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In the skew Hopf bifurcation a quasi-periodic attractor with nontrivial normal linear dynamics loses hyperbolicity.

Periodic, quasi-periodic and chaotic dynamics occur, including motion with mixed spectrum. The case of 3-di-

mensional skew Hopf bifurcation families of di�eomorphisms near integrability is discussed, surveying some recent

results in a broad perspective. One result, using KAM-theory, deals with the persistence of quasi-periodic circles.

Other results concern the bifurcations of periodic attractors in the case of resonance.

1. Introduction

The present paper presents some aspects of a certain class of bifurcations of a quasi-periodic circle

attractor in a family of di�eomorphisms, the skew Hopf bifurcations. These are a variation on the

well-known reducible Hopf bifurcations (see e. g. [11], [23], [24]): there, a quasi-periodic torus attractor

(that is an invariant normally hyperbolic torus carrying quasi-periodic dynamics) of dimension n

bifurcates to a quasi-periodic torus attractor of dimension n + 1 | in particular, an quasi-periodic

circle bifurcates to a quasi-periodic 2-torus. In the simplest skew Hopf bifurcation, which will be

considered exclusively in the following, a quasi-periodic circle attractor bifurcates to a weakly chaotic

torus attractor. The transition from order to chaos occurs in one step, without any repetition.

2. Setting of the problem

This section gives a general outline of the questions considered in the present paper.

A few general remarks on bifurcation problems are made in order to establish the motivation of

these questions. Investigating a given class of bifurcations is likely to be easier in the presence of

some symmetry or other special property. Bifurcations in the class under consideration possessing

the \maximal" amount of symmetry or special properties usually can be analyzed directly; they will

be called integrable, in analogy to integrable systems of Hamiltonian dynamics (see below and [3]).

However, this notion is a little vague, and has to be speci�ed for each separate class.

To obtain general information about the class of bifurcations, small, but otherwise arbitrary

perturbations are applied to integrable bifurcations (that is, a family, not necessarily special, in a small
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INTEGRABLE AND NON-INTEGRABLE DEFORMATIONS OF THE SKEW HOPF BIFURCATION �

neighbourhood of the integrable bifurcation family is considered), and the e�ects of the perturbations

are investigated.

2.1. Integrable skew Hopf bifurcation families

Integrable skew Hopf bifurcation families are introduced and analyzed.

De�nition. An integrable skew Hopf bifurcation family is a family of di�eomorphisms of the phase

space M = S1 � R
2, where S1 = T

1 = R

2�Z
, given by:

�p(x; y) =
�
x+ !(p) + f(jyj2; p)jyj2; �� + g(jyj2; p)jyj2�Ek(x)y

�
: (2.1)

Here x 2 S1, y 2 R
2, and j:j denotes the Euclidean norm: jyj2 = y21 + y22 ; the parameter p takes values

in the parameter space P , which is an open neighbourhood of 0 in R
q. The functions !, �, f and g

all take values in R ; moreover, �(p) > 0 for all p.

The integer k takes values in Znf0g, and the map Ek(x) is of the form:

Ek(x) =

�
cos kx � sin kx

sin kx cos kx

�
:

A general remark about regularity: if not speci�ed otherwise, all functions in this paper are assumed

to be in�nitely di�erentiable (or smooth).

Some initial remarks are in order.

Remark.

1. If k 6= 0, the matrix Ek(x) cannot be reduced to a constant (i. e. it cannot be made independent of x) by
any coordinate transformation, and it is this which accounts for the \skewness" of the system.

2. For k = 0 a reducible di�eomorphism is obtained.

3. If a coordinate change (x; y) 7! (�x; y) is performed, the family �p is conjugated to another integrable
skew Hopf family, with �k instead of k. Hence it is su�cient to consider the case that k > 0, which is
assumed from here on.

4. The above is the lowest dimensional case for which a skew Hopf bifurcation can be obtained.

The theory of skew Hopf bifurcation families as discussed in this paper can be applied to invariant

circles in higher dimensional dynamical systems, if the method of Bibikov [5] is adapted. At present

the theorem on reduction of the dynamics to a centre manifold [34] cannot be used, since parts of the

theory do not yet allow a straightforward generalization to the case of �nite di�erentiability (contrary

to e. g. [11]). The reader is referred to [17].

Symmetries

An integrable skew Hopf bifurcation family admits two symmetries. Let �� denote the follow-

ing T1-action on M :

��(x; y) =

�
x;

�
cos � � sin �

sin � cos �

�
y

�
:

Note that �p is equivariant with respect to �� for all � 2 [0; 2�):

�� � �p = �p � �� :

Equivariance with respect to � will be called (normal) rotational symmetry in the following.
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The second symmetry appears if the rotational symmetry is reduced out. For this, cylindrical

coordinates (x; r; s) are introduced by setting:

(x; y1; y2) = (x; r cos s; r sin s) :

In these coordinates, �p takes the form:

�p(x; r; s) =
�
x+ !(p) + f(r2; p); �r + g(r2; p)r; s+ kx

�
: (2.2)

The reduced family ~�p is given by:

~�p(x; r) =
�
x+ !(p) + f(r2; p); �r + g(r2; p)r

�
:

Let �� denote the following T1-action:

��(x; r) = (x+ �; r) :

Note that the reduced family ~�p is equivariant with respect to �� for all � 2 [0; 2�). Equivariance

with respect to � will be called (internal) translational symmetry in the following. The integrable

skew Hopf family �p is said to admit translational symmetry, in the sense that the reduced family ~�p
is equivariant with respect to ��.

Bifurcation analysis in the integrable case

For the integrable skew Hopf family, bifurcation analysis is straightforward. Note that because

of the rotational symmetry, the set S = f(x; y) 2 M : y = 0g is an invariant circle. Its stability is

governed by �(p): for �(p) < 1, the invariant circle is normally attracting, while for �(p) > 1, it is

normally repelling.

If p� 2 P is such that:

�(p�) = 1 ; (2.3)

then p� is a bifurcation value. Without loss of generality, it may be assumed that p� = 0. Note that

generically:

@�

@p
(0) 6= 0 ; (2.4)

and that then condition (2.3) determines a bifurcation submanifold of codimension 1 in a neighbour-

hood of 0, which separates this neighbourhood in regions of attraction A and repulsion R of the

invariant circle.

Assume that the following generic condition holds as well:

g(0; 0) = c 6= 0 : (2.5)

By the implicit function theorem, there is another, possibly smaller, neighbourhood of 0, and a unique

function T (p) de�ned on that neighbourhood, such that:

�(p) + g
�
T (p); p

�
= 1 :

For those p such that T (p) > 0, there is an invariant torus Tp, which bifurcates from the invariant

circle at p = 0, given by:

Tp =
�
(x; y) 2M : jyj2 = T (p)

	
:

If c > 0, this is a repelling torus existing for p 2 A , and the bifurcation is subcritical. If c < 0, Tp is

attracting, it exists for p 2 R and the bifurcation is supercritical.
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Dynamics on the bifurcating torus

The dynamics  p on Tp can be read o� the expression (2.2) for �p in cylindrical coordinates,

restricted to f(x; r; s) : r2 = T (p)g:

 p(x; s) = (x+ �(p); s+ kx) ;

where �(p) = !(p) + f(T (p); p).

If �(p) = 2�m
n , with m and n integers, n 6= 0, the torus foliates into a collection of circles,

invariant under  np .

Otherwise, the motion on the torus is ergodic. Note that two points on Tp whose distance is less

than some �, 0 < � < 1, eventually move apart from each other if their x-coordinates di�er; hence, the

motion is sensitive on initial conditions, unlike quasi-periodic motion. However, the distance grows

only linearly in time, not exponentially; therefore we propose to call this kind of motion weakly chaotic.

In the ergodic case, let U be the Koopman operator associated to  p, de�ned on square integrable

complex valued functions f on the torus:

Uf(x; s) = f(x+ �(p); s+ kx) :

In [26] it is shown that the spectrum of U has a pure point component as well as an absolutely

continuous part. The map is said to have mixed spectrum.

2.2. Plan

The aim of this paper is to give an overview of the results obtained on the skew Hopf bifurcation

in [16], [17], [60], [61].

The analysis of the integrable case given above consists of two steps:

1. Symmetry considerations show the existence of an invariant circle. Dynamics on the circle are

resonant or quasi-periodic.

2. Analyzing the dynamics in a neighbourhood of the invariant circle establishes the existence of an

invariant 2-torus, bifurcating from the invariant circle, and carrying weakly chaotic dynamics.

The integrable case admits two symmetries: the rotational symmetry �� and the translational sym-

metry ��, where the latter can only be de�ned if the former is present. Hence it is natural to proceed

in two steps:

1. To break the translational symmetry by a small perturbation which respects the rotational

symmetry.

2. To break both symmetries by adding another small generic perturbation.

The �rst part of this program has carried out in [16] and [60], to a fairly complete degree. The

second part however has been realized only partially (in [17], [60]), owing to what seem to be some

fundamental mathematical di�culties.

Questions

Four questions are posed to guide the investigation. The �rst is analogous to the �rst step of the

above analysis of the symmetric case, inasmuch as it concerns quasi-periodic circle dynamics.

Under what conditions does an invariant quasi-periodic circle persist in a near-integrable

skew Hopf bifurcation?
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This question is addressed in [16] for case 1 (where it is trivial), and in [17] for case 2. In order to

investigate the persistence of the invariant circles in case 2, the skew Hopf family has to be unfolded;

that is, one has to consider perturbations depending on su�ciently many parameters. It turns out

that the invariant circle persists for subfamilies of the unfolding. To obtain the result, an extension

of ordinary KAM-theory is developed, which is the main mathematical result of [17], and which we

shall partially summarize and explain below.

The second question, the matter of invariant 2-tori (compare with step 2 in the symmetric case)

is considered in [16] (case 1) and Chapter 3 of [61] (case 2):

Under what conditions does an invariant 2-torus bifurcate from an invariant circle in a

skew Hopf family?

As mentioned before, these two questions have been given a rather full answer in case 1; however, in

case 2, they are incomplete, holding only for \good" subfamilies of the unfolding. Therefore:

What happens outside the \good" subfamilies?

In Chapter 4 of [61] the region one \knows nothing about" is indicated, and numerical simulations

of systems in that region are given. The resulting simulations are presented below. They show a

complicated bifurcation scenario, which we only partially understand. Here a numerical exploriation

as in [14] is desirable.

Finally, there is the question of resonance:

What happens in the case of resonant dynamics on the invariant circle?

In [60] a model system is considered for both case 1 and 2, which we think to be su�ciently general to

exhibit most relevant phenomena of resonant skew Hopf systems. It turns out that (amongst others)

the degenerate Hopf bifurcation investigated by Chenciner does occur, and so all its complexity,

Cantori, homoclinic bifurcations, etc., features in the model system as well. The results of [17], [60]

will be given below. This analysis is also valid for the non-skew case.

3. Concepts

This section introduces some general concepts which play a central part in the following. Most

of these notions are well-kwown, but they are included for completeness.

3.1. Structural stability and persistence

A bifurcation is structurally stable, if all families in a neighbourhood of a given family, for which

the bifurcation occurrs, can be conjugated to that family: all families near the given family behave

in the same way. This is the strongest form of stability, and usually it cannot be proved easily (if at

all: see [46]). If structural stability is too hard to prove, the persistence of typical properties of

the integrable system may be investigated as the next most important factor. A property of a given

family is said to be persistent, if it holds for all nearby families. E. g., the existence of certain invariant

manifolds (circles, tori) is a property whose persistence is frequently being investigated.

3.2. Quasi-periodicity

Within the theory of general dynamical systems, there is a fairly elaborate theory on the persis-

tence of quasi-periodic invariant circles and tori under small perturbations (see for instance [9]). We

recall basic de�nitions and introduce our notation.
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Periodic solutions

Quasi-periodic solutions of di�erential equations are natural generalizations of periodic solutions,

which correspond to invariant circles in phase space, with dynamics described by:

_x = ! :

Here x 2 S1 = T
1 is a suitable coordinate, and ! 2 R is called the frequency. The solution x(t) with

initial condition � 2 S1 takes the form:

x(t) = � + !t mod 2� :

Quasi-periodic solutions

A quasi-periodic solution corresponds, in phase space, to an invariant n-dimensional torus

T
n �= R

n

2�Zn
, with coordinates (x1; : : : ; xn). If on this torus the coordinates can be chosen such that:

_xj = !j ; (3.1)

for all 1 6 j 6 n, then the dynamics are referred to as parallel or conditionally periodic.

The vector ! = (!1; : : : ; !n) 2 R
n is called the frequency vector. Let ( � ; cdot ) denote the usual

inner product on Rn; if ! satis�es the non-resonance condition:

(k ; !) =

nX
j=1

kj !j 6= 0 for all k 2 Z
nnf0g (3.2)

the ow is called quasi-periodic; otherwise it is called resonant. An invariant torus in phase space

carrying quasi-periodic dynamics is often called a quasi-periodic torus for short.

The solution x(t) of equation (3.1) with initial condition x(0) = � takes the form:

xj(t) = �j + !jt mod 2� :

Condition (3.2) ensures that solution curves �ll the torus densely: a quasi-periodic ow is ergodic.

By taking a Poincar�e section of a quasi-periodic torus at, say,

� = fx 2 T : xn = 0g ;

a di�eomorphism � on the (n�1)-dimensional torus � is obtained. Note that the image �(�) of � 2 �

under the Poincar�e map is given by:

�(�) = x
�
2�
!n

�
=

�
�1 + 2�

!1
!n
; : : : ; �n�1 + 2�

!n�1
!n

; 0

�
:

Setting �j =
2�!j
!n

, the non-resonance condition now reads:

n�1X
j=1

kj�j + 2�kn 6= 0 :

Generalizing this, a map � : Tn ! T
n is called a quasi-periodic di�eomorphism, if for suitable coordi-

nates:

�(x) = x+ � mod 2�Zn ;
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where � 2 R
n satis�es the following non-resonance condition:

(k ; �) 6= 2�p ;

for any k 2 Z
nnf0g and any p 2 Z. As in the vector �eld case, the orbit of any point under a

quasi-periodic di�eomorphism �lls the n-torus densely, and the motion is ergodic.

In the case of the integrable skew Hopf family, the invariant circle S carries quasi-periodic dy-

namics if the non-resonance condition is satis�ed, which is equivalent to:

! 6= 2�
p
q ;

for any q 2 Znf0g, p 2 Z.

Diophantine frequencies

In the theory of perturbations of quasi-periodic motions, the set of Diophantine frequencies plays a

key role. For di�eomorphisms it is de�ned as follows. First let ; � > 0 and de�ne the set Rn
c = R

n
c (; �)

as:

R
n
c = f� 2 R

n : j(k ; �) � 2�pj > jk j�n�� for all k 2 Z
nnf0g ; p 2 Zg :

A frequency vector � is called Diophantine if it is contained in one of the Rn
c (; �) for some , � . The

set of Diophantine frequencies has full (Lebesgue) measure in Rn.

For any function a from a set U into Rn
c , the subset Uc is de�ned as:

Uc = U \ a�1 (Rn
c ) :

If U is open and the map a is a submersion, then Uc is called a Whitney-smooth family of manifolds,

parameterized over the Cantor set Rn
c , or a Cantor foliation. The leaves of this foliation are sub-

sets a�1(�), � 2 R
n
c , of U . Note that if  is su�ciently small, the set Uc � U has positive Lebesgue

measure.

In the case of skew Hopf bifurcation families:

R c =
n
� 2 R :

����� 2�
p
q

��� > jqj�2�� for all q 2 Znf0g ; p 2 Z

o
:

Linearization of circle di�eomorphisms

In the following, a theorem by Herman on the linearization of quasi-periodic di�eomorphisms of

the circle [32] will be used. This result is quoted briey here, though not in its full generality.

Let the projection of R onto S1 be denoted by ~�, that is:

~�(x) = x mod 2� :

Let  be a circle di�eomorphism  : S1 ! S1. A di�eomorphism 	: R ! R such that ~� �	 =  � ~�,
is called a lift of  . The rotation number �(	) of the lift 	 is de�ned as:

�(	) = 1
2�

lim
n!1

	n(x0)� x0
n ;

it is independent of x0. The rotation number �( ) of the circle di�eomorphism � is then de�ned as:

�( ) = �(	) mod 1 :

where 	 is any lift of  . The rotation number is independent of the choice of the lift. It is invariant

under conjugacies and it depends continuously on  (see [27]).

�heorem ([32]). Let  : S1 ! S1 be a smooth di�eomorphism of the circle, such that � = �( ) is

Diophantine. Then there is a smooth change of variable, conjugating  to:

x 7! x+ � :
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3.3. Unfolding parameters

Mathematical models of physical situations usually feature parameters. Sometimes more para-

meters than those provided by the physical context are needed to simplify the mathematical analysis.

These additional unfolding parameters help to understand the structure of the family, and this in turn

gives insight into the \physical" subfamilies. Furthermore, non-persistent properties of the original

families might prove to be persistent in an unfolded family.

The following example may illustrate this idea. In the context of general perturbations to the

integrable skew Hopf bifurcation family, the most important linearized homological equation has the

following structure:

v(x+ !)� eikxv(x) = g(x) : (3.3)

Here v(x) 2 C corresponds to the coordinate transform, g(x) to the perturbation to be transformed

away, and eikx corresponds to the matrix Ek(x); k 2 Znf0g. In [16] this equation was shown to have

a jkj-dimensional complex obstruction (equivalent to a 2jkj-dimensional real one).

Intuitively, this means the following. Let
P

n2Zgne
inx be the Fourier expansion of g(x), and

consider the coe�cients gn, n 62 f1; : : : ; kg as given. Then there are unique values g�1 , g
�
2 ; : : : ; g

�
k

which the coe�cients g1, g2; : : : ; gk have to take in order that equation (3.3) has a real analytic

(or even continuous) solution v(x). Since generically the coe�cients g1; : : : ; gk will di�er from these

special values, in the general case a small, non-symmetric perturbation cannot be transformed away.

However, the situation is di�erent if instead of g(x) a function G(x; �) is put in the right hand

side, which is such that the Fourier coe�cients Gn(�) = gn for n 6= f1; : : : ; kg, while the coe�-

cients G1(�); : : : ; Gk(�) are of the form:

G1(�) = g1 + �1 ; : : : ; Gk(�) = gk + �k :

Then equation (3.3) has a solution for G(x; ��), where:

��1 = g�1 � g1 ; : : : ; �
�
k = g�k � gk :

The family G(x; �) is called an unfolding of g(x), since g(x) is a (zero-dimensional) subfamily

of G(x; �):

g(x) = G(x; 0) :

Put in another way, if a jkj-dimensional complex (2jkj-dimensional real) unfolding parameter � is

added (in the right way), the following property is persistent: there is a value of the parameter for

which (3.3) has a solution.

Note that if the original right hand side already depends on a q-dimensional real parameter p

such that the map:

p 7! (g1(p); : : : ; gk(p)) ;

has an injective derivative, then only 2jkj � q real parameters have to be added to obtain a solution

of (3.3).

Another class of examples is obtained as follows. Consider a 2-parameter family of dynamical

systems that has a codimension-2 bifurcation, and consider a 1-parameter subfamily, such that the

corresponding curve in the parameter plane passes close to the codimension-2 point. The following

situation may arise: the 1-parameter family, considered by itself, displays a lot of apparently accidental

complexity, while this is naturally explained in the 2-parameter setting, being caused by the nearby

codimension-2 point.
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3.4. Integrability

The persistence of quasi-periodic invariant tori is usually shown in families of di�eomorphisms

that are close to integrable families. From a perturbation theory point of view, in [11] integrable

families are de�ned as families that display toroidal symmetry (equivariance with respect to a free

torus action). Because of that symmetry, there is a continuum of invariant parallel tori. Above, the

integrable skew Hopf family has been introduced, which is equivariant (in a certain sense) with respect

to two T1-actions.

The term \integrable" originates from classical mechanics (see e. g. [3]): the di�erential equations

of an integrable Hamiltionian system can be solved explicitly by quadratures, if the integrals are known.

More generally, systems are called \integrable" if they exhibit a su�cient amount of symmetry or other

special properties to allow the dynamics to be determined completely. In the following pages, the term

\integrable" will be used in this latter sense.

That these notions of integrability are closely related is shown by E.Noether's [48] famous theo-

rem, which roughly states that, if a Hamiltonian system has a symmetry, it has a �rst integral as well

(see [3]).

A much-studied example of a near-integrable Hamiltonian system is the solar system. As the mass

of the sun is much larger than the mass of any of the planets, the interaction between the various

planets can be set to zero in �rst approximation. The result is an integrable system, with all the

planets moving around the sun in Keplerian ellipses. The solar system can then be considered as a

near-integrable perturbation of that integrable system, if the (very small) interactions between the

planets are added.

In the dissipative context, (formal) normal forms at (quasi-periodic) bifurcations often have extra

symmetry. These normal forms display the required toroidal symmetry. Here the questions are: what

happens if these normal forms are perturbed generically; and: which properties are persistent?

The Landau{Hopf scenario for the onset of turbulence in a uid ow for instance assumes repeated

Hopf bifurcation of a quasi-periodic attractor. For the n-th bifurcation, an n-torus branches o�

an (n�1)-torus, and a new frequency !n comes in. If n is large, the dynamics cannot be distinguished,

for all practical purposes, from turbulent dynamics. This is a typical integrable scenario, whose

persistence under small perturbation might be (and is) investigated (see [7], [11]).

3.5. KAM-theory

Techniques developed by Kolmogorov [36], Arnol'd [1], Moser [43], and many others ([7], [10], [11],

[32], [50], [54]), to obtain smooth conjugacies of dynamical systems, collectively known as KAM-theory,

prove the existence of quasi-periodic tori in near-integrable families. KAM-theory was �rst developed

for Hamiltonian systems, but there are variants for dissipative systems, reversible systems, etc. In

the case of dissipative systems, the tori persist for parameters taking values in certain large measure,

Cantor-like sets. This kind of persistence is called quasi-periodic stability (in the sense of measure)

and is weaker than structural stability, since the dynamics do not persist in their entirety. Sometimes

unfolding parameters are needed to enable the application of KAM-theory, see [10], [11].

4. Context

This section outlines some links of the theory of near-integrable skew Hopf bifurcations (and the

closely connected question of persistence of essentially nonreducible invariant circles) to previous work

and other problems.

The skew Hopf bifurcation was introduced by Chenciner and Iooss [23], [24] as an alternative to

the reducible quasi-periodic Hopf bifurcation, which features in the Landau{Hopf scenario of the onset

of turbulence. Broer and Takens [16] were interested in the phenomenon that, in the (rotationally
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symmetric) skew Hopf system they considered, an invariant torus does persist, carrying ergodic dy-

namics which has a mixed spectrum. Broer and Wagener [17] and Wagener [61] investigated the e�ects

of small, nonsymmetric perturbations of that symmetric skew Hopf family, that is, of the dynamics in

the near-integrable case. Of interest is the question whether the ergodicity and the mixed spectrum

do persist. These \physical" questions are addressed in more detail in Subsection 4.1.

There is a second, rather more mathematical reason to study the skew Hopf bifurcation. Most of

the known KAM-theory uses the fact that the invariant tori have a constant normal linear part, or can

be reduced to a system with constant normal linear part by choosing appropriate coordinates. In the

case of periodic solutions to a di�erential equation, the possibility of this reduction is a consequence

of the well-known Floquet theory. In the skew Hopf bifurcation, this reduction is impossible on

topological grounds. These matters are discussed in more detail in Subsection 4.2.

It has so far been unclear whether KAM-theory can be adapted to the kind of systems occurring

in the skew Hopf bifurcation. As far as we know [17] is the �rst successful attempt to develop

KAM-theory for such a non-reducible case. Technically the di�erence with the \classical" theory is

that the linearized conjugacy equations are coupled instead of decoupled. This di�culty is overcome

by the introduction of many extra unfolding parameters. After this, our approach turns out to be an

adaptation of the \classical" case, see for instance [10], [11], [44].

4.1. Onset of turbulence

Independently, E.Hopf ([35]) and L. Landau ([40], and later in [41]), proposed the following

scenario for one possible kind of onset of turbulence. The Couette{Taylor experiment is taken as an

illustration, and the reader is referred to [29] and [8] as experimental references.

Couette{Taylor experiment

The Couette{Taylor system consists of an incompressible uid contained between the walls of

two long concentric cylinders. The outer cylinder is �xed, while the inner one rotates with an angular

velocity 
, which can be varied. It is assumed that the time evolution of this system can be modeled

by the Navier{Stokes equations. Following the usage of the theory of these equations, dimensionless

variables are introduced, and the properties of the ow turn out to depend on a dimensionless constant,

the Reynolds number Re. This number depends (linearly) on the driving angular velocity 
, and

thus Re may be considered to be a parameter.

The uid is completely characterized by a divergence-free velocity �eld v (the uid is described

by Eulerian coordinates); the set of all divergence-free velocity �elds v satisfying the boundary values

is the phase space X. The problem of existence and uniqueness of solutions v(t) to the Navier{Stokes

equations shall not be discussed, nor the precise nature of the phase space X: it is assumed that

existence and uniqueness of solutions holds, and that positive time evolutions are bounded.

As long as 
, and hence Re, are relatively small, initial disturbances decay, and the ow v(t)

approaches some constant ow v0. This is then a global point attractor in the phase space X. If Re is

increased, we may observe that the ow changes from a constant ow to a ow depending periodically

on time. That is, the attractor of the system may bifurcate from a �xed point v0 to a (closed) orbit,

tracing out a circle in phase space. If a time series is made of some observable quantity of the system,

the change to periodic ow is marked by the appearance of sharp peaks at a frequency !1 and its

higher harmonics 2!1, 3!1 etc. in the Fourier transform of the time series (which was indeed observed

in [29], as in other places; compare also the interesting numerical study [19]). This bifurcation is the

(�rst) Hopf bifurcation, also called Hopf{Poincar�e{Andronov bifurcation.
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Landau{Hopf scenario

Landau and Hopf proposed a sequence of successive Hopf bifurcations for increasing parameter

values Re2, Re3; : : : In their scenario, at some parameter value Re2 the invariant circle (which is

a 1-torus) bifurcates to a 2-torus, which then at Re3 bifurcates to a 3-torus etc. These tori carry

quasi-periodic torus dynamics of the form:

_� = ! = (!1; : : : ; !n) ;

with � 2 T
n, ! 2 R

n non-resonant.

In other words, at each bifurcation Ren, a new frequency !n \comes in"; at a limit point Re1 of

the Ren, the dynamics �nally jump from quasi-periodic with many frequencies (which is complicated,

but not chaotic) to turbulent.

Ruelle{Takens scenario

The Landau{Hopf scenario was criticized by Ruelle and Takens in 1970 ([52], [53]). They showed

that there might already be chaotic strange attractors on a 4-torus; later, with Newhouse in [47], they

improved this result by showing that, actually, 3-tori might already carry chaotic dynamics. Thus, at

the bifurcation point Re3, quasi-periodic dynamics on T2 might bifurcate to chaotic dynamics on T3.

Quasi-periodic unfolding theory

The seeming contradiction between the turbulence scenarios of Landau{Hopf and Ruelle{Takens

was reconciled in 1990 by the quasi-periodic unfolding theory of Broer, Huitema, Takens and

Braaksma [11]. By considering unfolding parameters, chosen such that the internal frequencies !

and the \normal frequencies" !N depend su�ciently on these parameters, they showed that the Lan-

dau{Hopf and the Ruelle{Takens scenarios occupy di�erent parts of the parameter space. They gave

an idea of the structure of those sets: the Landau{Hopf dynamics occur on a set of large measure;

Ruelle{Takens dynamics occur on an open set, which is topologically large (see for this duality [49];

see also [10]).

Skew Hopf bifurcation

Yet another possible bifurcation was found by Chenciner and Iooss in 1979 [23], [24]: they no-

ticed that an invariant 2-torus might be essentially nonreducible. This led to the skew Hopf bifurca-

tion, which was analyzed in the normal rotationally symmetric context by Broer and Takens in 1993

(see [16]), and which is the main interest of this paper.

As remarked above, in the integrable skew Hopf bifurcation, a quasi-periodic circle attractor

bifurcates to a weakly chaotic torus attractor, whose Koopman operator has mixed spectrum. The

results of [16] imply that these dynamics are persistent under rotationally symmetric perturbations.

It is an interesting question whether they are persistent if a generic non-symmetric perturbation is

applied. We conjecture that they are not.

Mixed spectrum has been found when investigating experimental data obtained from the Cou-

ette{Taylor experiment discussed above. The physical con�guration of that experiment is rotationally

symmetric. This motivated the search for a rotationally symmetric model system having mixed spec-

trum, and led to the symmetric skew Hopf family discussed in [16]. It is however not clear whether the

skew Hopf family has signi�cance in the interpretation of the data of the Couette{Taylor experiment.

In order to establish whether an actual experiment exhibits a skew Hopf bifurcation, the existence

of a skew torus attractor has to be established. In [45] methods to compute the homology groups of

the attractor on basis of time series of observed quantities are presented, which may help to distinguish

a quasi-periodic 3-torus (of a vector �eld) to the skew quasi-periodic attractor of the vector �eld that

corresponds to the skew torus attractor of the skew Hopf family of (Poincar�e) di�eomorphisms.

26 REGULAR AND CHAOTIC DYNAMICS V. 4, é 2, 1999



INTEGRABLE AND NON-INTEGRABLE DEFORMATIONS OF THE SKEW HOPF BIFURCATION �

4.2. Reducibility

This subsection introduces the concepts of reducibility and essential nonreducibility.

The di�eomorphism � is called reducible to Floquet form at the torus V (or Floquetizable or

normalizable) in the following case. Suppose there are suitable coordinates (x; y) 2 T
n � R

m in a

neighbourhood of V , such that V = f(x; y) : y = 0g and the di�eomorphism � has the following form:

�(x; y) =
�
x+ ! +O(jyj);
y +O(jyj2)� :

Here 
 is a constant invertible m�m matrix. The choice of coordinates implies a (non-unique) choice

of the trivialization of the normal bundle of V .

As the property of being reducible is in fact a property of the normal di�eomorphism N(�)

associated to �, which is used later on, a formulation of reducibility is given in terms of normal

di�eomorphisms. The domain of N(�) is the normal bundle N(V ) of V : if T (X) and T (V ) denote

the tangent bundles of X and V respectively, and if TV (X) is the restriction of T (X) to V , then the

normal bundle N(V ) is de�ned as the �bre-wise quotient:

N(V ) =
TV (X)

T (V )
:

As �(V ) = V , it induces a di�eomorphism N(�), the normal di�eomorphism, on N(V ), which is linear

on each �bre.

The di�eomorphism � is reducible at the torus V , if there are coordinates (x; y) 2 T
n�Rm of the

normal bundle N(V ), such that V = f(x; y) : y = 0g, and such that the normal di�eomorphism N(�)

has the form:

N(�)(x; y) = (x+ !;
y) ;

where 
 is a constant invertible m�m-matrix. For more details, see [10], [11].

Linking number

In the discussion of essential non-reducibility below, the concept of linking number of two circles

is needed. First this is introduced for disjoint circles S1, S2 of the following special form:

Sj =
�
(x; gj(x)) 2 S1 � R

2
	
; (4.1)

where gj : S
1 ! R

2 are continuous functions. Disjointness of the circles as point sets is equivalent to

the requirement that g1(x) 6= g2(x) for all x 2 S1. De�ne a function f(x) by:

f(x) =
g2(x)� g1(x)

jg2(x)� g1(x)j
:

The map f(x) takes values in fx 2 R
2 : jxj = 1g, which is di�eomorphic to S1; hence f maps S1 to

itself. The linking number `(S1; S2) of S1 and S2 is de�ned to be the degree of f ; intuitively speaking,

this is the number of times f(x) performs a complete revolution around 0, taking into account the

orientation.

Without proof, the topological fact is mentioned that the linking number of circles homotopic to

those of the form (4.1) is invariant under isotopy in the class of di�eomorphisms.

Essential non-reducibility

A parallel torus is called essentially nonreducible, if the normal di�eomorphism N(�) is not

isotopic to a constant linear di�eomorphism in the class of all di�eomorphisms; that is, if there is no
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family �t for t 2 [0; 1], continuous in t, such that �0 = N(�), �1(x; y) = (x;Ay) with A 2 GL(m;R),

and �t is a di�eomorphism on N(V ) for all t 2 (0; 1).

Note that reducible normal di�eomorphisms are isotopic to constant linear di�eomorphisms by

de�nition. The terminology \essentially nonreducible" is motivated by the results of Herman [33],

who gave examples of normal di�eomorphisms which were not reducible, but nevertheless isotopic to

constant linear di�eomorphisms.

In the following, mainly essentially nonreducible systems of the following form are considered:

N(�)(x; y) = (x+ !;Ek(x)y) :

Here (x; y) 2 T
1 � R

2 and k 2 Z>0; the notation:

Ek(x) =

�
cos kx � sin kx

sin kx cos kx

�

is recalled. Note that the circle S = f(x; y) : y = (0; 0)g is invariant, while S0 = f(x; y) : y = (1; 0)g is
not. The linking number of S and S0 is 0. However, the linking number of �(S) = S and �(S0) is k

(�(S0) winds k times around S). This implies that � cannot be isotopic to the identity.

The reducibility problem

The reducibility problem can be formulated as follows: given (normal) di�eomorphisms of the

form:
�(x; y) = (x+ !;A(x)y) ; (4.2)

for which A(x) is � reducible? In general, is there a \normal form classi�cation" for this kind of

system? See for some literature [28], [33], [38], [39].

5. The rotationally symmetric skew Hopf bifurcation

This section presents a summary of results obtained in [16] and [60] for the case that the transla-

tional symmetry �� is broken, while the rotational symmetry �� is retained. The next section considers

the case that both symmetries are broken.

Equivariance with respect to �� implies immediately that the circle S is invariant, where S =

= f(x; y) 2M : y = 0g. In Subsection 5.1, results from [16] are presented, where a bifurcation analysis

is given for the case of quasi-periodic dynamics on S. Subsection 5.2 treats the case of resonant

dynamics on S.

5.1. Quasi-periodic dynamics

This subsection presents results from [16]. There, general rotationally symmetric deformations of

integrable skew Hopf families were considered. These take the following form in cylinder coordinates:

�p(x; r; s) =
�
x+ F (x; r2; p); r G(x; r2; p); s+ kx+H(x; r2; p)

�
;

with F , G, H functions on M , taking values in R .

The main result of [16] is the normal form theorem for rotationally symmetric skew Hopf bifur-

cation families. Let !(p) be the rotation number of the map:

x 7! x+ F (x; 0; p) :

The equation !(p) = �, for Diophantine �, de�nes a codimension-1 hypersurface 
� in P :


� = fp 2 P : !(p) = �g :
Denote the union of all such hypersurfaces by 
c.
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�heorem. Let 0 2 
c. For all N > 0, there is a real analytic coordinate transform, conjugating �p
to:

~�Np (x; r; s) =
�
x+ !(p) + f(r2; p)r2 +R1; �(p)r + g(r2; p)r3 +R2r; s+ kx+ h(r2; p)r2 +R3

�
;

where
��Rj(x; r

2; p)
�� 6 C

�jrjN+1 + jpjN+1
�
for j 2 f1; 2; 3g.

The proof can be found in [16].

Corollary. There is a � > 0, such that for jrj < � and jpj < �, the map ~�Np of the previous proposition

can be transformed into:

~�Np (x; r; s) =
�
x+ !(p) + ~f(r2; p)r2 + ~R1; �(p)r + ~g(r2; p)r3 + ~R2r; s+ kx

�
:

where
��Rj(x; r

2; p)
�� 6 C

�jrjN+1 + jpjN+1
�
for j 2 f1; 2g.

Proof.

Observe that the equation:

ku+ h(r2; p)r2 +R3(x+ u; r2; p) = 0 ;

has a unique solution u = u(x; r2; p) for jrj < �, if � is chosen small enough. Then apply the coordinate

transform:

(x; r; s) 7! �
x+ u(x; r2; p); r; s

�
:

to obtain the claimed form of the di�eomorphism.

At this point all tildes are dropped. In (x; y)-coordinates, �Np takes the form:

�Np (x; y) =
�
x+ !(p) + f(jyj2; p)jyj2 +R1; (�(p) + g(jyj2; p)jyj2 +R2)Ek(x)y

�
:

Note that in the case that R1, R2 are identically 0, the system is actually integrable. This motivates

the designation of (2.1) as the general form of an integrable skew Hopf bifurcation.

The map �Np is an N -th order normal form of �p. Hence any rotationally symmetric deformation

of an integrable skew Hopf bifurcation family, whose rotation number on the invariant circle S is

Diophantine, is conjugate to a rotationally symmetric perturbation of arbitrarily high order in jrj+ jpj
of an integrable skew Hopf bifurcation family. Note however that the domain of de�nition of �Np may

shrink as N tends to in�nity.

Bifurcation analysis

The bifurcation analysis in the rotationally symmetric case is quite close to the analysis for the

integrable case given above. For proofs of statements the reader is referred to [16].

The circle S is invariant by symmetry, and hyperbolic if �(p) 6= 1. Any p� 2 P for which �(p�) = 1

is a bifurcation value; it may be assumed that �(0) = 1. If the following generic condition holds:

@�

@p
(0) 6= 0

then in a neighbourhood of p = 0, there is a smooth codimension-1 bifurcation manifold B, given by:

B = fp 2 P : �(p) = 1g :

As before, B separates the neighbourhood in an attracting region A where � < 1, and a repelling

region R where � > 1.
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Assume a second generic condition:

g(0; 0) = c 6= 0 :

This implies the existence of a unique invariant bifurcating torus ~Tp for parameter p such

that (� � 1)c < 0. The torus is of the following form:

~Tp = f(x; r; s) : r = ~T (x; p)g ;

the function ~T (x; p) is close to T = T (p), which is a solution to:

�(p) + g(T; p)T = 1 :

Existence and uniqueness of ~Tp is proved in [16].

De�ne the map  (x; p) by:

 (x; p) = x+ !(p) + f
�
~T (x; p); p

�
~T (x; p) +R1(x; ~T (x; p); p) :

On the invariant torus ~Tp, dynamics are of the form:

� : (x; s)! ( (x; p); s+ kx) :

Let �(p) be the rotation number of x 7!  (x; p). Note that if f(0; 0) 6= 0, the rotation number �(p)

varies as p moves away from the bifurcation manifoldB, and there is a subset of positive measure of 
c

such that � = �(p) is Diophantine. For such �, there is a suitable coordinate transformation [16],

bringing the torus dynamics into the form:

(x; s) 7! (x+ �; s+ kx) :

Thus, for the rotationally symmetric case, skew dynamics are persistent for parameters in a positive

measure subset of P .

5.2. Resonant dynamics

In [60] the following model system is considered. It is obtained from a general rotationally

symmetric system by dropping all but the lowest order terms in the Fourier{Taylor expansion:

�!;�(x; y) =
�
x+ ! + a sinx+ cjyj2; �1 + �+ b cos x+ djyj2�Ek(x)y

�
:

Here 1 + � has taken the role of �.

This model system is chosen in such a way that it is of su�cient complexity to display relevant

phenomena of the rotationally symmetric skew Hopf bifurcation at resonance, while being simple

enough to be accessible to analysis.

The system has been investigated in a neighbourhood of (!; �) = (0; 0): for these values of

the parameters there are �xed points on the invariant circle S. Essentially, there are two types of

bifurcation diagrams. If the signs of a, c and d are chosen such that:

a > 0 ; c > 0 ; and d < 0 ;

then these two types can be distinguished by the sign of b. They are given in Fig. 1 and 2.

In both bifurcation diagrams, �ve organizing codimension-2 points are found: two saddle-Hopf,

two degenerate Hopf and one Bogdanov{Takens bifurcation point.

From each saddle-Hopf point, two lines of saddle-node bifurcations of points on the invariant cir-

cle S emanate, as well as two curves of Hopf bifurcations, also of points on the invariant circle. Close to

each saddle-Hopf point on the Hopf curve, there is a degenerate Hopf point where the Hopf bifurcation
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Fig. 1. The (!; �)-diagram for b > 0. The coding of the bifurcations is as follows. Codimension-2 bifurcation
points: BT | Bogdanov{Takens; SH | Saddle {Hopf; DH | Degenerate Hopf. Codimension-1 bifurcation
lines: dashed lines: saddle-node bifurcations; drawn lines: Hopf bifurcations of points; dash-dotted lines (ema-
nating from BT points): quasi-periodic Hopf bifurcations of invariant circles; dotted lines: Hopf bifurcation of
the invariant circle y = 0 (these lines are approximate only). For more details cf. [60]

type changes from sub- to supercritical, and from where a line of saddle-node bifurcations of invariant

circles emanates. On one of these lines (determined by the sign of b) there is a Bogdanov{Takens

point. From that point, a curve of quasi-periodic Hopf bifurcations emanates, which ends at one of

the two saddle-Hopf points. These facts have been established by analysis of the local bifurcations

in [60].

From the Bogdanov{Takens point, as well as from one of the saddle-Hopf points, homoclinic bi-

furcation curves emanate. Numerical evidence indicates that there is one homoclinic curve, connecting

the two codimension-two points, but this kind of fact is notoriously hard to establish analytically.

6. The general case

This section presents results obtained in [17], [60] and [61], where small general perturbations to

an integrable skew Hopf system were investigated.

6.1. Skew KAM theory

In both the integrable and the rotationally symmetric case, there is an invariant circle

S = S1 � f0g. If general perturbations of an integrable skew Hopf family are considered, the existence

of an invariant circle is no longer guaranteed. The following question was posed in Subsection 2.2:

Under what conditions does an invariant quasi-periodic circle persist in a near-integrable

skew Hopf bifurcation?
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Fig. 2. A view of the (!; �)-bifurcation diagram of the reduced system for the case that b < 0. The legend is
as in �gure (1).

In [17] a partial answer has been given. The following map is considered there:

�p(x; y) = (x+ !(p) + f(x; y; p); �(p)Ek(x)y + g(x; y; p)) :

The functions f and g are assumed to be small in some real analytic norm, introduced below.

For convenience in the statement of following result, instead of parameterized families of di�eo-

morphisms �p on M , vertical di�eomorphisms � on M � P are considered, where:

�(x; y; p) = (�p(x; y); p) :

Unfolding

It turns out that it is convenient to consider the unfolding ~�(x; y; �) = ~�(x; y; p; ~�;m; `)

of �(x; y; p), where:

~�(x; y; �) =
�
x+ !(p) + f(x; y; p); E(x; �(p); ~�)y +M(x;m) + L(x; `)y + g(x; y; p); �

�
;

where:
E(x; �; ~�) = Ek(x)

�
� �~�
~� �

�
;

M(x;m) =

k�1X
n=0

En(x)

�
m2n+1

m2n+2

�
;

and
L(x; `) =

2k�1X
n=0

En�k(x)

�
`2n+1 `2n+2
`2n+2 �`2n+1

�
:

Note that:
~�(x; y; p; 0; 0; 0) = �(x; y; p) :
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Generalized unfoldings

The main result of [17] makes a statement about a slightly larger class of vertical di�eomorphisms,

generalizing the unfolding ~� of �. To introduce this class, some more de�nitions have to be made.

Let P be an open neighbourhood of 0 in R
q as before. For r > 0, the complex neighbour-

hood (M � P ) + r of M � P is de�ned as:

(M � P ) + r = fz 2 C

2�Z
� C

2 � C
q : d(z;M � P ) < rg :

Let � denote the following vertical di�eomorphism on M � P :

�(x; y; p) = (x+ a(p) + f(x; y; p) ; E(x; b(p))y +M(x;m(p)) + L(x; `(p))y + g(x; y; p); p) ; (6.1)

where:

w(p) = (a(p); b(p);m(p); `(p)) 2 R � R
2 � R

2k � R
4k ;

f(x; y; p) 2 R and g(x; y; p) 2 R
2, and where E, M and L are as above. The functions f , g and w

are real analytic which have a complex analytic extension to (M � P ) + r. Note that the unfolding ~�

given above is of this form.

The di�eomorphism � is said to be non-degenerate at p�, if the map p 7! (a; b;m; `) has surjective

derivative at p�. Note that a necessary condition for non-degeneracy is that q > 6k + 3.

There exists a change of parameters:

W (p) = (w(p); �(p)) ;

such that after this change, p = (a; b;m; `; �) can be considered as an independent parameter on some

neighbourhood of p0 =W (p�), which will be denoted by P also. The \extra" parameter � is dropped

here: it can easily be incorporated again.

Hence, instead of investigating a di�eomorphism � of the form (6.1), non-degenerate at p�, a

di�eomorphism � of the following form can be considered, with P an open neighbourhood of p0:

�(x; y; p) = (x+ a+ f(x; y; p) ; E(x; b)y +M(x;m) + L(x; `)y + g(x; y; p); p) : (6.2)

A space of di�eomorphisms

Motivated by the above, let Xr denote the space of di�eomorphisms of M � P of the form (6.2).

Introduce the norm jf jr of real analytic function f : M � P ! R by:

jf jr = sup
(M�P )+r

j ~f(x; y; p)j ;

where ~f is the complex analytic extension of f to (M � P ) + r. The norm jgjr is de�ned analogously.

Two di�eomorphisms �1, �2 will be considered to be �-close if:

jf1 � f2jr < � ; jg1 � g2jr < � :

This de�nes the compact-open topology on Xr.

The perturbation theorem

Recall the de�nitions of normal bundle and normal conjugacy from Subsection 4.2, and the

de�nition of the set Rc = R c(; �) from Subsection 3.2.
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�heorem 1 ([17]). Let �0 2 Xr be given by :

�0(x; y; p) = (x+ a+ �;E(x; b)y +M(x;m) + L(x; `)y +  ; p) ;

where �(x; y; p) and  (x; y; p) have complex analytic extension to (M � P ) + r, and which are such

that � = O(jyj) and  = O(jyj2) as jyj ! 0.

Let p0 = (a0; b0;m0; `0) be such that :

b0 = (cos �; sin �) ; m0 = 0 ; `0 = 0 ;

for some � 2 [0; 2�).

Let ; � > 0 be �xed. Then there is a real analytic codimension-6k manifold E through p0 given

by :

E = fp 2 P : m = 0 and ` = 0g ;
a neighbourhood N of p0 in E , and a neighbourhood V of �0 in Xr, such that for all � 2 V , there is

a map �: M �N !M � P with the following properties:

1. � is a di�eomorphism onto its image, C1-close to the identity map.

2. � is a�ne (equal to its normal linear part) in y, and real analytic in x.

3. � preserves the projection to P , that is, � is of the form:

�(x; y; p) = (�p(x; y);�(p)) ;

where �p : M �N !M and �: N ! P .

4. For every p 2 Nc = fp 2 N : a 2 R cg, the di�eomorphisms �p normally conjugates �0p to ��(p)
at the invariant circle S = S1 � f0g �M .

Remark. The theorem states that the following diagram commutes for every p 2 Nc:

N(S)
N(�0

p
)

���������! N(S)????y N(�p)

????y N(�p)

N (�p(S))
N(��(p))���������! N (�p(S))

More intuitively, the theorem can be rephrased as follows: for � su�ciently close to �0, there are di�eomor-
phisms �p(x; y) and �(p), such that the following holds. If p

�
2 ~Nc = �(Nc), say p� = �(~p), then:

�
�
(x; y) = �(x; y; p

�
) ;

is conjugated, by (�~p)
�1
, to:

~�(x; y) =
�
x+ a(~p) + �(x; y; ~p); E(x; b(~p)) +  (x; y; ~p)

�
;

where � = O(jyj) and  = O(jyj2).
Note that the set ~Nc is a positive measure subset of a (non-unique) codimension-6k manifold (see Fig. 3).
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������
���	
�
�����

Fig. 3. The parameter space of the unfolding, which is (at least) 6k + 2-dimensional. Indicated is the large
measure subset ~Nc of the codimension-6k manifold ~N in the space of parameters. For p 2 ~Nc the family
of di�eomorphisms �p has an invariant quasi-periodic circle. Also indicated is the \bifurcation curve" B:

for p 2 B\ ~Nc, invariant circles are not normally hyperbolic. Note that this picture also holds for the non-skew
case, where k = 0.

6.2. Normal form

This subsection presents a normal form for a generically perturbed integrable skew Hopf bifurca-

tion family, and gives a su�cient condition for the existence of an bifurcating invariant 2-torus.

It is convenient to formulate the result in the complex representation, where the phase space M

is identi�ed with S1 � C and (x; y) with (x; z; �z), where z = y1 + iy2. At this point the parameter �,

dropped in the above, is incorporated again. Note that statements are made either on the vertical

di�eomorphism � or the parameterized family �p, which are related by: �(x; y; p) = (�p(x; y); p).

If in the notation of the previous subsection � 2 V and p� 2 ~Nc, then there is in a neighbourhood

of p� a coordinate system (x; y; !; �; �) with the following properties:

1. p� = (!�; 0; 0) with !� 2 R c.

2. The manifold ~N = �(N ) is given by:

� = 0 ;

where � 2 R
6k.

3. If � = 0 and !� 2 Rc, the di�eomorphism �!�;�;0 has an invariant circle:

S = f(x; y) 2M : y = 0g :

On the normal bundle N(S) �= S1 � C , the dynamics of N(�!�;�;0 are given by:

(x; z) 7!
�
x+ !; �(�)eikxz

�
:

Hence in these coordinates, for !� 2 R c �xed, the di�eomorphism �(x; y; !�; �; 0) takes the following

form in the complex representation:

�(x; z; �z; �) =
�
x+ ! + �(x; z; �z; �); �eikxz +  (x; z; �z; �); c:c:

�
:

Here c:c: stands for complex conjugate (of the previous component); the maps � and  are O(jzj)
and O(jzj2) respectively. For this di�eomorphism a normal form is found by the following theorem.
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Normal form theorem [61] For every N > 2 there is a neighbourhood UN of S = S1 � f0g � M ,

and a smooth coordinate transformation �N de�ned on UN , such that �N = �N �� � ��N
��1

is of the

form:

�N (x; z; �z; �) =
�
x+ ! + F +R1; �e

ikxz +G+R2; c:c:
�
:

where:

F (x; z; �z; �) =

NX
n=1

X
jmj=n

cm(x; �)z
m1 �zm2 ; G(x; z; �z; �) =

NX
n=2

X
jmj=n

dm(x; �)z
m1 �zm2 :

Let A = jk(m1�m2)j and B = jk(m1�m2�1)j. The coe�cient functions cm and dm are of the form:

cm(x; �) = c0m(�) if A = 0 ; dm(x; �) = d0m(�) if B = 0 ;

and :

cm(x; �) =

AX
`=1

c`m(�)e
i`x if A 6= 0 ; dm(x; �) =

BX
`=1

c`m(�)e
i`x if B 6= 0 :

Moreover, the remainder terms Rj satisfy :

jRj(x; z; �z; �)j 6 C
�
jzjN+1 + j�jN+1

�
:

Note that if the Rj are identically zero, and if also the c
`
m, d

`
m vanish for ` 6= 0, the di�eomorphism �N

is an integrable skew Hopf family. Moreover, the parameter � can be assumed to be real-valued, if

necessary after applying a parameter transformation:

x = ~x� arg �

k
:

6.3. Bifurcation analysis

The results of the previous two subsections are applied to a small generic perturbation of an

integrable skew Hopf family, nondegenerate at p = 0:

�p(x; y) =
�
x+ !(p) + f(jyj2; p) + ~f(x; y; p) ;

�
�(p) + g(jyj2; p)�Ek(x) + ~g(x; y; p)

�
;

where f , g, ~f and ~g are real analytic, such that j ~f jr, j~gjr 6 �.

Let:
~��(x; y) = �p(x; y) + (0;M(x;m) + L(x; `)y) ;

be the unfolding of �p introduced in Subsection 6.1. If � is small enough, and if �� is non-degenerate,

on some neighbourhood U �P of S�f� = 0g �M �P , the di�eomorphism ~�� can be conjugated to:

�N� (x; y) =
�
x+ ! + fN (jyj2; �) + ~F (x; y; �) +R1(x; y; �) ;

(� + gN (jyj2; �))Ek(x)y + ~G(x; y; �) +R2(x; y; �)
�
;

The normal form �N� has the following properties:

1. There is a codimension-6k manifold ~N in the parameter space of �N� , and a positive measure

subset ~Nc on ~N , such that for �� 2 ~Nc, the map �N�� has an invariant circle.

2. If � = (!; �; �) are local coordinates around �� such that �� = (!�; 0; 0), � = (�� 1; �2; : : : ) and

such that points satisfying � = 0 are in ~N , then !� 2 Rc, and:

jRj(x; y; !�; �; 0)j 6 C
�
jyjN+1 + j�jN+1

�
:
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3. In the local parameters of the previous number:

~F (x; y; !�; �; �) = F (x; y; �) ; ~G(x; y; !�; �; �) = G(x; y; �) ;

where F and G are polynomials in y and trigonometric polynomials in x: they are the real valued

analogs of the F and G in the normal form theorem above, with all c0m, d
0
m identically zero.

4. jfN � f j; jgN � gj < C�.

It follows from these properties that on ~Nc there is a bifurcation set Bc given by:

Bc = f� 2 ~Nc : � = 1g :

This set can be extended to be the intersection of a smooth submanifold of codimension 1 in N

with ~Nc.

To �nd a su�cient condition for the existence of a bifurcating torus, consider the map:

D(�) =
�
~d120(�); : : : ;

~d6k02(�)
�
;

having as components the 10k real valued coe�cient functions ~d`m of the terms in G(x; y; �) which are

of second order in y1, y2.

���
������

Fig. 4. The (�; ")-parameter space for the
model di�eomorphism ��;" given by (6.4).
The form of the regions A of attracting and R
of repelling invariant circles is indicated, as

well as the line " = 0:1. On that line, in the
complement of A [ R, four values of � are
given by black dots: in Fig. 6 the forward or-
bit of an arbitrary point under iteration of ��;"
is shown for these values.

If D(�) = 0, all terms in G(x; y; �) of second order

in y are zero. The condition:

rank @D
@�

is maximal ; (6.3)

is generic. Assuming (6.3), a submanifold T of codimen-

sion 10k of P is de�ned by:

T = f� 2 P : D(�) = 0g :

It is shown in [61] that if:

� 2 Nc \T ;

there is an invariant 2-torus bifurcating o� the invariant

circle S. For parameters � such that the invariant torus

exists, it is normally hyperbolic; since normal hyperbolic-

ity is an open property [34], there is an open set V such

that for � 2 V there is an invariant 2-torus. Note, how-

ever, that V may have the form of a narrow wedge with

vertex at Bc.

Dynamics on the torus have now the general form:

 �(x; s) = (x+ ! + f(x; s; �); s+ kx+ g(x; s; �)) ;

where f and g are small for � 2 V close to Bc. It is not clear a priori whether skew dynamics, or

indeed mixed spectrum, persist in some sense. We conjecture that they do not in general.
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6.4. Fattening

The previous subsection inferred from the normal hyperbolicity of the bifurcating torus on a

subset of P the existence of normal hyperbolic tori on an open subset of the parameter space. This

illustrates a general principle, which is called fattening. However, the open sets obtained in this way

may be very small.

First, remark that the remainder terms R1 and R2 of �
N
� = �N!;�;� vanish if ! 2 R c. As a closed

set, R c is the union of a countable set and a perfect set. Hence, almost every point of R c is an

accumulation point of the set. It follows that the �rst derivative of R1 and R2 with respect to !

vanishes for these points, and by induction the higher derivatives vanish as well. Restricted to � = 0,

it can be concluded that the remainders Rj are at in ! in the neighbourhood of almost every ! 2 R c.

Let A and R be subsets of parameter space such that �N� has, respectively, an attracting or a repelling

invariant circle, As in [11] it follows that, restricted to � = 0, A and R have in�nite order of contact

at the bifurcation set Bc. See Fig. 5, lower right hand corner.

The situation in the normal direction (� 6= 0) is quite di�erent. To give an idea of the shape of

the set of parameters for which an invariant circle exists for a perturbed skew Hopf bifurcation, in [61]

the following model system has been considered:

��;" =

�
x+ !;

�
� � jyj2�Ek(x)y +

�
" 0

0 �"
�
y +

�
"

0

��
: (6.4)

It has been shown there that:

1. For j"j 6 � � 1 (region A), the map ��;" has an invariant attracting circle.

2. For j"j 6 f(�) (regionR), where f�1(�) = 1+3

�
�

2

�2
3
+�, the map ��;" has a repelling invariant

circle.

These regions are indicated in Fig. 4. Note that the Conditions 1 and 2 are su�cient to have an

invariant hyperbolic circle. The actual region where hyperbolic circles exist may be larger, but compare

Appendix A.

In order to obtain an idea of the dynamics outside these regions, the attracting set of ��;" has

been simulated by forward numerical iteration of a random initial point, discarding the initial 5 � 104
iterates. This has been done for ! =

p
2 � 1, " = 0:1 and � = 1, 1:1, 1:15 and 1:24 respectively (see

Fig. 6). The last value of � is chosen such that it is inside a region where a repelling invariant circle

is known to exist | hence the simulated set, which might have a resemblance to the true invariant

set, cannot be homeomorphic to a circle.

6.5. Resonances

This subsection presents conclusions reached in [60] on the following model skew Hopf bifurcation

system at lowest order resonance (that is, with (!; �) close to (0; 0)):

�p(x; y) =
�
x+ ! + a sinx+ cjyj2 + f(x; y; p);

�
1 + �+ b cos x+ djyj2�Ek(x)y + g(x; y; p)

�
:

Here f , g are small generic perturbations of the model system considered in Subsection 5.2.

The organizing bifurcations in the non-symmetric system are the following well-known codi-

mension two bifurcations of di�eomorphisms which occur generically: the saddle-Hopf bifurcation

(see [25], [30], [58]) and the codimension two degenerate Hopf bifurcations for di�eomorphisms (see [20],

[21], [22]). The Bogdanov{Takens bifurcation (for di�eomorphisms!) of invariant circles is also an

organizing bifurcation. However, the theory of this bifurcation is not fully developed yet, and the
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Fig. 5. A sketch of the parameter space of the unfolding ~�� of �p (notations as in Subsection 6.3). The axes

of the left picture are the same as in Fig. 3. The manifold ~N is indicated. The curved surfaces left and right
bound a pair of blunt cusps of the \fattened" set A [R of hyperbolic invariant circles. The original family �p
(here assumed to be two-dimensional), which is a subfamily of the unfolding, is indicated as well. On the right,
the intersections of ~N and the parameter space of �p with A [R are sketched. The dashed line is in the set ~Nc

for which quasi-periodic invariant circles exist.

reader is referred to papers on the Bogdanov{Takens bifurcation of invariant points in vector �elds

and di�eomorphisms ([6], [25], [30], [51], [57]).

All the dynamical features of these bifurcations are present here, homoclinic and heteroclinic

connections, sensitive dynamics, chaos and Aubry{Mather invariant sets (Cantori).

The curves of Hopf bifurcations of di�eomorphisms (Naimark{Sacker bifurcations) persist: every

normal rotation number occurs exactly k times, including the weakly and strongly resonating cases,

because of the essential dependence of the normal rotation on the torus coordinate x. Hence at a dense

set of points (the weakly resonating cases) on the Naimark{Sacker bifurcation curve, two saddle-node

bifurcation curves emanate, bounding a so-called resonance tongue. Also, all strongly resonating cases

occur k times (see [30], [37], [57]).

A. Conjecture

This appendix conjectures a more general perturbation theorem than the one in Subsection 6.1.

The relevance of the result, if it were true, is illustrated.

A.1. A conjectured perturbation theorem

Recall the de�nitions of section 6.1, the de�nitions of normal bundle and normal conjugacy from

Subsection 4.2, and the de�nition of the set Rc = R c(; �) from Subsection 3.2.

Conjecture. Let �0 2 Xr be given by :

�0(x; y; p) = (x+ a+ �;E(x; b)y +M(x;m) + L(x; `)y +  ; p) ;

where �(x; y; p) and  (x; y; p) are real analytic functions having complex extension to (M � p) + r,

which are O(jyj) and O(jyj2) respectively as jyj ! 0.

Let p0 = (a0; b0;m0; `0) be such that :

b0 = (cos �; sin �) :
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Fig. 6. Simulation of the dynamics of ��;" outside the region A [ R. The parameters have been chosen as
follows: ! =

p
2� 1 and " = 0:1. For the values of � indicated, the point (x; y) = (0; 0) has been iterated 5 � 104

times, and then 6 � 103 points of the trajectory have been plotted. The top row gives a three-dimensional view
of these trajectories, the bottom row shows a side view.

for some � 2 [0; 2�).

Let ; � > 0 be �xed. Then there is a neighbourhood N of p0, and a neighbourhood V of �0 in Xr,

such that for all � 2 V , there is a map �: M �N !M � P with the following properties:

1. � is a di�eomorphism onto its image, C1-close to the identity map.

2. � is a�ne (equal to its normal linear part) in y, and real analytic in x.

3. � preserves the projection to P , that is, � is of the form:

�(x; y; p) = (�p(x; y);�(p)) ;

where �p : M �N !M and �: N ! P .

4. For every p 2 Nc = fp 2 N : a 2 R cg, the di�eomorphisms �p normally conjugates �0p to ��(p)
at the invariant circle S = S1 � f0g �M .

A.2. Lyapunov exponents

The previous subsection conjectured that skew Hopf families of the following type may be persis-

tent on a subset of large measure in the space of parameters:

��(x; y) = (x+ !; �Ek(x)y +M(x;m) + L(x; `)y) : (A.1)

Here M(x;m) and L(x; `) are trigonometric polynomials in x, and linear in their respective parame-

ters m and `.

If m = 0, the circle S = S1�f0g is invariant, and the map �� can be seen as a cocycle for which

Lyapunov exponents can be de�ned (an ad hoc de�nition of Lyapunov exponents in the present case

follows below). The rest of this subsection will show that if m = 0 and ` 6= 0, the two Lyapunov

exponents of �� are not equal.

The map L(x; `) is written as:

L(x; `) =

�
L1(x) L2(x)

L2(x) L1(x)

�
:
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Introduce:

A(x) = �Ek(x) + L(x; `) ;

and let An(x) denote:

An(x) = A(x+ (n� 1)!)A(x + (n� 2)!) : : : A(x) :

Note that with this de�nition, the n'th iterate of � takes the form:

�n(x; y) = (x+ n!;An(x)) :

The upper Lyapunov exponent �+(x) of the normally linear di�eomorphism � is given by:

�+(x) = lim sup
n!1

1
n log kAn(x)k ;

where kAk is the spectral radius matrix norm (the square root of the largest eigenvalue in modulus

of A�A).

The lower Lyapunov exponent is de�ned implicitly by:

�+(x) + ��(x) = lim sup
n!1

1
n log jdetAn(x)j :

If ! is non-resonant �+ and �� do not depend on x.

A result of Herman [33] implies that the upper Lyapunov exponent can be estimated from below

by:

�+ > log
q
�2 + (`1

�k)
2 + (`2

�k)
2 > log � :

On the other hand, the ergodic theorem yields that:

�+ + �� = 1
2�

2�Z
0

log jdetA(x)j@x = 1
2�

2�Z
0

log
���2 � L21(x)� L22(x)

�� @x < 2 log � :

Note that the last inequality holds only if ` 6= 0. Hence, if ` 6= 0, then:

�+ > log � > �� :

This inequality of Lyapunov exponents has interesting consequences: by Oseledec's theorem, it is

known that there are two measurable invariant normal bundles of S, spanning S � R
2, associated

to �+ and �� respectively. However, because of essential non-reducibility, these bundles cannot be

continuous (basically because to a continuous normal bundle a linking number with respect to S can

be associated, which increases under iteration of the di�eomorphism). It is not known whether quasi-

periodic invariant circles with this kind of normal dynamics persist under small perturbations. If the

conjecture above is true they do persist, and this would lead to a new type of bifurcations.
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