7%
university of 5%,
groningen YL

R

University Medical Center Groningen

University of Groningen

Progress under bounded fairness
Hesselink, Wim H.

Published in:
Distributed computing

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/lUMCG research database

Citation for published version (APA):
Hesselink, W. H. (1999). Progress under bounded fairness. Distributed computing, 12(4), 197-207.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/lUMCG research database (Pure): http.//www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022


https://research.rug.nl/en/publications/f99459c7-afdf-4762-bb07-8d0d080c0c5f

Distrib. Comput. (1999) 12: 197-207 @HSFRU@WE@
QUIPUITNG

© Springer-Verlag 1999

Progress under bounded fairness

Wim H. Hesselink

Department of Mathematics and Computing Science, University of Groningen, PO Box 800, NL-9700 AV Groningen, The Netherlands
(e-mail: wim@cs.rug.nl; http://www.cs.rug.nl/"wim)

Received: April 1998 / Accepted: March 1999

Summary. Progress is investigated for a shared-memoryassertion expresses that, if each of the families of processes
distributed system with a weak form of fault tolerance thatcontinuously holds an active process and the system reaches
allows processes to stop and restart functioning without noa state where? A =@ holds, the system will subsequently
tification. The concept of bounded fairness is introduced toreach a state wher@ holds within bounded delay. So there
formalize bounded delay under the assumption that eacmust be a bound on the number of “rounds” needed to es-
family of related processes continuously contains at leastablish @, which is independent of the run; here a “round”
one active member. This is a generalization of wait-freedomjs a sequence of steps such that each family has at least one
and also of a finitary form of weak fairness. Several usefulprocess that takes at least one step in it.
proof rules are stated and proved. In a system with bounded The progress property is formalized as bounded fairness
fairness, a wait-free process can be constructed by formingvith respect to a fairness set, which is a set of families of
a new process in which processes from the various familieprocess names. Bounded fairness is stronger than uncondi-
are scheduled in a round robin way. The theory is applied tdional fairness, cf. [3]. It is a form of unconditional (or weak)
prove progress within bounded delay for a linearizing con-fairness in the sense that all processes are continuously en-
current data-object in shared memory. The safety propertieabled. It is stronger in the sense that progress is guaranteed
of this algorithm have been treated elsewhere. within bounded delay if all processes are active enough, and
that the assumption on the participation of the processes is
Key words: Bounded fairness — Concurrent data object —weaker than usual (not all processes have to act but each
Fault tolerance — Memory management — Client server arfamily must have an acting process). Note that a stopped
chitecture process is also enabled: it may restart again.
We regard the bounded delay property as the key issue.
Bounded fairness generalizes wait-freedom, cf. [5], which
requires that each process establishes its tasks in a bounded
] number of steps, independent of the actions of other pro-
1 Introduction cesses. Bounded fairness allows the tasks of the algorithm to
be distributed over different processes. In the case of round
The aim of this paper is to present a method for formally robin scheduling, the bounded delay property can be used to
proving progress for a distributed system with a weak formobtain bounds on the number of steps, thus enabling actual
of fault tolerance, together with a nontrivial application of estimates of the time complexity.
this method. Moreover, if one has a system with bounded fairness
The task of the system is distributed over a number ofproperties, one can construct processes with the correspond-
families of related processes. Every process is allowed tgng wait-free properties by combining members from differ-
stop functioning without notification. Yet it is guaranteed that ent families. Bounded fairness thus enables a Separation of
every invocation of the system is completed correctly within concerns that can be crucial for successful design.
bounded delay, provided that every family always contains at  \We present methods to prove bounded fairness that are
least one active process. Processes do not perform erroneompired by UNITY [2] These methods were deve]oped for
actions. A stopped process may again become active, and {hnd are here applied to) the system presented in [8]. This
it does so, it restarts at the point where it stopped and withs g linearizing concurrent data-object in shared memory. It
all its DTEViOUS information. The fault tolerance refers to theconsists of a number dflient processes that Concurrenﬂy
fact that within a family of processes no more than onejssue invocations to the data-object, and four families of
member needs to be active. This fault model is very weaksserver processes that linearize and treat these invocations,

it does not allow “fault actions”, e.g., cf. [1]. update the value of the data-object, and deliver the results
We consider progress assertions of the forf l[eads  of the invocations to the clients.
to Q" where P and @ are predicates on the state. Such an




198 W.H. Hesselink

The design goes back to [4,6]. These papers present waishared memory. Then we give the definition of bounded
free solutions, in which different tasks cannot be delegatedairness and present a small example and some special cases.
to different processes. Also, they use only one region ofSeven proof rules for bounded fairness are then stated and
shared memory: the invocations and the resulting new stategroved, followed by some corollaries. We finally show how
are placed at the same address. This leads to the requiremdmtunded fairness can be used to construct wait-freedom.
that the data object must be deterministic (the new state must
be a function of the old state and the invocation), and that
the rggister where the state of the object is Written must b& 1 pistributed systems and bounded fairness
safe (it is allowed that different processes write the same
new value concurrently into it). So there are three reasons = . i i
for the new design: separation of concems, elimination of* distributed system with shared memory consists of a set of
determinacy, and elimination of safe registers. named sequentlal processes thqt communicate py means of

The progress requirement of the system is that every inShared variables. This is formalized in the following (stan-

vocation of an active client terminates within bounded delayd@rd) way. Theconfiguration consists of the values of the

provided that each family of server processes contains a§hared_ varlaples tog_ether Wlth thg values of the private vari-

least one active member. ables, mcludlr_\g the_ instruction pointers of the processes. We
For simplicity of the example, we do not treat memory §peak of configuration (msjead of globa_l state) to distinguish

management here. So we prove bounded fairess for thit from the state of the object as used in Sect. 4.

system under assumption of bounded faimess for memory e use interleaving semantics. Axecutionof length

management. This shows that the formalism can also be usdd 1S @ sequence ok + 1 pairs (x.i, ¢.4) with 0 < i < n

for specification purposes. Actually, the theorem that mem-Such thatz.i is a configuration ang.i is a process name for

ory management also makes progress with bounded fairne$s/€"Y index:, and that an action of procegsi can ‘make

is more challenging, but we have been forced to omit it be-2 transition from configuratior.i to configurationz.(i + 1)

cause of the size of its proof and the large number of relevany/nénever. < n. Two executions (of lengths: andn) can
but boring details. be composed iff the final pair of the first execution equals the

starting pair of the second execution. The composition is the
catenation of the two executions with one of the matching
Overview pairs deleted; so it has length + n.
The system description contains a sefrofial configu-

This paper is organized as follows. In Sect. 2, we define'@tions. A configuration is calleceachableiff it occurs in

bounded faimess and give proof rules to infer it. These rulen €xecution that starts in an initial configuration.

are counterparts for bounded faimess of some of the UNITY _ For us apredicateis a boolean function of the configu-
rules for weak fairness, cf. [2]. In this Section we also show'ation. A predlt_:ate IS called_ ainvariant iff 't.hOIdS. n 6!”
how to construct wait-freedom in a system with bounded.re.aChabIe configurations. It is galledable(or inductive) iff
fairess. The process model and the repertoire of elementafy IS Preserved under every action. o
instructions are described in Sect. 3. In Sect. 4, we give the Cl€arly, every stable predicate that holds initially is an

specification of our application, the concurrent data-objectnvariant, and every predicate implied by an invariant is also
of [8]. invariant. These two facts form the main method to prove

In Sect. 5 we describe the principal part of our distributeg!nvariance, for the set of reachable configurations is usually

system, which consists of three families of processkmnts, 1Ot Very tractable.
linearizers and appliers. The invocations of the clients are We now introduce the concept of bounded fairness.
linearized by the linearizers and treated by the appliers. The. | ) )
proof that this principal part satisfies the safety requirementd€finition. A fairness sefts a set of sets of process names.
of the specification is sketched in [8]. It is based on a me-An execution{: 0 <i <n: (z.i,q.9)) is called around for
chanical proof [10] of safety for the total design, including f@irness set iff, for every U < L, there is an index < n
memory management, where more than a hundred invariith ¢-2 € U. An execution is called:-fair for L iff it is a
ants have been verified mechanically. Our aim in this papef°omposition ofk rounds forL (if k£ > 0). Every execution
is to prove progress under assumption of the safety prop!S régarded as O-fair fok.
erties proved before and the progress properties of memory L€t P and@ be predicates. We say thatleads to) un-
management that are specified in 5.4. der L within k& |f_f every executionk-fair for L_that starts in a
In Sect. 6, we prove the progress assertion for the systenf€achable configuration where holds contains a configura-
every invocation of an active client leads to a configurationtion WhereQ holds. We use the notatiah: >0 @ within
where the invocation has been treated and the client cafi; If the clause “withink” is omitted, we mean that “within
invoke again. We have to rely on invariants of the system”” ¢an be added for some unspecified natural nunmiber
that were proved in [8]. We draw conclusions in Sect. 7. Informally speaking, each membér of the fairness set
L is a set of processes that are supposed, collectively, to
act often enough. An assertidn: P o— Q means that, for
2 Bounded fairness every reachable configuratianwhere P holds, every exe-
cution that contains enough rounds and starts tontains
In this Section we develop the theory of bounded fairnessa configuration wheré) holds. Moreover, the lower bound
We first describe a general set-up of distributed systems witton the number of rounds is independentrof



Progress under bounded fairness 199

One may wonder why an execution is not calkethir if, fairness in our application. In these rules we use fairness
for everyU € L, it simply containst actions of processes in setsL and M, and predicate®, Q, R, P’, Q’. Most of the
U? The reason is that the actions fréhmay need actions of rules state that somkeadstorelation can be inferred from
other processes to have taken place in order to be productivetherleadstorelations. We have two starting rules.
The introduction of rounds has the effect that the actions of If U is a set of process names, we wrlte: P > Q
the families of processes must be sufficiently mixed, withoutto denote that, for every procegsc U, every action ofg
imposing overspecific constraints. that starts in a reachable configuration whérénolds ends
Note that we use the same terminology as is used irin a configuration wher&) holds. If the setJ/ is omitted,
UNITY, cf. [2], but that our notion ofleadstois different,  we mean relatiort> to hold for the set of all processes.
since it contains bounds and mentions process names a T . .
fairness sets. Another difference with UNITY is that ourwtlllleD0 (mphc_aﬂpn%). IporedlcateP Is stronger thar®), then
processes have names and may have private variables. Whé’n‘ 0— Q within 0.
both concepts apply, our concept of “leadsto” implies theRule 1 (step). Assumé® A—-Q > PVQ andU : PA—Q >
UNITY concept of “leadsto”, but not conversely. Q. Then we haveglU} : P o— @ within 1.

Example.Consider a system with a shared integer variableProof. Let (: : 0 < i < n: (z.i,q.i)) be a round for fairness
t and a shared boolean variatiieand the three processes set{U}, which starts in a reachable configuration whére
Inc if b then t =t +1 fi holds. It suffices to prove that the round contains a config-
Rev b = false. ' uration whereQ holds. Since it is a round fofU}, there
Dec t — i 71’ exists j < n with qj € U. If there is an md_exi <
: ' such that@ holds inx.: we are done. Otherwise we use

In Inc (and henceforth), thi# statement meanskip if the  PA-Q > PV and induction to prove that all configura-
guard is false. tions z.i with 7 < j satisfy P A =Q. In particular, P A =Q

We may regard this declaration as an assignment sectioholds inz.j. ThenU : P A =Q > @ implies that() holds
of a UNITY program. Then it satisfies: = 1 leads ta¢ =0, inz.(j+1).0

because is decremented often enough, since, because Oﬁule 2 (monotony). Assume that C M , that L : P o Q

Rey it cannot be incremented infinitely often. within &, that P’ is stronger tharP, that@ is stronger than
In our setting, we assume that each of the three process%i, and thatk < m. Then we havell : P/ o Q' within
Inc, Rey and Dec repeats the corresponding command in- * ' - '

finitely often. Consider the fairness set= {{ReV}, {Dec}}.

This specifies thaRev and Dec each are executed often Proof. Every executionm—fair for M is alsok—fair for L.
enough. Yett =1 does not lead to = 0 in bounded fair-  So, if such an execution starts in a reachable configuration
ness. In fact, in the first round, procd2evmakesb = false where P’ holds, it starts in a reachable configuration where
but there is no upper bound for the number of applicationsP holds, and hence contains a configuration wh@rkolds

of Inc precedingRev Therefore, there is no upper bound for and where therefor®’ holds.O

the number of imeHec must be executed to get= 0. Rule 3 (disjunction). Let { :: P.i) be a family of predicates

If we replace the guard dhc by, say,b A t <9, we LD o :
i . ; such thatL : P.io— @ within &k for all <. Then we have
do have that =1 leads tot = 0 with respect tal.. If we L: @i Pi)oo Q within k.

then replace. by L = {{RevDec}}, it is false again, since
there is no guarantee thRevis ever executed, or th@dec  Proof. Let h be ak-fair execution forL that starts in a
is executed often enoughl configuration whereH :: P.i) holds. Then there exists

— . : such thatP.i holds in this configuration. Since : P.i 0—(Q,
The definition of bounded fairness has two special CaseH, o execution contains a configuration wherdolds. ]
worth mentioning. In the first casé, is the set of the single- '

ton sets{q} whereq ranges over all process names. Now, Remark.It must be noted (as pointed out by a referee) that

an execution is a round if and only if every process acts inLemma 3 becomes false when the two clauses “wikfiiare

it at least once. This is the case of bounded fairness wittomitted and; ranges over an infinite set. On the other hand,

fault intolerance the form of bounded fairness we proposed if i ranges over a finite set, Lemma 3 implies its variation in

in [7]. which the clauses “withirk” are omitted. The point is that
In the second special casé,= {{¢}} for some fixed eachi may need a different, but if the range of is finite,

processg. Here a round is an execution in which processthe greatest will do. O

q acts at least once. Sd, : Po— Q means that process - L
g establisheq) starting in a configuration wher& holds ergsegs(éjselsel?ﬁl?ﬁ%{ Lﬁt% ge ?D(()n_c: n@erfr:)p;t)é)vélrn fte :%t of
in a bounded number of steps, regardless of the actions #hen we have{U} U% . Po—; 0 ye '

the other processes. This is the case of wait-freedom, as
proposed in [5]. Proof. SinceU is finite, we can choose a natural numfer
such that{{q}} U L : Po— Q within k for everyq € U.
Let h be a (# x k)-fair execution for{U} U L, which
2.2 Proof rules starts in a reachable configuration whdreholds. Sinceh
is a composition of & x k rounds for{U} U L, there is
We now present and prove a number of rules about bounded process; € U such thath is a composition of at least
fairness that are needed (and sufficient) to prove boundetbunds for{{q}} UL (a version of the pigeonhole principle).



200 W.H. Hesselink

Therefore,h is a k—fair execution for{{¢}} U L. It follows =~ Remark.Conversely, Rule 6 follows from the PSP-rule by
that h contains a configuration wherg holds. taking S :=Q A R. O

Remark.It is in Rule 4 that complexity suffers for fault
tolerance, in the sense that the upper bound{fé} U L :
Po— @ is the product of # with the upper bound for
{{¢}} UL : Po— Q. Indeed, all processesmay have to
work for the goal@. O

2.3 The construction of wait-free processes

Assume that we have a system that satisfies P o— Q

for predicatesP and@ and a finite fairness set. One can
Rule 5 (transitivity). Assume thal : P o— @ within k and  then easily construct a new process that, from a configu-
L : Qo— R within m. ThenL : Po— R within k +m. ration whereP holds, in a wait-free manner establishes a
configuration where) holds. This goes as follows. Take a
finite set M of processes that contains a member of each
setU € L. Let processS be a parallel composition of the
members ofM scheduled in a round robin fashion. Then
processS, starting inP, establishes) in a bounded number

of steps, independently of the actions of other processes, i.e.,
processS leads fromP to @) in a wait-free manner. This is
proved as follows.

Assume thatl : P o— @ within k. Consider an execu-
tion that starts in a configuration where holds and that
contains (#/ x k) actions of process. This execution is a
composition ofk parts in each of which processperforms

contains a configuration whet holds. Sinceh3 is a suffix #M actions. Since procesS performs the actions of the

of h, this proves that contains a configuration wherg members ofA/ in a round robin fashion, and sindd N U
holds. [ is nonempty for every/ € L, each of these parts is a round

o for fairness setL. Therefore, the execution itself fs-fair
Rule 6. Assume thal. : P o—@Q within k and thatRA—~Q > for L and, hence, contains a configuration whérenolds.

Proof. We first note that, fork, m > 0, an execution is
k + m-fair if and only if it can be split as a composition of
a k-fair execution with ann-fair execution.

Let » be an execution k(+ m)-fair for L, that starts in a
reachable configuration whet holds. Executiom: is the
composition of executions0 andhl1 such thath0 is k-fair
and hl is m-fair, both for L. Since executiorhO starts in
a configuration where? holds, it contains a configuration
where ) holds. Thereforéh0 has a suffixh2 that starts in
a configuration wheré&) holds. The executiong2 andhl
have a compositiork3, which is m-fair for L and starts
in a reachable configuration wheég holds. Thereforeh3

R. Then we havel : P A Ro— Q A R within k. This proves thatS establisheg from P within (#M x k)
Proof. Let (i :: (x.i,q.i)) be an executiok-fair for L, which ~ actions. ) ] .
starts in a reachable configuration whé?e\ R holds. The It follows that, in design, bounded fairness can be used

execution has a configuration whegeholds. Letj be the ~@s a preparation for wait-freedom. This is important since
first index such that) holds inz.j. Using R A ~Q > R  bounded fairess allows delegation of subtasks to differ-

and induction ini, we get thatR holds in all configurations ent (families of) processes whereas wait-freedom always re-
z.i with i < j. In particular,Q A R holds inz.j. O quires that all tasks can be done by the same process. Thus,

. . design for bounded fairness allows a separation of concerns
In the remainder of this paper, we only use these RUIe?)recluded by the requirement of wait-freedom.
to prove bounded fairness. First, three corollaries.
Remark.Note that the word “establishes” in the informal

Corollary 0. Assume thatl. : P A ~R0~ @ V R within k description of wait-freedom is wrong in that it suggests an
andL : Qo— R within m. ThenL : Po— Rwithin k+m. niniended causality. The configuration whe}éolds need
Proof. We first observe that : P A Ro— @ V R within & not be reached by a step 8t O

because of Rule 0 and Rule 2. Using Rule 3, this is combined

with the assumption to yield. : Po— @Q VvV R within k. A

similar argument yield€, : QV R o— R within m. Therefore 3 The modelling and the repertoire

the assertion follows from Rule &I ) _ _
We now describe the process model in more detail. We con-

sider looping sequential processes with numbered atomic in-

structions and a private variabfg as instruction pointer.

L: PAvVi<m o= QV (PAvVi<m). This instruction pointer is needed since most of the invari-

Then we havel, : P A vf< m o Q. ants gnd progress.pr.edicates will r_efer to _it. !ndeed, 'Fhe ap-
. ] o plication we are aiming at has a fine-grain interleaving of

Proof. This follows from Corollary 0, by induction inn.  the processes that forces us to use such low-level instru-

The base case uses thvit< 0 is false.[] ments. Since we have program locations, we may as well

When translated to UNITY, the next corollary is the PSP rulemake (disciplined) use ajoto commands.

of [2] page 65 (PSP stands for progress safety progress). b|We disdtirtnguish betvr\:eendactualb\llariablgs and ghost_vglri-
PSP-rUle. Let L : Pos Q within k andR A S & Sy g, 2DIes: an etween shared variables and private variables.

' L The shared variables serve as main memory and for the
Then we havel : P A Ro— SV (Q A R) within k. communication between processes. The private variables are
Proof. Monotony impliesL : Po— Q' within k for Q' = used for private computations and as pointers in the shared
SV Q. We putkR =SV R. Then it is easy to verify that data space. Ghost variables are used in the specification and
R'A—Q’ > R'. Therefore Rule 6 implie® AR o—Q' AR’ the proof of the algorithm. They are computationally irrel-
within k. Then the assertion follows by monotoni. evant. Alternatively, they are called auxiliary variables or

Corollary 1. Let vf be a state function with values in the
natural numbers such that, for all natural numbers



Progress under bounded fairness 201

history variables, see (e.g.) [11,12]. Ghost variables are noExample.The data objeci’ could be a data base. Then
allowed in guards and in the righthand side of assignmentinvocationsu would comprise queries in the data base as
to ordinary variables. In concrete programs we give the aswell as commands to modify the data. Presumably, we would
signments to ghost variables between braces, but we do natot want to output the whole contenjsof the data base in
do so in idealized ones. response to every invocation but only a tiny projection of
We also have to discuss the repertoire of atomic instrucit, e.g., the result of the query or a message “done”. It is
tions. Every atomic instruction refers to at most one shareclearly useful that different clients can access the data base
variable, cf. [11], preferably at most once. We have threeconcurrently, and that they need not wait unnecessarily.

types of shared integer variableshat can occur more than o _ . .
once in an instruction: counters, consensus variables and D€ @m is to construct a distributed implementation of

compare & swap variables. Such a variablés called a ~ 2PPly: Since relation® is given (andR is total), we may
special variable. It has one of the special instructions assume that a sequential implementation/ofs available

in the form of
t :=t £1 {counte} ;
if t=0thent :=v fi {consensus;
if t =u then t :=v fi {compare & swap .

Here,u andv are private variables. These instructions may This procedure can be used by the processes, provided that
be combined with modifications of private variables andevery atomic instruction mentions at most one shared vari-
ghost variables. A special variabte can also be reset by aple and that concurrent reading and writing of shared vari-

proc locapply(in w: U,w : W; out y : W)
{ post(w,u,y) € R}

t := 0, but cannot be modified in other ways. Of course, itaples of typed/ and W is avoided.

can occur in expressions. A consensus varigblean also
be boolean instead of integral. In that case, the gtiardd
is replaced by-t and the assignment := 0 is replaced by
t :=false

4 A concurrent data object in shared memory

For each client procegs we define the local historg.p
to be the list of consecutive paifs, y) of corresponding in-
vocations and results of processConceptually, each client
executes the infinite loop

x [ w:=arbitrary ; apply(selfu,y); B:= (u,y):0]

The theory of Sect. 2 is applied to the construction of awhereselfis the name of the executing process and where

concurrent data object as introduced in [4].cAncurrent

(u,y) : B is the list obtained by prefixing list with (u, y).

data objectis defined as a data structure shared by concurNote that we treat3.q as a private (ghost) variablg of
rent processes. So there are a number of client process@socess;.

that may concurrently inspect or modify the state of the ob-

ject. Such actions of the clients are caliestocations The

The requirement that concurrent invocations be treated,
logically, in some linear order is callelihearizability. It

results of these invocations must be compatible with somes formalized as follows. We require that the history of the
linear history of the object, but on the other hand the clientsobject can be represented by an ordered disof triples
must be served with bounded delay. The object resides ifp, u,y) € Cli x U x W. The occurrence of triplép, u, )
a shared data space. It is passive, but there are families @heans that clienp has performed an invocatian with re-

server processes to handle the invocations.

The object is specified as follows, cf. [8]. Tlabstract
data object is a quadrupl@V, wo, U, R) where W is the
state space of the objeaty € W is the initial stateU is
the input space (the set of invocations), dhd- W xU x W
is the transition relation. If the object is invoked in state
with invocationu, it may go into statey iff (w,u,y) € R.
We assume that relatioR is total, i.e., for every paifw, u)
there existgy with (w,u,y) € R. The new statg/ need not
be unique (as was required in [6]).

The concurrentdata object(W, wo, U, R) consists of a

sulting statey. This is formalized as follows.
Let the projections | p of o be defined recursively as the
list of pairs given bye | p = ¢ for the empty liste, and

(g, u,y) : o)|p = if p=q then (u,y) : (c|p) elsec|p fi .

We then require that history is related to the local histories
by the invariant

(Lin0) pB.p=o|p for every client process,

wheneverp is not invoking.

procedure that, conceptually, acts on one shared prografiere, p is not invoking” means that is at the start of the

variablew of type W and that could be specified by

proc apply(in p: Cli,u: U; outy: W)
{pre w=w’, postw=y A (w',u,y) € R}

for every initial valuew’ € . HereCli is the set of client
processes. A client procegscalls procedureapply in the
form apply(p, u, y) for the treatment of invocatiomto obtain
the new state;. So,p andu are input parameters andis
a result parameter. All clients may capply concurrently

body of its loop: it has to choose a new value for

To express that is a legal sequential history of the
abstract object, we define listto beacceptableff we have
the invariant

(Linl) acco,

where predicateacc is defined as follows. LelaStac be
the last state of history, defined bylaStas = wy and
laSta((p, u,y) : o) =y. Thenaccis given by

and repeatedly. The problem is that concurrent calls must be
treated each with bounded delay and yet, logically, in somecce = true

linear order.

acc((p,u,y) : o) = acco A (laStao,u,y) € R



202 W.H. Hesselink

Thus, the data object is said to be linearizing iff one can  We thus introduce finite setdd and Lo which do not
construct a ghost variable with initially ¢ = ¢, that for ~ contain 0, andAdO= {0} U Ad andLo0 = {0} U Lo, and the
every execution satisfies the invariants (Lin0) and (Linl). shared arrays

We model the repeated calls of procedapplyby means inv : array Ad of U {Cli} ;
of a number of looping seque_ntial processes. For each pro- sta: array Lo of W {App}, :
cess, we number the atomic instructions and use an explicit post: array AdO of Lo0 {App Coll} .

instruction pointerpc, which is a private variable. ; _ ) o )
So, the programs of the client processes have the formArray inv holds the invocations. As indicated in the declara-

tion, it is modified only by client processes. Arraiaholds

20 u:=arbitrary ; _ the states and is only modified by appliers. Armstpoints
21 instructions to put in shared memory ; from an invocation address to the location of the resulting
-~ and to obtain aesult; state. We require thatosti = 0 holds until the invocation
B = (u,resuly : G ; inv.i has been treated. It is only for convenience in the in-
other instructions ; goto 20 . variants that we allow index 0 fgpost (with the invariant

Now requirement (Lin0) is more explicitly expressed in postO = 0). o _
Recall thatCli is the set of names of client processes.

(Lin0) pcg=20 = f.g=olq. We write Cli0 = {0} U Cli and use shared arrays
We turn to aspects of the implementation of the data object. iloc : array Cli of AdO{Cli,Coll} ;
For the sake of separation of concerns, we split its task into own: array AdO of Cli0 {Cli,Coll} .

four parts: linearization of the invocations, application of fiti i is the add fth (i i
the transition relation of the object, memory managemen{ It IS NoNz€ro,IlocC.p IS the address of the current invocation

for the invocations, and memory management for the staté)f proces. If it IS nonzero,own: is the client with Invo-
KLation at address We shall treabwn as a ghost variable.

We now come to the program of the clients (see below).
en a clieny has obtained an invocation valugit waits

for an invocation addresis= iloc.qg # 0. It writes its valueu
atinv.i and then sets a flamlin.; to indicate that contains

an invocation ready to be included in the linearization. It
{hen waits until the invocation has been treated, i.e., until
sl = posti # 0. It reads the resulting statgasl and then
resets itdloc field to indicate that it can use a new address.
ézor the purpose of garbage collection, it also lowers a flag
isil at address.

So we use shared boolean arrays

tolin : array AdO of Bool {Cli, Lin} ;
isil : array AdO of Bool {Cli, Coll} .

Truth oftolin.; means thainv.; is a waiting invocation, and

5 A linearizing design isil.i indicates that addregshas an owner.
In this way, we arrive at program Client for the client

We come to the description of the system of [8], as speciprocesses. Recall thaelfis the name of the executing pro-
fied in Sect. 4. For the ease of presentation and to simplifycess. Client has the private variablesor the current in-
the proof of progress, we make some minor modifications invocation,: and sl as copies of shared information, and the
the design. Below we give the programs for the processes ighost variable3 mentioned in the specification. Variablges
Cli, Lin, App and the specifications of the processe€uil andsl are used instead dibc.selfandpost: to avoid that a
and Distr. As announced above, we do not treat memorysingle instruction has to access more than one shared vari-
management. In [8], the programs for the memory manageable. The result of the invocation is obtained in the read
ment processe<CpIl andDistr) are too nondeterministic to action 25, where ghost variableis updated.
guarantee progress. Therefore, in [9], they are changed in Blient
minor way and then their progress properties are proved.

each of these four tasks to a family of server processes. W5Vh
use a familyLin of linearizers to linearize the invocations, a
family App of appliers to update the data object and return
the result, and two familiesColl of collectors andDistr of
distributors, for memory management.

The progress assertion to be proved is that every clien
q0 with pc.q0 = 21 arrives within bounded delay back at
pc.q0 = 20, provided the client itself is active and each
family of server processes continuously contains an activ
process. This condition is formalized as

(0) L:pcg0=21 o> pcg0=20,
where L = {{¢0}, Lin, App, Coll, Distr}.

In each declaration of shared variables, we indicat ?.:i%rflér;;y; if i=0 then goto 21 fi :
which processes are allowed to modify the variable by, invi=u: ’
adding the families of allowed modifiers between braces. 55 0 - = trye -

24 sl:=posti; if sl=0 then goto24fi ;
5.1 The shared data and the clients 25 {fB:=(ustash: 5} ;

26 iloc.self:=0 { owni =0} ;
We use two regions of shared memory, one for invocation?/  iSil-¢ :=false; goto 20 .
valuesu : U, and one for state values : W. Pointers Readers concerned about safety should refer to [8]. The
into these regions are calleatldressesand locations re-  problem of this paper is progress. Program Client contains
spectively. In both cases we use value 0 asrtihe@ddress; two points where progress is threatened: it uses busy waiting
nothing is stored there. at 21 and 24. We come back to this in Sect. 6.



Progress under bounded fairness 203

earization of the invocations. The task of each linearizer is to
enqueue all pending invocations of clients. We provide each |
linearizer with private variables : AdOands : Cli and the N _

linearizer has the task to linearize invocation address @ iloc @
client s. The clients must be treated fairly. We therefore pro-

vide a functionnextClito choose a new client. This function Fig. 1.

traverses the s&li of clients in the sense that, ffexecutes

s := nextCl{(g, s) repeatedly, all elements @li are met in

some order. FunctionextCli has first argumeng, so that 29 4 :=invTail ;

the order may differ for different linearizers. Indeed, if dif- 30  cnty:=cnty+1 ;

ferent linearizers are concurrently active, it is advantageoug1  if y #invTail then goto 38 fi ;

‘nx

5.2 Linearization
invTail —_— @
We introduce a familyLin of server processes for the lin- AN
AN

to let them use different orders to avoid congestion. 32 z:=iloc.s:
From the abstract point of view, we linearize the invo- 33 i —tolin.z then
cations by enqueueing them in a shared ghost variable s := nextCl{(self s) ; goto 38fi ;

34 if nxy=0 then

nxy := z { ilist :=ilist + (z)}
So, the idealized linearizer would execute the infinite loop s := nextCliself s) fi ;
35 zi=nxy;
36 tolin.z :=false;
37 if invTail=y then invTail =z fi ;
38 cnty:=cnty—1; goto29.

ilist : queue of Ad {Lin, App} .

x[ z :=iloc.s ;
if tolin.z then
ilist :=ilist + (2) ;
tolin.z :=false
fi; The test at 31 is needed for the case that a collector recycles
s :=nextCliself s)] . addressy.qg whenpc.g = 30. The guards of 34 and 37 are
needed since several linearizers may be active concurrently.
The special forms of the atomic commands 34 and 37 show
that the shared variablexy is a consensus variable and that
invTail is a compare & swap variable.
Note that a linearizer may stop functioning after execut-
ing thethen part of 34. Then progress requires that another

We need no test # 0 here, since we keep the invariant
—tolin.0. The operator+stands for concatenation of lists.

We implemenilist by a list with links represented hbyx
and a tail represented liyvTail (invHeadin [8]), according
to the shared variable declarations

nx: array AdO of AdO {Lin, Coll} ; linearizer executes 35, 36, and ttien part of 37. Such op-
invTail : Ad {Lin} . erational arguments will not appear in the proof of progress
in Sect. 6, but they were essential for the design of the sys-

The representation invariants fibist are given in Sect. 6.3.
In view of the rules for occurrence of shared variables in
atomic commands, we provide each linearizer with a private
variabley as a copy of the shared variabte/Tail. The ab-
stract assignmerilist := ilist + (z) is represented concretely

tem.

5.3 Application

by We introduce a familyApp of appliers, which concurrently
y = invTalil ; compute and store the results of proceda@apply for in-
{nxy=07?}nxy:=z; vocations inlist. So the queudist produced by the lineariz-
{invTail=y ?} invTail := z . ers is consumed by the appliers. We use a shared variable

: : : . . staHeadto stand for the head of queilest and assume that
Since other linearizers may be active concurrently, this code oststaHeads the location of the current state of the object.

is only app licable in S0 far_a_ls the assertions betwee_n brac ereforenx staHeadis the address of the invocation that is
hold (this is merely the intuition, we do not intend to give the(50 be treated next

guestion marks a formal meaning). The situation is sketche An applier ¢ can be active when it has a location

in diagram Fig. 1 where a solid arrow represents the initial talocq # 0 to hold a new state. Recall from Sect. 4 that

value of a shared variable and a dashed arrow represents I?Sis the shared ghost variable that holds the history of the

new value. : .

In order to avoid that the collector processes recycle adpbleCt' We thus have the shared variables
dresses prematurely, we introduce a shared acrayfor staHead: Ad {App} ;

reference counting, declared by staloc: array App of LoO {App Distr} ;

o:listof ClixU x W {App} .

The appliers use private variablesy sl for locations,y, z

for addressesdlinv for an invocation, anchew for a state,

all according to the situation sketched in diagram Fig. 2, as
Linearizer explained below and formalized in program Applier.

cnt: array Ad of int {Lin, App} .

In this way we arrive at the following program wheitest
is merely a ghost variable:



204 W.H. Hesselink

post sta
staHead ——— e e
. lnx
inv post sta
linv -~ _— — — — — = | new

Istaloc

Fig. 2.

We first give an idealized code for the appliers, again only56  usoby :=false;

applicable when the assertions between braces hold. 57 cnty:=cnty—1; goto43.

* [ sm:= stalocself { sm# 0 ?} ; With respect to progress, it should be noted that an applier
y:=staHead, z:=nxy{z#07?} ; may execute théhen part of 52 and then stop functioning
linv:=inv.z; sl:=posty ; (for some time). In that case, another applier may have to ex-
locapplylinv, stasl,new) ; stasm:= new; ecute thehen part of 53, after an unproductive computation
{ postz =0 ?} postz :=sm; at 50 and skipping at 52 since it fing®stz # 0.
o= {(ownz,linv,new : o ; It has been proved, cf. [8], that the system of the clients,
{ y = staHead? } staHead:=z; ilist := tail.ilist ; linearizers and appliers, described here, preserves the invari-
{ postz =sm? } stalocself:=0] . ants (Lin0) and (Lin1) of the specification in Sect. 4.

The first two question marks here are a matter of waiting.
After that, the applier can perform a private computation of5 4 Specification of garbage collection
the next stateew which is then stored attasm The third
guestion mark is more critical. Here the first applier “wins”: We finally specify the collectors (i@oll) and the distributors
assignssmto postz and extends accordingly (recall that (in Distr). These processes have to supply the clients and the
ownz is the client that owns the invocation aj. At the  appliers with free addresses and locations, respectively, as
fourth question mark, the first applier that comes there withformalized in the progress assertions
_(i_urren_ty moyesstal—_|ead‘orward and removes the head fro_m (1) {Coll} : true o iloc.q#0 , forallg € Cli
ilist. Finally, if locationsmhas been use(_j, garbage collection (2) {Coll, Distr} : true o— stalocg # 0 ,
is informed of the need of a new location. for all ¢ € App

The concrete program Applier is given below. Here, all '
potential interferences have been precluded. For this purpogen the other hand, collectors and distributors must preserve
we use some additional tests, and the shared variable au invarliants ;orfCIi, Lin, Ahpp desc;ibgdhin ]ES]- Ln the me-

chanical proof of [10], we have verified this for the programs
usob: array AdO of Bool {App, Coll} . for Coll a?\d Distr[of ][8]. prog

Roughly speakingysoby indicates that addressis (or will It is easy to see that progress cannot be guaranteed if the
be) an element ofist. Array usobis used in the collectors, setsAdandLo are too small in comparison with the sets of
together withisil andcnt, to avoid premature garbage col- processes. Therefore, we assume that theAstsdLo are
lection. large enough. In [9], we obtain lower bounds for the sizes
of Ad and Lo for which the implementations of collectors
and distributors provided satisfy the requirements (1) and
(2). Thus, in the remainder of this paper, we can treat (1)
and (2) as postulates.

Applier

43 sm:=stalocself; if sm=0 then goto43 fi ;
44  y .= staHead;

45 cnty:=cnty+1;

46 if y # staHeadthen goto 57 fi ;

47  z:=nxy; if 2=0 then goto57fi; 6 Formal proof of progress

48 linv:=inv.z ;

49  sl:=posty ; In this Section we prove progress assertion (0) of Sect. 4

50 locapplylinv, stasl, new ; under assumption of postulates (1) and (2). The global struc-

51 stasm:=new; ture of the proof is as follows. Since (0) expresses progress

52 if postz =0 then for the pc of an active client, the main argument follows
postz :=sm; program Client. Client waits at two points: pt = 21 and
{o:={ownz,linv,new : o } fi; pc= 24. Progress at 21 is shown by means of postulate (1).

53 if staHead=y then Progress at 24, however, requires activity of both lineariz-
staHead:= z { ilist := tail.ilist } fi ; ers and appliers. These activities are specified by separate

54 if postz #sm then goto 56 fi ; progress assertions that are dealt with in separate subsec-

55 stalocself:=0 ; tions.



Progress under bounded fairness 205

6.1 The global proof pc.q0 =24 A i.q0 =k A postk =0
> pcg0=24Niq0=Fk.
We now give the global proof of progress assertion (0) ofo Rule 6 (and 2), these two facts combine and yield

Sect. 4. Recall that it expresses that an arbitrary cli@nt

gets its invocation treated, and that it reads L: pcq0=24Ni.q90=Fk A tolin.k
.q0 =24 A\ t(:.q0) £ 0 .
(0) L: pcg0=21 o0+ pcg0=20, where 0= PCyq post(i.q0) #
L = {{q0}, Lin, App Coll, Distr} . Since k ranges over the finite sétd, Rule 3 (disjunction)

now implies
In the proof of (0), we use the proof rules of Sect. 2 and

postulates (1) and (2) above. We postpone the proofs of somé/) L : pc.q0 = 24 A tolin.(i.¢0)
derived proof obligations. We need many invariants that have 0— pc.q0 =24 A post(i.q0) # 0 .
been established for the proof of safety. Such invariants argqy the |ast stretch, we use old invariants that express that

calledold invariantsand can be found in [8]. postk is reset to 0 (by collectors) only when# iloc.¢, and
The proof of (0) follows the instructions of program thatiloc.q = i.g when 21< pc.q < 26. This implies that

Client. It is easy to see that
pc.g0 = 24 A post(i.g0) # 0

pc.g0 =21Ailoc.q0=0 > pcg0=21. > pcqO e {24, 25} A post(i.q0)#0 .
Therefore, by Rule 6, postulate (1) implies Then, again using Rules 1 and 5, we easily obtain
(3) {Coll}: pcq0=21 o> (8) {{q0}}: pc.q0 =24 A post(i.q0) £ 0

pc.q0 =21 A iloc.q0#0 . 0— pc.qg0=20.

Sincepc ands are private variables, aritbc.q0 is a consen-  Finally, formula (0) follows by Rule 5 (and 2) from (3), (4),
sus register that is reset only g9 itself in instruction 26  (7), and (8). Thus, it remains to prove the formulas (5) and
(cf. [8]), we have the> relations (6).

pc.q0 =21 A iloc.q0# 0
> pcg0 e {21,22} Ailoc.g0#0 ;

. 6.2 Progress for linearization
{q0}: pcg0=21A1l0c.g0#0 > pcg0=22 . g

By Rule 1 this implies In this subsection we treat proof obligation (5), which ex-
) presses that an address to be linearized is linearized within
{{q0}} : pcq0 =21 A iloc.g0#0 o~ pcg0=22. bounded delay. This is the joint responsibility of the family

Lin. Therefore, the proof of (5) needs inspection of program
Linearizer. We prove formula (5) for a fixed addrégis# 0.
{{¢0}} : pcg0=22 60— pcg0=23; By old invariants the preconditiotolin.k1 A postkl =
{{q0}} : pcqg0 =23 o~ pcq0 =24 A tolin.(i.q0) . 0 implies thatkl = iloc.q1 for ¢1 = ownkl € Cli. By
Rule 3 (disjunction), it therefore suffices to proykin} :
Plo— Q1, where for given1 € Cli the predicate?1 and

(4) {{q0}}: pcq0 =21 A iloc.g0#0 o~ Q1 are given by

pc.q0 =24 A tolin.(i.q0) P1: tolinkl A postkl =0A k1 =iloc.ql ,
Here we are at the main critical point of Client: busy wait- QLl: kl=nxinvTail.
ing at 24 must not lead to unbounded delay. This point iSsjnce we have to establishy, it is useful to know that 34

treated by precisely specifying the progress requirements f0i yhe only command that can assign a nonzero value to an

linearizers and appliers, (5) and (6) below, and subsequentlyjement onx. On the other hand we have the old invariant
proving that these requirements are met.

An old invariant (Dg3) says thatq0 # 0 when 21<  (Cq2) 31<pcg <37Anx(y.q) =0 =
pc.q0 < 26. So, in the postcondition of (4) we may add y.q =invTail .
i.q0 # 0. For the moment we replade;0 by an arbitrary  Thjs jnvariant implies that a linearizey establishesQ1
address: # 0. In Sect. 6.2 we prove for 7 0 that whenever it executes 34 withx(y.q) = 0 andz.q = k1.
(5) {Lin}: tolin.k A postk =0 o— k =nxinvTalil . As for the precondition of our proof obligation, it follows

from some other old invariants th&tl is not falsified while
In Sect. 6.3 we use postulate (2) to prove for every addresg)1 s false:

k # 0 that
(6) {App Coll,Distr} : k =nxinvTail o— postk #0 .

By similar arguments we obtain

Therefore Rule 5 yields

(v0) P1A-Ql > P1.

We now have to prove progress towards a situation
By Rule 5 (and also using Rules 0, 2, 3), the formulas (5)where a linearizer; executes 34 witnx(y.q) = 0 and
and (6) combine to yield z.q = k1. Unfortunately, any given linearizermay always
1Al find nx.(y.q) # O (individual starvation of a linearizer). It is
L tolin.k 0~ postk 70 . only collectively that the task will be done.
On the other hand, singac and: are private variables, we For every linearizerg we introduce the private ghost
have variable gsg as the number of applications akxtCli (in



206 W.H. Hesselink

33 or 34) needed to reachq = ¢1. Putpl = #Cli. We let  {q} : P2 A y.q=k A pcqg=31
variablegsgq be modified only in thahen parts of 33 and > y.q=k A pcq=32;

34, according to the additional (ghostly) instruction {¢}: yqg=k N pcg=i A 31<i<37

{if gs=0 then gs:=pI —1 elsegs:=gs—1 fi } . {qD} yg;/k\; ;\.qu?g:AZ ;éq;: 37 > invTail# k .

It satisfies the invariants € gsg < pI and Now Rule 1 with (v3) and transitivity implies
9sg=0=sg=4q1. {{¢}}: P2 AN yq=k A pcg=31 0> Q2.

The text of program Linearizer may suggest thag = By Corollary 0, this implies{{¢}} : P20— Q2 as required.

iloc.(s.q) when 32< pc.g < 34, but this is not necessar- This concludes the proof of (5).
ily the case i{oc.(s.q) can be modified). We therefore adapt
gsgq by introducing a state functiomsq given by

vsg=if gsq=0 A 32<pcg <34 A z.g#iloc.gl 6.3 Progress for application

then pl else gsq fi.
b 93¢ The subsection is devoted to the proof of formula (6) that

Functionvsq can only increase in théhen parts of 33 and nxinvTail = k£ for k£ # O leads topostk # 0. Note that this

34 whengsqg =0 A z.g =iloc.ql holds, or wheriloc.ql is  expresses that every invocation addrés®nce enqueued,

modified. gets an associated object state within bounded delay. In order
Aiming at an application of Corollary 1 of Sect. 2, we to get the postcondition of (6) we use the old invariant

define the variant function (Bq2) poststaHead? 0 ,

vi= (¢ € Lin - vsg) + #(nxinvTail 7 0) , In order to prove (6), it therefore suffices to prove fof 0
where, for booleamn, we write # to denote 1 ifb holds and  that

0 otherwise. . . .
Sincevfis bounded, our proof obligatiofLin} : P10— {App Coll, Distr} - J = nxinvTail o- staHead=k .
@1 follows by Corollary 1 from The addressestaHeadandnxinvTail are connected via the

(Lin}: PLAVE<m oo ghost variabldlist and the representation invariants
: <m

QLV (P1LAvVi<m). (LqO) ilistg = staHead,;
_ q < < #ilist = nxilist;_q =ilist; ;
Lal) 0 < i < #ili li ilist; # 0
Itis not hard to prove the safety property (Lq2) lastilist = if nxinvTail = 0 then invTail
(1) PLAVI<m > QLvVvi<m. elsenxinvTail fi .

Here the elements difst are subscripted and numbered from
0, andlastilist is its last element.

Sinceilist has length bounded byA# (and does not
contain address 0), it suffices to prove ttaHeadmoves
along the list, i.e., that for evemy # 0,

(9) {App Coll, Distr} : nxstaHead=m o— R,
where R : staHead=m .

We have thatinvTail is modified only in 37, whereas old
invariants imply that, ifpc.q = 37 andinvTail = y.q, then
nx(y.q) # 0 andnx.(z.¢q) = 0. Due to the second summand
of vf, this implies that, for any constant addrdss

(v2) vi<m AinvTail=%k ©

vi<m VinvTail=k% .
For any fixed address we introduce the predicates Strictly speaking, the reduction to proof obligation (9) re-
P2: PLAVE<m AinvTail= k , quires an application of Corollary 1, with the index of ad-
Q2: Q1v (PE A Vi< m). dressm in ilist as variant functionf.

By Rule 4 (delegation), proof obligation (9) reduces to
By disjunction and delegation (Rules 3 and 4), it now suf- the obligation to prove, for every € App,

fices to prove the progress assertidfy}} : P2 0o— Q2 for

everyq  Lin andk € Ad. (10) {{g¢}.Coll,Distr} : nxstaHead=m o0— R .
The results (v0), (v1), (v2) combine to yield Formula (10) depends on modification sfaHead Now
W3) P2A-Q2 > Q2V P2 . staHeadis modified only at 53 of program Applier. We

have the difficulty that predicatstaHead= k is not sta-
By inspection of program Linearizer and Rules 1, 2, 3, 5,ble. So we cannot guarantee that an appjiggroceeds to

we obtain, for anyy € Lin, k& € Ad, pc.q = 53 with y.q = staHead We are saved by the observa-
. . tion that modification ofstaHeadalso establishes postcon-
{{a}} : true o invTail# k V (y.g =k A pcg=31). dition R. This goes as follows. Old invariants imply that
The PSP—rule with (v3) then implies z.r =nx(y.r) # y.r whenevemc.r = 53 for any applierr.
Using some more old invariants, we get, for arbitrargnd
{{g}}: P2 o> Q2Vv (P2 AN yq=k A pcqg=31). m # 0,

Again by inspection of program Linearizer, one can prove(w0) staHead=k A nxk=m
that > (staHead=k A nxk=m) V R .



Progress under bounded fairness 207

We now start at the other end for an arbitrary applier AcknowledgmentsConstructive criticisms of the referees have led to con-
and addressn # 0. By inspection of program Applier, it siderable improvements in the presentation.
follows with Rules 1 and 5 that

{{q}} : true o— pcq=43. References

Using postulate (2) and Rule 6, we get
1. A. Arora: Efficient reconfiguration of trees: a case study in methodolog-

{Coll,Distr} : pcq=43 0+ pcq=43 A stalocg #0 . ical design of nonmasking fault-tolerant programs. In: H. Langmaak,
. . . . W.-P. de Roever, J. Wtopil (eds.): Formal Techniques in Real-Time
Since the consensus varialsialocg is only reset by, itself and Fault-Tolerant Systems. Springer 1994 (LNCS 863). pp 110-127
in 55, one can use Rule 1 to prove 2. K.M. Chandy, J. Misra: Parallel Program Design, A Foundation
(Addison-Wesley, 1988)
{{q}} : pcq=43 A stalocqg#0 0~ pcg=44. 3. N. Francez: Fairness. Springer, Berlin Heidelberg New York 1986

4. M.P. Herlihy: Wait—free synchronization. ACM Trans. on Program.

It is easy to see that Languages and Systeri8: 124-149 (1991)

{{q}} : pc.q =44 o pcqg=45A staHead= y.q . 5. M.P. Herlihy, J. Wing: Linearizability: a correctness condition for con-
current objects. ACM Trans Program Lang S§&t 463—492 (1990)

Combining these results by Rules 5 and 2, we get 6. W.H. Hesselink: Wait-free linearization with an assertional proof. Dis-
. tributed Computing: 65-80 (1994)

{{¢},Coll, Distr} : true o— pc.q =45 A staHead=y.q . 7. W.H. Hesselink: Theories for mechanical proofs of imperative pro-

. . grams. Formal Aspects of Computii®y448-468 (1997)

Using the PSP-rule and (w0), we then obtain 8. W.H. Hesselink: The design of a linearization of a concurrent data
. . object. In: D. Gries, W.-P. de Roever (eds.): Programming Concepts

{{g}, Coll, [zls'[r} - nxstaHead= m _ and Methods, Proceedings Procomet ‘98, Chapman & Hall, IFIP 1998,

0— (pcq=45 A staHead=y.q A nx(y.q) =m) V R . pp 205-224
: 9. W.H. Hesselink: Progress for memory management of a concurrent
<
One can verify by means of Rule 1 that, for 45s < 52, data object. To be obtained from [10]
{{¢}} : pcq=s A staHead=y.q A Nx(y.q) =m 10. W.H. Hesselink: Web site: http://www.cs.rugmim/linproc

—_ — 11. S. Owicki, D. Gries: An axiomatic proof technique for parallel pro-
o— .q =5+ . q) = . .
(pcg=s+1 A staHead=y.q A nX(y.q) =m) V R grams. Acta Informatic®: 319-340 (1976)

By Rule 1, we also have 12. F.W. Vaandrager: Verification of a distributed summation algorithm. In
I. Lee, S.A. Smolka (editors): Proceedings 6th International Conference
{{q}}: pcg =53 A staHead= y.q on Concurrency Theory (Concur'95). Springer V., 1995 (LNCS 962),
ANnX(y.q) =m 0= R. pp 190-203

Finally, repeated application of Corollary 0 (and Rule 2)

yields formula (10). This concludes the proof of (6), and Wim H. Hesselink received his Ph.D. in mathematics from the University
h h roof of proar formul ) of Utrecht in 1975. After ten years of research in algebraic groups and Lie
thus the proof of progress formula (O) algebras he turned to computing science. In 1986/1987 he was on sabbat-

ical leave with the University of Texas at Austin. In 1994, he became a
professor for the Groninger Universiteitsfonds in the field of program cor-
7 Conclusion rectness. After that, he was for some years Chairman of the Department of
Computing Science at the University of Groningen. His research interests
We have developed the concept of bounded fairness in ordérpclqde predica}te transformer semantics, 'aspects anq modalities of nonde-
to combine the assets of wait-freedom with the possibi”tytermlnacy,. design and correctness of all Ignds of glgprlthms, and the use of
to delegate tasks to separate processes. This enables a Se%én:echanlcal theorem prover for the design of distributed systems.
ration of concerns that can be crucial for succesful design.
We have developed and applied a variation of the logic
of UNITY to prove that a system of sequential processes that
communicate via shared memory satisfies progress assertions
under bounded fairness. This extends the applicability of
the UNITY approach, but it does not directly address the
methodological challenge to prove progress properties in a
systematic manner. The additional cost to prove the stronger
property ofboundeddelay turns out to be small.
The application presented is sufficiently complicated
to conclude that our method for expressing and proving
progress is applicable to nontrivial systems.



