                                       (1.1.5)

The thus obtained Kuhn segment length aK  is closely related to the persistence length. In the

following it is assumed that the length of a segment is not fixed, but has a Gaussian distribution

with root mean square value a, which is often called the statistical segment length. Since the

segment length is much shorter than the block length, most segments are homogeneous in

composition, making it possible to talk about A-segments and B-segments. The coarse grained

state of the system can be described by the set of positions of the begin- and end-points of the

segments. This coarse grained state contains no microscopic details. All microscopic properties

(that is, the properties on the level of the chemical monomers) will be represented by just three

parameters υ , a  and χ. The parameter υ  is the excluded volume per segment, a  is the root

mean square of the end-to-end distance of a segment, and the χ-parameter gives the effective

interaction between the A- and B-segments, which includes both energetic and entropic

contributions. Because of incompressibility one interaction parameter is sufficient. This χ-
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parameter should be regarded as a phenomenological parameter, the value of which can be

determined by experiments.

The fact that the microscopic properties can be dealt with in such a simple way is due to the

following.19 Consider the system of disconnected monomers, which is the same system but

without the presence of the chemical bonds. The set of microscopic states corresponding to

just one coarse grained state of the polymer system is representative for the whole phase space

of the system of disconnected monomers (assuming that most monomer-monomer contacts in

the polymer system are between monomers belonging to different chains). Therefore,

averaging over the microscopic properties is independent of averaging over the properties of

the coarse grained system. In the dynamics of the polymer system this is reflected by the fact

that on small timescales the coarse grained configurations of the molecules do not change

significantly, whereas the individual monomers have had contacts with many different

monomers.

According to a main postulate in statistical mechanics all microstates in a canonical ensemble

have the same a priori probability. This is, however, not applicable for the coarse grained

states. In order to find the probability of a coarse grained state one has to integrate over all

conformations of the segments. Although a rigorous calculation of this integral is impossible

because of the excluded volume, assuming random walk behavior of the chains (see the next

paragraph) the segment lengths can be considered as independent, and it is possible to

approximate the probability of a coarse grained state by the following expression. Let s denote

a molecule type in a polydisperse system. Let m number the molecules of a given type s and let

i number the segments in a given chain. Let 
r
Rm i

s
,  denote the position of the i th segment in the

mth molecule. Then the probability to find the system in the coarse grained state { },

r
Rm i

s  is

proportional to20

( )P R R x R Rm i
s

m i
s

m i
s

m i
s

s m i

({ }) ({ }, ) ( ), , , ,
, ,

r r r r r
∝ − −−

+∏δ ρ υ 1
1g                        (1.1.6)

where the delta function expresses the incompressibility condition (ρ  is the segment density),

and g( )
r
r  is the probability that the end-to-end vector of a segment is equal to 

r
r . Since on the

coarse grained level the chain conformations obey random walk statistics, one can take for

g( )
r
r  the end-to-end probability distribution of a random walk, which is derived in appendix A:
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g g( ) exp ( ) exp
r r
r

r
q

q= 



 −







 ⇔ = −
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a
               (1.1.7)

Equation 1.1.7 will be used as an a priori probability for the coarse grained model. In the

following it is assumed that both monomer types have the same value for a , and the same

value for υ . Since a segment contains several monomers, in general we have

a >> υ1 3                                                     (1.1.8)

In many theoretical papers the unit of length is chosen such that the excluded volume υ  per

segment becomes equal to unity. Because of 1.1.8 the statistical segment length a will then be

large compared to unity. However, it is possible to rescale the model in such a way that in

appropriate units both υ  and a become equal to unity. This can be achieved in the following

way. Consider a coarse grained model characterized by the parameters χ, υ  and a. Replace

every segment with k segments, and rescale the parameters according to

′ = ′ = ′ =χ χ υ υ
k k k

a
a

                             (1.1.9)

The statistical segment length a has been rescaled in such a way that the radius of gyration of

the blocks remains the same. The scaling of χ is necessary because χ is the interaction per

segment. The reason for the rescaling of υ  is obvious. Note that after application of the

transformation 1.1.9 the block lengths (measured in number of segments per block) are all

multiplied by a factor k, that is, ′ =N kN. Strictly speaking the models obtained by taking

various values for k > 1 are not completely equivalent, but within our coarse graining

approximation they can be expected to be equivalent models for the real polymer system (even

the fluctuational behavior is independent of k; see note 21). In the process of refining the

segmentation by increasing the value of k, the ratio between a 6  and υ1 3  decreases. At a

certain value of k this ratio is equal to unity. This shows that without restricting the generality

of the considerations it can be assumed that

( )υ1 3 1
6

2 1 2
1= =a                                             (1.1.10)

Summarizing, the procedure is first to model the system by choosing the appropriate number of

chemical monomers per segment, and to determine the values of the parameters a, υ , and χ.

Then, from the class of equivalent models obtained by the refining transformation 1.1.9, that
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model is chosen which satisfies condition 1.1.10 for some unit of length. To reduce the number

of parameters even more it will also be assumed throughout that the unit of energy is chosen

such that k TB , which is roughly speaking the translational kinetic energy per molecule, is

equal to unity:

k TB = 1                                                     (1.1.11)

Nevertheless, the effect of a change of the temperature on the phase behavior can still be

investigated by changing the value of the Flory-Huggins χ -parameter,11 which is temperature

dependent.

1.2 Correlation functions

Introduction

The mean-field phase diagram of an AB-copolymer melt can be constructed after deriving an

expression for the Landau free energy FL  as a function of the concentration profile ψ
(equation 1.1.4). Minimizing this free energy gives the most probable profile. In the weak

segregation regime, where ψ  is small, it is possible to expand FL  in powers of ψ . The

coefficients in this expansion are called the vertex functions. These vertex functions can be

obtained from the correlation functions in the melt, and these correlation functions can be

related to the correlation functions of isolated random walks.11 Therefore, the calculation of

correlation functions is an essential ingredient for the following chapters. The correlation

functions give information about how the values of ψ  at different space points are correlated.

In order to explain their physical meaning, we describe qualitatively the second order

correlation function for a block copolymer melt. Let f be the average A-monomer fraction in

the melt. Then, if 
r
y  denotes any position in space,22 the expectation value of the A-monomer

fraction at 
r
y  is equal to f. Now suppose that we measure the A-monomer fraction at a nearby

space point 
r
x  (nearby means that the distance between 

r
x  and 

r
y  is of the order of magnitude

of the radius of gyration Rg of the blocks). This extra information changes the expectation

value for ψ( )
r
y , and this change is described quantitatively by the second order correlation

function. The presence of this kind of correlation can be understood as follows. Suppose for

the moment that ψ( )
r
x  is larger than average. The A-blocks which are responsible for this,

penetrate over a distance Rg through space. Therefore, it is to be expected that the A-monomer

fraction at 
r
y  will also be larger than average. This positive correlation, which is characteristic
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for block copolymer systems, is called the correlation hole effect.13 The correlation disappears

if the distance between 
r
x  and 

r
y  becomes too large. The distance at which this occurs is called

the correlation length. Since this distance can be much larger than the size of the monomers,

the correlation functions in a polymer melt are called non-local. These long-range correlations

are due to the chain connectivity, and are, therefore, absent in the corresponding system of

disconnected monomers, which has the same composition as the polymer system, but where all

chemical bonds between the monomers are broken. The short-range correlations (that is, the

correlations over a distance corresponding to the size of the monomers) are the same for both

systems, provided that in the polymer system most monomer-monomer contacts take place

between monomers belonging to different chains. For the calculation of the phase behavior of

block copolymer systems only the long-range correlations are important.

The second order correlation function can be studied experimentally by means of a scattering

experiment, in the following way. Let the system be irradiated by waves. Then the intensity of

the scattered radiation is proportional to 〈 − 〉ψ ψ( ) ( )
r r
q q , where ψ( )

r
q  is the Fourier transform

of ψ( )
r
x , the brackets denote a thermodynamic average, and 

r r r
q q qout in= −  is the momentum

transfer. In practice the wavelength of the chosen radiation should be of the same order of

magnitude as the size of the structures to be studied. Since the size of the structures in block

copolymer systems is of the order of 10 nm, Röntgen or neutron diffraction can be used.

The correlation functions in the melt can be calculated due to the fact that the conformations of

polymer molecules in the melt obey random walk statistics.11 To appreciate why this statement

is remarkable, consider first an isolated polymer chain in an athermal solution, where the value

of the parameter χ  describing the effective interaction between the monomers and the solvent

molecules is zero. Because of the excluded volume of the monomers, the conformation of the

chain is a self-avoiding walk. Since two monomers which are far separated from each other

along the chain can still be close to each other in real space, the effect of self-avoidance

remains large, no matter how long the chain is (if the walk is regarded as a Markov process, it

has order infinity). The excluded volume effect forces the self-avoiding walk to be more open

than a random walk: the mean distance travelled by a self-avoiding walk23 of N steps is

proportional to N0 588. , whereas the mean distance travelled by a random walk is proportional

to N0 5. . Next consider a polymer chain in a melt, which is a rather dense system. Since the

chains cannot overlap, they hinder each other enormously. Therefore, it seems that the

excluded volume effect is even more important in the melt state than it is for an isolated chain.

For each chain the set of possible conformations is still the same as it is for an isolated chain

under athermal conditions. For an isolated chain all these self-avoiding walks have the same
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probability, but for a chain in the melt the various conformations obtain different weight

factors, which is due to the entropy of the remaining chains. Qualitatively, the effect is as

follows. If the chain takes on a rather open conformation which is characteristic for an isolated

chain, it has a high internal entropy, but at the same time it hinders the other chains

considerably, thus decreasing their entropy. If it becomes more crumpled up, its internal

entropy decreases, but since it leaves more room for the other chains this decrease is

compensated by an increase in their entropy. This reasoning shows that in the melt state the

chains prefer conformations which are less open than a self-avoiding walk. Flory11 has shown,

using simple arguments, that the weight factors of the various self-avoiding walks are such that

the set of conformations becomes representative for a random walk. In other words, the

effective excluded volume of the monomers is zero, and the conformations of the chains can be

considered as random walks. This statement has been verified experimentally,24,25

theoretically,26 and by computer simulations.27 It forms the basis for all analysis in this thesis,

and without it, analytical calculations on the phase behavior of polymer melts would be

impossible.

The presence of the short-range interaction and the incompressibility constraint give rise to

correlations between the different chains. However, in this paragraph we ignore these

correlations, and calculate the correlation functions of the corresponding ideal system,15 which

has no intermolecular correlations. In this (hypothetical) ideal system there are no interactions,

and the constraint that the density should be constant is absent. However, the essential feature

of chain connectivity is present in the ideal system, and the configurations of the chains obey

random walk statistics. Since in the ideal system there are no correlations between monomers

belonging to different chains, we need only to calculate the intramolecular correlations. In the

next paragraph it is shown how the correlation functions of the ideal system can be used to

calculate an expression for the free energy of the incompressible system with interactions.

Correlations between monomers

Consider a chain in the ideal system. Since there are no interactions at all between the different

chains, the chain can be considered as isolated. Let 
r r

L
r

R R RN1 2, , ,  denote the positions of the

monomers marking the beginning or the end of a segment, such that in between the monomers

at positions 
r
Ri  and 

r
Ri +1  there is only one segment. For shortness we will often refer to the

positions { }
r
Ri  as the positions of the segments. The set { , , , }

r r
L

r
R R RN1 2  is called the

configuration of the chain. It involves both the spatial shape of the chain, and the position of its

centre of mass. In the ideal system, the random walk statistics is taken as an a priori probability
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measure. Let g( )
r
r  be the normalized isotropic probability density that the end-to-end distance

of a segment is equal to 
r
r  (appendix A). Then the (unnormalized) probability density on the

space of conformations is given by (see also 1.1.6)

P R R R R R R R RN N N({ , , }) ( ) ( ) ( )
r
L

r r r r r
L

r r

1 2 1 3 2 1= − − − −g g g                    (1.2.1)

The integral of P over the phase space of all configurations equals V, which represents the

translational freedom of the chain. Although P and the correlation functions to be defined

below are probability densities, we will call them probabilities for shortness. By definition, the

nth order correlation function

G x x xi i i nn1 2 1 2L

r r
L

r
( , , , )                                                (1.2.2)

is the probability (normalized to V) that segment number28 ik  is at position 
r
xk , for k n= 1, ,L .

The peculiar normalization is adopted in order to make the correlation function independent of

the size of the system. According to definition 1.2.2, P itself is an Nth order correlation

function. For the analysis in the WSR we need only80 the second, third and fourth order

correlation functions. As an example we present the calculation of the fourth order one for the

situation that the indices are all different. Suppose that i j k l< < < .

G x x x x dR dR R R R R R R

R x R x R x R x

ijkl N N N

i j k l

( , , , ) ( ) ( ) ( )

( ) ( ) ( ) ( )

r r r r r
L

r r r r r
L

r r

r r r r r r r r

1 2 3 4 1 2 1 3 2 1

1 2 3 4

= − − − ∗

∗ − − − −

∫ −g g g

δ δ δ δ

         (1.2.3)

After the coordinate transformation

r r

r r r

r R

r R R nn n n

1 1

1 1

=

= − >−     if    

               ⇔             
r r
R rn i

i

n

=
=
∑

1

                  (1.2.4)

the correlation function 1.2.3 attains the form
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G x x x x dr dr r r

r r x r r x

r r x r r x

ijkl N N

i j

k l

( , , , ) ( ) ( )

( ) ( )

( ) ( )

r r r r r
L

r r
L

r

r
L

r r r
L

r r

r
L

r r r
L

r r

1 2 3 4 1 2

1 1 1 2

1 3 1 4

= ∗

∗ + + − + + − ∗

∗ + + − + + −

∫ g g

δ δ

δ δ

                  (1.2.5)

The vector 
r
r1  does not appear as argument for g( )

r
r , because it represents the position of the

first segment. Expression 1.2.5 can be simplified by going over to Fourier transforms.

Generally, the Fourier transform of a function f ( )
r
x  is defined by

f q dx f x e

f x
V

f q e dq f q e

iq x

iq x

q

iq x

( ) ( )

( ) ( )
( )

( )

r r r

r r r r

r r

r r

r

r r

= ⇔

= =

∫

∑ ∫

⋅

− ⋅ − ⋅1 1

2 3π

                         (1.2.6)

According to this definition, the Fourier transform of the nth order correlation function 1.2.2

for n = 4 is given by

G q q q q dx dx dx dx e G x x x xijkl

iq x iq x

ijkl( , , , ) ( , , , )
r r r r r r r r r r r r

r r
L

r r

1 2 3 4 1 2 3 4 1 2 3 4

1 1 4 4
= ∫

⋅ + + ⋅
                (1.2.7)

Substituting 1.2.5 into 1.2.7 and using the identity

1

V
dy e qiq y

K
r rr r

∫ ⋅ = δ ( )                                                 (1.2.8)

where δK  is the Kronecker delta (taking on the values 0 or 1), we get

G q q q q V q q q q q q q q

q q q q q q

ijkl K
i

j i k j l k n l

( , , , ) ( ) ( )

( ) ( ) ( ) ( )

r r r r r r r r r r r r

r r r r r r

1 2 3 4 1 2 3 4
1

1 2 3 4

2 3 4 3 4 4 0

= + + + + + + ∗

∗ + + +

−

− − − −

δ g

g g g g

           (1.2.9)

Using the normalization g( )
r
q = =0 1 this can be rewritten to

G q q q q V q q q q q q q qijkl K
j i k j l k( , , , ) ( ) ( ) ( ) ( )

r r r r r r r r r r r r
1 2 3 4 1 2 3 4 1 1 2 4= + + + +− − −δ g g g           (1.2.10)
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Equation 1.2.10 is only valid if i j k l< < < . The result

1.2.10 can be described in the following pictorial way,

which makes generalization to higher order correlations

straightforward. Through segment i a “current” 
r
q1 is

flowing into the chain, through segment j a “current” 
r
q2  is

flowing into the chain, etc (this is just a metaphore). The

Kronecker delta ensures that no charge is accumulating.

At any point the total sum of all currents must be zero

(Kirchhoff’s law). The number of bonds between

monomer i and monomer j is equal to ( )j i− . Through

each of these bonds a current 
r
q1 is flowing. The

expression for the correlation function shows that to each of these bonds a factor g( )
r
q1  is

assigned. Between segment j and segment k the total current is equal to 
r r
q q1 2+ , and each of

the ( )k j−  bonds gets a factor g( )
r r
q q1 2+ , etc. This has been illustrated in fig 1.1.

The correlations between A and B

The notion of correlation function can be generalized to chains consisting of two segment

(monomer) types A and B. If α i  = A or B, then the nth order correlation function

G x x
n nα α1 1L

r
L

r
( , , )                                                (1.2.11)

is the probability (normalized to V) that at the point 
r
xi  a segment of type α i  is present, for

i n= 1, ,L . The correlation function 1.2.11 depends on the order in which the A and B

monomers are placed along the chain. This AB-sequence can be described by the function σα
i ,

which is defined by

σ
αα

i = 



1

0

   if segment  is of type 

  otherwise

i
                                  (1.2.12)

Using definition 1.2.12, the AB-correlation function 1.2.11 can be written in terms of the

correlation function 1.2.2.

G x x G x x
n n

n

n

nn i i
i i

i i nα α
α ασ σ

1 1

1

1

11 1L

L

L

r
L

r
L

r
L

r
( , , ) ( , , )= ∑                       (1.2.13)

•

• •

•
i

 j k

l
q1

q1

q2 q3

q4

q4

q q3 4+

fig 1.1
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Equation 1.2.13 involves a summation over n

indices i i1, ,L n . This summation can be split in

n! contributions, one contribution correspon-

ding to i i i1 2< < <L n , etc. Each of these

contributions can be represented by a diagram.

This diagram contains k points representing

i i1, ,L n . The chain is drawn as a directed line

between these points. Fig 1.2 shows the

diagrams corresponding to GAABB for a diblock

co-polymer. In this case only 4 of the 4!

diagrams give a contribution (solid line: A-

block, dashed line: B-block).

The Fourier transforms of the correlation functions G are proportional to the volume V of the

system, and it is convenient to define

g q q
V

q q G q q
n nn K n nα α α α α αδ

1 2 1 21 1 1
1

L L

r
L

r r
L

r r
L

r
( , , ) ( ) ( , , )= + +             (1.2.14)

Although the delta function on the right hand side is superfluous (because G itself is zero if the

sum of its arguments is not zero), it has been added for clarity. To avoid confusion, note that

g , which is given in 1.1.7, denotes the end-to-end distribution function of a single segment,

while g denotes the correlation function of the chain as a whole.

The correlation function 1.2.13 can be rewritten in a more familiar form. Let ρα ({ }, )
r r
R xi  be

the density of monomers of type α at position 
r
x  due to the chain under consideration. It is

given by

$ ( ) ({ }, ) ( )ρ ρ σ δα α α
r r r r r
x R x x Ri

i

i
i≡ = −∑                                 (1.2.15)

where the hat denotes that the density is a function of the configuration { }
r
Ri  of the chain.

Using 1.2.15 and the generalization of 1.2.3 to the nth order, equation 1.2.13 can be rewritten

as

• •

• •

i2

i1

i3

i4

• •

• •

i2

i1

i3

i4

• •

• •i1

i3

i4

• •

• •

i2 i2

i1

i3

i4

fig 1.2
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G x x d R P R x x V x x
n n nn i i n nα α α α α αρ ρ ρ ρ

1 1 11 1 1 0L

r
L

r r r r
L

r r
L

r
( , , ) { } ({ }) $ ( ) $ ( ) $ ( ) $ ( )= ≡∫      (1.2.16)

The average over the configurations has been normalized to unity, and the subscript 0

indicates that it is defined in the ideal system.

The second order correlation function for a homopolymer chain

The most simple, non-trivial example of an (intramolecular) correlation function arises when

there is only one monomer type present in the chain. In that case the chain is called a

homopolymer. If the chain has N segments, then after combining 1.2.13 with the generalization

of 1.2.10, and going over to Fourier transforms, the second order correlation function is given

by

G q q G q q

V q q q V q q g q

ij
i j

N

K
j i

i j

N

K

( , ) ( , )

( ) ( ) ( ) ( )

,

| |

,

r r r r

r r r r r r

1 2 1 2
1

1 2 1
1

1 2 1

= =

= + ≡ +

=

−

=

∑

∑δ δg

                  (1.2.17)

For the end-to-end distribution function g( )
r
q  of a single segment we will adopt equation 1.1.7

(do not confuse g( )
r
q  with g( )

r
q )

g( )
r
q e e

a q x= ≡
− −

1
6

2 2

                                                  (1.2.18)

The summation representing g( )
r
q  can be split into two parts:

g q e N
e e N Ne

ei

N
x j i

i j

N N x x x

x( )
( )

( )
( )

r = + = + − − +
−=

− −

< =

− −

∑ ∑1 2 2
11 1

1

2                  (1.2.19)

The first part is called the self correlation. For large values of the molecule length N this

equation can be approximated in the following way. The relevant length scale for the

correlation function (i.e. the length scale on which its derivative is of order unity) is the radius

of gyration of the chain, which is proportional to
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R Ng ∝                                                     (1.2.20)

Therefore, the relevant values for q scale with N like

q
N

x
N

∝ ⇒ ∝1 1
                                       (1.2.21)

This is the motivation to define a rescaled wave vector y via

y Nx N a q≡ = 1
6

2 2                                              (1.2.22)

The relevant values for y are of order unity. Inserting 1.2.22 into 1.2.19 shows that the

dominant contribution to the correlation function is of order N2 , and after neglecting the

lower order terms we get finally

g q N
e y

y

y

( ) = + −−
2

12
2

                                          (1.2.23)

This is called the Debije function. The procedure used to approximate 1.2.19 by 1.2.23 is quite

general and is also used for block copolymers. In that case, the relevant length scale for the

correlation function is not the radius of gyration of the whole molecule, but the radius of

gyration of the blocks. The same result 1.2.23 could have been obtained more easily by

replacing the summations in 1.2.19 by integrals:

g q di dj e N
e y

y
x j i

NN y

( ) | |≅ = + −− −
−

∫∫
00

2
22

1
                          (1.2.24)

It is useless to take along the terms subdominant in N in the calculation of the correlation

functions, even if N is small, for the following reason. As will be explained in chapter 5, the

free energy can be written as an infinite series of terms. These terms can be ordered with

respect to their scaling with N. Usually only the dominant terms, which are proportional to

N−1 , are taken into account. If the subdominant terms in the calculation of the correlation

functions are taken into account, then, in order to be consistent, in the free energy expansion

one should take into account all terms till order N−2 , which proves to be far beyond the

accuracy required to calculate phase diagrams in the WSR.
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1.3 The Landau free energy for polydisperse
copolymer melts

Introduction

In this paragraph we derive an expression for the Landau free energy FL  of polydisperse

copolymer melts in terms of the order parameter ψ, which was defined in 1.1.4 as the deviation

of the A-monomer fraction from the average value. Since in the WSR the order parameter is

small, it is meaningful to expand FL  in a Taylor series. Usually the second and third order

contributions to FL  are decreasing functions of the amplitude A of the profile, and in the

minimum these terms are balanced by the fourth order contribution, which is usually an

increasing function of A. Near the phase transition lines between the various ordered structures

these second, third and fourth order terms are of the same order of magnitude, while the fifth

and higher order terms are negligible. Therefore, it is sufficient to expand FL  till the fourth

order.80 As mentioned before, the coefficients in this expansion are called vertex functions. We

start from the general expression for the (configurational) partition function Z in the Landau

form.

Z d e

F
n

dx dx x x x x

F

L n
n

n n n

L=

≅

∫

∫∑

−

=

ψ

ψ ψ ψ

ψ[ ]

( )
!

( , , ) ( ) ( )
1

1
2

4

1 1
r
L

r r
L

r r
L

rΓ
                 (1.3.1)

The vertex functions Γn  are “non-local,” which means that they couple the values of ψ at

different points in space to each other. This non-locality is a consequence of the chain

connectivity, and so it is no surprise that the vertex functions Γn  are related to the correlation

functions Gn . Revealing the exact relationship between these objects is the purpose of this

paragraph.

Leiblers method for monodisperse copolymers

As an introduction, we will first describe qualitatively how Leibler15 derived mean-field

expressions for the vertex functions of monodisperse diblock copolymers. It is convenient to

introduce an auxiliary field U( )
r
x  which acts on the A- and B-monomers in such a way that it
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changes the energy content of a copolymer system with profile ψ( )
r
x  by the amount ∆E ,

which is given by

∆E dxU x x= ∫ r r r
( ) ( )ψ                                             (1.3.2)

Due to the incompressibility we do not need separate fields for the A- and B-monomers. In the

presence of the field U x( )
r

, the expression 1.3.1 for the partition function is changed into

Z U d e

F U Z U

dx U x x FL[ ]

[ ] ln [ ]

( ) ( ) ( )=

= −

∫ −∫ −ψ ψ ψr r r

                             (1.3.3)

where FL  is the Landau free energy of the system when the external field is absent. By

differentiating the free energy F U[ ]  with respect to the external field, one obtains

∂
∂

ψF U

U x
x

[ ]

( )
( )r
r= 〈 〉                                                   (1.3.4)

Equation 1.3.3 provides a description of the system in terms of the external field U. Because of

the way in which ψ and U are coupled to each other in the exponent of equation 1.3.3 (ψ  and

U are “conjugated”), it is possible to change the viewpoint, and to go over to a description in

terms of ψ. To this end, define the Legendre transform ′F [ ]ψ  of the free energy F U[ ]  via

′ = − ∫F F U dxU x x[ ] [ ] ( ) ( )ψ ψψ ψ
r r r

                                 (1.3.5)

where Uψ is the inverse of 1.3.4. The transformation 1.3.5 is called a Legendre transformation.

By differentiating 1.3.5 with respect to ψ, one obtains

∂ ψ
∂ψ ψ ψ

′ = −
=〈 〉

F

x
U x

[ ]

( )
( )r
r

                                          (1.3.6)

which is equivalent to 1.3.4. Since in the real system the external field U is absent, we see from

1.3.6 that the average profile 〈 〉ψ  can be found by minimizing ′F . Therefore, it would be

usefull to have a closed expression for ′F  (note that ′F  is the true free energy, not the mean-

field free energy). Since equations 1.3.4 and 1.3.6 are each others inverse, the expression for
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′F [ ]ψ  is known once we have the expression for F U[ ] . It follows directly from 1.3.3 that the

coefficients in the Taylor expansion of F U[ ]  around U = 0 are (apart from numerical factors)

the correlation functions Gn , defined by

G x x x xn n n( , , ) ( ) ( )
r

L
r r

L
r

1 1= 〈 〉ψ ψ                                  (1.3.7)

where the brackets denote a thermodynamic average. This average is different from the one

used in 1.2.16, which was defined in the (compressible) ideal system, where there are no

interactions between the chains. So the problem of finding an expression for F U[ ]  has been

reduced to the problem of finding an expression for the correlation functions 1.3.7 in the melt.

Up till now, the analysis of the coarse grained system is exact, but in order to find expressions

for the correlation functions 1.3.7 Leibler used the mean-field approximation, as follows. In the

previous paragraph it was shown how the correlation functions of the corresponding ideal

system can be calculated. The interaction and the incompressibility can be accounted for by

means of self-consistent fields. In this way, one obtains mean-field expressions for the

correlation functions 1.3.7, which, via equations 1.3.4 and 1.3.6, lead to mean-field

expressions for the vertex functions. This completes our brief discussion of Leiblers method.

In the first paper29 dealing with the generalization of Leiblers theory to polydisperse melts, it

was shown that the correct procedure involves the averaging of the ideal correlation fucntions

over the various molecule types present in the system. However, an important contribution to

the fourth order vertex function was missed. To obtain the complete expression for the fourth

order vertex, several methods are available. One of these methods will be presented in detail

further on, but first we discuss briefly two alternative methods: the replica trick,30 and the

detailed densities.31

The generalization to polydisperse block copolymer melts: quenched average
and replica trick

In a polydisperse copolymer system several molecule types are present. If s denotes a molecule

type (i.e. a finite sequence of A’s and B’s), and if ρs  denotes the number density of molecules

of type s, then the composition of the melt is fixed completely by the set { }ρs . Clearly, the

probability that a randomly chosen molecule is of type s is proportional to ρs . Since for the

determination of the phase behavior the chemical bonds are considered to be irreversible, any

molecule is a fixed realization of the probability distribution { }ρs . Therefore, there is a

quenched (i.e. frozen) disorder present in the chains of these systems. The concept of disorder
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is well known from the study of spin glass systems.30,32 In these systems, magnetic atoms are

present in a matrix. The nature of their pair interaction (ferro- or para-magnetic) is a very

sensitive function of their mutual distance. Since the positions of the magnetic atoms are

random and quenched, so are their interactions, and the system can be described by an Ising

model with interaction strengths Jij which are, for each i and j, fixed random numbers (chosen

according to some appropriate distribution P(Jij)). The problem is to find an expression for the

free energy of such disordered systems. To make the discussion general, let x denote the set of

quenched variables, and let y denote the set of free variables. For the Ising model x = { Jij} and

y i= { }σ , where σ i = ±1 is the spin at lattice site i; whereas for a chain from a polydisperse

copolymer melt x s=  (its AB-sequence), and y is its configuration { }
r
Ri . Let P x( )0  denote the

probability that x x= 0  in a realization of the system. In principle, the free energy of such a

quenched system could be obtained by calculating the partition function after taking a

representative realization x  of the quenched variables, that is

F dy e Zx
H y

x
x= − = −−∫ln ln( )                                   (1.3.8)

where H is the Hamiltonian. If the system is self-averaging,30 then the free energy density

F Vx  is independent of x , once the volume V of the system is large enough (this statement

can be made more precise). This means that the properties of the system are reproducable,

despite the randomness. Although 1.3.8 gives the expression for the free energy of a quenched

system, it does not provide a direct means of calculating it. However, since all representative

realizations of x give the same value for Fx , averaging the free energy over the randomness

will not change its value, so

F F dx P x F Zquenched x x x= = = −〈 〉∫ ( ) ln                            (1.3.9)

This is called a quenched average. It is important to note that this way of averaging gives other

results than the so-called annealed average, which is defined by

F Zannealed x= − 〈 〉ln                                         (1.3.10)

and which leads to the free energy of a system in which the variables x are not quenched, but

change in time according to P x( ) . Due to the presence of the logarithm, the average in 1.3.9

cannot be obtained in a straightforward way. The logarithm can, however, be rewritten as

follows:33
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F Z
Z

n
Fquenched x

n

x
n

n
n= −〈 〉 = − 〈 〉 − =

→ →
ln lim lim

0 0

1
                           (1.3.11)

The chain of identities in 1.3.11 is called the replica trick. The quantity Zx
n  is the partition

function of n non-interacting replicas of the system, which all have exactly the same realization

x of the quenched disorder (i.e. n identical chains in the case of a polydisperse copolymer).

However, the averaging induces coupling between the replicas, and so 〈 〉Zx
n  may contain

interreplica terms. Strictly speaking, the quantity Fn  has only meaning for positive integer

values of n, and taking the limit n → 0  is, therefore, a rather tricky business. If the procedure

outlined above is applied to polydisperse copolymer melts, and the free energy is expanded till

fourth order in the concentration profile ψ , one obtains a sum of two parts.34,35,36 The first

part can be obtained by replacing in the Leibler expressions the single-chain correlation

functions by their averages, i.e.

g g
n ns

s

s
α α α αρ

1 1L L
→ ∑                                      (1.3.12)

The second part, which is a contribution to the fourth order coefficient, is called the non-local

term. Its expression contains the peculiar average35

ρ αβ γδs
s s

s

g g∑                                                    (1.3.13)

which involves the second order correlation functions of two replicas (i.e. two chains having

the same AB-sequence s). Its precise form will be given further on, but first we discuss an

alternative way to arrive at the same expression for the free energy, without the use of replicas.

Detailed densities

Since in polydisperse copolymer melts as considered here there is no replica symmetry

breaking,37 it is possible to arrive at the correct expression for the free energy without the use

of replicas. As a first example we discuss shortly the so-called detailed densities approach,

which was introduced in ref 31 by Erukhimovich and Dobrynin. In the detailed densities

approach, the concentration profiles ψ αs x( )
r

 of monomers of type α = A B/  belonging to a

molecule of type s are taken as independent thermodynamic variables. These profiles ψ αs x( )
r

are called detailed densities. Generalizing the method used by Leibler, it is possible to write
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down a mean-field expression for the free energy in terms of the detailed densities. The lowest

(second) order contribution F2  to this free energy has the form31

F
V

q q qs s
s
s

q
s s2 2

1

2 1 1 2 2

1 1

2 2

1 1 2 2
= −∑∑ γ ψ ψα α

α
α

α α( ) ( ) ( ),
,
,

r

r r
                    (1.3.14)

where in the generalized second order vertex matrix γ 2( )q  the incompressibility has been

taken into account by assigning an infinite free energy to profiles ψ αs ( )
r
x  which do not satisfy

the incompressibility constraint

ψ α
α

s
s

q( )
,

r∑ = 0                                                  (1.3.15)

As long as all eigenvalues of the (symmetric and real) matrix γ 2( )q  are positive for all values

of q ≥ 0 , the homogeneous state is stable against infinitesimal fluctuations. Therefore, the

spinodal condition is that one of the eigenvalues of γ 2( )q∗  becomes zero for some value of q∗ .

The corresponding eigenvector E q( )∗ , having components E qsα ( )∗ , is called the strongly

fluctuating field, and in composition space the spinodal decomposition proceeds along its

direction. In the WSR in the microphase separated state, the dominant Fourier components

〈 〉ψ αs ( )
r
q  will be present for vectors 

r
q  with length q∗ , and they will be proportional to the

strongly fluctuating field (for the correlated random copolymer to be analyzed in chapter 3, 4

and 5 this is not completely true, since q∗ = 0  for this system. However, the procedure can

easily be adapted to cover this system as well). If the free energy is expanded in powers of the

strongly fluctuating field, then one arrives at the same expression for the free energy as by

using the replica trick, including the non-local term. This is because the strongly fluctuating

field is a better choice for the order parameter in a Landau description of a polydisperse

copolymer system than the A-monomer concentration profile. The advantage of the detailed

densities approach is that the expression for the strongly fluctuating field gives information

about how much each molecule type separately contributes to the arising profile ψ ; see for

instance ref 39. The detailed densities approach will be used in chapter 4 in order to examine

phase coexistence in polydisperse copolymer melts.
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The generalization of the FLM-method

Although the use of replicas or detailed densities leads to the correct expression for the free

energy, here we will follow a different route. The derivation presented further on is a

generalization of the calculation of the free energy as developed by Fredrickson, Leibler and

Milner (FLM) in ref 40 for the special case of correlated random multiblock copolymers. In ref

40, after writing down a formal general equation for the partition function, all further

manipulations were done within this particular model, until an approximate expression for the

free energy was found. The FLM-method can be generalized to give the expression for the free

energy for block copolymers having a general architecture and sequence distribution. Before

presenting this generalization, we need a number of definitions.

Preliminaries

A molecule type s is defined as a finite sequence ( , , , )α α α1 2 L n  of segment types α i A B= / .

If ρs  is the number of molecules of type s per unit of volume, and Ns  is the number of

segments per molecule of type s, then

ρ
υs s

s

N∑ = =1
1                                              (1.3.16)

See equation 1.1.10. The set { }ρs , which describes completely the composition of the system,

is called the monomer sequence distribution. In order to be able to describe the state of the

polymer system we number the molecules of a given type s with the label m

m n n Vs s s= =1 2, , ,L ρ                                   (1.3.17)

where ns  is the total number of molecules of type s in the system. If 
r
Rm i

s
,  denotes the position

of segment i in molecule m of type s, then { },

r
Rm i

s  fixes the coarse grained state of the system.

Remember that { },

r
Rm i

s  is not a microscopic state: all coarse grained states have different

probabilities even if there is no interaction present. As explained in paragraph 1.1, the

probability of the coarse grained state { },

r
Rm i

s  is proportional to the integral over the

conformations of the segments, and assuming random walk statistics it is given by (see

equations 1.1.6, 1.1.7 and 1.1.10, and appendix A)
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( )
e

V
eH R R R

i

N

m

n

s

m i
s m i

s
m i
sss

− − −

=

−

=

= +∏∏∏0 1

2
1 1

4 3 2

1
4

1

1

1

({ }), , ,

( )

r r r

π
                     (1.3.18)

where H0  is called Edwards Hamiltonian.20 Expression 1.3.18 is only valid for configurations

having constant density ρ = 1. All other configurations have probability zero. The factor 1 V

is included for normalization: it accounts for the probability to find the centre of mass of the

chain ( , )s m  at a certain place in the volume V. The exponential gives the probability for the

relative positions of the monomers. In order to be able to write the partition function in the

form 1.3.1, we have to find an expression for the profile ψ as a function of the configuration

{ },
r
Rm i

s . As a first step define the state function (a state function is a function of { },

r
Rm i

s )

ρ σ δα
A m i

s
s i

s m i
m i
sR x x R({ }, ) ( ), ,

, ,
,

r r r r
= −∑                                    (1.3.19)

For shortness, we denote state functions with a hat, for instance

$ ( ) ({ }, ),ρ ρA A m i
sx R x

r r r≡                                              (1.3.20)

Besides $ρA , we will need the following state functions as well:

$( ) $ ( ) $ ( ) $ ( ) $ ( ) ( ) $ ( )ρ ρ ρ ψ ρ ψ ρr r r r r r r
x x x x x f x x fA B A A B B= + = − = − +1       (1.3.21)

where f denotes the fraction of A-monomers. According to its definition, $ψ A  is a sum of delta

spikes. Only after coarse graining will it correspond to the order parameter. This coarse

grained profile is denoted by ψ A x( )
r

, which, in an incompressible system, satisfies

ψ ψ ψA Bx x x( ) ( ) ( )
r r r= − ≡                                     (1.3.22)

The interaction energy

As already explained in paragraph 1.1, the physics on the level of the monomers can be treated

independently from the physics on the level of the coils. As a consequence, the mean-field free

energy can be written as a sum of two parts:42 one part coming from the short-ranged

interaction (quantified by the χ -parameter), and another part coming from the long-ranged

chain connectivity. In order to obtain the first part, the Flory-Huggins expression,11 which is

valid if the profile is flat, is taken as a starting point.
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E n VA B A B= =χρ ρ χ
υ

ρ ρ                                          (1.3.23)

where n V= υ  is the number of segments in the system. If the profile is not flat (i.e. if ρA  is a

function ρA x( )
r

 of space), then the multiplication with V should be replaced by an integral.

Since we have

ρ ψ ρ ψA Bf f= + = − −, 1                                     (1.3.24)

the generalization of 1.3.23 is

E dy y E= − +∫χ
υ

ψr r2
0( )                                          (1.3.25)

where E0  is an unimportant constant, which is omitted from now on. In arriving at 1.3.25 use

has been made of the fact that the integral of ψ over space is zero. Equation 1.3.25 can be

simplified even more. Via the substitution 
r r
x y= υ1 3  we go over to length units in which the

excluded volume υ  is unity (see equation 1.1.10), and the final expression for the interaction

energy is

E dx x= − ∫χ ψr r2( )                                              (1.3.26)

This is analogous to the Ising model, where the average magnetization m is the order

parameter, J is the interaction strength, and the interaction energy is given by E Jm= − 2 . In

the literature the Flory-Huggins parameter χ is often defined for the situation where the

excluded volume υ  of the segments is 100 3cm  per mole. The value to be used in 1.3.26 has

to be corrected for this, according to

χ υχ= literature

cm mole100 3 /
                                            (1.3.27)

Since the value of χ is a combination of energetic and entropic contributions which depend on

the details on the low-molecular level, it is most convenient to regard χ as a phenomenological

parameter which has to be determined experimentally.



Chapter 1

28

The partition function

At this point all preliminary work has been done, and we can write down the expression for the

configurational partition function Z in the Landau description (see 1.1.2):

Z d e dR em i
s H= − −∫ −∫ ∫ψ δ ρ δ ψ ψχ ψ 2

0 1
r

,
$

( $ ) ( $ )                      (1.3.28)

The integral over ψ  is a functional integral, that is,

d D x d x
x

ψ ψ ψ∫ ∫ ∏∫≡ =( ) ( )
r r

r

                                (1.3.29)

We make no distinction in notation between a functional integral and a normal integral; the

difference will be clear from the context. The Edwards Hamiltonian $H0  taking into account the

chain connectivity has been defined in 1.3.18. Since the incompressibility is due to interactions

on the molecular level, it has to be incorporated in an artificial way via the delta function

δ ρ( $ )1− . This delta function can be rewritten in the following way:

( )[ ]

( )[ ] ( )[ ]

δ ρ δ ρ
π

ρ

ρ ρ

δ ρ

δ ψ ψ
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ψ ψ
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( )

( )exp ( ) $( )
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( $ )
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2
1

1 1

1
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∫∏ ∏ ∫ ∫

∫

∫

−

−

−

−

∞

∞

∞

∞

∫

∫

r r r r

r r r r r r

r r

r r

x dJ x iJ x x

dJ x i J x x dJ i dx J x x

dJ e

dJ e

x x

x x

i J

i J

       (1.3.30)

where the symbol ∝ means that the equality is valid up to a factor which is independent of the

configuration { },

r
Rm i

s . Using 1.3.30 and taking as many factors as possible out of the integral

over the configurations leads to (in the following the symbol ∝ will be replaced by the symbol

= because constant multiplication factors in the partition function have no influence on the final

results)



Landau theory

29

Z d e dJ dJ e dR e e
i J J

m i
s H i J J= ∫ ∫ ∫∫ ∫ ∫+ − − +ψ χ ψ ψ ρ ψ2

1 2 0 1 2
1 2

( )
,

$ ( $ $ )r
                (1.3.31)

Rewriting $ρ and $ψ in terms of $ρA  and $ρB  via

$ $ $

$ $ $ ( $ $ )

ρ ρ ρ

ψ ψ ψ ρ ρ

= +

= − = − + −

A B

A B A B f1
2

1
2

1
2

1
2

                          (1.3.32)

and introducing the shorthand notation

〈 〉 ≡ ∫ −$ $
,

$

A dR e Am i
s H

0
0

r
                                                (1.3.33)

leads to

( ) ( )
Z dR e dJ dJ em i

s i J J f J i J JA B A B= ∫ ∫∫ ∫ ∫+ + − − + + −r

,

( ) ( $ $ ) ( $ $ )
exp

χ ψ ψ ρ ρ ρ ρ2
1 2 2 1 2

1 2
0

1
2

1
2        (1.3.34)

After the substitution

J J J J J JA B= + = −1
1
2 2 1

1
2 2                                (1.3.35)

1.3.34 can be rewritten as

Z d e dJ dJ e eA B
i f J i J i J= ∫ ∫∫ ∑∫ ∑∫ ∑∫+ −ψ χ ψ ψ ρα α α α α α

2

0

$

                   (1.3.36)

where ψ ψA ≡  and ψ ψB ≡ − . Following ref 40, we define 
~
Jα  in the following way

~
( ) ( ) ( )

~
( ) ( ( )) ( )J x J x

V
dy J y J q q J qKα α α α αδr r r r r r r= − ⇔ = −∫1

1            (1.3.37)

The right hand equation shows clearly that one variable is lost in this way. However, the

integrand of 1.3.36 does not depend on this variable and can be written in terms of 
~
Jα .
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Z d e dJ dJ e G eA B
i J G i J= = −∫ ∫∫ ∑∫ ∑∫− −ψ χ ψ ρψ α α α α

2

0

~ ~
$

ln             (1.3.38)

G is the free energy of a compressible system of non-interacting random walk chains in the

presence of an external field i J
~

α . Since in such a system the chains are independent of each

other, the expression for G can be factorized in contributions from the different chains:

( )

G dR e
V

g R R

x x R

m i
s

s m

i J
m i
s

m i
s

i

s m
s i

i
m i
s

s m

= − −

= −

∫∑ ∏

∑

−
+

∑∫ln ( )

$ ( )

,
,

~
$

, ,

,
, ,

,r r r

r r r

α αρ

α
αρ σ δ

1
1

                  (1.3.39)

Different chains (labeled with m) having the same architecture s are present in the same

external field. Therefore, they all have the same free energy and G can be rewritten as

G V e V es
s

i J i
s

= − ≡ − 〈 〉∑ − −∑∫ρ α αρ εln ln
~
$

0
0                              (1.3.40)

The bar represents the average over all chains: A As s s= Σ ρ . The thermodynamic average

〈 〉L 0  in 1.3.40 is now an average over the configurations of a single chain, and it includes a

factor V−1. The expression for G can be expanded in powers of ε . In the weak segregation

regime it is sufficient to expand till the fourth order. Using 〈 〉 =ε 0 0  one obtains

G

V
i= 〈 〉 − 〈 〉 − 〈 〉 + 〈 〉1

2 6
1
24

1
8

2
0

3
0

4
0

2
0
2ε ε ε ε                                  (1.3.41)

The first term on the right hand side of 1.3.41 can be written as (use 1.2.24 in the second step,

and 1.2.14 in the third step)

〈 〉 = 〈 〉 =

= =

∫ ∑∑

∫ ∑∑ ∫∑

ε ρ ρ ρ

ρ

α β α β
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s s
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~
( ) ( , )

~
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~
( ) ( , )

       (1.3.42)
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The correlation functions g x yαβ
s ( )

r r
,  were defined and discussed in the previous paragraph.

Going over to Fourier transforms the expression for G becomes
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                (1.3.43)

In the summations over 
r
q , the terms corresponding to 

r
q = 0  give no contribution, because

~
( )J q
r = =0 0; see 1.3.37. Since 

~
( ) ( )J q J q
r r=  for 

r
q ≠ 0 , one can rewrite 1.3.43 by removing

the tildes over the J’s, and at the same time restricting the summations to non-zero values of
r
q . For instance, the first term in 1.3.43 becomes

1

2 1 2 1 2

1 2
V

J q J q g q qs
s

sq q

∗

∑∑∑ α β αβ
αβ

ρ( ) ( ) ( , )
r r r r

r r

                            (1.3.44)

where the star denotes that the summation is resticted to 
r
q ≠ 0 . We now return to equation

1.3.38 for the configurational partition function Z. The functional integral over the fields J x( )
r

can be replaced by an integral over the Fourier components J q( )
r

. Since the integrand does not

depend on J q( )
r = 0 , the integration over this variable gives just a constant (though infinite)

factor in front of the partition function. In order to make the notation more transparent, the

following abbreviations are used:

a q= ( , )*α r

y
J q

Va = α ( )
r

x
i q

Va = − −ψα ( )
r
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P g q qab s
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                     (1.3.45)

Again, the star in (α,
r
q )* denotes that 

r
q ≠ 0 . The object Pabcd has been defined in such a way

that it is symmetric in a, b, c and d. As shown in the previous paragraph, the Fourier

transforms of the correlation functions appearing in 1.3.45 are zero unless the sum of their

arguments is zero, i.e.

g q q q q q q g q q q
n n

s
n K n

s
nα α α α α αδ

1 2 1 21 2 1 2 1 2L L

r r
L

r r r
L

r r r
L

r
( , , , ) ( ) ( , , , )= + + +            (1.3.46)

In the following the delta function appearing in 1.3.46 will be written down explicitly for

clarity, although strictly speaking this is superfluous. Moreover, we will write

g q q q q g qs
K

s
αβ αβδ( , ) ( ) ( )

r r r r
1 2 1 2 1= +                                     (1.3.47)

where q1 is the length of the vector 
r
q1. In terms of the abbreviations introduced in 1.3.45, the

expression 1.3.38 for the partition function becomes

Z d e d y e

d e

a

V x y V P y y V P y y y V P y y y y
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∫ ∫

∫

∫ ∑ ∑ ∑ ∑− − − −

−

ψ

ψ

χ ψ 2 1
2

1
6

1
24{ }

          (1.3.48)
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where the summations run over a, b, c, and d. The integral over ya  will be calculated by the

saddle point method43. That is, we make the approximation

− =

= + + +

∫

∑ ∑ ∑ ∑

− − − −∑ ∑ ∑ ∑ln

~ ~ ~ ~ ~ ~ ~ ~ ~ ~
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24
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2
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6

1
24

      (1.3.49)

where ~ya  is determined by the condition that it maximizes the integrand. The saddle point

approximation 1.3.49 is exact in this situation. Solving the maximization condition for ~ya

iteratively and substituting this back into 1.3.48 gives the final expression for the Landau free

energy FL  truncated to fourth order.
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where the term 1.3.26 accounting for the interaction energy

E dx x
V

q q
q

= = −∫ ∑χ ψ χ ψ ψr r r r

r

2( ) ( ) ( )                                    (1.3.51)

has been absorbed into the second order vertex function. The vertices Γn  are given by

(remember that the bar denotes an average over all molecules types: A As s s≡ Σ ρ )

Γ2 1 2 1 2
1 1 1

1 1 1 1

2
2( , ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

r r r r
q q V q q

g q g q g q

g q g q g q g qK
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AA BB AB AB
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−
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δ χ           (1.3.52)

Γ3 1 2 3 1 2 3 1 2 3 1 2 3( , , ) ( ) ( , , ) ( ) ( ) ( )
r r r r r r r r r
q q q V q q q g q q q z q z q z qK= − + + ∑δ αβγ α β γ

αβγ

    (1.3.53)
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Γ Γ Γ4 1 2 3 4 4 1 2 3 4 4 1 2 3 4( , , , ) ( , , , ) ( , , , )
r r r r r r r r r r r r
q q q q q q q q q q q qreg nl= +                                (1.3.54)
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where the superscript reg stands for regular, and the superscript nl for non-local; see the next

section for an explanation. The quantity z qα ( )  is defined by

z q g q g qA Bα α α( ) ( ) ( )= −− −1 1
                                             (1.3.57)

This completes the calculation of the Landau free energy of a polydisperse copolymer melt in

the WSR. Since the Fourier transforms of the vertex functions are proportional to the volume

V, it is convenient to define, in analogy with the correlation functions,

γ δn n K n n nq q
V

q q q q( , , ) ( ) ( , , )
r

L
r r

L
r r

L
r

1 1 1
1= + + Γ                         (1.3.58)

where the delta function on the right hand side is in fact superfluous, but has been added for

clarity.

The non-local term

The contribution Γ4
nl  given by 1.3.56 is called the non-local term. It was first derived by

Shakhnovich and Gutin34 for the special case of uncorrelated random copolymers, and later in

the most general form by Panyukov and Kuchanov.35,36 One can show generally that the non-

local term is identically zero if the number of molecule types does not exceed the number of

monomer types. For instance, if there are two monomer types present the non-local term

vanishes for monodisperse copolymers, and for two-component blends. In polydisperse

copolymers, however, its presence can be of crucial importance. For instance for random

copolymers, which form the subject of the following three chapters, the non-local term is even

the dominant contribution to the fourth order vertex, and together with the second order

vertex it is responsible for the strong temperature dependence of the period of the

microstucture, which is characteristic for these systems.36

The phrase non-local term was introduced in refs 35, 36 and originates from the study of

uncorrelated random copolymers. For uncorrelated random copolymers there is no correlation

between the chemical identity of the monomers along the chain. The probability that the

neighbor of a randomly picked monomer is of type A or B is independent of the chemical

identity of the monomer picked. A representative chain can be constructed by drawing

monomers one by one from a large reservoir containing disconnected A- and B-monomers in

the ratio f f: 1− , and connecting them. The block lengths in the random copolymer chains
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thus obtained are of order unity. For a melt of these chains, the second order vertex, the third

order vertex, and the regular part of the fourth order vertex contain only the self-correlations

Gii, Giii , and Giiii , since the contributions coming from Gij, Gijk, and Gijkl cancel if the indices are

not all equal. As a consequence, apart from the non-local term, the vertices of the random

copolymer coincide with the vertices of a low-molecular mixture of disconnected A- and B-

monomers. These vertices could be obtained in an alternative way by expanding the Flory-

Huggins expression for the entropy of mixing in a Taylor series. The non-local term, however,

is different for these systems: it is zero for the low-molecular mixture, and proportional to

1 1
2

2
2( )q q+  for the random copolymer. Therefore, if the Landau free energy of the random

copolymer is expanded to fourth order, the non-local term is the only part which contains

correlations between different monomers of the same chain, and so it accounts for the chain

connectivity; hence the name “non-local term.” There is an easy physical explanation for the

fact that only the self-correlation survives in the calculation of the regular vertices for the

uncorrelated random copolymer. We will return to this in chapter 3, where it is shown that an

analogous (though slightly more complicated) situation exists for the correlated random

copolymer. The peculiarity that the chain connectivity is only present in the non-local term is

only strictly true for uncorrelated random copolymers: for general polydisperse melts all

vertices are non-local. However, we stick to the convention and use the name “non-local term”

generally.

Although 1.3.54, 1.3.55 and 1.3.56 present the conventional way to split Γ4  into two

contributions, it is a bit unnatural, because if for instance 
r r
q q1 2 0+ = , then the term involving

the two third order correlation functions is added to Γ4
reg , and subsequently substracted from

Γ4
nl . Therefore, the problems arising due to the fact that gµν ( )q = 0  may not be invertible are

artificial. Conventionally, these problems are dealt with by taking the limit

γ

αβ γδ αβµ µν γδν
µναβγδ

α β γ δ

4

0
1 2

1
1 2

non local

p

q q

g q g q g q q p g p g q q p z q z q z q z q

-

lim

( , )

( ) ( ) ( , , ) ( ) ( , , ) ( ) ( ) ( ) ( )

′ ≡

≡ ′ − ′ ′










 ′ ′

→

−∑∑r

r r r r r r

| | | | | | | |
r r r r r r r r r
q q q q q q q q q q p1 2 1 2 1 2 1 2= = ′ = ′ = ′ + = ′ + ′ = −              (1.3.59)

The advantage of splitting the fourth order vertex like Γ Γ Γ4 4 4= +reg nl  is that in this way the

part Γ4
reg  is a continuous function.
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The mean-field approximation

By now we arrived at an expression for the configurational partition function Z of the form

Z d e FL= ∫ −ψ ψ( )                                                (1.3.60)

If the Landau free energy FL ( )ψ  is minimized by the profile ~ψ , then ~ψ  gives the dominant

contribution to Z. Although ~ψ  is the most probable profile, it is not necessarily the average

profile, because profiles other than ~ψ  can also give a contribution to the integral in 1.3.60.

However, in a first approximation one could ignore all profiles other than ~ψ  and investigate

the consequences.15 In this approximation the profile ~ψ  is assumed to be completely dominant,

and the statistical weight of all other profiles is strictly zero. This assumption is justified if any

experimental measurement of the profile gives ~ψ  as a result. In other words, this

approximation is correct if the profile is static, not fluctuating, and the instantaneous

fluctuations δψ ψ ψ( , ) ( , ) ( )
r r r
x t x t x≡ − 〈 〉  where t represents time can be ignored. Therefore, this

approximation is equivalent to the mean-field approximation, and the mean-field free energy

can be obtained by calculating the integral 1.3.60 with the saddle point method:

F d e Fmean field
F

saddle poi
L

L
-

nt
= − =∫ −ln [ ~][ ]ψ ψψ                         (1.3.61)

According to equation 1.3.61, the mean-field free energy coincides with the Landau free

energy. For most physical systems, the mean-field approximation is rather crude. For

copolymer melts, however, it can be made arbitrary accurate by increasing the (average) block

length N in the system. For homopolymer blends it can been shown that the error in the free

energy due to the mean-field approximation has relative magnitude N−1 , for monodisperse

multiblock copolymers it has relative magnitude N−1 3  (ref 44), and for correlated random

copolymers, which have rather polydisperse blocks, it has relative magnitude N−1 4  (refs 45,

46). Summarizing, once the block lengths are large enough, the mean-field approximation is

quite reasonable for block copolymer melts.


