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Abstract 

The notion of balanced realizations for nonlinear 
state space model reduction problems was first intro- 
duced by Scherpen in 1993. Analogous to'the linear 
case, the so called singular value functions of a system 
describe the relative importance of each state compo- 
nent from an input-output point of view. In this paper 
it is shown that the procedure for nonlinear balancing 
has some interesting ambiguities that do not occur in 
the linear case. Specifically, it appears that the singu- 
lar value functions as currently defined are dependent 
on a particular factorization of the observability func- 
tion. It is shown by example that in a fixed coordinate 
frame this factorization is not unique, and thus other 
distinct sets of the singular value functions and bal- 
anced realizations are possible. 

1. Introduction 

The notion of balanced realizations for nonlinear 
state space model reduction problems was first in- 
troduced by Scherpen in [7]-[S]. Analogous to the 
Gramians matrices used in the linear case, controlla- 
bility and observability (energy) functions are used to 
determine how important each state component is in 
influencing the input-output map of the system. These 
functions are then transformed, through a change of 
coordinates, into a simultaneous diagonal form in or- 
der to identify the so called singular value functions 
of the system. In the linear case, these functions are 
equivalent to the square of the (constant) Hankel sin- 
gular values of the system. State truncation is finally 
accomplished by examining the singular value func- 
tions in a neighborhood of 0 and deleting states that 
correspond to the smallest singular value functions in 
a local sense. 

The procedure for nonlinear balancing, however, 
has some interesting ambiguities that do not occur in 
the linear case. Specifically, it appears that the sin- 
gular value functions defined in [7]-[SI are dependent 
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on a particular factorization of the observability func- 
tion which follows from the Fundamental Theorem of 
Calculus. It will be easily shown by example that 
in a fixed coordinate frame this factorization is not 
unique, and thus other distinct definitions for the sin- 
gular value functions are possible. Of course, this is 
of great concern in model reduction applications since 
decisions about state deletion should only depend on 
the coordinate frame of the state space and on intrin- 
sic qualities of input-output map. So in this paper we 
examine this issue in detail and explain the precise 
nature of the nonuniqueness problem. Furthermore, 
given a fixed factorization, we also present some re- 
sults on the nonuniqueness of singular value functions 
via norm preserving coordinate transformations. It is 
conjectured that both of these nonuniqueness problems 
are related, but that topic is not pursued here. 

The paper is organized as follows. In Section 2, the 
background for the problem is provided by reviewing 
some standard definitions in connection with nonlinear 
balanced realizations. Then a simple example is pro- 
vided to illustrate the nonuniqueness phenomena con- 
sidered in this paper. In Section 3, we first consider 
the nonuniqueness of the factorization of the observ- 
ability function via so call null matrixfunctions. This 
idea leads to some results about the relationship be- 
tween singular value functions coming from different 
factorizations. We conclude with a discussion of the 
role of norm preserving coordinate transformations in 
determining the singular value functions. 

The mathematical notation used throughout is fairly 
standard. Vector norms are represented by ))s)) = 

for 2 E R". La(a,b) represents the set 
of Lebesgue measurable functions, possibly vector- 
valued, with finite La norm l l x l l ~ ~  = d m .  
If L : R" ++ R is a differentiable function, then its 
partial derivative $$ will be the row vector of partial 
derivatives where i = 1, . . . , n. 
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2. The Nature of the Problem 

In this section, the background for the problem is 
first outlined by reviewing some standard definitions 
in connection with nonlinear balanced realizations. All 
of this material has been adapted from [7]-[8]. Then a 
simple example is provided to illustrate the nonunique- 
ness phenomena considered in this paper. 

Let M be an n-dimensional smooth manifold, and 
let 

x =  f (4 + g(+ 

Y = h(z)  
be a system defined in terms of local coordinates on 
M .  It is assumed that f, g, and h are smooth vector 
fields on M and that f(0) = 0 and h(0) = 0. The cor- 
responding controllability and observability functions 
(or energy functions, collectively) for such a system 
are defined below. 

Definition 2.1 The controllability and observability 
functions for the system ( f ,  g ,  h) are defined, respec- 
tively, as 

L,(z) = min 
U E L 2  (-w,O) 

z(-Oo)=O, 2(0)=z 

when z(0) = z, and u( t )  = 0 for 0 5 t < 00. 

In order for a balanced realization to exist, the fol- 
lowing properties of the system are assumed through- 
out the paper: 

f is asymptotically stable on some neighborhood 
Y of 0. 

The system ( f , g ,  h) is zero-state observable on 
Y .  

L, and Lo exist and are smooth on Y. 

s ( 0 )  > 0 and e ( 0 )  > 0. 
The next collection of results form the core of the 

standard nonlinear balancing procedure. 

Lemma 2.1 [SI Let L be a smooth real-valued func- 
tion on a convex neighborhood V c Et” of 0 with 
L(U)=U. Then L exhibits the factorization 

L ( z )  = u(-2)-2, 

where a is the smooth vectorfield on V with compo- 
nent functions 

.i(.) = - ( t q , .  . . , tz,) d t .  [ :: 

Observe that a(0)  = %(O), and in fact any factor- 
ization of the form L(z )  = ti(z)z necessarily has the 
property that ti(0) = %(O). The following lemma 
comes from applying Morse’s Lemma to L, [5] ,  and 
the above lemma twice to Lo. 

Lemma 2.2 For a system ( f ,  g ,  h)  with correspond- 
ing energy functions (L,, Lo), there exists a coordi- 
nate transformation -2 = $(Z), $(O) = 0, defined on 
a neighborhood V of 0 which converts the system into 
an input-normal realization, where 

1 -T-  E,@) := L,($(Z)) = --2 -2 
2 

Lo@) := Lo($(Z)) = LTM(3)Z 
2 

with M an n x n symmetric matrix-valued function 
having smooth component functions on V := 4-l (V)  
and M ( 0 )  = s ( 0 ) .  

Analogous to the above observation, any factorization 
of the form E,(%) = ;ETM’(3)3 necessarily has the 
property that M’(0) = e(0). In order to diagonalize 
M ,  the following technical lemma is needed. 

Lemma 2.3 [3] If there exists a neighborhood V of 
0, where the number of distinct eigenvalues of M is 
constant everywhere V ,  then the eigenvalues and or- 
thonormalized eigenvectors (Xi, pi), i = 1, . . . , n of 
M are smooth functions of Z E V. 

Theorem 2.1 For a system (f, g, h) satisfying the 
condition in Lemma 2.3, there exists a coordinate 
transformation -2 = $(z) ,  $(O) = 0, defined on a 
neighborhood U of 0 which converts the system into 
a input-normavoutput-diagonal realization, w he re 

1 T  

i,(~) := L ~ ( $ ( z ) )  = 2” dzag(Tl(z), . . . , T,(z))z 

i , ( z )  := L,($(x)) = 2 2  x, 

l T .  

with q ( 2 )  2 . . . 2 ~ ~ ( 2 )  being smooth functions on 
w := $-1(U). 

The set of functions ~ i ,  i = 1, . . . , n are called the 
singular value functions of ( f ,  g ,  h). The final step of 
this balancing procedure is given below. 

Theorem 2.2 For the system in Theorem 2.1, there 
exists a coordinate transformation Z = q ( z ) ,  q(0) = 
0, defined on the neighborhood W of 0 which converts 
the system into a balanced realization, where 

L,(z) := Lc(q(z))  
I - ,  . = G.2 dzag(a(z1)-1,. . . , a(zn)- l )z  
L 
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io@) := Lo(q(Z))  

= lZTdiag(al(El)-l.l(~-l(~)), 2 . . . , 

G%(.7J1.n(q-’ ( Z ) > ) Z ,  

with a ( ~ i >  := T ~ ( o , .  . . , o,q%:l(~i), 0, .  . . ,o)+ f i r  i = 
1, ..., n. 

Note that along coordinate axes it is easily verified for 
i = 1,. . . , n that: 

(1) 

We now introduce an example to illustrate the 
nonuniqueness features of the above balancing pro- 
cedure. 

Example 2.1 Consider a second order system with 
energy functions 

i C ( O , .  . . ,o ,  ZZ,O,. . . , O )  = ;Z;cT(Zi)-1 

i O ( O , .  . . ,o ,  zi, 0,. . . ,O )  = f z ; U ( z i ) .  

1 
2 L,(z) = - (2;+z;) 

LO(2) = 1 (32;  + 2 1 2 2  + -2; 2 
2 2  3 ,  

for all 2 E M = IR2. Applying Lemma 2.1 directly, 
the corresponding input-normal form has energy func- 
tions: 

1 T  L,(z) = 3 2 2 
3 1  

2 2  

Since M is constant in this representation, the singular 
value functions appear to be the constant functions: 
q ( z )  = 2, 72(z) = 1 in the diagonalized coordinate 
frame 2 = $(z) .  The situation is, however, more 
complex than it first appears. While the factorization 
in Lemma 2.1 certainly yields a valid input-normal 
form realization, it is easily seen that this form is not 
unique. For example, consider the smooth symmetric 
matrix function 

where c1, c2 E C” (IR2), the ring of smooth real- 
valued functions defined on Et2. Since x T A ( x ) x  = 0 
everywhere on IR2 and A(0)  = 0, another input- 
normal form in the same coordinate system is: 

._ 

(2) 

For most choices of c1, c2, the condition in Lemma 
2.3 is satisfied, and thus M’ is smoothly diagonaliz- 
able. Consider, for example, the case: c1(2) = 21 

and ~ ( 2 )  = 22.  Then it follows that the eigen- 
values of M‘ are Ai(xJ = 2 + ( 2 1  - ~ 2 ) ~  and 
Xi (z )  = 1 - ( 2 1  + 22) , which are distinct every- 
where on IR2. The diagonalizing transformation 

yields the corresponding input-normaYoutput-diagonal 
form: 

&’) := L,($’(z’)) = s(” I T 1  ) z , 

Lo(.’) := Lo($’(.’)) 
= -(. I T .  ) dzug(7i(z’),.::(z1))z’ 

2 

= A(z’)~diug(2 + 2 ( 4 > 2 , 1 -  2(z/1>2>x’. 
2 

Thus, we see immediately that a different factor- 
ization of Lo, via the introduction of the matrix- 
valued function A, leads to a different set of sin- 
gular value functions. Note, however, that they are 
identical along respective coordinate directions, i.e., 

for i=1,2. Furthermore, observe that any coordinate 
transformation of the form 2 = ~ ( y )  = T(y)y with 
T ( Y > ~ T ( ~ )  = I applied to the original system trans- 
forms the energy functions in (2) to yet another input- 
normaYoutput-diagonal form after applying the diago- 
nalizing transformation y = &2): 

.,(O,. . . , o,z;, 0, .  . . , O )  = Ti(0, .  . . ,o ,  zz, 0,. . . , O )  

1 
2 

Lc(2) := L,((v 0 &2)) = -2T2, 

i o ( 2 )  := Lo((v 0 &(2) = -2 l T .  dzag(+1(2),+2(2))2, 
2 

where +i(2) = Xi((v o +)(.2)), i = 1,2. Thus seem- 
ingly different sets of singular value functions are po- 
tentially related by an orthogonal coordinate transfor- 
mation, but that is not readily apparent in this example. 
In the next section we consider these issues in detail. 

3. Sources of Nonuniqueness 

In this section we examine two sources of 
nonuniqueness in computing the singular value func- 
tions of a system: the addition of a null matrix function 
and a norm preserving coordinate transformation. 
Null Matrix Functions 

Let V be an open neighborhood of 0, and let 
C””(V) denote the abelian ring of smooth real-valued 
functions defined on V. (Addition and multiplication 
are defined in the obvious pointwise fashion on V, see 
for example [4].) Let Mn(Cm(V))  denote the set of 
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n x n matrices with components from C"(V). Using 
the usual notions of matrix addition and multiplica- 
tion, Mn(C"(V)) is an associative ring with identity 
[2]. The subset Sn(Cw(V))  consists of all symmet- 
ric matrices in Mn(Co3(V)).  We are interested in the 
following subset of S,(C"(V)). 

Definition3.1 The subset A(V) c Sn(C"(V)) is 
the set of matrix-valued functions, A, with the follow- 
ing properties: 

i. A(0) = 0. 

ii. xTA(x)z  = 0, Vx E V .  

Any A E A(V) is called a null matrix function on 
V. Some properties of d(V)  are considered in the 
following lemma, and then an application of this idea 
is given in the subsequent lemma. 

Lemma 3.1 For any neighborhood V of 0, the fol- 
lowing statements are true: 

i. d ( V )  is a vector space over R. 

ii. A(V) is a module over C"(V). 

iii. The matrix A 0 is the only constant matrix 
in d (V) .  

iv. The relation M N MI ($ M - M' E A(V) 
is an equivalence relation on Sn(Coo(V)). 

Proof: Proofs of these statements are elementary. 

Lemma 3.2 On any neighborhood V of 0 and for any 
M ,  M' E Sn(Co3(V)) 

xTM(x)x  = xTM'(z)x ,  x E V @ M N M'. 

Proof: The proof is trivial using the fact that the 
equivalence on the left-hand side also implies M (0) = 
M'(0) 

An interesting observation about the set d ( V )  is 
its relationship to an isotropy subgroup of the matrix 
group: 

GLn(Coo(V)) := {T E Mn(C"(V)) : 35 E 

Mn(C"(V)) with T S  = I}, 

where I denotes the identity matrix [6]. Viewing 
GLn(C"(V)) as a transformation group on V with 
the usual group action 

7) : GLn(C"(V)) X V W V  
: ( T , x )  W T ( z ) x ,  

the isotropy subgroup for any z E V is 

Ix := {T E GLn(C"(V)) : T(x ) z  = z}. 

The corresponding isotropy subgroup for V is 

:= n I ~ .  
XEV 

Now given any symmetric element B E Iv, it is im- 
mediate that I - B E d ( V ) ,  that is, 

xT(I - B ( z ) ) x  = z T ( x  - B ( x ) x )  = 0. 

However, it is easy to find examples of null matrices 
with no corresponding element in Iv. Specifically, it 
is possible for xTA(x)x  = 0 everywhere on V without 
A ( x ) x  = 0. Hence, the usual methods associated with 
matrix groups do not completely describe the nature of 

Returning now to our main problem, we saw in the 
example from the previous section that the equivalence 
M N M' on S,(C"(V)) does not imply equivalence 
of their respective spectrums. This is a fundamental 
source of nonuniqueness in the calculation of the sin- 
gular value functions of a system. However, it is still 
possible to make some general statements relating their 
spectrums. This is done using the following results. 

d(V) -  

Lemma 3.3 I f A  E d ( V )  then we can write A(z)  = 

[E:=, aijlc(x)~k] on v where 
[ 4 x > l  = [aij(x).] = [E" k=l (aij (x))kxk] := 

Proof: 

i. This result follows from the fact that A(0) = 0 
and applying Lemma 2.1 componentwise to A. 

ii. Since xTA(x)x  = 0 everywhere on V then 

iii. Observe that: 

xTA(x)z  = 

- - 
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Next consider the following result from matrix per- 
turbation theory adapted from [ l ]  (see p. 163). 

Theorem 3.1 Let MO E RnXn be a simple symmet- 
ric matrix with eigenvalues {Xi}:=, and orthonormal 
eigenvectors For 8 E lR and symmetric ma- 
trices M I ,  M2 E lRnx" define 

~ ( 8 )  = M~ + M ~ O  + kf2e2. 

For suflciently small 161, the matrix M(8)  is also 
simple, and its corresponding eigenvalues { X i  (8)}?=1 
and orthonormal eigenvectors {pi (8)}?==, depend an- 
alytically on 8, i.e., 

for i = 1 , 2 , .  . . , n. In particular, 

N .  

We now present a main result of the paper. 

Theorem 3.2 Suppose M E Sn(Coo(V)) and M ( 0 )  
is simple. Let {Xi,pi} denote the smoothly defined 
eigenvalue and orthonormal eigenvector pairs for M 
on a neighborhood V C V of 0 (c.$ Lemma 2.3). 
Let A E d(V)  and define MI = M + A with cor- 
responding eigenvalues { A:}?==,. In the diagonalized 
coordinate frame z = g5-'(x) for M ,  the eigenvalues 
of M and MI are equivalent to first order along their 
respective coordinate directions. That is, suflciently 
close to 0 

xg($(o). . . ,o, zi, 0, .  . . , O ) )  = 

X i ( $ ( O , .  . . , o,z i ,o , .  . . , O ) )  + O(&. (3) 
4740 

Proof: Let M = PAPT be the spectral decomposition 
of M on V .  Then it follows directly that for any 
X E V  

M ' ( x )  = M ( z )  + A ( z )  
= P ( ~ ) A ( z ) P ( x )  + A ( x )  

PT(z)M'(z)P(a)  = A(.) + PT(z)A(z)P(z ) .  

N ( x )  B ( x )  

Now set z = PT(z)a: = $-'(a:) or x = $ ( z ) ,  then 

- - 
N ( + ( z ) )  = w?%4) + B(+(z))  

fi(z) = i ( z )  +B(z).  (4) 

Note that R(z) has the same eigenvalues as M ' ( $ ( z ) )  
and h ( z )  E A($-'(V)), that is, 

B(0) = B(+(O)) = B(0) = 0 
z T g ( z ) z  = zTP(z)  P ( X ) A ( ~ > P ( X )  . P(x)x 

= zTA(z)z=0.  

Now evaluate equation (4) in the i-th coordinate di- 
rection: 

#(o,. . . ,o ,  G, 0,. . . ,o> = A(o, ,o, zi, 0,. . . ,o) + 
B(o , .  . . ,o, zi, 0, .  . . ,o>. 

If lzil is sufficiently small then there exists a matrix 
Bi such that 

iV(0,. . . ,o, zi,o,. * . , O )  = A(0,. . . ,o, zi, 0,. . . , O )  + 
Bizi + o($). 

In light of Theorem 3.1 it follows that 

x:(T)(o,. . . ,o,zi,o, . . . , O ) )  = 
x~(T/J(o,. . . ,o, G,o,. . . ,o)) + eTBiei zi + O(Z?) 

with ei = (0 , .  . . , O , l , O , .  . . , O ) T .  However, from 

Lemma 3.3, part ii. we have that eTBiei = [Bi]ii = 0. 
Thus the theorem is proven. 

Remarks: 

- 
i-th position 

1. In the context of the singular value functions, 
i.e., when L,(z) = &?M(z)x and Lb(z) = 
$zTM1(z)z ,  the identity (3) becomes 

XL(+(O,. . . , o,zi,o, . . . , O ) )  = 

Ti(O,. . . ) 0, zi, 0,.  . . ,o> + o(z ,Z) .  
The lefthand side of this identity is only equiva- 
lent to the true singular value functions for M' if 



the diagonalizing transformation z‘ = ($~’)-l (z) 
for MI is identical to the diagonalizing transfor- 
mation z = +-l(z) for M .  This is the case in 
Example 2.1 from the previous section, M and 
MI are simultaneously diagonalized by the same 
coordinate transformation. 

2. In general the identity (3) is not true to second 
order. However, if matrix B1 = 0 in the proof of 
Theorem 3.2 then it follows from the expression 

to second order. This is also the case in Example 
2.1. 

for X i  (2) in Theorem 3.1 that we have equality up 

Norm Preserving Coordinate Transformations 
A smooth coordinate transformation y = v(z) is 

said to be norm preserving on a convex neighborhood 
of the origin, W ,  if llyyll = llzll for all z E W .  Since 
all such maps satisfy u(0) = 0, it follows directly from 
Lemma 2.1 that there exists at least one factorization 
of the form v(x) = T ( z ) z  where T E M,(C@’(W)). 
Thus, it is immediate that everywhere on W 

or equivalently TT(x )T( z )  = I + A ( z )  for some 
A E A(W). A specific class of norm preserving 
transformations are the so called orthogonal transfor- 
mations, which are characterized by having a factor- 
ization v(z) = T ( z ) z  where TT(z)T(z )  = I .  In the 
context of energy functions, norm preserving transfor- 
mations are interesting because they preserve input- 
normal forms, that is, 

- l T  l T  
L,(y) = -y 7J = -2 2 = L,(z) 

2 2 

In the following theorem, we see that orthogonal coor- 
dinate transformations also preserve the singular value 
functions in a natural sense. 

Theorem 3.3 Consider a system (f, g ,  h) with sin- 
gular value functions, ri, i = 1,. . . ,n derived 
from a specific input-normal form: L,(x) = 
i x T x ,  L,(z) = i z T M ( z ) z .  Any orthogonal coor- 
dinate transformation, y = v(z) = T(z)z ,  yields the 
corresponding singular value functions 7 = r o U-’, 
i = l ,  ..., n. 

Proof: After performing the indicated coordinate 
transformation, the new system has an input-normal 
form where 

Since this correspondings to a similarity transforma- 
tion on M(u-’(y)) ,  the theorem is proven. 

Remarks: 

1. Observe that if v is merely norm preserving 
but not orthogonal, then the matrix transforma- 
tion above on M(v-’(y))  is only a congruence 
transformation. Thus, the corresponding singular 
value functions are not preserved. 

2. Given a fixed factorization L,(z) = i z*M(z)z ,  
let k be the number of distinct singular value 
functions, and let ji be the number of times the 
ith singular value function appears. Then it fol- 
lows directly from Theorem 2.2 that both systems 
have the same balanced form, except for a coor- 
dinate transformation of the form 

(5 )  2 = diag(T1(3), . . . , Tk(3))3 
where the blocks Ti(Z), i = 1,. . . , k, are ji x ji 
orthogonal matrices, i.e., Ti(3)TTi(3) = I ,  with 
entries that are smooth functions of 3 [9]. This 
result is very analogous to what happens in the 
linear system case. 
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