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Abstract

One of the mysteries of store-level scanner data modeling is the lack of a dip in sales
in the week(s) following a promotion. Researchers expect to find a postpromotion
dip because analyses of household scanner panel data indicate that consumers tend to
accelerate their purchases in response to a promotion – that is, they buy earlier and/or
purchase larger quantities than they would in the absence of a promotion. Thus, one
should also find a pronounced dip in store-level sales in the week(s) following a
promotion. However, researchers find such dips usually neither at the category nor at
the brand level.

Several arguments have been proposed for the lack of a postpromotion dip in
store-level sales data. These arguments explain why dips may be hidden. Given that
dips are difficult to detect by traditional models (and by a visual inspection of the
data), we propose models that can account for a multitude of factors which together
cause complex pre- and postpromotion dips.

We use three alternative distributed lead- and lag structures: an Almon model, an
Unrestricted dynamic effects model, and an Exponential decay model. In each model,
we include four types of price discounts: without any support, with display-only
support, with feature-only support, and with feature and display support. The models
are calibrated on store-level scanner data for two product categories: tuna and toilet
tissue. We estimate the dip to be between 4 and 25 percent of the current sales effect,
which is consistent with household-level studies.
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1. Introduction

One of the key issues in sales promotion research is whether “there is a trough
after the deal” (Blattberg, Briesch, and Fox 1995). The evidence from analyses of
household-level panel datais that consumers accelerate their purchases as a result
of sales promotions. For example, Gupta (1988) decomposes the sales effect due to
promotion for coffee into brand switching (84 percent), purchase timing acceleration
(14 percent), and increased purchase quantity (2 percent). Chiang (1991) obtains
similar percentages, while Grover and Srinivasan (1992, pp. 86-87) conclude that
“one-fourth of the gain in a week’s product category sales resulting from a promotion
is at the expense of the succeeding week’s sales”. Bell, Chiang, and Padmanabhan
(2000) decompose the sales effect for thirteen product categories and find that, on
average, brand choice accounts for 75 percent of the total elasticity (range 49-94
percent). Thus, the percent attributable to purchase timing acceleration and increases
in purchase quantity varies between 6 and 51 percent.

At first sight one might think that the acceleration effects in timing and quantity
evidentat the household levelshould translate directly in a postpromotion dip in
weekly store-level sales data. However, postpromotion dips are rarely detected in
visual or (traditional) statistical analyses ofstore data. A resolution of this paradox
is important for both researchers and managers. For researchers, a lack of convergent
validity between the results from household-level panel data and weekly store-level
sales data casts doubt on the nature of the acceleration phenomenon. Also, many
managers say they use store-level (or more highly-aggregated) scanner data more
frequently for analyses than household-level panel data (Bucklin and Gupta 2000).
However, if the household results are accurate, then managers who rely on aggregated
data for inferences about promotion effects will obtain incorrect conclusions.
Unless stockpiling can be properly accounted for, managers will overestimate the
effectiveness of promotions: they tend to classify all of the promotion-based sales
spike as incremental (Neslin and Schneider Stone 1996). Since managers rely heavily
on aggregated data, the most challenging part of the postpromotion dip paradox is the
apparent lack of a dip in store-level data. We show two typical store-level sales graphs
in Figure 1.1, from the data used in our empirical application (see below). Neither of
these graphs shows any sales dip before or after a sales spike.

As far as we know, only Doyle and Saunders (1985), Leone (1987), Litvack,
Calantone, and Warshaw (1985), and Moriarty (1985) studied acceleration based on
store data. Doyle and Saunders (1985) demonstrated thatleadeffects of promotions,
resulting from the anticipations of promotions by consumers and other economic
agents, can be as important aslaggedeffects. They examined monthly gas appliance
sales as a function of (a.o.) the commission structure for sales personnel, and analyzed
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Figure 1.1: Typical store-level sales graphs

Tuna brand 1, store 28

Tissue brand E, store 21

whether salespeople move some customer purchases to the time period in which their
commission rates are higher. Doyle and Saunders calculated that about 7 percent of
total sales during an 8-week promotion period consisted of sales that would have
taken place prior to the promotion period had commission rates not been increased
during the promotion.

Leone (1987) applied intervention analysis to weekly sales data to evaluate a single
“5 for $1.00” sale for wet cat food. The weekly sales data graph showed a clear
postpromotion dip and the analyses confirmed this dip. Litvack, Calantone, and
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Warshaw (1985) observed the sales of many items before, during, and after a
price cut. Interestingly, the authors did not observe a postpromotion dip in sales
for the items that could have experienced purchase acceleration. Moriarty (1985)
includes one-week lagged promotion variables in a sales response function. He finds
significant postpromotion dips for only three of the fifteen cases.

Although a few of these studies obtain evidence of pre- or post-dips, Blattberg,
Briesch, and Fox (1995, p. G127) mention that “examination of store-level POS
data for frequently purchased goods rarely reveals a trough after a promotion. This
anomaly is surprising and needs to be better understood.” Neslin and Schneider Stone
(1996) consider eight possible arguments for the apparent lack of postpromotion dips
in store-level sales data. Their arguments imply that the dips may be hidden. As a
result, dips will be difficult to detect by traditional models or by a visual inspection
of the data. Since brand sales are the aggregate of purchases across (heterogeneous)
households, both pre- and postpromotion sales data will have complex patterns.
Essentially, sales are shifted from multiple future- and past periods into a current,
promotion-based sales spike in a nontrivial way.

Neslin and Schneider Stone (1996) suggest that researchers carry out “sophisticated
distributed lag analyses of weekly sales data in the hope of measuring the
postpromotion dip statistically.” We present a flexible modeling approach, and regress
brand-level sales on current-, lead-, and lagged own-brand price indices with three
different distributed lead and lag structures: an Almon model, an Unrestricted
dynamic effects model, and an Exponential decay model. We distinguish four types
of price discounts: ones without any support, ones with feature-only support, ones
with display-only support, and price discounts with feature and display support.

The key contributions of our paper are:

• We propose a store-level model specification explicitly based on the
argumentsfor the apparent lack of a postpromotion dip in aggregate data;

• We show there isno postpromotion dip paradox: we obtain pre- and
postpromotion dips that are comparable to those obtained with household
data;

• We propose anew way of modelingthe interaction effects between price cuts
and various types of support (feature and/or display), and show differences
in the magnitude of pre- and postpromotion effects between price cuts with
alternative types of support.

In section two of this paper we briefly review eight arguments for the apparent lack
of a postpromotion dip in models of store sales, and derive implications from these
arguments for the specification of pre- and postpromotion dips. In section three we
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show the model specification and discuss model calibration. We introduce store-level
scanner data sets for two product categories in section four, and provide empirical
evidence for dynamic promotion effects for both categories in section five. In section
six we present our conclusions.

2. Arguments for the Lack of a Postpromotion Dip, and Implications
for Model Specification

Neslin and Schneider Stone (1996) provide eight possible arguments for the apparent
absence of postpromotion dips in store-level scanner data. Five of their arguments
complicate the identification of postpromotion dips in both household- and store data
(a-e below):

a. Consumers Purchase Deal to Deal;
b. Increased Consumption;
c. Competitive Promotions Mask the Dip;
d. Positive Repeat Purchase Effects Cancel the Acceleration Effect;
e. Retailers Partially Extend Promotions Beyond the First Week;

We refer to Neslin and Schneider Stone (1996) for a discussion of arguments a-d.
We expand on argument e, because it has implications for our model specification.
Retailers may extend all or part of a promotion –in particular display activity–
and thereby increase sales immediately following the initial promotion which will
mask the dip (Blattberg and Neslin 1990, p. 358). In principle, this effect can be
accounted for with expanded display variables in the model. However, it is possible
that extensions are not captured. For example, display activity is measured by weekly
store audits, say on Thursday. If a display is extended only during the first three
days of a second week (Monday, Tuesday and Wednesday), the value of the display
variable will not accurately reflect this second week’s situation. Therefore, we need
lagged display variables to capture this extension effect which should affect sales
positively. The other common scanner data variables (sales, prices, feature activities)
do not have this measurement error problem.

The final three arguments (f-h) provided by Neslin and Schneider Stone (1996)
appear to complicate the analysis of store-level data uniquely.

f. The Combined Effect of Quantity and Timing Acceleration

Time acceleration steals from the weeks immediately following the promotion,
depressing sales in those weeks, while the effects of quantity stockpiling are
manifested during the next consumer purchase occasion, depressing sales often after
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a lag of a few weeks (Blattberg and Neslin 1990, p. 192). In household-level models
these effects can be measured separately. Our store-level model should account for
flexible, multi-period postpromotion dips to capture these effects jointly.

g. Lack of Consumer Inventory Sensitivity

Inventory may be reduced to its normal level only after an extended period. Hence,
the postpromotion dip is dissipated into the future. In household-level models
heterogeneity in inventory amounts and sensitivities can be accommodated, while
a brand sales model should incorporate multi-period postpromotion dips.

h. Anticipatory effects

The literature suggests that consumers form price expectations (Winer 1986, Kalwani
et al. 1990). If consumers expect a significant price reduction in the future they may
defer or decelerate their purchases, causing prepromotion dips. In other words, an
expected price decrease in periodt may decrease sales in periodt − k, k = 1,2, . . ..

We assume (compare Winer 1986 and Kalwani et al. 1990, equation (8)) that price
expectations are unbiased, and that actual prices capture price expectations. Hence
we propose that sales in periodt − k is a function of the actual price in periodt . This
implies that a retailer who offers a deal in weekt will lose sales in weekt−k (k ≥ 1)
if customers expect a deal to be offered in weekt .

Since consumers are heterogenous in the length of the period they are willing to defer
purchases in anticipation of a price promotion, prepromotion dips are spread out over
multiple prepromotion weeks. However, we do not know when a prepromotion dip
will be the deepest. Hence the model should also account for flexible, multi-period
prepromotion dips. We note that household-level models that include future expected
prices implicitly account for prepromotion effects.

To summarize, the store-level model we want to develop should account for factors
that can hide postpromotion dips in traditional store-level models and in a visual
representation of the data. The model should accommodate:

i) multiple-week own-brand postpromotion effects, negative (arguments f, g), or
positive (arguments d, e) relative to sales under the no-promotion scenario;

ii ) multiple-week own-brand prepromotion dips (argument h);
iii ) flexible pre- and postpromotion effects (arguments f, g, and h);
iv) current cross-brand effects (argument c).

It is clear that there is very limited opportunity to test the relevance of specific
arguments on sales data. For example, several arguments can account for the
occurrence of negative postpromotion effects. Thus, we do not propose to test the
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relevance of any arguments. Instead, our objective is to present and estimate a model
which can accommodate complex pre- and postpromotion effects for managerial use,
and to report the nature and magnitude of these effects in store data.1

3. Model Specification and Calibration

We require a model that accommodates lead- and lagged effects for multiple sales
promotion variables over multiple weeks in a flexible manner. Basically, there are
two approaches: econometric and time series. The econometric approach includes
lead- and lagged sales promotion variables as predictors in a model of brand sales.
The time series approach would use transfer function/intervention modeling. In the
latter case, we would use ARIMA models for all variables, and estimate a transfer
function (if the predictors are continuous) or an intervention model (if the predictors
are binary) to relate the criterion variable to the predictors.

The traditional time series approach, used for example by Leone (1987), would have
to be modified in four ways. One, we have multiple predictors instead of one used
by Leone (1987). Thus, we would have to model dynamic interactions between
the predictors as well. Two, for a given predictor we have multiple promotional
observations (see Table 4.1 below), whereas Leone evaluated the effect of a single
promotion. Three, we need to allow for lead- and lagged effects. While Doyle and
Saunders (1985) used time series methods to identify lead- and lagged effects for
multiple predictors, their final model (see Doyle and Saunders, 1985, p. 59, equation
(3)) is an econometric model. Four, we have time series observations for multiple
stores. We are not aware of transfer function/intervention models for lead- and lagged

1 There may be other, relevant differences between models of store sales and models of household
purchases which pertain to the differential observability of postpromotion dips. For example, our model
does not accommodate store switching. If the sales effect in a given store due to a promotion for a
brand in that store partly reflects shifts in sales between stores, then the current effect that is potentially
incremental to the manufacturer of the brand is overstated. Household models of brand choice typically
focus on choices conditional upon a product category purchase in any of several stores. If the choice of
store is not explicitly modeled, as a function of a.o. promotional activities, then the household models
will be subject to similar problems (see Gupta et al. 1996 for a discussion of the conditions under which
household choice models generate the same results as store sales models). Thus, we do not believe there
is actually a difference between household- and store-level models on this aspect. Of course, households
are unlikely to actively switch purchases between stores as a function of promotions for tuna or tissue,
the product categories we study. Store switching does tend to occur for such items as soft drinks
and disposable diapers (see Kumar and Leone 1988). Other relevant aspects are the following. One,
household panel data could represent a nonrepresentative sample from store-level data. Two, household
data involve the imputation of causal data for items not purchased whereas store-level data are complete.
And three, the purchases for low-penetration categories may be unreliable with household data.
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effects of multiple predictors in a pooled data context. Although the development
of such models may be a fruitful area for new research, the econometric approach
appears to be equally promising and is straightforward to implement.

Our econometric model is a modification of the Scan*Pro model (Wittink et al.
1988, Foekens, Leeflang, and Wittink 1994, Christen et al. 1997). The original model
includes own- and cross-brand effects of promotions, and is estimated with store-level
scanner data provided by ACNielsen. It was developed for commercial purposes, and
the basic model has been used in over 1800 different commercial applications in
North America, Europe and Asia. Our modification of the Scan*Pro model is related
to: (1) variable choice, and (2) model specification.

Variable Choice

In our model the criterion variable is log of unit sales of a brand in a specific
store in a given week, as is true for the Scan*Pro model. The Scan*Pro model
includes as predictors four current promotional instruments: discount, feature-only,
display-only, and feature and display, for the brand and for other brands. We modify
this formulation and define: (1) own- and cross-brand discounts without support, (2)
own- and cross-brand discounts with feature-only support, (3) own- and cross-brand
discounts with display-only support, (4) own- and cross-brand discounts with feature
and display support, (5) own-brand feature-only without price cuts, (6) own-brand
display-only without price cuts, and (7) own-brand feature and display without price
cuts.

We specify the instruments (1)-(4) as log price indices. We use logs in order to have
the parameters be elasticities. We use price indices (ratio of actual to regular prices)
to capture only the promotional price effects. For the instruments (1) we take the
log price index observations and multiply these by one for observations with neither
feature nor display activity for the brand, and by zero otherwise. The values of the
instruments (2)-(4) are determined in an analogous way. We include instruments
(5)-(7) as indicator variables since there is no price discount associated with those
observations. Still, these activities can cause sales increases for the brand (Inman,
McAlister, and Hoyer 1990).

Our approach has two advantages over the traditional approach of including log price
index variables separately from the indicator variables for the non-price promotion
variables. In our case, the set of own-brand variables is minimally correlated
by definition (as is the set of cross-brand variables), whereas in the traditional
approach, the log price index variable is often highly correlated with one or more
of the non-price promotion variables. Also, the interpretation of our results is
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straightforward: price cuts are the core of sales promotions, whereas feature and
display are communication devices. Importantly, our variable definitions capture any
interaction effects between price cuts and the various types of support, which is one
of the key issues within sales promotion research (Blattberg, Briesch and Fox 1995).
Our results show the own- and cross-brand price promotional elasticities for each
of the four conditions of support.2 Of course, our model also includes variables for
dynamic price promotion effects. Specifically, we use variables to capture lead- and
lagged own-brand log price index effects under the four conditions of support.

Model Specification

The current own- and cross-brand variables under promoted conditions are included
multiplicatively, as in the Scan*Pro model. The lead- and lagged own-brand log price
indices for the four different conditions are modeled with three alternative dynamic
effects specifications:

• Unrestricted dynamic effects (Judge et al. 1985, pp. 351-356);

• Exponential decay dynamic effects (a finite duration version of the Geometric
Lag Model in Judge et al. 1985, p. 388);

• Almon dynamic effects (Judge et al. 1985, pp. 356-364; Stewart 1991, pp.
181-186).

The Unrestricted dynamic effects approach approximates lead- and lagged effects by
including the relevant predictors in lagged formatt − 1, t − 2, t − 3, . . ., as well as in
lead formatt + 1, t + 2, t + 3, . . .. In this specification, all lead and lagged variables
have unique parameters. Thus, if criterion variableyt is explained by current, past
and future values of one predictor variablext , up to a maximum lag ofs periods and
a maximum lead ofs′ periods, then the Unrestricted dynamic effects model is:

yt = α0 + α1xt +
s∑

u=1

βuxt−u +
s ′∑

v=1

γvxt+v + ut , t = s + 1, . . . , T − s′.(1)

The Exponential decay model imposes a structure on the dynamic effects (see also
Blattberg and Wisniewski, 1989):βu = λu−1β and γv = µv−1γ . As a result, the

2 Our approach is somewhat similar to the one followed by Papatla and Krishnamurthi (1996, p.
23, equation (2)). They include interaction effects between indicator variables for price cut dummies,
feature and display. However, their set of predictors is more correlated than our set, and their approach
does not generate different price (promotion) elasticities for the promotion conditions.
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model with one predictorxt is:

yt = α′
0+α′

1xt+
s∑

u=1

λu−1βxt−u+
s ′∑

v=1

µv−1γ xt+v+u′
t , t = s+1, . . . , T−s′.(2)

The parametersλ andµ are the decay parameters.

The Almon model approximates the dynamic effects in (1) with polynomials. The
lagged effect parameters are:βu = ∑r

m=0 φm(u − 1)m; r < s (u = 1, . . . , s).3 The

lead effect parameters are:γv = ∑r ′
m=0 θm(v − 1)m; r ′ < s′ (v = 1, . . . , s′). In this

manner, the Almon model is:

yt = α′′
0 + α′′

1xt +
s∑

u=1

r∑

m=0

φm(u− 1)mxt−u + (3)

s ′∑

v=1

r ′∑

m=0

θm(v − 1)mxt+v + u′′
t , t = s + 1, . . . , T − s′.

Our use of these three alternative dynamic effect specifications differs in three
respects from the standard way they are used in the econometric literature. One,
rather than only lagged effects, our approach includes lead effects as well. Two,
instead of modeling the dynamic effects of just one variable, we model the dynamic
effects of multiple variables. And three, the standard way is for researchers to
use the Exponential decay- and the Almon models by imposing a structure in
which the dynamic effect parameters are linked to the current effect parameter. Our
approach relaxes this assumption: i.e., we let the current effect parameter be estimated
independently of the lead- and lagged effect parameters. We do this because current
price promotion effects are expected to be much larger than (week-specific) lead- and
lag effects. In addition, we use separate approaches for lead- and lagged effects for
all models since we should incorporate flexible dynamic effects (implication iii). For
the Exponential decay model, this means that the lagged effect decay parameterλ

may differ from the lead effect decay parameterµ. For the Almon model, this means
that the degree of the lagged effect polynomial (r) may be different from the degree
of the lead effect polynomial (r ′).

It is clear that the Unrestricted dynamic effects approach defined in equation (1) offers
the highest degree of flexibility. However, it involves many lead- and lagged effect
variables which may lead to multicollinearity. At the other end is the Exponential
decay model (2) which uses few parameters, but is relatively inflexible. In model (2),
the dynamic effect is assumed to be largest in the weeks immediately after (lagged

3 Foru = 1 the first element of this sum is defined asφ0(0)
0 ≡ φ0.
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effect) or before (lead effect) the promotion. This may be restrictive, because of the
multitude of factors causing pre- and postpromotion effects (see section two). The
Almon approach (3) is between these two approaches: it is more flexible than the
Exponential decay model, but more parsimonious than the Unrestricted model.4

For brandk, k = 1, . . . , J , the full model is:

ln Sik,t =
J∑

j=1

4∑

l=1

αjkl ln(PIij l,t )+ αFkFik,t + αDkDik,t + αFDkFDik,t (4)

+
s∑

u=1

4∑

l=1

βkl,u ln(PIikl,t−u)+
s ′∑

v=1

4∑

l=1

γkl,v ln(PIikl,t+v)

+ψikRi + ξtkWt + uik,t ,

t = s + 1, . . . , T − s′ andi = 1, . . . , N,

with the lagged effect parametersβ and lead effect parametersγ either kept
unrestricted as in (1), modeled as an Exponential decay model (2), or modeled as
an Almon model (3); and where:

ln Sik,t is log unit sales of brandk in storei in weekt ;
ln(PIij l,t ) is log price index (ratio of actual to regular price) of brandj in store

i in week t ; l=1 denotes that the observation is not supported by feature
nor display;l = 2 that it is supported by feature-only;l = 3: supported by
display-only, andl=4: supported by feature and display;

Fik,t is a feature-only indicator variable for non-price promotion observations; =
1 if brandk is featured, but not displayed nor price promoted, by storei in
weekt , = 0 otherwise;

Dik,t is a display-only indicator variable for non-price promotion observations; =
1 if brandk is displayed, but not featured nor price promoted, by storei in
weekt , = 0 otherwise;

FDik,t is an indicator variable for combined use of feature and display for non-price
promotion observations; = 1 if brandk is featured and displayed by storei
in weekt , but not price promoted, = 0 otherwise;

Ri is a store indicator variable; = 1 if observation is from storei, = 0 otherwise;
Wt is a weekly indicator variable; = 1 if observation is from weekt , = 0

otherwise;
αjkl is the elasticity of brandk’s sales with respect to brandj ’s price index in

the current week; supported by neither feature nor display forl =1, by

4 Blattberg and Neslin (1990, p. 190) say: “While there are no published examples of using
polynomial lags to measure the lag effects of promotion, the technique appears to be promising.”
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feature-only forl = 2, by display-only forl = 3, by feature and display
for l = 4;

αFk, αDk, αFDk are the current-week effects on brandk’s log sales resulting from
brandk’s use of feature-only (F), display-only (D), and feature and display
(FD); each is the effect in the absence of a discount for brandk;

βkl,u is the elasticity of brandk’s sales in weekt relative to brandk’s price index
with supportl in weekt − u;

γkl,v is the elasticity of brandk’s sales in weekt relative to brandk’s price index
with supportl in weekt + v;

ψik andξtk: store intercept for storei (i = 1, . . . , N), brandk, and week intercept
for weekt (t = 1, . . . , T ), brandk, respectively;

uik,t is a disturbance term for brandk in storei in weekt .

Weekly indicator variables are included to account for seasonal effects and the effects
of missing variables (e.g. manufacturer advertising and coupons).

This model accounts for the factors that can hide dips, presented in section 2. It
includes flexible, multiple-week, pre- and post price promotion own-brand variables
(implications i-iii ), and it incorporates current cross-brand price-promotional
instruments (implicationiv). Through use of separate price discount variables for
four promotion conditions, the model accommodates a.o. lagged price cut with
feature effects, which were found to be significant in prior research (Papatla and
Krishnamurthi 1996). In summary, the model includes lead- and lagged variables
for temporary price discounts with four types of support: no support, feature-only,
display-only, and feature and display. Thus, our model also accounts for dynamic
effects for features and displays (documented also by Lattin and Bucklin 1989), to
the extent that these promotions were accompanied by price discounts.5

We note that the model implicitly accounts for a decrease in promotional
effectiveness during a multiple-week price promotion. This occurs if the first week’s
price promotion causes a dip in the second week’s sales, which then takes away
from the second week’s price promotion effect, etc. In other words, the current
effect of the promotion in this second week effect equals the current-week parameter
(alpha, negative ifj = k) plus the one-week postpromotion parameter (beta, generally
positive). One rationale is that households who purchased promotional items in
week one will be less responsive to the same promotion in a second week. Another

5 We also considered the existence of dynamic effects for feature and/or display activity without
promotional price cuts. However, as consumers have no monetary incentive to accelerate their purchases
in case of “value-less” promotions, we expect little or no dynamic effects. To check, we included
dynamic effects for these variables in the models. The effects were significant in only a few cases
so that parsimony justifies constraining them to be zero.
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rationale is that consumers who engage in deal-to-deal purchasing will have reduced
motivation to participate if a promotion is extended. We note that there are other
ways of modeling the effect of past and future deals on current price response. For
example, Foekens, Leeflang, and Wittink (1999) use a varying-parameter approach,
i.e., the alphas are a function of past promotions.

Model Alternatives

We consider various alternatives to approximate the dynamic structure, separately
for each of the brands. For example, we have to choose between three alternatives for
the dynamic effect specification: the Almon-, Exponential decay-, and Unrestricted
models. In addition, for each of these specifications we estimate the durations of the
lag period (s) and lead period (s′). Moreover, for the Exponential decay model, we
need to find the best values for the lagged effect decay parameterλ and lead effect
decay parameterµ. Finally, for the Almon model we have to determine the best
degrees for the lagged effect polynomialr and for the lead effect polynomial (r ′).

To accomplish this, we let the maximum lag period vary from zero to six weeks
(s = 0,1,2, . . . ,6) and also let the maximum lead period vary from zero to six
weeks (s′ = 0,1,2, . . . ,6), for the three specifications. Both maxima are six weeks
so that they are close to the average interpromotion period in the data sets (see section
4). For the Exponential decay model we let each decay parameter vary independently
from 0.1, 0.2,. . . up to 0.9. For the Almon model, we consider polynomials up to
degree three for both the lag polynomial (r = 0,1,2,3) and, independently, for the
lead polynomial (r ′ = 0,1,2,3) We note that the polynomial degree must be smaller
than the maximum lead or lag length (r < s andr ′ < s′).

Model Calibration

For a given brand, we proceed as follows:

1. We estimate model (4) by OLS for all alternatives. Since the Almon-
and Exponential decay models impose constraints on the parameters of
successive periods, we have to impose these constraints during estimation. To
accomplish this, we compute linear combinations of both lead- and lagged
predictors, using polynomial coefficients as weights for the Almon model
and geometrically declining weights for the Exponential decay model (see
also Judge et al. 1985, p. 357 and p. 388). The Unrestricted model does not
impose constraints, and we estimate it by just including untransformed lead-
and lagged predictors. Within each of the three dynamic effect specifications,
we vary the lead and lag duration as well as the values of the decay
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parameters (for the Exponential decay model) or the polynomial degrees for
the lead and lagged effects (for the Almon model). Next, we choose among
all alternatives the model that minimizes Akaike’s Information Criterion:
AIC = ln(SSR/n) + 2p/n, whereSSR = Sum of Squared Residuals for
a given model,n = number of observations used to estimate this model,
andp = number of predictors included in this model. We use AIC because
it can be used to compare the nonnested models and it ranked high in
a comparison of 11 model selection criteria (Rust et al., 1995). While
the Schwarz criterion ranked first overall (Rust et al. 1995, Table 1) and
AIC second, for dynamic regression models AIC showed a slightly better
performance than the Schwarz criterion. This is important because we are
interested in the structural nature of lead- and lag effects. That is, we want
to report the best possible estimates of the magnitudes of these effects, based
on a model that has the highest possible ’structural’ validity. Since the AIC is
known to penalize models with extra parameters less heavily than the Schwarz
criterion, we expect the models selected on AIC to provide a more flexible
representation of dynamic effects (e.g., as in the Unrestricted model), and
more flexibility means less bias. For example, the Almon model is known to
produce biased parameter estimates if the assumed degree of the polynomial
is too low or if the assumed lag length is too short (Judge et al. 1985, p. 358).
We acknowledge that the best AIC model may not provide the best possible
forecasts, but our focus is not on maximizing forecast accuracy;6

2. We test for pooling: we test whether the assumption of parameter
homogeneity across the stores is tenable with a Chow test. The unpooled
models have store-specific effects for the marketing instruments, but common
weekly effects;

3. We test for disturbance-term assumptions: we test the assumptions of
homoscedasticity (across the stores) and zero first-order autocorrelation with
the Bera-Jarque test.

4. Data

We use weekly store-level scanner data from ACNielsen for two product categories to
calibrate the models. We use pooled data to estimate the effects across all stores. The
first data set of 52 weeks pertains to the three largest national brands (items) in the 6.5

6 A third alternative, the F-test, cannot be applied since this test requires that all models are nested.
Since we choose AIC as the model selection criterion, we do not report Schwarz criterion values or
F-test statistics in the results section.
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oz. canned tuna fish product category in the U.S. (T =52,J=3). The data are from 28
stores belonging to one supermarket chain in a metropolitan area (N=28). We show
descriptive statistics based on 1456 observations for each of these tuna brands in the
first three columns of Table 4.1. The average interpromotion time varies from 3.2 to
9.9 weeks across the brands. Each brand is promoted frequently.

Table 4.1: Descriptive statistics for tuna and tissue categories
Tuna brand Tissue brand

1 2 3 A B C D E F
Number of stores 28 28 28 24 24 24 24 24 24
Number of weeks 52 52 52 52 52 52 52 52 52
Number of observations 1456 1456 1456 1248 1248 1248 1248 1248 1248
Brand share percentage 46.6 30.8 22.5 5.2 12.9 10.8 14.9 46.9 9.2
Average regular price 0.86 0.87 0.86 1.15 1.23 1.16 1.17 0.62 1.44
Average interpromotion period in weeks 3.2 9.9 5.9 6.2 5.7 4.8 5.4 4.9 8.2
(standard deviation) (2.5) (10.7) (5.0) (5.5) (3.5) (3.9) (4.0) (3.9) (8.2)
# Price promotions w.o. support 245 101 220 103 48 53 36 7 104
# Price promotions with feature-only 65 70 16 46 20 18 29 49 9
# Price promotions with display-only 59 18 77 42 14 17 44 6 5
# Price promotions with feature and display 241 79 112 76 136 149 130 105 81
# Non-price promotions with feature-only 8 8 2 11 59 43 58 42 14
# Non-price promotions with display-only 44 23 47 9 6 13 21 16 9
# Non-price promotions with feature and display 22 11 10 1 2 2 16 12 5

The second data set (also 52 weeks) pertains to the six largest national brands in the
toilet tissue product category in the U.S. (T =52,J=6). Each brand is composed of a
number of SKU’s, representing different sizes and forms. The database contains data
aggregated across the SKU’s to define brand-level variables. Unit sales is defined as
the total number of sheets per package sold, and unit price is the price per thousand
sheets. We developed a procedure to impute the weekly regular prices required for
the price index variables, since these were not included in this data set.7 The data
are from 24 stores of different chains in one region of the US (N=24). We show
descriptive statistics based on 1248 observations for each of the toilet tissue brands
in the last six columns in Table 4.1. The average interpromotion period for the toilet
tissue brands varies from 4.8 to 8.2 weeks. The frequencies with which the brands
are promoted is somewhat lower for this category than for tuna.

We note that Narasimhan, Neslin, and Sen (1996) obtained consumer-based ratings
of “ability to stockpile” for 108 product categories. In their listing tuna fish is rated
first and toilet tissue rated fourth. Although their measure is incomplete with regard
to actual stockpiling of products, and is subject to an unknown degree of error,

7 Details about this procedure are available from the first author.

15



these two product categories should provide excellent opportunity to examine the
postpromotion dip controversy.

There is an important difference between the two data sets, however. Whereas the
tuna data are at the SKU level, the tissue data are at the brand level (multiple
SKU’s). For example, there may be within-brand switching between SKU’s due to
heterogeneity in the timing of promotions at the SKU level. As a result, the current
price index elasticity at the brand level may be smaller (alpha less negative) than the
current price index elasticity at the SKU level. At the SKU level, the model does
not accommodate dynamic effects for other SKU’s belonging to the same brand.
However, at the brand level, the dynamic effects represent the (net) effect across
the SKU’s. If consumers are just as inclined to stockpile one SKU as another, for a
given brand, then the dynamic effects may be larger (e.g., beta and/or gamma more
positive) at the brand level. This suggests that the dip, in a relative sense, may be
larger for tissue. However, tuna seems to be especially easy to stockpile.

5. Results

We estimate the models with data pooled across stores. Since promotional effects may
differ between stores, we test the null hypothesis of parameter homogeneity. To do
this, we (also) estimate the best models with store-specific current and dynamic effect
parameters, but homogenous weekly effects. We report the p-values of the Chow test
in the panel headed “Pooling test” in the lower part of Table 5.1. We do not reject the
null hypothesis for any of the nine brands.

To test the error assumptions, we use the Bera-Jarque test (K´orösi, Mátyás, and
Székely, 1992, pp. 173-180). We first test the error assumptions simultaneously, and
report the p-values in the panel headed “Error assumption tests” of Table 5.1. If the
outcome is a rejection (i.e., a p-value lower than 5 percent), the hypotheses of zero
autocorrelation and homoscedasticity are also tested separately. We use a significance
level of 2.5 percent for these tests (based on Bonferroni’s rule). We report the p-values
for these tests also in Table 5.1. We find four cases of non-zero autocorrelation and
seven cases of heteroscedasticity.

Given some error-term assumption violations, we re-estimate the models where
necessary, using Iterative GLS (IGLS). Kmenta (1986, pp. 609-622) describes IGLS
accounting for non-zero autocorrelation (IGLS-A), for heteroscedasticity (IGLS-H),
or both (IGLS-AH). We iterate the GLS-procedure until convergence. In the panel
headed “Re-estimation results” in Table 5.1 we show the estimation procedure used
for each brand. We note, however, that the IGLS parameter estimates are very close to
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Table 5.1: Model calibration results
Tuna brand Tissue brand

1 2 3 A B C D E F
Model selection
AIC Almon model (A) -2.008-1.967-1.703-1.285-2.203-1.917-2.360-2.851-2.6616
AIC Exponential decay model (E) -1.994 -1.967-1.693-1.268-2.166 -1.917-2.338-2.842-2.6622
AIC Unrestricted model (U) -2.002 -1.967-1.693-1.283-2.195 -1.917-2.369-2.855-2.630
Model choice A A/E/Ua A A A A/E/U a U U E
Lead periods′ (weeks) 4 0 6 0 5 0 5 5 3
Lag periods (weeks) 3 0 1 6 5 1 6 1 6
Re-Estimation results
estimation procedureb IGLS-AH IGLS-AH IGLS-AH OLS OLS IGLS-H IGLS-H IGLS-H IGLS-AH

number of observations for estimation 1260 1456 1260 1104 1008 1224 1008 1104 1032
number of parameters 104 91 103 111 116 105 132 120 103
R2 0.941 0.834 0.915 0.883 0.929 0.957 0.975 0.987 0.947
Pooling test
p-values Chow test 0.986 1.000 0.996 1.000 1.000 0.995 1.000 1.000 1.000
Error assumption tests
p-value simultaneous test (α = 0.05) 0.000 0.000 0.000 0.074 0.020 0.000 0.000 0.000 0.000
p-value zero autocorrelation (α = 0.025) 0.000 0.000 0.000 - 0.057 0.657 0.060 0.846 0.005
p-value homoscedasticity (α = 0.025) 0.000 0.000 0.000 - 0.035 0.000 0.000 0.000 0.001
a The models are exactly the same in this situation.
b IGLS-A = Iterative GLS that accounts for non-zero autocorrelation, IGLS-H = IGLS that accounts for heteroscedasticity, and IGLS-AH accounts for

both.

the OLS-estimates (the primary benefit of IGLS lies in obtaining more valid estimated
standard errors). In the same panel we report the number of observations used for
estimation and the number of parameters. The number of observations used differs
from the original number, due to the inclusion of lead- and lagged variables. For
example, tuna brand 1 has a lead effect of four weeks and a lagged effect of three
weeks. Hence we can only use weeks 4 through 48 of the 52 weeks for each store.
The number of observations is 28 (stores) times 45 weeks or 1260 for this brand. The
number of parameters includes the indicator variables for stores and weeks. Below
these numbers we show the R2 values which are between 0.834 and 0.941 for tuna,
and between 0.883 and 0.987 for toilet tissue.8

We provide summary statistics for the OLS estimation results of (4) for the nine
brands in the panel headed “Model selection” in Table 5.1. Specifically, we report the

8 We also performed multicollinearity analyses. We computed the condition indices from the
predictor matrices for the “best models”. They were higher than 30 for four brands. Hence there is
a substantial amount of multicollinearity in the data, for those brands. This multicollinearity stems
from the allowance for multiple and flexible lead- and lagged promotion effects. Therefore, individual
parameter estimates may not be reliable, so that we base our conclusions on total dynamic effects,
summed over pre- and postpromotion periods.
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AIC for the AIC-minimizing alternative of each of the three model specifications. For
each brand, we then choose the model specification that minimizes AIC (underlined
values), and find dynamic price promotion effects for eight out of nine brands (tuna
brand 2 being the exception). For the tuna brands, the preferred model on average has
a longer lead- than lag length. For tissue brands, the lag period tends to be longer than
the lead period. We also see in Table 5.1 that the AIC-values for the Almon model
are lowest for four out of nine brands. The Unrestricted model has the lowest AIC for
two brands, and the Exponential decay model for one brand. For the two remaining
brands, the three models are exactly the same: tuna brand 2 (no dynamic effects),
and tissue brand C (one-week lagged effect). In the former case, the model without
dynamic effects is best, and in the latter case, the lagged effect lasts one week only, so
that there is no opportunity to consider alternative ways to describe dynamic patterns.

The lead- and lag lengths vary across the brands. However, for a given brand, the
three dynamic-effect specifications often yield the same lead and lag lengths (not
shown). Across the nine brands, 83 percent of the lead and lag lengths are exactly
the same for the three AIC-minimizing specifications. For all brands we find that
if one AIC-minimizing specification yields a non-zero lead- or lag length, the other
specifications also do.

We presentaverageestimated effects from the best individual models, which have
been re-estimated with IGLS if appropriate, in Tables 5.2 and 5.3. We report four
current price index elasticities for each category, averaged across the brands, in Tables
5.2.a and 5.3.a: price cut without support, price cut with feature-only support, price
cut with display-only support, and price cut with feature and display support. For
both product categories, the price elasticity is the lowest for unsupported price cuts
and the highest for price cuts with feature and display support, exactly as we would
expect. Except for price cuts without support, the average own-brand price elasticities
are larger for the tissue category than for the tuna category. However, these results are
not comparable, because there are differences in the recency of the data (the tuna data
are from 1986/1987, whereas the tissue data are from 1992), the regions represented
(the data are from different US regions), the store types, etc.

In Tables 5.2.b and 5.3.b we report the results from a simulation exercise. We use
the brand-specific current-, lead- and lagged effect parameter estimates from the best
individual models to calculate the current sales effect and the pre- and postpromotion
sales effects for a 20 percent promotional price cut for each of the four types of
support. A 20 percent price cut is typical in both product categories. We show in units
the averagecurrent sales effectas well as the averagedynamic sales effect, which is
the sum of the pre- and postpromotion sales effects. We then combine the current and
dynamic effects into anet sales effect, which is the total promotion effect over time.

18



Table 5.2:Tuna data: average current-, dynamic-, and net sales promotion effects
Table 5.2.a: average parameter estimates for best models

support typea

no F, no D F-only D-only F and D

Average current own-brand price elasticity −3.1 −4.0 −4.5 −5.2
Table 5.2.b: simulated sales effects using best models

sales impact of a 20 %
price cut supported by

no F, no D F-only D-only F and D

Current sales effect 126 190 222 284
Dynamic sales effect −28 −24 −8 −21
Net sales effect (=current+dynamic) 98 165 214 263

Table 5.2.c: percent net gains for all models
support typea

no F, no D F-only D-only F and D

Best modelb 78% 87% 96% 93%
Almon model 78% 87% 96% 93%
Exponential decay model 86% 84% 102% 91%
Unrestricted model 79% 88% 98% 93%
a no F, no D = neither feature nor display, F-only = feature-only, D-only = display-only, F and D = feature and
display.
b The percent for the best model is the ratio of the net sales effect over the current sales effect, reported in Table
5.2.b.

9 The percent net gainis obtained by the ratio of the net sales effect to the current
sales effect. The results in Tables 5.2.b and 5.3.b show that the difference between
current- and net sales effects can be quite large, so that the profit implications may
change greatly if dynamic effects are taken into account.

Tables 5.2.b and 5.3.b show that more (feature/display) support produces larger
own-brandcurrent sales effects, for both product categories. Thedynamic sales

9 We do not report separate lead- and lagged effects, because they may be confounded. For example,
one postpromotion period may interfere with the prepromotion period of the next promotion, if these
promotions are close in time. In addition, lagged terms can capture prepromotion dips since these dips
are due to anticipatory responses that consumers may base on current- and lagged prices. We do not
exclude lead effects from our model, however. First, since the length of the interpromotion period varies,
pre- and postpromotion periods do not necessarily interfere. Second, lag terms capturing prepromotion
dips should be modeled differently from lag terms capturing the effects of purchase acceleration and
lack of consumer inventory sensitivity. For example, the sales pattern including pre- and postpromotion
dips may look as follows: promotional sales spike (week 1) - postpromotion dip (weeks 2-3) - regular
sales (week 4) - prepromotion dip (weeks 5-6) - promotional sales spike (week 7). We prefer to model
such a pattern with a lagged effect specification (for weeks 2 and 3) and a lead effect specification (for
weeks 5 and 6) over a model with a highly irregular five-week lagged effect. However, for the purpose
of understanding the magnitudes of dynamic effects, it is sufficient to combine these effects into a “total
dynamic sales effect”.
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Table 5.3:Tissue data: Average current-, dynamic-, and net sales promotion effects
Table 5.3.a: average parameter estimates for best models

support typea

no F, no D F-only D-only F and D

Average current own-brand price elasticity −2.9 −5.4 −5.2 −5.7
Table 5.3.b: simulated sales effects using best models

sales impact of a 20%
price cut supported by

no F, no D F-only D-only F and D

Current sales effect 227 542 529 689
Dynamic sales effect −57 −72 +50 −84
Net sales effect (=current+dynamic) 170 470 579 605

Table 5.3.c: percent net gains for all models
support typea

no F, no D F-only D-only F and D

Best modelb 75% 87% 110% 88%
Almon model 70% 89% 111% 88%
Exponential decay model 110% 96% 117% 93%
Unrestricted model 75% 86% 110% 87%
a no F, no D = neither feature nor display, F-only = feature-only, D-only = display-only, F and D = feature and
display.
b The percent for the best model is the ratio of the net sales effect over the current sales effect, reported in Table
5.3.b.

effects, however, do not show a similar pattern. For example, a 20 percent price
cut with display has a relatively small negative dynamic effect for tuna (-8 units),
and even a positive dynamic effect for tissue (+50 units). A display-extension effect
(argument e) is perhaps the most plausible explanation for this phenomenon. In any
event, thenet sales effectis a managerially more relevant measure than the current
sales effect. For instance, if we use the current sales effects only for the tissue
category, a manager may believe a price cut with feature-only has a larger sales effect
than a price cut with display-only support (542 vs. 529 units). However, the net sales
effect indicates that the contrary is true (470 vs. 579 units).

If we had to recommend one of the three model specifications to a manager,
we would choose the Unrestricted model, although Table 5.1 indicates no single
specification can be considered best. One reason is that the substantive results from
the Unrestricted model are the closest to those of the best models. This can be inferred
from the results in Tables 5.2.c and 5.3.c, in which we report average percentages
net gain for the price cuts with different types of support. The first line shows
these percentages based on the results for the best model in Tables 5.2.b and 5.3.b.
The second line shows the percentages for the Almon model, the third line for the
Exponential decay model, and the fourth line for the Unrestricted model. Although
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the Almon model and the Unrestricted model give very similar results, the average
absolute percent deviation in the percent net gains (from the results for the best
model) is slightly smaller for the Unrestricted model than for the Almon model: 1.2
percent (tuna) and 0.6 percent (tissue) for the Unrestricted model, versus 0.0 percent
(tuna) and 2.6 percent (tissue). For the Exponential decay model, the deviations in
net percent gain from the best model are much larger: 5.1 percent (tuna) and 13.4
percent (tissue). Hence, the Exponential decay model gives very different conclusions
about the percent net gain from these promotions. Another reason is the ease of
implementation of the Unrestricted model. Whereas the Almon- and Exponential
decay model require transformations of lead- or lagged predictor variables, the
Unrestricted model only requires that the user provides lead- and lagged predictor
variables. In addition, the Almon- and Exponential decay model require a grid search,
across polynomial degrees (Almon), or across decay parameters (Exponential decay),
on top of a search for lead- and lag lengths. The Unrestricted model only requires the
latter search.10

We see that thepercent net gainfigures for the best model are quite consistent across
the two categories. For an unsupported price cut we have 78 percent (tuna) and 75
percent (tissue), for a feature-only supported price cut 87 percent for both categories,
for a display-only supported price cut 96 percent (tuna) and 110 percent (tissue), and
for a feature-and-display supported price cut it is 93 percent (tuna) and 88 percent
(tissue). The percent net gains lower than 100 reflect pre- and/or postpromotion dips.
For these cases, the purchase acceleration effects vary between 4 and 25 percent.
These numbers appear to be consistent with the results from household-level studies.

We illustrate the performance (of the best model) by plotting actual and fitted sales.
Instead of showing the graphs for all brands in all stores for all weeks (28 stores with
3 tuna brands with 52 observations each, and 24 stores with 6 tissue brands with 52
observations each), we select two illustrative examples. We take the same brands and
stores as in Figure 1.1. Figure 5.1 shows actual and fitted sales for tuna brand 1 in
store 28 for weeks 35-45. Fitted sales are obtained by using the model that includes
current and dynamic effects (model (4)), and separately a model that includes current
effects only. The latter “no-dynamic-effects model” was rejected in favor of the
dynamic-effects model (see Table 5.1). Both models track actual sales quite well
up to week 42. However, the dynamic-effects model shows a much smaller effect
for the price promotion in week 43 than the no-dynamic-effects model. This store

10 Alternatively, we could use other model criteria (such as the Schwarz criterion) to decide which
of the three specifications is best overall. However, this would be inconsistent, since we obtain the best
model within each specification based on AIC. Thus, we focus on a comparison of effect sizes if one
specification were applied for all brands, with the effects sizes for the best model.
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had a price promotion for week 41 as well, causing negative postpromotion effects
which are captured by the dynamic-effects model but not by the no-dynamic-effects
model.11

Figure 5.1:Tuna data: actual sales and predicted sales

Tuna brand 1, store 28

The second example is from tissue brand E sold in store 21, shown in Figure 5.2.
In this panel we see that the dynamic-effects model approximates the postpromotion
dip better than the no-dynamic-effects model does (see weeks 37 and 38). Again,
the no-dynamic-effects model was rejected (Table 5.1). This graph illustrates the
subtleness of dynamic promotion effects, and it is more representative of brand sales
graphs than the one in Figure 5.1.

6. Conclusions

We investigated one of the mysteries of sales promotion research: the lack of
postpromotion dips in store data. From studies of household panel data it is known
that consumers often accelerate their purchases in time and/or quantity due to
promotions, which should result in a dip in purchases in the weeks following a
promotion. This dip, however, is rarely observed in sales data. Extant arguments
for the apparent lack of postpromotion dips imply that the dips may be difficult
to detect by traditional models. Since brand sales are the aggregate of purchases
across (heterogeneous) households, both pre- and postpromotion sales data may have

11 The decreased effectiveness of the price promotion in week 43 is not due to prepromotion effects,
since the brand was not price promoted after week 43.
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Figure 5.2:Tissue data: actual sales and predicted sales

Tissue brand E, store 21

complex patterns. Essentially, sales are shifted from multiple future- and past periods
into a current, promotion-based sales spike in a nontrivial way. Neslin and Schneider
Stone (1996, p. 92) suggested that researchers “... conduct sophisticated distributed
lag analyses on weekly sales data in the hope of measuring the postpromotion dip
statistically”. Our modeling approach reflects the multitude of factors pertaining to
dynamic promotion effects, and we obtain postpromotion dips convincingly.

We use an econometric model to regress brand-level sales on current-, lagged-,
and lead price discount variables (price indices) for three different distributed lead-
and lag structures: an Almon model, an Unrestricted dynamic effects model, and
an Exponential decay model. The Unrestricted dynamic model is very flexible but
not parsimonious. The Exponential decay model is the least flexible and the most
parsimonious one, while the Almon polynomial model is in between these extremes.
Importantly, we distinguish the effects of four types of price discounts: without
support, with feature-only support, with display-only support, and with feature and
display support.

We applied the models to nine brands in two product categories: tuna fish and
toilet tissue. Within each of these three models, we varied lead and lag lengths
as well as the parameters describing the lag structure. For each brand, we
selected the model specification that minimizes Akaike’s Information Criterion. We
tested the assumption of parameter homogeneity among stores (no evidence of
heterogeneity), and re-estimated models by accounting for nonzero autocorrelation
or heteroscedasticity where necessary.

Our main findings across two product categories are:
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• Significant dynamic promotion effects exist (for eight of the nine brands);
• The dynamic effects can be substantial. Negative dynamic effects are

indicative of acceleration effects which vary between 4 and 25 percent of
the current sales effect, across the two categories and across different support
activities for discounts. These numbers are consistent with the results from
household-level studies which have found the acceleration effect to vary
between 6 and 51 percent;

• The conclusion for researchers is that the postpromotion dip paradox does
not have to exist: household-level studies and this store-level study find
acceleration effects of comparable sizes;

• For managers, our results suggest that the results from models that
accommodate only current sales effects from a promotion may be quite
misleading. Managers should insist on obtaining the sum of the current and
dynamic effects from a model that accounts for (1) purchase acceleration
effects and (2) display extension effects.

• Given the complexity of dynamic sales promotion effects, it is advisable to
use a flexible specification, such as the Unrestricted model or the Almon
model. We find that the percent net gains (Tables 5.2.c and 5.3.c) are very
similar for the Almon-, and Unrestricted models (while the Exponential decay
model produces very different results). Overall, the Unrestricted model is
the closest to the “best model” results. It is also the model that is easiest
to implement.

An interesting future research issue in this context is the accommodation of
within-store and between-store heterogeneity in models of store sales. Within-store
heterogeneity can occur due to changes in the composition of the set of households
that purchase items from the product category over time. The use of time-varying
response parameters is one way to account for such effects. Between-store
heterogeneity may result from customer-, assortment-, and other differences between
stores. Even though we found no evidence in favor of this type of heterogeneity, it
may be relevant for other categories. Hsiao, Appelbe, and Dineen (1993) provide a
general framework for varying parameter panel data models.

From a substantive perspective, it will be useful to apply distributed lead- and lag
models to other product categories to discover commonalities and idiosyncracies.
With results on a much larger number of items it should be instructive to explore
the effects of product category and brand measures, marketing activities (e.g.,
interpromotion periods and depth of price cuts) and consumer characteristics on the
observed dynamics.
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