

 University of Groningen

Progress under bounded fairness
Hesselink, Wim H.

Published in:
Distributed computing

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
1999

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Hesselink, W. H. (1999). Progress under bounded fairness. Distributed computing, 12(4), 197-207.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 04-06-2022

https://research.rug.nl/en/publications/f99459c7-afdf-4762-bb07-8d0d080c0c5f

Distrib. Comput. (1999) 12: 197–207

c© Springer-Verlag 1999

Progress under bounded fairness
Wim H. Hesselink

Department of Mathematics and Computing Science, University of Groningen, PO Box 800, NL-9700 AV Groningen, The Netherlands
(e-mail: wim@cs.rug.nl; http://www.cs.rug.nl/˜wim)

Received: April 1998 / Accepted: March 1999

Summary. Progress is investigated for a shared-memory
distributed system with a weak form of fault tolerance that
allows processes to stop and restart functioning without no-
tification. The concept of bounded fairness is introduced to
formalize bounded delay under the assumption that each
family of related processes continuously contains at least
one active member. This is a generalization of wait-freedom,
and also of a finitary form of weak fairness. Several useful
proof rules are stated and proved. In a system with bounded
fairness, a wait-free process can be constructed by forming
a new process in which processes from the various families
are scheduled in a round robin way. The theory is applied to
prove progress within bounded delay for a linearizing con-
current data-object in shared memory. The safety properties
of this algorithm have been treated elsewhere.

Key words: Bounded fairness – Concurrent data object –
Fault tolerance – Memory management – Client server ar-
chitecture

1 Introduction

The aim of this paper is to present a method for formally
proving progress for a distributed system with a weak form
of fault tolerance, together with a nontrivial application of
this method.

The task of the system is distributed over a number of
families of related processes. Every process is allowed to
stop functioning without notification. Yet it is guaranteed that
every invocation of the system is completed correctly within
bounded delay, provided that every family always contains at
least one active process. Processes do not perform erroneous
actions. A stopped process may again become active, and if
it does so, it restarts at the point where it stopped and with
all its previous information. The fault tolerance refers to the
fact that within a family of processes no more than one
member needs to be active. This fault model is very weak:
it does not allow “fault actions”, e.g., cf. [1].

We consider progress assertions of the form “P leads
to Q” where P andQ are predicates on the state. Such an

assertion expresses that, if each of the families of processes
continuously holds an active process and the system reaches
a state whereP ∧ ¬Q holds, the system will subsequently
reach a state whereQ holds within bounded delay. So there
must be a bound on the number of “rounds” needed to es-
tablishQ, which is independent of the run; here a “round”
is a sequence of steps such that each family has at least one
process that takes at least one step in it.

The progress property is formalized as bounded fairness
with respect to a fairness set, which is a set of families of
process names. Bounded fairness is stronger than uncondi-
tional fairness, cf. [3]. It is a form of unconditional (or weak)
fairness in the sense that all processes are continuously en-
abled. It is stronger in the sense that progress is guaranteed
within bounded delay if all processes are active enough, and
that the assumption on the participation of the processes is
weaker than usual (not all processes have to act but each
family must have an acting process). Note that a stopped
process is also enabled: it may restart again.

We regard the bounded delay property as the key issue.
Bounded fairness generalizes wait-freedom, cf. [5], which
requires that each process establishes its tasks in a bounded
number of steps, independent of the actions of other pro-
cesses. Bounded fairness allows the tasks of the algorithm to
be distributed over different processes. In the case of round
robin scheduling, the bounded delay property can be used to
obtain bounds on the number of steps, thus enabling actual
estimates of the time complexity.

Moreover, if one has a system with bounded fairness
properties, one can construct processes with the correspond-
ing wait-free properties by combining members from differ-
ent families. Bounded fairness thus enables a separation of
concerns that can be crucial for successful design.

We present methods to prove bounded fairness that are
inspired by UNITY [2]. These methods were developed for
(and are here applied to) the system presented in [8]. This
is a linearizing concurrent data-object in shared memory. It
consists of a number ofclient processes that concurrently
issue invocations to the data-object, and four families of
server processes that linearize and treat these invocations,
update the value of the data-object, and deliver the results
of the invocations to the clients.

198 W.H. Hesselink

The design goes back to [4,6]. These papers present wait-
free solutions, in which different tasks cannot be delegated
to different processes. Also, they use only one region of
shared memory: the invocations and the resulting new states
are placed at the same address. This leads to the requirement
that the data object must be deterministic (the new state must
be a function of the old state and the invocation), and that
the register where the state of the object is written must be
safe (it is allowed that different processes write the same
new value concurrently into it). So there are three reasons
for the new design: separation of concerns, elimination of
determinacy, and elimination of safe registers.

The progress requirement of the system is that every in-
vocation of an active client terminates within bounded delay
provided that each family of server processes contains at
least one active member.

For simplicity of the example, we do not treat memory
management here. So we prove bounded fairness for the
system under assumption of bounded fairness for memory
management. This shows that the formalism can also be used
for specification purposes. Actually, the theorem that mem-
ory management also makes progress with bounded fairness
is more challenging, but we have been forced to omit it be-
cause of the size of its proof and the large number of relevant
but boring details.

Overview

This paper is organized as follows. In Sect. 2, we define
bounded fairness and give proof rules to infer it. These rules
are counterparts for bounded fairness of some of the UNITY
rules for weak fairness, cf. [2]. In this Section we also show
how to construct wait-freedom in a system with bounded
fairness. The process model and the repertoire of elementary
instructions are described in Sect. 3. In Sect. 4, we give the
specification of our application, the concurrent data-object
of [8].

In Sect. 5 we describe the principal part of our distributed
system, which consists of three families of processes:clients,
linearizers and appliers. The invocations of the clients are
linearized by the linearizers and treated by the appliers. The
proof that this principal part satisfies the safety requirements
of the specification is sketched in [8]. It is based on a me-
chanical proof [10] of safety for the total design, including
memory management, where more than a hundred invari-
ants have been verified mechanically. Our aim in this paper
is to prove progress under assumption of the safety prop-
erties proved before and the progress properties of memory
management that are specified in 5.4.

In Sect. 6, we prove the progress assertion for the system:
every invocation of an active client leads to a configuration
where the invocation has been treated and the client can
invoke again. We have to rely on invariants of the system
that were proved in [8]. We draw conclusions in Sect. 7.

2 Bounded fairness

In this Section we develop the theory of bounded fairness.
We first describe a general set-up of distributed systems with

shared memory. Then we give the definition of bounded
fairness and present a small example and some special cases.
Seven proof rules for bounded fairness are then stated and
proved, followed by some corollaries. We finally show how
bounded fairness can be used to construct wait-freedom.

2.1 Distributed systems and bounded fairness

A distributed system with shared memory consists of a set of
named sequential processes that communicate by means of
shared variables. This is formalized in the following (stan-
dard) way. Theconfiguration consists of the values of the
shared variables together with the values of the private vari-
ables, including the instruction pointers of the processes. We
speak of configuration (instead of global state) to distinguish
it from the state of the object as used in Sect. 4.

We use interleaving semantics. Anexecutionof length
n is a sequence ofn + 1 pairs 〈x.i, q.i〉 with 0 ≤ i ≤ n
such thatx.i is a configuration andq.i is a process name for
every indexi, and that an action of processq.i can make
a transition from configurationx.i to configurationx.(i + 1)
wheneveri < n. Two executions (of lengthsm andn) can
be composed iff the final pair of the first execution equals the
starting pair of the second execution. The composition is the
catenation of the two executions with one of the matching
pairs deleted; so it has lengthm + n.

The system description contains a set ofinitial configu-
rations. A configuration is calledreachableiff it occurs in
an execution that starts in an initial configuration.

For us apredicateis a boolean function of the configu-
ration. A predicate is called aninvariant iff it holds in all
reachable configurations. It is calledstable(or inductive) iff
it is preserved under every action.

Clearly, every stable predicate that holds initially is an
invariant, and every predicate implied by an invariant is also
invariant. These two facts form the main method to prove
invariance, for the set of reachable configurations is usually
not very tractable.

We now introduce the concept of bounded fairness.

Definition. A fairness setis a set of sets of process names.
An execution (i : 0 ≤ i ≤ n : 〈x.i, q.i〉) is called around for
fairness setL iff, for every U ∈ L, there is an indexi < n
with q.i ∈ U . An execution is calledk-fair for L iff it is a
composition ofk rounds forL (if k > 0). Every execution
is regarded as 0-fair forL.

Let P andQ be predicates. We say thatP leads toQ un-
derL within k iff every executionk-fair for L that starts in a
reachable configuration whereP holds contains a configura-
tion whereQ holds. We use the notationL : P o→Q within
k. If the clause “withink” is omitted, we mean that “within
k” can be added for some unspecified natural numberk.

Informally speaking, each memberU of the fairness set
L is a set of processes that are supposed, collectively, to
act often enough. An assertionL : P o→ Q means that, for
every reachable configurationx whereP holds, every exe-
cution that contains enough rounds and starts inx contains
a configuration whereQ holds. Moreover, the lower bound
on the number of rounds is independent ofx.

Progress under bounded fairness 199

One may wonder why an execution is not calledk-fair if,
for everyU ∈ L, it simply containsk actions of processes in
U? The reason is that the actions fromU may need actions of
other processes to have taken place in order to be productive.
The introduction of rounds has the effect that the actions of
the families of processes must be sufficiently mixed, without
imposing overspecific constraints.

Note that we use the same terminology as is used in
UNITY, cf. [2], but that our notion ofleadsto is different,
since it contains bounds and mentions process names and
fairness sets. Another difference with UNITY is that our
processes have names and may have private variables. When
both concepts apply, our concept of “leadsto” implies the
UNITY concept of “leadsto”, but not conversely.

Example.Consider a system with a shared integer variable
t and a shared boolean variableb and the three processes

Inc: if b then t := t + 1 fi ,
Rev: b := false ,
Dec: t := t − 1 .

In Inc (and henceforth), theif statement meansskip if the
guard is false.

We may regard this declaration as an assignment section
of a UNITY program. Then it satisfies:t = 1 leads tot = 0,
becauset is decremented often enough, since, because of
Rev, it cannot be incremented infinitely often.

In our setting, we assume that each of the three processes
Inc, Rev, and Dec repeats the corresponding command in-
finitely often. Consider the fairness setL = {{Rev}, {Dec}}.
This specifies thatRev and Dec each are executed often
enough. Yet,t = 1 does not lead tot = 0 in bounded fair-
ness. In fact, in the first round, processRevmakesb = false,
but there is no upper bound for the number of applications
of Inc precedingRev. Therefore, there is no upper bound for
the number of timesDec must be executed to gett = 0.

If we replace the guard ofInc by, say,b ∧ t < 9, we
do have thatt = 1 leads tot = 0 with respect toL. If we
then replaceL by L = {{Rev, Dec}}, it is false again, since
there is no guarantee thatRevis ever executed, or thatDec
is executed often enough.�

The definition of bounded fairness has two special cases
worth mentioning. In the first case,L is the set of the single-
ton sets{q} whereq ranges over all process names. Now,
an execution is a round if and only if every process acts in
it at least once. This is the case of bounded fairness with
fault intolerance, the form of bounded fairness we proposed
in [7].

In the second special case,L = {{q}} for some fixed
processq. Here a round is an execution in which process
q acts at least once. So,L : P o→ Q means that process
q establishesQ starting in a configuration whereP holds
in a bounded number of steps, regardless of the actions of
the other processes. This is the case of wait-freedom, as
proposed in [5].

2.2 Proof rules

We now present and prove a number of rules about bounded
fairness that are needed (and sufficient) to prove bounded

fairness in our application. In these rules we use fairness
setsL andM , and predicatesP , Q, R, P ′, Q′. Most of the
rules state that someleadsto relation can be inferred from
other leadstorelations. We have two starting rules.

If U is a set of process names, we writeU : P B Q
to denote that, for every processq ∈ U , every action ofq
that starts in a reachable configuration whereP holds ends
in a configuration whereQ holds. If the setU is omitted,
we mean relationB to hold for the set of all processes.

Rule 0 (implication). If predicateP is stronger thanQ, then
L : P o→ Q within 0. �
Rule 1 (step). AssumeP ∧¬Q B P ∨Q andU : P ∧¬Q B
Q. Then we have{U} : P o→ Q within 1.

Proof. Let (i : 0 ≤ i ≤ n : 〈x.i, q.i〉) be a round for fairness
set{U}, which starts in a reachable configuration whereP
holds. It suffices to prove that the round contains a config-
uration whereQ holds. Since it is a round for{U}, there
exists j < n with q.j ∈ U . If there is an indexi ≤ j
such thatQ holds in x.i we are done. Otherwise we use
P ∧¬Q B P ∨Q and induction to prove that all configura-
tions x.i with i ≤ j satisfyP ∧ ¬Q. In particular,P ∧ ¬Q
holds inx.j. ThenU : P ∧ ¬Q B Q implies thatQ holds
in x.(j + 1). �
Rule 2 (monotony). Assume thatL ⊆ M , thatL : P o→ Q
within k, thatP ′ is stronger thanP , thatQ is stronger than
Q′, and thatk ≤ m. Then we haveM : P ′ o→ Q′ within
m.

Proof. Every executionm–fair for M is alsok–fair for L.
So, if such an execution starts in a reachable configuration
whereP ′ holds, it starts in a reachable configuration where
P holds, and hence contains a configuration whereQ holds
and where thereforeQ′ holds.�
Rule 3 (disjunction). Let (i :: P.i) be a family of predicates
such thatL : P.i o→ Q within k for all i. Then we have
L : (∃ i :: P.i) o→ Q within k.

Proof. Let h be a k-fair execution forL that starts in a
configuration where (∃ i :: P.i) holds. Then there existsi
such thatP.i holds in this configuration. SinceL : P.i o→Q,
the execution contains a configuration whereQ holds.�
Remark.It must be noted (as pointed out by a referee) that
Lemma 3 becomes false when the two clauses “withink” are
omitted andi ranges over an infinite set. On the other hand,
if i ranges over a finite set, Lemma 3 implies its variation in
which the clauses “withink” are omitted. The point is that
eachi may need a differentk, but if the range ofi is finite,
the greatestk will do. �
Rule 4 (delegation). LetU be a (nonempty) finite set of
processes such that{{q}} ∪ L : P o→ Q for every q ∈ U .
Then we have{U} ∪ L : P o→ Q .

Proof. SinceU is finite, we can choose a natural numberk
such that{{q}} ∪ L : P o→ Q within k for every q ∈ U .
Let h be a (#U × k)-fair execution for{U} ∪ L, which
starts in a reachable configuration whereP holds. Sinceh
is a composition of #U × k rounds for{U} ∪ L, there is
a processq ∈ U such thath is a composition of at leastk
rounds for{{q}}∪L (a version of the pigeonhole principle).

200 W.H. Hesselink

Therefore,h is a k–fair execution for{{q}} ∪ L. It follows
that h contains a configuration whereQ holds.�
Remark.It is in Rule 4 that complexity suffers for fault
tolerance, in the sense that the upper bound for{U} ∪ L :
P o→ Q is the product of #U with the upper bound for
{{q}} ∪ L : P o→ Q. Indeed, all processesq may have to
work for the goalQ. �
Rule 5 (transitivity). Assume thatL : P o→ Q within k and
L : Q o→ R within m. ThenL : P o→ R within k + m.

Proof. We first note that, fork, m ≥ 0, an execution is
k + m-fair if and only if it can be split as a composition of
a k-fair execution with anm-fair execution.

Let h be an execution, (k +m)-fair for L, that starts in a
reachable configuration whereP holds. Executionh is the
composition of executionsh0 andh1 such thath0 is k-fair
and h1 is m-fair, both for L. Since executionh0 starts in
a configuration whereP holds, it contains a configuration
whereQ holds. Thereforeh0 has a suffixh2 that starts in
a configuration whereQ holds. The executionsh2 andh1
have a compositionh3, which is m-fair for L and starts
in a reachable configuration whereQ holds. Thereforeh3
contains a configuration whereR holds. Sinceh3 is a suffix
of h, this proves thath contains a configuration whereR
holds.�
Rule 6. Assume thatL : P o→Q within k and thatR∧¬Q B
R. Then we haveL : P ∧ R o→ Q ∧ R within k.

Proof.Let (i :: 〈x.i, q.i〉) be an executionk-fair for L, which
starts in a reachable configuration whereP ∧ R holds. The
execution has a configuration whereQ holds. Letj be the
first index such thatQ holds in x.j. Using R ∧ ¬Q B R
and induction ini, we get thatR holds in all configurations
x.i with i ≤ j. In particular,Q ∧ R holds inx.j. �

In the remainder of this paper, we only use these Rules
to prove bounded fairness. First, three corollaries.

Corollary 0. Assume thatL : P ∧ ¬R o→ Q ∨ R within k
andL : Q o→ R within m. ThenL : P o→ R within k + m.

Proof. We first observe thatL : P ∧ R o→ Q ∨ R within k
because of Rule 0 and Rule 2. Using Rule 3, this is combined
with the assumption to yieldL : P o→ Q ∨ R within k. A
similar argument yieldsL : Q∨R o→R within m. Therefore
the assertion follows from Rule 5.�
Corollary 1. Let vf be a state function with values in the
natural numbers such that, for all natural numbersm,

L : P ∧ vf ≤ m o→ Q ∨ (P ∧ vf < m) .

Then we haveL : P ∧ vf ≤ m o→ Q.

Proof. This follows from Corollary 0, by induction inm.
The base case uses thatvf < 0 is false.�
When translated to UNITY, the next corollary is the PSP rule
of [2] page 65 (PSP stands for progress safety progress).

PSP-rule. Let L : P o→ Q within k andR ∧ ¬S B S ∨ R.
Then we haveL : P ∧ R o→ S ∨ (Q ∧ R) within k.

Proof. Monotony impliesL : P o→ Q′ within k for Q′ =
S ∨ Q. We putR′ = S ∨ R. Then it is easy to verify that
R′∧¬Q′ B R′. Therefore Rule 6 impliesP ∧R′ o→Q′∧R′
within k. Then the assertion follows by monotony .�

Remark.Conversely, Rule 6 follows from the PSP-rule by
taking S := Q ∧ R. �

2.3 The construction of wait-free processes

Assume that we have a system that satisfiesL : P o→ Q
for predicatesP andQ and a finite fairness setL. One can
then easily construct a new process that, from a configu-
ration whereP holds, in a wait-free manner establishes a
configuration whereQ holds. This goes as follows. Take a
finite set M of processes that contains a member of each
set U ∈ L. Let processS be a parallel composition of the
members ofM scheduled in a round robin fashion. Then
processS, starting inP , establishesQ in a bounded number
of steps, independently of the actions of other processes, i.e.,
processS leads fromP to Q in a wait-free manner. This is
proved as follows.

Assume thatL : P o→ Q within k. Consider an execu-
tion that starts in a configuration whereP holds and that
contains (#M × k) actions of processS. This execution is a
composition ofk parts in each of which processS performs
#M actions. Since processS performs the actions of the
members ofM in a round robin fashion, and sinceM ∩ U
is nonempty for everyU ∈ L, each of these parts is a round
for fairness setL. Therefore, the execution itself isk-fair
for L and, hence, contains a configuration whereQ holds.
This proves thatS establishesQ from P within (#M × k)
actions.

It follows that, in design, bounded fairness can be used
as a preparation for wait-freedom. This is important since
bounded fairness allows delegation of subtasks to differ-
ent (families of) processes whereas wait-freedom always re-
quires that all tasks can be done by the same process. Thus,
design for bounded fairness allows a separation of concerns
precluded by the requirement of wait-freedom.

Remark.Note that the word “establishes” in the informal
description of wait-freedom is wrong in that it suggests an
unintended causality. The configuration whereQ holds need
not be reached by a step ofS. �

3 The modelling and the repertoire

We now describe the process model in more detail. We con-
sider looping sequential processes with numbered atomic in-
structions and a private variablepc as instruction pointer.
This instruction pointer is needed since most of the invari-
ants and progress predicates will refer to it. Indeed, the ap-
plication we are aiming at has a fine-grain interleaving of
the processes that forces us to use such low-level instru-
ments. Since we have program locations, we may as well
make (disciplined) use ofgoto commands.

We distinguish between actual variables and ghost vari-
ables, and between shared variables and private variables.
The shared variables serve as main memory and for the
communication between processes. The private variables are
used for private computations and as pointers in the shared
data space. Ghost variables are used in the specification and
the proof of the algorithm. They are computationally irrel-
evant. Alternatively, they are called auxiliary variables or

Progress under bounded fairness 201

history variables, see (e.g.) [11,12]. Ghost variables are not
allowed in guards and in the righthand side of assignments
to ordinary variables. In concrete programs we give the as-
signments to ghost variables between braces, but we do not
do so in idealized ones.

We also have to discuss the repertoire of atomic instruc-
tions. Every atomic instruction refers to at most one shared
variable, cf. [11], preferably at most once. We have three
types of shared integer variablest that can occur more than
once in an instruction: counters, consensus variables and
compare & swap variables. Such a variablet is called a
special variable. It has one of the special instructions

t := t ± 1 {counter} ;
if t = 0 then t := v fi {consensus} ;
if t = u then t := v fi {compare & swap} .

Here,u andv are private variables. These instructions may
be combined with modifications of private variables and
ghost variables. A special variablet can also be reset by
t := 0, but cannot be modified in other ways. Of course, it
can occur in expressions. A consensus variablet can also
be boolean instead of integral. In that case, the guardt = 0
is replaced by¬t and the assignmentt := 0 is replaced by
t := false.

4 A concurrent data object in shared memory

The theory of Sect. 2 is applied to the construction of a
concurrent data object as introduced in [4]. Aconcurrent
data objectis defined as a data structure shared by concur-
rent processes. So there are a number of client processes
that may concurrently inspect or modify the state of the ob-
ject. Such actions of the clients are calledinvocations. The
results of these invocations must be compatible with some
linear history of the object, but on the other hand the clients
must be served with bounded delay. The object resides in
a shared data space. It is passive, but there are families of
server processes to handle the invocations.

The object is specified as follows, cf. [8]. Theabstract
data object is a quadruple〈W, w0, U, R〉 where W is the
state space of the object,w0 ∈ W is the initial state,U is
the input space (the set of invocations), andR ⊆ W ×U×W
is the transition relation. If the object is invoked in statew
with invocationu, it may go into statey iff 〈w, u, y〉 ∈ R.
We assume that relationR is total, i.e., for every pair〈w, u〉
there existsy with 〈w, u, y〉 ∈ R. The new statey need not
be unique (as was required in [6]).

The concurrent data object〈W, w0, U, R〉 consists of a
procedure that, conceptually, acts on one shared program
variablew of type W and that could be specified by

proc apply (in p : Cli, u : U ; out y : W)
{pre w = w′, post w = y ∧ 〈w′, u, y〉 ∈ R}

for every initial valuew′ ∈ W . HereCli is the set of client
processes. A client processp calls procedureapply in the
form apply(p, u, y) for the treatment of invocationu to obtain
the new statey. So,p andu are input parameters andy is
a result parameter. All clients may callapply concurrently
and repeatedly. The problem is that concurrent calls must be
treated each with bounded delay and yet, logically, in some
linear order.

Example.The data objectW could be a data base. Then
invocationsu would comprise queries in the data base as
well as commands to modify the data. Presumably, we would
not want to output the whole contentsy of the data base in
response to every invocation but only a tiny projection of
it, e.g., the result of the query or a message “done”. It is
clearly useful that different clients can access the data base
concurrently, and that they need not wait unnecessarily.�

The aim is to construct a distributed implementation of
apply. Since relationR is given (andR is total), we may
assume that a sequential implementation ofR is available
in the form of

proc locapply(in u : U, w : W ; out y : W)
{ post 〈w, u, y〉 ∈ R }

This procedure can be used by the processes, provided that
every atomic instruction mentions at most one shared vari-
able and that concurrent reading and writing of shared vari-
ables of typesU andW is avoided.

For each client processp, we define the local historyβ.p
to be the list of consecutive pairs〈u, y〉 of corresponding in-
vocations and results of processp. Conceptually, each client
executes the infinite loop

∗ [u := arbitrary ; apply (self, u, y) ; β := 〈u, y〉 : β]

whereself is the name of the executing process and where
〈u, y〉 : β is the list obtained by prefixing listβ with 〈u, y〉.
Note that we treatβ.q as a private (ghost) variableβ of
processq.

The requirement that concurrent invocations be treated,
logically, in some linear order is calledlinearizability. It
is formalized as follows. We require that the history of the
object can be represented by an ordered listσ of triples
〈p, u, y〉 ∈ Cli × U × W . The occurrence of triple〈p, u, y〉
means that clientp has performed an invocationu with re-
sulting statey. This is formalized as follows.

Let the projectionσ | p of σ be defined recursively as the
list of pairs given byε | p = ε for the empty listε, and

(〈q, u, y〉 : σ)|p = if p = q then 〈u, y〉 : (σ|p) elseσ|p fi .

We then require that historyσ is related to the local histories
by the invariant

(Lin0) β.p = σ | p for every client processp,
wheneverp is not invoking.

Here, “p is not invoking” means thatp is at the start of the
body of its loop: it has to choose a new value foru.

To express thatσ is a legal sequential history of the
abstract object, we define listσ to beacceptableiff we have
the invariant

(Lin1) acc.σ ,

where predicateacc is defined as follows. LetlaSta.σ be
the last state of historyσ, defined by laSta.ε = w0 and
laSta.(〈p, u, y〉 : σ) = y. Thenacc is given by

acc.ε = true
acc.(〈p, u, y〉 : σ) = acc.σ ∧ 〈laSta.σ, u, y〉 ∈ R

202 W.H. Hesselink

Thus, the data object is said to be linearizing iff one can
construct a ghost variableσ with initially σ = ε, that for
every execution satisfies the invariants (Lin0) and (Lin1).

We model the repeated calls of procedureapplyby means
of a number of looping sequential processes. For each pro-
cess, we number the atomic instructions and use an explicit
instruction pointerpc, which is a private variable.

So, the programs of the client processes have the form

20 u := arbitrary ;
21 instructions to putu in shared memory ;
. . . and to obtain aresult ;
. . . β := 〈u, result〉 : β ;
. . . other instructions ; goto 20 .

Now requirement (Lin0) is more explicitly expressed in

(Lin0’) pc.q = 20 ⇒ β.q = σ | q .

We turn to aspects of the implementation of the data object.
For the sake of separation of concerns, we split its task into
four parts: linearization of the invocations, application of
the transition relation of the object, memory management
for the invocations, and memory management for the state
of the object. For the sake of fault tolerance we delegate
each of these four tasks to a family of server processes. We
use a familyLin of linearizers to linearize the invocations, a
family App of appliers to update the data object and return
the result, and two families,Coll of collectors andDistr of
distributors, for memory management.

The progress assertion to be proved is that every client
q0 with pc.q0 = 21 arrives within bounded delay back at
pc.q0 = 20, provided the client itself is active and each
family of server processes continuously contains an active
process. This condition is formalized as

(0) L : pc.q0 = 21 o→ pc.q0 = 20 ,
whereL = {{q0}, Lin, App, Coll, Distr}.

5 A linearizing design

We come to the description of the system of [8], as speci-
fied in Sect. 4. For the ease of presentation and to simplify
the proof of progress, we make some minor modifications in
the design. Below we give the programs for the processes in
Cli, Lin, App and the specifications of the processes inColl
and Distr. As announced above, we do not treat memory
management. In [8], the programs for the memory manage-
ment processes (Coll andDistr) are too nondeterministic to
guarantee progress. Therefore, in [9], they are changed in a
minor way and then their progress properties are proved.

In each declaration of shared variables, we indicate
which processes are allowed to modify the variable by
adding the families of allowed modifiers between braces.

5.1 The shared data and the clients

We use two regions of shared memory, one for invocation
valuesu : U , and one for state valuesw : W . Pointers
into these regions are calledaddressesand locations, re-
spectively. In both cases we use value 0 as thenil address;
nothing is stored there.

We thus introduce finite setsAd and Lo which do not
contain 0, andAd0= {0} ∪ Ad andLo0 = {0} ∪ Lo, and the
shared arrays

inv : array Ad of U {Cli} ;
sta : array Lo of W {App} ;
post: array Ad0 of Lo0 {App, Coll} .

Array inv holds the invocations. As indicated in the declara-
tion, it is modified only by client processes. Arraysta holds
the states and is only modified by appliers. Arraypostpoints
from an invocation address to the location of the resulting
state. We require thatpost.i = 0 holds until the invocation
inv.i has been treated. It is only for convenience in the in-
variants that we allow index 0 forpost (with the invariant
post.0 = 0).

Recall thatCli is the set of names of client processes.
We write Cli0 = {0} ∪ Cli and use shared arrays

iloc : array Cli of Ad0 {Cli, Coll} ;
own : array Ad0 of Cli0 {Cli, Coll} .

If it is nonzero,iloc.p is the address of the current invocation
of processp. If it is nonzero,own.i is the client with invo-
cation at addressi. We shall treatown as a ghost variable.

We now come to the program of the clients (see below).
When a clientq has obtained an invocation valueu, it waits
for an invocation addressi = iloc.q /= 0. It writes its valueu
at inv.i and then sets a flagtolin.i to indicate thati contains
an invocation ready to be included in the linearization. It
then waits until the invocation has been treated, i.e., until
sl = post.i /= 0. It reads the resulting statesta.sl and then
resets itsiloc field to indicate that it can use a new address.
For the purpose of garbage collection, it also lowers a flag
isil at addressi.

So we use shared boolean arrays

tolin : array Ad0 of Bool {Cli, Lin} ;
isil : array Ad0 of Bool {Cli, Coll} .

Truth of tolin.i means thatinv.i is a waiting invocation, and
isil.i indicates that addressi has an owner.

In this way, we arrive at program Client for the client
processes. Recall thatself is the name of the executing pro-
cess. Client has the private variablesu for the current in-
vocation,i and sl as copies of shared information, and the
ghost variableβ mentioned in the specification. Variablesi
andsl are used instead ofiloc.self andpost.i to avoid that a
single instruction has to access more than one shared vari-
able. The result of the invocation is obtained in the read
action 25, where ghost variableβ is updated.

Client
20 u := arbitrary ;
21 i := iloc.self ; if i = 0 then goto 21 fi ;
22 inv.i := u ;
23 tolin.i := true ;
24 sl := post.i ; if sl = 0 then goto 24 fi ;
25 { β := 〈u, sta.sl〉 : β } ;
26 iloc.self := 0 { own.i := 0} ;
27 isil.i := false; goto 20 .

Readers concerned about safety should refer to [8]. The
problem of this paper is progress. Program Client contains
two points where progress is threatened: it uses busy waiting
at 21 and 24. We come back to this in Sect. 6.

Progress under bounded fairness 203

5.2 Linearization

We introduce a familyLin of server processes for the lin-
earization of the invocations. The task of each linearizer is to
enqueue all pending invocations of clients. We provide each
linearizer with private variablesz : Ad0 ands : Cli and the
linearizer has the task to linearize invocation addressz of
client s. The clients must be treated fairly. We therefore pro-
vide a functionnextCli to choose a new client. This function
traverses the setCli of clients in the sense that, ifq executes
s := nextCli(q, s) repeatedly, all elements ofCli are met in
some order. FunctionnextCli has first argumentq, so that
the order may differ for different linearizers. Indeed, if dif-
ferent linearizers are concurrently active, it is advantageous
to let them use different orders to avoid congestion.

From the abstract point of view, we linearize the invo-
cations by enqueueing them in a shared ghost variable

ilist : queue ofAd {Lin, App} .

So, the idealized linearizer would execute the infinite loop

∗ [z := iloc.s ;
if tolin.z then

ilist := ilist ++ 〈z〉 ;
tolin.z := false

fi ;
s := nextCli(self, s)] .

We need no testz /= 0 here, since we keep the invariant
¬ tolin.0. The operator ++ stands for concatenation of lists.

We implementilist by a list with links represented bynx
and a tail represented byinvTail (invHeadin [8]), according
to the shared variable declarations

nx : array Ad0 of Ad0 {Lin, Coll} ;
invTail : Ad {Lin} .

The representation invariants forilist are given in Sect. 6.3.
In view of the rules for occurrence of shared variables in

atomic commands, we provide each linearizer with a private
variabley as a copy of the shared variableinvTail. The ab-
stract assignmentilist := ilist ++〈z〉 is represented concretely
by

y := invTail ;
{ nx.y = 0 ?} nx.y := z ;
{ invTail = y ? } invTail := z .

Since other linearizers may be active concurrently, this code
is only applicable in so far as the assertions between braces
hold (this is merely the intuition, we do not intend to give the
question marks a formal meaning). The situation is sketched
in diagram Fig. 1 where a solid arrow represents the initial
value of a shared variable and a dashed arrow represents its
new value.
In order to avoid that the collector processes recycle ad-
dresses prematurely, we introduce a shared arraycnt for
reference counting, declared by

cnt : array Ad of int {Lin, App} .

In this way we arrive at the following program whereilist
is merely a ghost variable:

Linearizer

��
��

z ��
��

s� iloc

��
��

y

?
nx

-

@@
@@

@@R

invTail

Fig. 1.

29 y := invTail ;
30 cnt.y := cnt.y + 1 ;
31 if y /= invTail then goto 38 fi ;
32 z := iloc.s ;
33 if ¬tolin.z then

s := nextCli(self, s) ; goto 38 fi ;
34 if nx.y = 0 then

nx.y := z { ilist := ilist ++ 〈z〉}
s := nextCli(self, s) fi ;

35 z := nx.y ;
36 tolin.z := false ;
37 if invTail = y then invTail := z fi ;
38 cnt.y := cnt.y − 1 ; goto 29 .

The test at 31 is needed for the case that a collector recycles
addressy.q when pc.q = 30. The guards of 34 and 37 are
needed since several linearizers may be active concurrently.
The special forms of the atomic commands 34 and 37 show
that the shared variablenx.y is a consensus variable and that
invTail is a compare & swap variable.

Note that a linearizer may stop functioning after execut-
ing the then part of 34. Then progress requires that another
linearizer executes 35, 36, and thethen part of 37. Such op-
erational arguments will not appear in the proof of progress
in Sect. 6, but they were essential for the design of the sys-
tem.

5.3 Application

We introduce a familyApp of appliers, which concurrently
compute and store the results of procedurelocapply for in-
vocations inilist. So the queueilist produced by the lineariz-
ers is consumed by the appliers. We use a shared variable
staHeadto stand for the head of queueilist and assume that
post.staHeadis the location of the current state of the object.
Thereforenx.staHeadis the address of the invocation that is
to be treated next.

An applier q can be active when it has a location
staloc.q /= 0 to hold a new state. Recall from Sect. 4 that
σ is the shared ghost variable that holds the history of the
object. We thus have the shared variables

staHead: Ad {App} ;
staloc: array App of Lo0 {App, Distr} ;
σ : list of Cli × U × W {App} .

The appliers use private variablessm, sl for locations,y, z
for addresses,linv for an invocation, andnew for a state,
all according to the situation sketched in diagram Fig. 2, as
explained below and formalized in program Applier.

204 W.H. Hesselink

�
�

�
�linv

inv� ��
��

z -post

��
��

sm -sta
�
�

�
�new

��
��

y -post

��
��

sl -sta
�
�

�
�“old”

?
nx

-

@@
@@

@@R

staHead

6staloc

Fig. 2.

We first give an idealized code for the appliers, again only
applicable when the assertions between braces hold.

∗ [sm:= staloc.self { sm/= 0 ?} ;
y := staHead; z := nx.y { z /= 0 ?} ;
linv := inv.z ; sl := post.y ;
locapply(linv, sta.sl, new) ; sta.sm:= new ;
{ post.z = 0 ?} post.z := sm;
σ := 〈own.z, linv, new〉 : σ ;
{ y = staHead? } staHead:= z ; ilist := tail.ilist ;
{ post.z = sm? } staloc.self := 0] .

The first two question marks here are a matter of waiting.
After that, the applier can perform a private computation of
the next statenew, which is then stored atsta.sm. The third
question mark is more critical. Here the first applier “wins”:
assignssm to post.z and extendsσ accordingly (recall that
own.z is the client that owns the invocation atz). At the
fourth question mark, the first applier that comes there with
currenty movesstaHeadforward and removes the head from
ilist. Finally, if locationsmhas been used, garbage collection
is informed of the need of a new location.

The concrete program Applier is given below. Here, all
potential interferences have been precluded. For this purpose
we use some additional tests, and the shared variable

usob: array Ad0 of Bool {App, Coll} .

Roughly speaking,usob.y indicates that addressy is (or will
be) an element ofilist. Array usobis used in the collectors,
together withisil and cnt, to avoid premature garbage col-
lection.

Applier
43 sm:= staloc.self ; if sm= 0 then goto43 fi ;
44 y := staHead;
45 cnt.y := cnt.y + 1 ;
46 if y /= staHead then goto 57 fi ;
47 z := nx.y ; if z = 0 then goto 57 fi ;
48 linv := inv.z ;
49 sl := post.y ;
50 locapply(linv, sta.sl, new) ;
51 sta.sm:= new ;
52 if post.z = 0 then

post.z := sm ;
{ σ := 〈own.z, linv, new〉 : σ } fi ;

53 if staHead= y then
staHead:= z { ilist := tail.ilist } fi ;

54 if post.z /= sm then goto 56 fi ;
55 staloc.self := 0 ;

56 usob.y := false ;
57 cnt.y := cnt.y − 1 ; goto 43 .

With respect to progress, it should be noted that an applier
may execute thethen part of 52 and then stop functioning
(for some time). In that case, another applier may have to ex-
ecute thethen part of 53, after an unproductive computation
at 50 and skipping at 52 since it findspost.z /= 0.

It has been proved, cf. [8], that the system of the clients,
linearizers and appliers, described here, preserves the invari-
ants (Lin0) and (Lin1) of the specification in Sect. 4.

5.4 Specification of garbage collection

We finally specify the collectors (inColl) and the distributors
(in Distr). These processes have to supply the clients and the
appliers with free addresses and locations, respectively, as
formalized in the progress assertions

(1) {Coll} : true o→ iloc.q /= 0 , for all q ∈ Cli ,
(2) {Coll, Distr} : true o→ staloc.q /= 0 ,

for all q ∈ App .

On the other hand, collectors and distributors must preserve
all invariants forCli, Lin, App, described in [8]. In the me-
chanical proof of [10], we have verified this for the programs
for Coll andDistr of [8].

It is easy to see that progress cannot be guaranteed if the
setsAd andLo are too small in comparison with the sets of
processes. Therefore, we assume that the setsAd andLo are
large enough. In [9], we obtain lower bounds for the sizes
of Ad and Lo for which the implementations of collectors
and distributors provided satisfy the requirements (1) and
(2). Thus, in the remainder of this paper, we can treat (1)
and (2) as postulates.

6 Formal proof of progress

In this Section we prove progress assertion (0) of Sect. 4
under assumption of postulates (1) and (2). The global struc-
ture of the proof is as follows. Since (0) expresses progress
for the pc of an active client, the main argument follows
program Client. Client waits at two points: atpc = 21 and
pc = 24. Progress at 21 is shown by means of postulate (1).
Progress at 24, however, requires activity of both lineariz-
ers and appliers. These activities are specified by separate
progress assertions that are dealt with in separate subsec-
tions.

Progress under bounded fairness 205

6.1 The global proof

We now give the global proof of progress assertion (0) of
Sect. 4. Recall that it expresses that an arbitrary clientq0
gets its invocation treated, and that it reads

(0) L : pc.q0 = 21 o→ pc.q0 = 20 , where
L = {{q0}, Lin, App, Coll, Distr} .

In the proof of (0), we use the proof rules of Sect. 2 and
postulates (1) and (2) above. We postpone the proofs of some
derived proof obligations. We need many invariants that have
been established for the proof of safety. Such invariants are
calledold invariants and can be found in [8].

The proof of (0) follows the instructions of program
Client. It is easy to see that

pc.q0 = 21∧ iloc.q0 = 0 B pc.q0 = 21 .

Therefore, by Rule 6, postulate (1) implies

(3) {Coll} : pc.q0 = 21 o→
pc.q0 = 21∧ iloc.q0 /= 0 .

Sincepc andi are private variables, andiloc.q0 is a consen-
sus register that is reset only byq0 itself in instruction 26
(cf. [8]), we have theB relations

pc.q0 = 21 ∧ iloc.q0 /= 0
B pc.q0 ∈ {21, 22} ∧ iloc.q0 /= 0 ;

{q0} : pc.q0 = 21∧ iloc.q0 /= 0 B pc.q0 = 22 .

By Rule 1 this implies

{{q0}} : pc.q0 = 21 ∧ iloc.q0 /= 0 o→ pc.q0 = 22 .

By similar arguments we obtain

{{q0}} : pc.q0 = 22 o→ pc.q0 = 23 ;
{{q0}} : pc.q0 = 23 o→ pc.q0 = 24∧ tolin.(i.q0) .

Therefore Rule 5 yields

(4) {{q0}} : pc.q0 = 21 ∧ iloc.q0 /= 0 o→
pc.q0 = 24 ∧ tolin.(i.q0) .

Here we are at the main critical point of Client: busy wait-
ing at 24 must not lead to unbounded delay. This point is
treated by precisely specifying the progress requirements for
linearizers and appliers, (5) and (6) below, and subsequently
proving that these requirements are met.

An old invariant (Dq3) says thati.q0 /= 0 when 21<
pc.q0 ≤ 26. So, in the postcondition of (4) we may add
i.q0 /= 0. For the moment we replacei.q0 by an arbitrary
addressk /= 0. In Sect. 6.2 we prove fork /= 0 that

(5) {Lin} : tolin.k ∧ post.k = 0 o→ k = nx.invTail .

In Sect. 6.3 we use postulate (2) to prove for every address
k /= 0 that

(6) {App, Coll, Distr} : k = nx.invTail o→ post.k /= 0 .

By Rule 5 (and also using Rules 0, 2, 3), the formulas (5)
and (6) combine to yield

L : tolin.k o→ post.k /= 0 .

On the other hand, sincepc and i are private variables, we
have

pc.q0 = 24∧ i.q0 = k ∧ post.k = 0
B pc.q0 = 24∧ i.q0 = k .

By Rule 6 (and 2), these two facts combine and yield

L : pc.q0 = 24∧ i.q0 = k ∧ tolin.k
o→ pc.q0 = 24∧ post.(i.q0) /= 0 .

Sincek ranges over the finite setAd, Rule 3 (disjunction)
now implies

(7) L : pc.q0 = 24∧ tolin.(i.q0)
o→ pc.q0 = 24∧ post.(i.q0) /= 0 .

For the last stretch, we use old invariants that express that
post.k is reset to 0 (by collectors) only whenk /= iloc.q, and
that iloc.q = i.q when 21< pc.q ≤ 26. This implies that

pc.q0 = 24 ∧ post.(i.q0) /= 0
B pc.q0 ∈ {24, 25} ∧ post.(i.q0) /= 0 .

Then, again using Rules 1 and 5, we easily obtain

(8) {{q0}} : pc.q0 = 24∧ post.(i.q0) /= 0
o→ pc.q0 = 20 .

Finally, formula (0) follows by Rule 5 (and 2) from (3), (4),
(7), and (8). Thus, it remains to prove the formulas (5) and
(6).

6.2 Progress for linearization

In this subsection we treat proof obligation (5), which ex-
presses that an address to be linearized is linearized within
bounded delay. This is the joint responsibility of the family
Lin. Therefore, the proof of (5) needs inspection of program
Linearizer. We prove formula (5) for a fixed addressk1 /= 0.

By old invariants the preconditiontolin.k1 ∧ post.k1 =
0 implies thatk1 = iloc.q1 for q1 = own.k1 ∈ Cli. By
Rule 3 (disjunction), it therefore suffices to prove{Lin} :
P1 o→ Q1, where for givenq1 ∈ Cli the predicatesP1 and
Q1 are given by

P1 : tolin.k1 ∧ post.k1 = 0 ∧ k1 = iloc.q1 ,
Q1 : k1 = nx.invTail .

Since we have to establishQ1, it is useful to know that 34
is the only command that can assign a nonzero value to an
element ofnx. On the other hand we have the old invariant

(Cq2) 31< pc.q ≤ 37 ∧ nx.(y.q) = 0 ⇒
y.q = invTail .

This invariant implies that a linearizerq establishesQ1
whenever it executes 34 withnx.(y.q) = 0 and z.q = k1.
As for the precondition of our proof obligation, it follows
from some other old invariants thatP1 is not falsified while
Q1 is false:

(v0) P1 ∧ ¬Q1 B P1 .

We now have to prove progress towards a situation
where a linearizerq executes 34 withnx.(y.q) = 0 and
z.q = k1. Unfortunately, any given linearizerq may always
find nx.(y.q) /= 0 (individual starvation of a linearizer). It is
only collectively that the task will be done.

For every linearizerq we introduce the private ghost
variable gs.q as the number of applications ofnextCli (in

206 W.H. Hesselink

33 or 34) needed to reachs.q = q1. Put pI = #Cli. We let
variablegs.q be modified only in thethen parts of 33 and
34, according to the additional (ghostly) instruction

{ if gs= 0 then gs := pI − 1 else gs := gs− 1 fi } .

It satisfies the invariants 0≤ gs.q < pI and

gs.q = 0 ≡ s.q = q1 .

The text of program Linearizer may suggest thatz.q =
iloc.(s.q) when 32< pc.q ≤ 34, but this is not necessar-
ily the case (iloc.(s.q) can be modified). We therefore adapt
gs.q by introducing a state functionvs.q given by

vs.q = if gs.q = 0 ∧ 32 < pc.q ≤ 34 ∧ z.q /= iloc.q1
then pI else gs.q fi .

Functionvs.q can only increase in thethen parts of 33 and
34 whengs.q = 0 ∧ z.q = iloc.q1 holds, or wheniloc.q1 is
modified.

Aiming at an application of Corollary 1 of Sect. 2, we
define the variant function

vf = (
∑

q ∈ Lin :: vs.q) + #(nx.invTail /= 0) ,

where, for booleanb, we write #b to denote 1 ifb holds and
0 otherwise.

Sincevf is bounded, our proof obligation{Lin} : P1 o→
Q1 follows by Corollary 1 from

{Lin} : P1 ∧ vf ≤ m o→
Q1 ∨ (P1 ∧ vf < m) .

It is not hard to prove the safety property

(v1) P1 ∧ vf ≤ m B Q1 ∨ vf ≤ m .

We have thatinvTail is modified only in 37, whereas old
invariants imply that, ifpc.q = 37 andinvTail = y.q, then
nx.(y.q) /= 0 andnx.(z.q) = 0. Due to the second summand
of vf, this implies that, for any constant addressk,

(v2) vf ≤ m ∧ invTail = k B
vf < m ∨ invTail = k .

For any fixed addressk we introduce the predicates

P2 : P1 ∧ vf ≤ m ∧ invTail = k ,
Q2 : Q1 ∨ (P1 ∧ vf < m) .

By disjunction and delegation (Rules 3 and 4), it now suf-
fices to prove the progress assertion{{q}} : P2 o→ Q2 for
everyq ∈ Lin andk ∈ Ad.

The results (v0), (v1), (v2) combine to yield

(v3) P2 ∧ ¬Q2 B Q2 ∨ P2 .

By inspection of program Linearizer and Rules 1, 2, 3, 5,
we obtain, for anyq ∈ Lin, k ∈ Ad,

{{q}} : true o→ invTail /= k ∨ (y.q = k ∧ pc.q = 31) .

The PSP–rule with (v3) then implies

{{q}} : P2 o→ Q2 ∨ (P2 ∧ y.q = k ∧ pc.q = 31) .

Again by inspection of program Linearizer, one can prove
that

{q} : P2 ∧ y.q = k ∧ pc.q = 31
B y.q = k ∧ pc.q = 32 ;

{q} : y.q = k ∧ pc.q = i ∧ 31 < i < 37
B y.q = k ∧ pc.q = i + 1 ;

{q} : P2 ∧ y.q = k ∧ pc.q = 37 B invTail /= k .

Now Rule 1 with (v3) and transitivity implies

{{q}} : P2 ∧ y.q = k ∧ pc.q = 31 o→ Q2 .

By Corollary 0, this implies{{q}} : P2 o→Q2 as required.
This concludes the proof of (5).

6.3 Progress for application

The subsection is devoted to the proof of formula (6) that
nx.invTail = k for k /= 0 leads topost.k /= 0. Note that this
expresses that every invocation addressk, once enqueued,
gets an associated object state within bounded delay. In order
to get the postcondition of (6) we use the old invariant

(Bq2) post.staHead/= 0 ,

In order to prove (6), it therefore suffices to prove fork /= 0
that

{App, Coll, Distr} : k = nx.invTail o→ staHead= k .

The addressesstaHeadandnx.invTail are connected via the
ghost variableilist and the representation invariants

(Lq0) ilist0 = staHead;
(Lq1) 0 < i < #ilist ⇒ nx.ilisti−1 = ilisti /= 0 ;
(Lq2) last.ilist = if nx.invTail = 0 then invTail

elsenx.invTail fi .

Here the elements ofilist are subscripted and numbered from
0, andlast.ilist is its last element.

Since ilist has length bounded by #Ad (and does not
contain address 0), it suffices to prove thatstaHeadmoves
along the list, i.e., that for everym /= 0,

(9) {App, Coll, Distr} : nx.staHead= m o→ R ,
where R : staHead= m .

Strictly speaking, the reduction to proof obligation (9) re-
quires an application of Corollary 1, with the index of ad-
dressm in ilist as variant functionvf.

By Rule 4 (delegation), proof obligation (9) reduces to
the obligation to prove, for everyq ∈ App,

(10) {{q}, Coll, Distr} : nx.staHead= m o→ R .

Formula (10) depends on modification ofstaHead. Now
staHead is modified only at 53 of program Applier. We
have the difficulty that predicatestaHead= k is not sta-
ble. So we cannot guarantee that an applierq proceeds to
pc.q = 53 with y.q = staHead. We are saved by the observa-
tion that modification ofstaHeadalso establishes postcon-
dition R. This goes as follows. Old invariants imply that
z.r = nx.(y.r) /= y.r wheneverpc.r = 53 for any applierr.
Using some more old invariants, we get, for arbitraryk and
m /= 0,

(w0) staHead= k ∧ nx.k = m
B (staHead= k ∧ nx.k = m) ∨ R .

Progress under bounded fairness 207

We now start at the other end for an arbitrary applierq
and addressm /= 0. By inspection of program Applier, it
follows with Rules 1 and 5 that

{{q}} : true o→ pc.q = 43 .

Using postulate (2) and Rule 6, we get

{Coll, Distr} : pc.q = 43 o→ pc.q = 43 ∧ staloc.q /= 0 .

Since the consensus variablestaloc.q is only reset byq itself
in 55, one can use Rule 1 to prove

{{q}} : pc.q = 43 ∧ staloc.q /= 0 o→ pc.q = 44 .

It is easy to see that

{{q}} : pc.q = 44 o→ pc.q = 45 ∧ staHead= y.q .

Combining these results by Rules 5 and 2, we get

{{q}, Coll, Distr} : true o→ pc.q = 45 ∧ staHead= y.q .

Using the PSP-rule and (w0), we then obtain

{{q}, Coll, Distr} : nx.staHead= m
o→ (pc.q = 45 ∧ staHead= y.q ∧ nx.(y.q) = m) ∨ R .

One can verify by means of Rule 1 that, for 45≤ s ≤ 52,

{{q}} : pc.q = s ∧ staHead= y.q ∧ nx.(y.q) = m
o→ (pc.q = s + 1 ∧ staHead= y.q ∧ nx.(y.q) = m) ∨ R .

By Rule 1, we also have

{{q}} : pc.q = 53 ∧ staHead= y.q
∧ nx.(y.q) = m o→ R .

Finally, repeated application of Corollary 0 (and Rule 2)
yields formula (10). This concludes the proof of (6), and
thus the proof of progress formula (0).

7 Conclusion

We have developed the concept of bounded fairness in order
to combine the assets of wait-freedom with the possibility
to delegate tasks to separate processes. This enables a sepa-
ration of concerns that can be crucial for succesful design.

We have developed and applied a variation of the logic
of UNITY to prove that a system of sequential processes that
communicate via shared memory satisfies progress assertions
under bounded fairness. This extends the applicability of
the UNITY approach, but it does not directly address the
methodological challenge to prove progress properties in a
systematic manner. The additional cost to prove the stronger
property ofboundeddelay turns out to be small.

The application presented is sufficiently complicated
to conclude that our method for expressing and proving
progress is applicable to nontrivial systems.

Acknowledgments.Constructive criticisms of the referees have led to con-
siderable improvements in the presentation.

References

1. A. Arora: Efficient reconfiguration of trees: a case study in methodolog-
ical design of nonmasking fault-tolerant programs. In: H. Langmaak,
W.-P. de Roever, J. Vytopil (eds.): Formal Techniques in Real-Time
and Fault-Tolerant Systems. Springer 1994 (LNCS 863). pp 110–127

2. K.M. Chandy, J. Misra: Parallel Program Design, A Foundation
(Addison–Wesley, 1988)

3. N. Francez: Fairness. Springer, Berlin Heidelberg New York 1986
4. M.P. Herlihy: Wait–free synchronization. ACM Trans. on Program.

Languages and Systems13: 124–149 (1991)
5. M.P. Herlihy, J. Wing: Linearizability: a correctness condition for con-

current objects. ACM Trans Program Lang Syst12: 463–492 (1990)
6. W.H. Hesselink: Wait-free linearization with an assertional proof. Dis-

tributed Computing8: 65–80 (1994)
7. W.H. Hesselink: Theories for mechanical proofs of imperative pro-

grams. Formal Aspects of Computing9: 448–468 (1997)
8. W.H. Hesselink: The design of a linearization of a concurrent data

object. In: D. Gries, W.-P. de Roever (eds.): Programming Concepts
and Methods, Proceedings Procomet ’98, Chapman & Hall, IFIP 1998,
pp 205–224

9. W.H. Hesselink: Progress for memory management of a concurrent
data object. To be obtained from [10]

10. W.H. Hesselink: Web site: http://www.cs.rug.nl/∼wim/linproc
11. S. Owicki, D. Gries: An axiomatic proof technique for parallel pro-

grams. Acta Informatica6: 319–340 (1976)
12. F.W. Vaandrager: Verification of a distributed summation algorithm. In

I. Lee, S.A. Smolka (editors): Proceedings 6th International Conference
on Concurrency Theory (Concur’95). Springer V., 1995 (LNCS 962),
pp 190–203

Wim H. Hesselink received his Ph.D. in mathematics from the University
of Utrecht in 1975. After ten years of research in algebraic groups and Lie
algebras he turned to computing science. In 1986/1987 he was on sabbat-
ical leave with the University of Texas at Austin. In 1994, he became a
professor for the Groninger Universiteitsfonds in the field of program cor-
rectness. After that, he was for some years Chairman of the Department of
Computing Science at the University of Groningen. His research interests
include predicate transformer semantics, aspects and modalities of nonde-
terminacy, design and correctness of all kinds of algorithms, and the use of
a mechanical theorem prover for the design of distributed systems.

