University of Groningen

On the Nonuniqueness of Balanced Nonlinear Realizations

Gray, W. Steven; Scherpen, Jacquelien M.A.

Published in:
Proceedings of the 38th IEEE Conference on Decision and Control, 1999

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Gray, W. S., \& Scherpen, J. M. A. (1999). On the Nonuniqueness of Balanced Nonlinear Realizations. In Proceedings of the 38th IEEE Conference on Decision and Control, 1999 (Vol. 5, pp. 4736-4741). University of Groningen, Research Institute of Technology and Management.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverneamendment.

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

On the Nonuniqueness of Balanced Nonlinear Realizations

W. Steven Gray
Department of Electrical and Computer Engineering Old Dominion University Norfolk, Virginia 23529-0246
U.S.A.
gray@ece.odu.edu

Jacquelien M. A. Scherpen
Delft University of Technology
Fac. of Inf. Techn. \& Syst.
Department of Electrical Engineering
P.O. Box 5031, 2600 GA Delft
The Netherlands
J.M.A.Scherpen@et.tudelft.nl

Abstract

The notion of balanced realizations for nonlinear state space model reduction problems was first introduced by Scherpen in 1993. Analogous to the linear case, the so called singular value functions of a system describe the relative importance of each state component from an input-output point of view. In this paper it is shown that the procedure for nonlinear balancing has some interesting ambiguities that do not occur in the linear case. Specifically, it appears that the singular value functions as currently defined are dependent on a particular factorization of the observability function. It is shown by example that in a fixed coordinate frame this factorization is not unique, and thus other distinct sets of the singular value functions and balanced realizations are possible.

1. Introduction

The notion of balanced realizations for nonlinear state space model reduction problems was first introduced by Scherpen in [7]-[8]. Analogous to the Gramians matrices used in the linear case, controllability and observability (energy) functions are used to determine how important each state component is in influencing the input-output map of the system. These functions are then transformed, through a change of coordinates, into a simultaneous diagonal form in order to identify the so called singular value functions of the system. In the linear case, these functions are equivalent to the square of the (constant) Hankel singular values of the system. State truncation is finally accomplished by examining the singular value functions in a neighborhood of 0 and deleting states that correspond to the smallest singular value functions in a local sense.
The procedure for nonlinear balancing, however, has some interesting ambiguities that do not occur in the linear case. Specifically, it appears that the singular value functions defined in [7]-[8] are dependent
on a particular factorization of the observability function which follows from the Fundamental Theorem of Calculus. It will be easily shown by example that in a fixed coordinate frame this factorization is not unique, and thus other distinct definitions for the singular value functions are possible. Of course, this is of great concern in model reduction applications since decisions about state deletion should only depend on the coordinate frame of the state space and on intrinsic qualities of input-output map. So in this paper we examine this issue in detail and explain the precise nature of the nonuniqueness problem. Furthermore, given a fixed factorization, we also present some results on the nonuniqueness of singular value functions via norm preserving coordinate transformations. It is conjectured that both of these nonuniqueness problems are related, but that topic is not pursued here.
The paper is organized as follows. In Section 2, the background for the problem is provided by reviewing some standard definitions in connection with nonlinear balanced realizations. Then a simple example is provided to illustrate the nonuniqueness phenomena considered in this paper. In Section 3, we first consider the nonuniqueness of the factorization of the observability function via so call null matrix functions. This idea leads to some results about the relationship between singular value functions coming from different factorizations. We conclude with a discussion of the role of norm preserving coordinate transformations in determining the singular value functions.
The mathematical notation used throughout is fairly standard. Vector norms are represented by $\|x\|=$ $\sqrt{x^{T} x}$ for $x \in \mathbb{R}^{\mathrm{n}} . \quad L_{2}(a, b)$ represents the set of Lebesgue measurable functions, possibly vectorvalued, with finite L_{2} norm $\|x\|_{L_{2}}=\sqrt{\int_{a}^{b}\|x(t)\|^{2} d t}$. If $L: \mathbb{R}^{\mathrm{n}} \mapsto \mathbb{R}$ is a differentiable function, then its partial derivative $\frac{\partial L}{\partial x}$ will be the row vector of partial derivatives $\frac{\partial L}{\partial x_{i}}$ where $i=1, \ldots, n$.

2. The Nature of the Problem

In this section, the background for the problem is first outlined by reviewing some standard definitions in connection with nonlinear balanced realizations. All of this material has been adapted from [7]-[8]. Then a simple example is provided to illustrate the nonuniqueness phenomena considered in this paper.

Let \mathcal{M} be an n-dimensional smooth manifold, and let

$$
\begin{aligned}
\dot{x} & =f(x)+g(x) u \\
y & =h(x)
\end{aligned}
$$

be a system defined in terms of local coordinates on \mathcal{M}. It is assumed that f, g, and h are smooth vector fields on \mathcal{M} and that $f(0)=0$ and $h(0)=0$. The corresponding controllability and observability functions (or energy functions, collectively) for such a system are defined below.

Definition 2.1 The controllability and observability functions for the system (f, g, h) are defined, respectively, as

$$
L_{c}(x)=\min _{\substack{u \in L_{2}(-\infty, 0) \\ x(-\infty)=0, x(0)=x}} \frac{1}{2} \int_{-\infty}^{0}\|u(t)\|^{2} d t
$$

and

$$
L_{o}(x)=\frac{1}{2} \int_{0}^{\infty}\|y(t)\|^{2} d t
$$

when $x(0)=x$, and $u(t)=0$ for $0 \leq t<\infty$.
In order for a balanced realization to exist, the following properties of the system are assumed throughout the paper:

1. f is asymptotically stable on some neighborhood Y of 0 .
2. The system (f, g, h) is zero-state observable on Y.
3. L_{c} and L_{o} exist and are smooth on Y.
4. $\frac{\partial^{2} L_{c}}{\partial x^{2}}(0)>0$ and $\frac{\partial^{2} L_{o}}{\partial x^{2}}(0)>0$.

The next collection of results form the core of the standard nonlinear balancing procedure.

Lemma 2.1 [5] Let L be a smooth real-valued function on a convex neighborhood $V \subset \mathbb{R}^{\mathbf{n}}$ of 0 with $L(0)=0$. Then L exhibits the factorization

$$
L(x)=a(x) x
$$

where a is the smooth vector field on V with component functions

$$
a_{i}(x)=\int_{0}^{1} \frac{\partial L}{\partial x_{i}}\left(t x_{1}, \ldots, t x_{n}\right) d t
$$

Observe that $a(0)=\frac{\partial L}{\partial x}(0)$, and in fact any factorization of the form $L(x)=\tilde{a}(x) x$ necessarily has the property that $\tilde{a}(0)=\frac{\partial L}{\partial x}(0)$. The following lemma comes from applying Morse's Lemma to L_{c} [5], and the above lemma twice to L_{o}.

Lemma 2.2 For a system (f, g, h) with corresponding energy functions (L_{c}, L_{o}), there exists a coordinate transformation $x=\phi(\bar{x}), \phi(0)=0$, defined on a neighborhood V of 0 which converts the system into an input-normal realization, where

$$
\begin{aligned}
& \bar{L}_{c}(\bar{x}):=L_{c}(\phi(\bar{x}))=\frac{1}{2} \bar{x}^{T} \bar{x} \\
& \bar{L}_{o}(\bar{x}):=L_{o}(\phi(\bar{x}))=\frac{1}{2} \bar{x}^{T} M(\bar{x}) \bar{x}
\end{aligned}
$$

with M an $n \times n$ symmetric matrix-valued function having smooth component functions on $\bar{V}:=\phi^{-1}(V)$ and $M(0)=\frac{\partial^{2} L_{o}}{\partial x^{2}}(0)$.

Analogous to the above observation, any factorization of the form $\bar{L}_{o}(\bar{x})=\frac{1}{2} \bar{x}^{T} M^{\prime}(\bar{x}) \bar{x}$ necessarily has the property that $M^{\prime}(0)=\frac{\partial^{2} L}{\partial x^{2}}(0)$. In order to diagonalize M, the following technical lemma is needed.

Lemma 2.3 [3] If there exists a neighborhood \bar{V} of 0 , where the number of distinct eigenvalues of M is constant everywhere \bar{V}, then the eigenvalues and orthonormalized eigenvectors $\left(\lambda_{i}, p_{i}\right), i=1, \ldots, n$ of M are smooth functions of $\bar{x} \in V$.

Theorem 2.1 For a system (f, g, h) satisfying the condition in Lemma 2.3, there exists a coordinate transformation $x=\psi(z), \psi(0)=0$, defined on a neighborhood U of 0 which converts the system into a input-normal/output-diagonal realization, where
$\tilde{L}_{c}(z):=L_{c}(\psi(z))=\frac{1}{2} z^{T} z$,
$\tilde{L}_{o}(z):=L_{o}(\psi(z))=\frac{1}{2} z^{T} \operatorname{diag}\left(\tau_{1}(z), \ldots, \tau_{n}(z)\right) z$
with $\tau_{1}(z) \geq \ldots \geq \tau_{n}(z)$ being smooth functions on $W:=\psi^{-1}(U)$.

The set of functions $\tau_{i}, i=1, \ldots, n$ are called the singular value functions of (f, g, h). The final step of this balancing procedure is given below.

Theorem 2.2 For the system in Theorem 2.1, there exists a coordinate transformation $\bar{z}=\eta(z), \eta(0)=$ 0 , defined on the neighborhood W of 0 which converts the system into a balanced realization, where

$$
\begin{aligned}
\breve{L}_{c}(\bar{z}) & :=\tilde{L}_{c}(\eta(\bar{z})) \\
& =\frac{1}{2} \bar{z}^{T} \operatorname{diag}\left(\sigma\left(\bar{z}_{1}\right)^{-1}, \ldots, \sigma\left(\bar{z}_{n}\right)^{-1}\right) \bar{z}
\end{aligned}
$$

$$
\begin{aligned}
\breve{L}_{o}(\bar{z}): & \tilde{L}_{o}(\eta(\bar{z})) \\
= & \frac{1}{2} \bar{z}^{T} \operatorname{diag}\left(\sigma_{1}\left(\bar{z}_{1}\right)^{-1} \tau_{1}\left(\eta^{-1}(\bar{z})\right), \ldots,\right. \\
& \left.\quad \sigma_{n}\left(\bar{z}_{n}\right)^{-1} \tau_{n}\left(\eta^{-1}(\bar{z})\right)\right) \bar{z},
\end{aligned}
$$

with $\sigma\left(\bar{z}_{i}\right):=\tau_{i}\left(0, \ldots, 0, \eta_{i}^{-1}\left(\bar{z}_{i}\right), 0, \ldots, 0\right)^{\frac{1}{2}}$ for $i=$ $1, \ldots, n$.

Note that along coordinate axes it is easily verified for $i=1, \ldots, n$ that:

$$
\begin{align*}
& \breve{L}_{c}\left(0, \ldots, 0, \bar{z}_{i}, 0, \ldots, 0\right)=\frac{1}{2} \bar{z}_{i}^{2} \sigma\left(\bar{z}_{i}\right)^{-1} \tag{1}\\
& \breve{L}_{o}\left(0, \ldots, 0, \bar{z}_{i}, 0, \ldots, 0\right)=\frac{1}{2} \bar{z}_{i}^{2} \sigma\left(\bar{z}_{i}\right) .
\end{align*}
$$

We now introduce an example to illustrate the nonuniqueness features of the above balancing procedure.

Example 2.1 Consider a second order system with energy functions

$$
\begin{aligned}
L_{c}(x) & =\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right) \\
L_{o}(x) & =\frac{1}{2}\left(\frac{3}{2} x_{1}^{2}+x_{1} x_{2}+\frac{3}{2} x_{2}^{2}\right)
\end{aligned}
$$

for all $x \in \mathcal{M}=\mathbb{R}^{2}$. Applying Lemma 2.1 directly, the corresponding input-normal form has energy functions:

$$
\begin{aligned}
& L_{c}(x)=\frac{1}{2} x^{T} x \\
& L_{o}(x)=\frac{1}{2} x^{T} M(x) x=\frac{1}{2} x^{T}\left[\begin{array}{cc}
\frac{3}{2} & \frac{1}{2} \\
\frac{1}{2} & \frac{3}{2}
\end{array}\right] x .
\end{aligned}
$$

Since M is constant in this representation, the singular value functions appear to be the constant functions: $\tau_{1}(z)=2, \tau_{2}(z)=1$ in the diagonalized coordinate frame $x=\psi(z)$. The situation is, however, more complex than it first appears. While the factorization in Lemma 2.1 certainly yields a valid input-normal form realization, it is easily seen that this form is not unique. For example, consider the smooth symmetric matrix function
$A(x)=c_{1}(x)\left[\begin{array}{cc}-2 x_{2} & x_{1} \\ x_{1} & 0\end{array}\right]+c_{2}(x)\left[\begin{array}{cc}0 & x_{2} \\ x_{2} & -2 x_{1}\end{array}\right]$,
where $c_{1}, c_{2} \in C^{\infty}\left(\mathbb{R}^{2}\right)$, the ring of smooth realvalued functions defined on \mathbb{R}^{2}. Since $x^{T} A(x) x=0$ everywhere on \mathbb{R}^{2} and $A(0)=0$, another inputnormal form in the same coordinate system is:

$$
\left.\begin{array}{rl}
L_{c}(x) & =\frac{1}{2} x^{T} x \\
L_{o}(x) & =\frac{1}{2} x^{T}(M(x)+A(x)) x \\
& :=\frac{1}{2} x^{T} M^{\prime}(x) x \\
& =\frac{1}{2} x^{T}\left[\begin{array}{c}
\frac{3}{2}-2 c_{1}(x) x_{2} \\
\frac{1}{2}+c_{1}(x) x_{1}+c_{2}(x) x_{2} \\
\end{array}\right. \tag{2}\\
& \frac{1}{2}+c_{1}(x) x_{1}+c_{2}(x) x_{2} \\
& \frac{3}{2}-2 c_{2}(x) x_{1}
\end{array}\right] x .
$$

For most choices of c_{1}, c_{2}, the condition in Lemma 2.3 is satisfied, and thus M^{\prime} is smoothly diagonalizable. Consider, for example, the case: $c_{1}(x)=x_{1}$ and $c_{2}(x)=x_{2}$. Then it follows that the eigenvalues of M^{\prime} are $\lambda_{1}^{\prime}(x)=2+\left(x_{1}-x_{2}\right)^{2}$ and $\lambda_{2}^{\prime}(x)=1-\left(x_{1}+x_{2}\right)^{2}$, which are distinct everywhere on \mathbb{R}^{2}. The diagonalizing transformation

$$
x=\psi^{\prime}\left(z^{\prime}\right)=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] z^{\prime}
$$

yields the corresponding input-normal/output-diagonal form:

$$
\begin{aligned}
\tilde{L}_{c}^{\prime}\left(z^{\prime}\right) & :=L_{c}\left(\psi^{\prime}\left(z^{\prime}\right)\right)=\frac{1}{2}\left(z^{\prime}\right)^{T} z^{\prime} \\
\tilde{L}_{o}^{\prime}\left(z^{\prime}\right) & :=L_{o}\left(\psi^{\prime}\left(z^{\prime}\right)\right) \\
& =\frac{1}{2}\left(z^{\prime}\right)^{T} \operatorname{diag}\left(\tau_{1}^{\prime}\left(z^{\prime}\right), \tau_{2}^{\prime}\left(z^{\prime}\right)\right) z^{\prime} \\
& =\frac{1}{2}\left(z^{\prime}\right)^{T} \operatorname{diag}\left(2+2\left(z_{2}^{\prime}\right)^{2}, 1-2\left(z_{1}^{\prime}\right)^{2}\right) z^{\prime}
\end{aligned}
$$

Thus, we see immediately that a different factorization of L_{o}, via the introduction of the matrixvalued function A, leads to a different set of singular value functions. Note, however, that they are identical along respective coordinate directions, i.e., $\tau_{i}^{\prime}\left(0, \ldots, 0, z_{i}^{\prime}, 0, \ldots, 0\right)=\tau_{i}\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)$ for $i=1,2$. Furthermore, observe that any coordinate transformation of the form $x=\nu(y)=T(y) y$ with $T(y)^{T} T(y)=I$ applied to the original system transforms the energy functions in (2) to yet another input-normal/output-diagonal form after applying the diagonalizing transformation $y=\hat{\psi}(\hat{z})$:

$$
\begin{aligned}
& \hat{L}_{c}(\hat{z}):=L_{c}((\nu \circ \hat{\psi})(\hat{z}))=\frac{1}{2} \hat{z}^{T} \hat{z} \\
& \hat{L}_{o}(\hat{z}):=L_{o}\left((\nu \circ \hat{\psi})(\hat{z})=\frac{1}{2} \hat{z}^{T} \operatorname{diag}\left(\hat{\tau}_{1}(\hat{z}), \hat{\tau}_{2}(\hat{z})\right) \hat{z}\right.
\end{aligned}
$$

where $\hat{\tau}_{i}(\hat{z})=\lambda_{i}((\nu \circ \hat{\psi})(\hat{z})), i=1,2$. Thus seemingly different sets of singular value functions are potentially related by an orthogonal coordinate transformation, but that is not readily apparent in this example. In the next section we consider these issues in detail.

3. Sources of Nonuniqueness

In this section we examine two sources of nonuniqueness in computing the singular value functions of a system: the addition of a null matrix function and a norm preserving coordinate transformation.

Null Matrix Functions

Let V be an open neighborhood of 0 , and let $C^{\infty}(V)$ denote the abelian ring of smooth real-valued functions defined on V. (Addition and multiplication are defined in the obvious pointwise fashion on V, see for example [4].) Let $M_{n}\left(C^{\infty}(V)\right)$ denote the set of
$n \times n$ matrices with components from $C^{\infty}(V)$. Using the usual notions of matrix addition and multiplication, $M_{n}\left(C^{\infty}(V)\right)$ is an associative ring with identity [2]. The subset $S_{n}\left(C^{\infty}(V)\right)$ consists of all symmetric matrices in $M_{n}\left(C^{\infty}(V)\right)$. We are interested in the following subset of $S_{n}\left(C^{\infty}(V)\right)$.

Definition 3.1 The subset $\mathcal{A}(V) \subset S_{n}\left(C^{\infty}(V)\right)$ is the set of matrix-valued functions, A, with the following properties:
i. $A(0)=0$.
ii. $x^{T} A(x) x=0, \forall x \in V$.

Any $A \in \mathcal{A}(V)$ is called a null matrix function on V. Some properties of $\mathcal{A}(V)$ are considered in the following lemma, and then an application of this idea is given in the subsequent lemma.

Lemma 3.1 For any neighborhood V of 0 , the following statements are true:
i. $\mathcal{A}(V)$ is a vector space over R.
ii. $\mathcal{A}(V)$ is a module over $C^{\infty}(V)$.
iii. The matrix $A \equiv 0$ is the only constant matrix in $\mathcal{A}(V)$.
iv. The relation $M \sim M^{\prime} \Leftrightarrow M-M^{\prime} \in \mathcal{A}(V)$ is an equivalence relation on $S_{n}\left(C^{\infty}(V)\right)$.

Proof: Proofs of these statements are elementary.

Lemma 3.2 On any neighborhood V of 0 and for any $M, M^{\prime} \in S_{n}\left(C^{\infty}(V)\right)$

$$
x^{T} M(x) x=x^{T} M^{\prime}(x) x, x \in V \Leftrightarrow M \sim M^{\prime}
$$

Proof: The proof is trivial using the fact that the equivalence on the left-hand side also implies $M(0)=$ $M^{\prime}(0)$

An interesting observation about the set $\mathcal{A}(V)$ is its relationship to an isotropy subgroup of the matrix group:

$$
\begin{aligned}
G L_{n}\left(C^{\infty}(V)\right):=\{ & T \in M_{n}\left(C^{\infty}(V)\right): \exists S \in \\
& \left.M_{n}\left(C^{\infty}(V)\right) \text { with } T S=I\right\}
\end{aligned}
$$

where I denotes the identity matrix [6]. Viewing $G L_{n}\left(C^{\infty}(V)\right)$ as a transformation group on V with the usual group action

$$
\begin{aligned}
\psi & : G L_{n}\left(C^{\infty}(V)\right) \times V \mapsto V \\
& :(T, x) \mapsto T(x) x
\end{aligned}
$$

the isotropy subgroup for any $x \in V$ is

$$
I_{x}:=\left\{T \in G L_{n}\left(C^{\infty}(V)\right): T(x) x=x\right\} .
$$

The corresponding isotropy subgroup for V is

$$
I_{V}:=\bigcap_{x \in V} I_{x}
$$

Now given any symmetric element $B \in I_{V}$, it is immediate that $I-B \in \mathcal{A}(V)$, that is,

$$
x^{T}(I-B(x)) x=x^{T}(x-B(x) x)=0 .
$$

However, it is easy to find examples of null matrices with no corresponding element in I_{V}. Specifically, it is possible for $x^{T} A(x) x=0$ everywhere on V without $A(x) x=0$. Hence, the usual methods associated with matrix groups do not completely describe the nature of $\mathcal{A}(V)$.

Returning now to our main problem, we saw in the example from the previous section that the equivalence $M \sim M^{\prime}$ on $S_{n}\left(C^{\infty}(V)\right)$ does not imply equivalence of their respective spectrums. This is a fundamental source of nonuniqueness in the calculation of the singular value functions of a system. However, it is still possible to make some general statements relating their spectrums. This is done using the following results.

Lemma 3.3 If $A \in \mathcal{A}(V)$ then we can write $A(x)=$ $\left[a_{i j}(x)\right]=\left[\alpha_{i j}(x) x\right]=\left[\sum_{k=1}^{n}\left(\alpha_{i j}(x)\right)_{k} x_{k}\right]:=$ [$\left.\sum_{k=1}^{n} \alpha_{i j k}(x) x_{k}\right]$ on V where
i. $\alpha_{i j k}(0)=\frac{\partial a_{i j}}{\partial x_{k}}(0)$;
ii. $\alpha_{i j k}(0)+\alpha_{k i j}(0)+\alpha_{j k i}(0)=0$ for all i, j, k;
iii. $\sum_{i j k}\left(\alpha_{i j k}(x)+\alpha_{k i j}(x)+\alpha_{j k i}(x)\right) x_{i} x_{j} x_{k}=$ 0 on V.

Proof:

i. This result follows from the fact that $A(0)=0$ and applying Lemma 2.1 componentwise to A.
ii. Since $x^{T} A(x) x=0$ everywhere on V then

$$
\begin{array}{r}
\left.\frac{\partial^{3}}{\partial x_{i} \partial x_{j} \partial x_{k}}\left(x^{T} A(x) x\right)\right|_{x=0}=\frac{\partial a_{i j}}{\partial x_{k}}(0)+ \\
\frac{\partial a_{k i}}{\partial x_{j}}(0)+\frac{\partial a_{j k}}{\partial x_{i}}(0)=0
\end{array}
$$

iii. Observe that:

$$
\begin{aligned}
x^{T} A(x) x & =\sum_{i j}\left(\alpha_{i j}(x) x\right) x_{i} x_{j} \\
& =\sum_{i j k} \alpha_{i j k}(x) x_{i} x_{j} x_{k}=0
\end{aligned}
$$

Hence,

$$
\begin{aligned}
3 \sum_{i j k} \alpha_{i j k}(x) x_{i} x_{j} x_{k} & =0 \\
\sum_{i j k}\left(\alpha_{i j k}(x)+\alpha_{k i j}(x)+\alpha_{j k i}(x)\right) x_{i} x_{j} x_{k} & =0
\end{aligned}
$$

Next consider the following result from matrix perturbation theory adapted from [1] (see p. 163).

Theorem 3.1 Let $M_{0} \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ be a simple symmetric matrix with eigenvalues $\left\{\lambda_{i}\right\}_{i=1}^{n}$ and orthonormal eigenvectors $\left\{p_{i}\right\}_{i=1}^{n}$. For $\theta \in \mathbb{R}$ and symmetric matrices $M_{1}, M_{2} \in \mathbb{R}^{\mathbf{n} \times \mathbf{n}}$ define

$$
M(\theta)=M_{0}+M_{1} \theta+M_{2} \theta^{2}
$$

For sufficiently small $|\theta|$, the matrix $M(\theta)$ is also simple, and its corresponding eigenvalues $\left\{\lambda_{i}(\theta)\right\}_{i=1}^{n}$ and orthonormal eigenvectors $\left\{p_{i}(\theta)\right\}_{i=1}^{n}$ depend analytically on θ, i.e.,

$$
\begin{aligned}
& \lambda_{i}(\theta)=\lambda_{i}^{(0)}+\lambda_{i}^{(1)} \theta+\lambda_{i}^{(2)} \theta^{2}+\ldots \\
& p_{i}(\theta)=p_{i}^{(0)}+p_{i}^{(1)} \theta+p_{i}^{(2)} \lambda^{(2)} \theta^{2}+\ldots
\end{aligned}
$$

for $i=1,2, \ldots, n$. In particular,

$$
\begin{aligned}
\lambda_{i}^{(0)} & =\lambda_{i} \\
\lambda_{i}^{(1)} & =p_{i}^{T} M_{1} p_{i} \\
\lambda_{i}^{(2)} & =p_{i}^{T} M_{2} p_{i}+\sum_{\substack{j=1 \\
i \neq j}}^{N} \frac{1}{\lambda_{i}-\lambda_{j}}\left|p_{i}^{T} M_{1} p_{j}\right|^{2} \\
p_{i}^{(0)} & =p_{i} \\
p_{i}^{(1)} & =\sum_{\substack{j=1 \\
i \neq j}}^{N} \frac{p_{i}^{T} M_{1} p_{j}}{\lambda_{i}-\lambda_{j}} .
\end{aligned}
$$

We now present a main result of the paper.
Theorem 3.2 Suppose $M \in S_{n}\left(C^{\infty}(V)\right)$ and $M(0)$ is simple. Let $\left\{\lambda_{i}, p_{i}\right\}$ denote the smoothly defined eigenvalue and orthonormal eigenvector pairs for M on a neighborhood $\bar{V} \subset V$ of 0 (c.f. Lemma 2.3). Let $A \in \mathcal{A}(V)$ and define $M^{\prime}=M+A$ with corresponding eigenvalues $\left\{\lambda_{i}^{\prime}\right\}_{i=1}^{n}$. In the diagonalized coordinate frame $z=\phi^{-1}(x)$ for M, the eigenvalues of M and M^{\prime} are equivalent to first order along their respective coordinate directions. That is, sufficiently close to 0

$$
\begin{align*}
& \lambda_{i}^{\prime}\left(\psi\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)\right)= \\
& \quad \lambda_{i}\left(\psi\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)\right)+\mathcal{O}\left(z_{i}^{2}\right) \tag{3}
\end{align*}
$$

Proof: Let $M=P \Lambda P^{T}$ be the spectral decomposition of M on \bar{V}. Then it follows directly that for any $x \in \bar{V}$

$$
\begin{aligned}
M^{\prime}(x) & =M(x)+A(x) \\
& =P(x) \Lambda(x) P^{T}(x)+A(x) \\
\underbrace{P^{T}(x) M^{\prime}(x) P(x)}_{N(x)} & =\Lambda(x)+\underbrace{P^{T}(x) A(x) P(x)}_{B(x)} .
\end{aligned}
$$

Now set $z=P^{T}(x) x=\psi^{-1}(x)$ or $x=\psi(z)$, then

$$
\begin{align*}
N(\psi(z)) & =\Lambda(\psi(z))+B(\psi(z)) \\
\tilde{N}(z) & =\tilde{\Lambda}(z)+\tilde{B}(z) \tag{4}
\end{align*}
$$

Note that $\tilde{N}(z)$ has the same eigenvalues as $M^{\prime}(\psi(z))$ and $\tilde{B}(z) \in \mathcal{A}\left(\psi^{-1}(\bar{V})\right)$, that is,

$$
\begin{aligned}
\tilde{B}(0) & =B(\psi(0))=B(0)=0 \\
z^{T} \tilde{B}(z) z & =x^{T} P(x) \cdot P^{T}(x) A(x) P(x) \cdot P^{T}(x) x \\
& =x^{T} A(x) x=0
\end{aligned}
$$

Now evaluate equation (4) in the i-th coordinate direction:

$$
\begin{array}{r}
\tilde{N}\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)=\tilde{\Lambda}\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)+ \\
\tilde{B}\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)
\end{array}
$$

If $\left|z_{i}\right|$ is sufficiently small then there exists a matrix B_{i} such that

$$
\begin{gathered}
\tilde{N}\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)=\tilde{\Lambda}\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)+ \\
B_{i} z_{i}+\mathcal{O}\left(z_{i}^{2}\right)
\end{gathered}
$$

In light of Theorem 3.1 it follows that

$$
\begin{aligned}
& \lambda_{i}^{\prime}\left(\psi\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)\right)= \\
& \quad \lambda_{i}\left(\psi\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)\right)+e_{i}^{T} B_{i} e_{i} z_{i}+\mathcal{O}\left(z_{i}^{2}\right) \\
& \text { with } e_{i}=(\underbrace{0, \ldots, 0,1}_{i \text {-th position }}, 0, \ldots, 0)^{T} . \text { However, from }
\end{aligned}
$$

Lemma 3.3, part ii. we have that $e_{i}^{T} B_{i} e_{i}=\left[B_{i}\right]_{i i}=0$. Thus the theorem is proven.

Remarks:

1. In the context of the singular value functions, i.e., when $L_{o}(x)=\frac{1}{2} x^{T} M(x) x$ and $L_{o}^{\prime}(x)=$ $\frac{1}{2} x^{T} M^{\prime}(x) x$, the identity (3) becomes

$$
\begin{aligned}
& \lambda_{i}^{\prime}\left(\psi\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)\right)= \\
& \quad \tau_{i}\left(0, \ldots, 0, z_{i}, 0, \ldots, 0\right)+\mathcal{O}\left(z_{i}^{2}\right)
\end{aligned}
$$

The lefthand side of this identity is only equivalent to the true singular value functions for M^{\prime} if
the diagonalizing transformation $z^{\prime}=\left(\psi^{\prime}\right)^{-1}(x)$ for M^{\prime} is identical to the diagonalizing transformation $z=\psi^{-1}(x)$ for M. This is the case in Example 2.1 from the previous section, M and M^{\prime} are simultaneously diagonalized by the same coordinate transformation.
2. In general the identity (3) is not true to second order. However, if matrix $B_{1}=0$ in the proof of Theorem 3.2 then it follows from the expression for $\lambda_{i}^{(2)}$ in Theorem 3.1 that we have equality up to second order. This is also the case in Example 2.1.

Norm Preserving Coordinate Transformations

A smooth coordinate transformation $y=\nu(x)$ is said to be norm preserving on a convex neighborhood of the origin, W, if $\|y\|=\|x\|$ for all $x \in W$. Since all such maps satisfy $\nu(0)=0$, it follows directly from Lemma 2.1 that there exists at least one factorization of the form $\nu(x)=T(x) x$ where $T \in M_{n}\left(C^{\infty}(W)\right)$. Thus, it is immediate that everywhere on W

$$
\|T(x) x\|^{2}=x^{T} T^{T}(x) T(x) x=x^{T} x
$$

or equivalently $T^{T}(x) T(x)=I+A(x)$ for some $A \in \mathcal{A}(W)$. A specific class of norm preserving transformations are the so called orthogonal transformations, which are characterized by having a factorization $\nu(x)=T(x) x$ where $T^{T}(x) T(x)=I$. In the context of energy functions, norm preserving transformations are interesting because they preserve inputnormal forms, that is,

$$
\bar{L}_{c}(y)=\frac{1}{2} y^{T} y=\frac{1}{2} x^{T} x=L_{c}(x)
$$

In the following theorem, we see that orthogonal coordinate transformations also preserve the singular value functions in a natural sense.

Theorem 3.3 Consider a system (f, g, h) with singular value functions, $\tau_{i}, i=1, \ldots, n$ derived from a specific input-normal form: $L_{c}(x)=$ $\frac{1}{2} x^{T} x, \quad L_{o}(x)=\frac{1}{2} x^{T} M(x) x$. Any orthogonal coordinate transformation, $y=\nu(x)=T(x) x$, yields the corresponding singular value functions $\bar{\tau}=\tau \circ \nu^{-1}$, $i=1, \ldots, n$.

Proof: After performing the indicated coordinate transformation, the new system has an input-normal form where

$$
\bar{L}_{o}(y)=\frac{1}{2} y^{T} T\left(\nu^{-1}(y)\right) M\left(\nu^{-1}(y)\right) T^{-1}\left(\nu^{-1}(y)\right) y
$$

Since this correspondings to a similarity transformation on $M\left(\nu^{-1}(y)\right)$, the theorem is proven.

Remarks:

1. Observe that if ν is merely norm preserving but not orthogonal, then the matrix transformation above on $M\left(\nu^{-1}(y)\right)$ is only a congruence transformation. Thus, the corresponding singular value functions are not preserved.
2. Given a fixed factorization $L_{c}(x)=\frac{1}{2} x^{T} M(x) x$, let k be the number of distinct singular value functions, and let j_{i} be the number of times the $i^{\text {th }}$ singular value function appears. Then it follows directly from Theorem 2.2 that both systems have the same balanced form, except for a coordinate transformation of the form

$$
\begin{equation*}
x=\operatorname{diag}\left(T_{1}(\bar{x}), \ldots, T_{k}(\bar{x})\right) \bar{x} \tag{5}
\end{equation*}
$$

where the blocks $T_{i}(\bar{x}), i=1, \ldots, k$, are $j_{i} \times j_{i}$ orthogonal matrices, i.e., $T_{i}(\bar{x})^{T} T_{i}(\bar{x})=I$, with entries that are smooth functions of \bar{x} [9]. This result is very analogous to what happens in the linear system case.

Acknowledgments

This research was supported in part by the North Atlantic Treaty Organization through the NATO Collaborative Research Grant CRG-971135. The authors also wish to thank Prof. P. S. Krishnaprasad for insightful discussions on this research.

References

[1] H. Baumgartel, Analytic Perturbation Theory for Matrices and Operators, Birkhăuser, Berlin, 1984.
[2] W. C. Brown, Matrices over Commutative Rings, Marcel Dekker, New York, 1993.
[3] T. Kato, A Short Introduction to Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1982.
[4] S. MacLane and G. Birkhoff, Algebra, The Macmillan Company, New York, 1968.
[5] J. Milnor, Morse Theory, Princeton University Press, 1963.
[6] M. Newman, Integral Matrices, Academic Press, London, 1972.
[7] J. M. A. Scherpen, "Balancing for Nonlinear Systems," Systems \& Control Letters, vol. 21, pp. 143153, 1993.
[8] -, Balancing for Nonlinear Systems, Doctoral Dissertation, University of Twente, 1994.
[9] J. M. A. Scherpen and W. S. Gray, "Minimality and Similarity Invariants of a Nonlinear State Space Realization," IEEE Trans. on Autom. Contr, to appear.

