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Abstract

This paper is concerned with X-ray volume visualization
by means of wavelet splatting, a wavelet-based extension to
splatting. Wavelet splatting allows multiresolution visual-
ization of volume data. While a user is interacting with the
data, only low resolution images are computed. When in-
teraction ceases, the image is refined incrementally. We dis-
cuss a particular implementation of wavelet splatting which
was proposed previously, and show that certain rendering
artefacts appear in the low resolution images, due to the
particular ordering of the wavelet coefficients. We propose
a new variant that uses a different ordering, and computes
low resolution images based on the wavelet approximation
coefficients only. This variant does not suffer from artefacts,
and is faster by a factor of two to three.

1 Introduction

X-ray volume rendering remains an interesting tech-
nique for medical applications, because physicians are
well-trained in interpreting X-ray like images for diagno-
sis. X-ray volume rendering is a direct volume rendering
method [2], based upon integrating the 3-D data along the
line of sight. The underlying mathematical principle is the
X-ray transform, well-known from computerized tomogra-
phy [3]. The X-ray transformPθf of f(x), x = (x, y, z) ∈
R

3, is defined by

Pθf(u, v) =
∫

R

f(uu + vv + tθ) dt, (1)

whereu andv are two mutually orthogonal vectors in the
view plane perpendicular to a direction vectorθ (cf. Fig.1).

Usual implementations are based either on ray-casting,
Fourier rendering, or splatting. Ray-casting is an image
based rendering method in which a ‘virtual’ light ray is cast
from the view plane into the volume data. For X-ray render-
ing, the voxel values are simply added along this light ray.
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Figure 1. Parameters u, v, and θ of the X-ray
transform.

Fourier rendering [6] is a fast method to compute the X-ray
transform by using frequency domain techniques. Splat-
ting [9] is an object order rendering method in which the
voxels are projected to the view plane. In the discrete case,
we have a collection of samplesck, k = (k, l,m) ∈ Z

3,
of the functionf . The splatting algorithm reconstructsf
from its samples by convolution with a reconstruction fil-
ter φ, and then computes a mapping to the screen. This is
expressed by

Pθf(u, v) =
∑
k

ck

∫
R

φk(uu + vv + tθ) dt. (2)

The integral overφ results in a two-dimensional function,
which is called afootprint. For orthographic projection, all
voxels have the same footprint for a fixed viewing direction
θ. A mapping to the view plane by accumulation of the
footprints weighted by the voxels forms the image.

Previously, Lippert et al. [4, 5] proposed a wavelet-based
extension to splatting, calledwavelet splatting. Wavelet
splatting modifies the splatting algorithm by using wavelets
as 3-D reconstruction filters. One of the reasons to use
wavelets is that rendering the data sets is time consuming
due to their size. This produces a need for compression
methods and mechanisms to visualize the data incremen-
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tally (‘progressive refinement’). For this purpose, wavelet-
based multiresolution models have been developed, which
allow systematic decomposition of the data into versions at
different levels of resolution. Wavelet-based methods also
have proved to perform well in compression of images [1]
and compression of volume data [7].

In this paper, we compare two different implementations
of wavelet splatting, and come up with a new variant, called
hierarchical wavelet splatting, which takes advantage of the
strengths of both methods. The first method uses the hi-
erarchical ordering provided by the wavelet transform [8]
during rendering. The second method imposes a global or-
dering on the wavelet coefficients [5]. It will turn out that
the global ordering of the coefficients introduces artefacts in
low resolution images. The hierarchical ordering does not
suffer from these artefacts. The advantage of the global or-
dering is that images of high resolution are obtained using
a small number of wavelet coefficients.

The remainder of this paper is organized as follows. Sec-
tion 2 reviews the fundamentals of wavelet splatting, dis-
cusses the two different implementations, and gives a com-
parison. In Section3, we introduce hierarchical wavelet
splatting. Finally, some experimental results are presented
in Section4, and discussed in Section5.

2 Wavelet splatting

We summarize basic wavelet concepts, and describe
wavelet splatting. This is followed by a description of two
different implementations and a comparison between them.

2.1 Basic wavelet splatting

A 1-D biorthogonal wavelet basis can be constructed
from a scaling functionφ with associated waveletψ, and
dual scaling functioñφ and dual wavelet̃ψ. The corre-
sponding basis functions are{φj,k} and {ψj,k}, j, k ∈
Z, whereφj,k(x) = 2−j/2φ(2−jx − k) andψj,k(x) =
2−j/2ψ(2−jx − k). The dual basis functions are defined
similarly. The parametersj andk denote scale and trans-
lation, respectively. From the 1-D basis, one constructs a
3-D separable wavelet basis (of the so-called nonstandard
type) with eight basis functions, i.e. one scaling function
Φ0
j,k(x, y) and seven wavelet basis functionsΨτ

j,k(x, y),
τ ∈ T = {1, 2, . . . , 7}, by taking tensor products of the
1-D scaling functionsφj,k and waveletsψj,k.

Wavelet splatting [4, 5] modifies the basic splatting al-
gorithm in two ways: (i) it uses wavelets as reconstruction
filters, and (ii) it provides a mechanism to visualize data at
different levels of detail. First, the algorithm performs a 3-
D wavelet decomposition of the volume data. Substitution
of the expansion off on the 3-D wavelet basis in the X-ray

transform (1) results in:

Pθf(u, v) =
∑
k

cMk

∫
R

Φ0
M,k(uu + vv + tθ) dt

+
M∑
j=1

∑
τ∈T

∑
k

dj,τk

∫
R

Ψτ
j,k(uu + vv + tθ) dt. (3)

The approximationcoefficients arecMk = 〈f, Φ̃0
M,k〉, and

thedetail coefficients aredj,τk = 〈f, Ψ̃τ
j,k〉, where〈·, ·〉 de-

notes the inner product in the spaceL2(R3) of square inte-
grable functions onR3.

This equation expressesPθf(u, v) as a weighted sum-
mation of integrals along the line of sight, resulting in 2-D
functions on the view plane: the footprints. The integrals
have to be evaluated only once for a given viewing direction
at the coarsest scalej = M and translationk = (0, 0, 0),
yielding eightprototypefootprints. The footprints for other
scales and translations can be computed by rescaling and
shifting. Prototype footprints can be computed efficiently
by slicing their 3-D Fourier transforms [4]. When analytical
expressions exist for the Fourier transforms of the scaling
function and wavelet, as is the case of the Haar and cardinal
B-spline wavelets, no interpolation from discrete samples is
necessary.

2.2 Hierarchical ordering

A straightforward implementation of (3) uses thehier-
archical ordering of the decomposition levels. Rendering
starts by using the approximation coefficientscMk to com-
pute a low resolution image. This image is then refined
by using the detail coefficientsdM,τ

k , followed by the de-
tail coefficientsdM−1,τ

k , . . . , d0,τ
k . We recently proposed

two-stage wavelet splatting[8], which provides a fast ren-
dering algorithm for the hierarchical ordering. Two-stage
wavelet splatting splits the splatting process in two stages:
(i) coefficient projection and accumulation, and (ii) a final
convolution with the footprint. This is more efficient than
a direct implementation of (3), which blends the footprint
into the view plane for each voxel. This requires interpo-
lation of all elements of the footprint, whereas two-stage
splatting only interpolates a single voxel. The final convo-
lution requires no interpolation. We incorporated two-stage
splatting into wavelet splatting, and found speedups in ren-
dering time up to a factor of three for Haar and B-spline
wavelets [8].

2.3 Global ordering

Lippert et al. [5] proposed an implementation of wavelet
splatting which is targeted at networked applications. In or-
der to transmit the volume data efficiently, they developed
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a compression technique that allows progressive transmis-
sion. The data compression pipeline converts the wavelet
transformed data set into a sequential bitstream. First, a sep-
arate sequence of coefficients for each wavelet type and de-
composition level is generated, and the coefficients in each
sequence are sorted in descending order. Next, lossy com-
pression involving deltacoding, normalization, and quan-
tization is performed on each sequence. Finally, all se-
quences are merged and sorted in descending order. This
step imposes aglobal ordering on the wavelet coefficients,
in which the hierarchical order defined by the wavelet de-
composition levels is lost. The client decompresses the
stream and performs the actual splatting. The frame rate
can be controlled by the user, who can define the amount
of coefficients that is used as a first coarse representation of
the volume.

2.4 Comparison

We compare image quality of two-stage wavelet splat-
ting (TWS), which uses a hierarchical ordering of the
wavelet coefficients, and network targeted wavelet splatting
(WS), which uses a global ordering. We focus in particular
on the low resolution images computed during user interac-
tion. The final images, i.e. for which all wavelet coefficients
are used, are the same. We will use two example data sets,
a Phantom and CT data set. The Phantom data set has 8 bits
per voxel, and was generated from a mathematical descrip-
tion of ellipsoids. It is a 3-D variant of the Shepp and Logan
head phantom [3], which is used to assess the quality of to-
mographic reconstruction algorithms. The CT head data has
16 bits per voxel. Both data sets contain128 × 128 × 128
voxels.

For WS it is difficult to determine the minimum number
of coefficients necessary to generate a low resolution image
which is useful. The final sorting and merging removes the
hierarchical ordering provided by the wavelet decomposi-
tion. During the rendering phase, therefore, it is impossi-
ble to speak about an approximation at a certain reconstruc-
tion level. Since the low resolution image always involves a
mixture of approximation coefficientscMk and detail coeffi-
cientsdj,τk , interpretation can become difficult. An example
is shown in Fig.2. We used a two-level wavelet decompo-
sition with the Haar wavelet. The number of approximation
coefficients for the Phantom data set is 11296 after removal
of the coefficients that are zero. Figure.2(a) shows an image
obtained by TWS using the approximation coefficients only,
and Fig.2(b) shows an image obtained by WS using the first
11296 wavelet coefficients. The effect shown in Fig.2(b) is
undesirable, since the object appears to be partially empty.
The effect disappears by taking 1000 coefficients more.

Figure3 shows a comparison between TWS and WS for
low resolution images computed for a fixed frame rate. We

(a) TWS (b) WS

Figure 2. Low resolution image renderings.

used a two-level wavelet decomposition with the linear B-
spline wavelet. Since TWS computes low resolution im-
ages using all approximation coefficients, we determined
the number of coefficients that can be visualized with WS
at the same frame rate. Both data sets contain 32767 ap-
proximation coefficients. The Phantom data set is rendered
at 11 frames per second by TWS and the CT head data set
at 8 frames per second on a Pentium II 400 MHz proces-
sor. The same frame rates are reached by WS using the first
7100 coefficients of the Phantom data set and the first 7200
of the CT head data set. The Phantom data set indicates that
WS gives undesirable results, because only an outer shell of
the data is shown (Fig.3(c)). In an interactive session, for
instance, the objects inside the ellipsoid appear suddenly
when interaction is ceased. A similar effect can be seen in
the CT head data (Fig.3(d)), where large parts of the soft
tissue are missing in the low resolution image.

(a) 32767 (b) 32767

(c) 7100 (d) 7200

Figure 3. Low resolution renderings by TWS
(top row) and WS (bottom row). (a), (c): Phan-
tom data; (b), (d): CT head data.
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Although WS suffers from artefacts in approximation
images, it produces high-resolution images with less coef-
ficients than TWS. This is an important advantage of the
global ordering of the coefficients. An example is shown
in Fig. 4(a) and Fig.4(b) for the Phantom data and the CT
head data, respectively. When the number of coefficients
used is increased to 32767, the total number of approxima-
tion coefficients used above by TWS, the resulting images
show more detail than those in Fig.3(a) and Fig.3(b).

(a) 32767 (b) 32767

Figure 4. Renderings by WS.

3 Hierarchical Wavelet Splatting

We can now introduce a new variant calledhierarchical
wavelet splatting(HWS), which combines the strengths of
both TWS and WS. Instead of sorting and merging approx-
imation and detail coefficients like in WS, HWS generates
two sequences of coefficients: a sequence containing only
approximation coefficients and another sequence containing
all detail coefficients. Since the approximation coefficients
cMk are all of the same decomposition level, we can use two-
stage splatting to increase rendering speed. The sequence
containing the detail coefficients is sorted in descending or-
der, as in ordinary WS. Both sequences can be compressed
by deltacoding, normalization, and quantization. While a
user is interacting with the data, only the sequence contain-
ing the approximation coefficients is used. When interac-
tion ceases, the image is refined incrementally with the de-
tail coefficients.

4 Experimental results

We applied HWS and WS to the CT head data set to
investigate their performance and visual quality. A two-
level wavelet transform with the linear B-spline wavelet was
used. Table1 shows cumulative rendering times (in msec)
of HWS and WS on a Pentium II 400 MHz processor. The
first row shows the rendering time of a low resolution im-
age. The second row shows the time after which the relative
L2 norm (mean squared error) of the difference between the
partial reconstruction and the image at full resolution is less

than0.0001. Both methods reach this point using 82767 co-
efficients. Since HWS uses two-stage splatting when com-
puting low resolution images, rendering time is significantly
shorter.

Table 1. Cumulative rendering times (msec)
of HWS and WS.

HWS WS
low resolution (32767) 63 275
L2 < 0.0001 (82767) 399 582

Figure 5(a) shows an image rendered by HWS using
only 4% of the wavelet coefficients, and Fig.5(b) shows
the full reconstruction. Differences between these images
are hardly distinguishable, providing an extra motivation for
the use of wavelets.

(a) 82767 (b) 2023421

Figure 5. Comparison of a partial reconstruc-
tion using only 4% of the coefficients (a) and
the full reconstruction (b).

5 Discussion

We formulated a new variant of wavelet splatting, called
hierarchical wavelet splatting. Image quality for low reso-
lution images is higher in comparison to WS, since HWS
uses all approximation coefficients to generate the image.
In contrast, WS uses a mixture of approximation and detail
coefficients, which leads to images that are difficult to in-
terpret when a small number of coefficients is used. Since
HWS uses only approximation coefficients to compute low
resolution images, it can make use of two-stage splatting to
increase rendering speed. Although HWS has less freedom
to choose the number of coefficients used for rendering, it
is faster than WS for similar image quality.
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