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Abstract

We consider two planning problems faced by an electricity distributor. Electricity can be ob-
tained both from power plants and small generators such as hospitals and greenhouses, whereas
the future demand for electricity is uncertain. The price of electricity obtained from the power
plants depends on quota that are to be determined in a yearly contract, whereas the (given)
contracts with small generators contain various constraints on switching them on or off.
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1. Introduction

A distributor of electricity can be seen as a middleman between suppliers and con-
sumers of electrical power, whose aim is to satisfy demand at minimal costs. In this
paper demand for electricity is aggregated, whereas a crucial distinction is made be-
tween two categories of suppliers: on the one hand there are power plants (aggregated)
and in addition we consider so-callsthall generatorstypical examples of small gen-
erators are:

- Hospitals or other institutions with emergency generators, which can supply to
the net in normal circumstances;

- Greenhouses, which produce electrical power as a by-product of generating
heat;

- Industrial consumers which may be switched off for short periods of time. The
net effect is the same as generating an amount of electrical power equal to their
demand during such a period.

We consider two planning problems faced by a typical (Dutch) distributor of electricity
(in the sequel simply called ‘the distributor’). First, every year a contract with the power
plants has to be negotiated. The main issue in this contract is to detegunit@for

the capacity of the power supply. The quota define capacity ranges for supply at any
moment during the contract year, and to each range corresponds a certain price per kWh
(kilo Watt hour) of supply. For a number of ranges (low, medium, and high volume of
supply) such quota have to be specified at given costs per kW (kilo Watt) of reserved
capacity. These quota are then fixed for the entire year covered by the contract, thus
determining the costs of supply by the power plants at every moment in that year. The
decision on quota is of course complicated by the uncertainty of future demand, but
also by the possibility to use supply by small generators (subject to given contracts).

Once the quota are fixed, the second problem is to determine a supply schedule (that is,
a schedule of supplies obtained from both power plants and small generators for every
hour or even every 5 minutes) for each single day. Such a schedule has to be specified
one day in advance. At this time the demand pattern for the next day is known, but
only probabilistic information is available on demand in the rest of the contract year.
Moreover, such a schedule has to take into account bounds on the total number of hours
that a small generator can be used during the contract year.

Small generators can either supply at full capacity or not at all. Thus, the contracts with
small generators specify a fixed price for a fixed capacity per time unit and usually also
costs for switching them on or off. Moreover, there may be bounds on the number of



time periods a small generator can be used, the number of times it can be switched
on, up and down times, etc. A natural way to model these contracts is tbiresg/
variables.

The uncertainty about future demand is modeled by random variables with known dis-
tributions. Because discrete variables are needed to model the contracts with small gen-
erators, the models we consider are stochastic programs with mixed-integer variables.
In fact, as will be explained in Sections 2.3 and 3, it is very natural to model both prob-
lems as recourse models. We will argue that it is also natural to aggregate the future
in each model (consisting of an entire year or the remainder of the year, respectively)
and consider it as one time stage, so that both models have a two-stage integer recourse
structure. For a survey on properties and general algorithms for such models we refer
to [9]. In addition, several applications can be found in [13] or the bibliography [14].

We are not aware of existing literature on this specific problem. However, it is similar
to the well-known unit commitment problem, which received a lot of research attention
in stochastic programming (see e.g. [4] and references given there). Moreover, deregu-
lation and the introduction of competition in the electric energy industry opens a host
of research opportunities as surveyed in a recent paper in OR/MS Today [3].

The aim of this paper is twofold. First, it illustrates the modeling process for a real-life
application, resulting in two-stage integer recourse models. Such models are very hard
to solve in general, and — like in deterministic (mixed-)integer programming — it appears
to be worthwhile to develop tailor-made solution methods for specific applications.
Motivated by the structure of the models for our application, we investigate the use of
valid inequalitiesand Lagrange relaxatiarinfortunately, we are not able to test our
solution techniques on real data, since for the time being the electricity distributors we
are in touch with have to focus their attention on strategic issues related to liberalization
of the electricity market.

2. Contract with power plants

For reasons that are beyond the scope of this paper, the unit price paid by the distributor
for electrical power supplied by the Dutch power plants dependyuota For a given
hourz, let this amount of supply bg. Then

1 2 3 4
S =X, +x, +x; +x,,



with
OfxtlfL,
0<x?2<M,
OfxffH,

Ofx;‘.

That is, the total supply consists of four components, the first three of which are
bounded from above by their respective qubtéor Low), M (Middle), andH (High).

The corresponding unit prices are such that! < ¢? < ¢3 « ¢*, for example

¢ = .04,c¢% = .05,c3 = .09, andc* = 1.25.1 Because of this relation between the
prices it is obvious that, far= 2, 3, 4,x’ > 0 only if x' -1 equals its upper bound. The
interpretation is that a marginal unit of supplybecomes more expensive, depending
on the classification of the total supply as ‘low’, ‘middle’, ‘high’, or even ‘very high'.
Supply is considered to be very highsif> L + M + H; the corresponding marginal
unit pricec* reflects its function as a penalty price.

Clearly, the values of the quoia M, andH are very important to the distributor, since
they determine the costs of the supply by the power plants for every time period. The
values of the quota are set in a yearly contract between the distributor and the (collec-
tive) power plants, and remain fixed for the entire year covered by this contract. The
unit costs (per kW) for reserving capacity are decreasing ffoto H, for example

260 for L, 205 for M, and 125 forH. Thus, when deciding on the contract with the
power plants, the distributor would like to determine quota that result in the |datast
expected costpossible. These costs consist of immediate costs for reserving capacity,
and expected future costs for satisfying uncertain future demand during the entire year
covered by the contract. This decision under uncertainty is complicated further by the
possibility to satisfy a part of the future demand by means of supply from small gener-
ators.

2.1  Contracts with small generators

Typically, there are about 30 to 40 small generators that can supply to the distributor.
In our models the contracts with the small generators are given. In this section we
discuss the nature of these contracts, that is, the price structure of supply and the various
constraints that may be specified.

1 These numbers are fictitious but the proportions are not unrealistic. The same is true for the values of
other cost parameters in the sequel of this paper.



As stated in the Introduction, a small generator $&@n either supply at a fixed capacity

or be switched off. Hence, the contract contains a fixed pricfor a fixed amount of
supply during one time period (say one hour) and also aeddfisr switching the small
generator on or off. Actually, we only model costs for switching on SfBserving that

SG has to be switched off once it has been switched on, we take these costs equal to
the sum of both costs.

The decision to use the supply of $@uring the time periodz,t + 1), € T :=
{0,1,...,23}, is modeled by a binary variablg/, which has value one if the supply
is used. If SG was off in the previous period — 1, ¢) it has to switched on, which is
modeled by the binary variablg¢ which is then set to one. (It is not necessary to define
binary variables for switching on, sine¢ = max(y/ — y’_,, 0} which is automatically
either zero or one. However, it turns out that using binary variaiffle&tlows a better
formulation of the models, see Section 2.4.1.)

The contract may contain various constraints which restrict the use 6fp8Gday.
Below we give an overview, together with their possible mathematical formulation.

(i) Supply is not possible during certain hours of the day:

Y ¥ =0

teTy
whereTy is the corresponding set of hours.

(i) SG’ has to be on at least; and at mos#/; hours:
my < ny] < M.
teT
(i) SG/ has to be switched on at leas} and at mosi, times:

my < E 7] < Mo.

(iv) If SG/ is switched on, it has to stay on for at leas and at mosi/; periods:
for all + € T (with appropriate modifications for largg,

t+m3z—1
Y. ¥ —maz/ =0
s=t
t+Ms
Z ¥/ —M3<0
s=t
Below we use the compact notati¢® , z/) € C/ to denote these daily constraints in
the contract with SG herey’ is the vector(y;, .. ., y35) andz’ is defined analogously.

Of course, a specific contract need not contain all of the constraints mentioned above.



In addition to the daily constraints as described above, there are usually upper and lower
bounds on the use of SG@uring the entire contract year. In the model for the contract
with the power plants they are ignored or approximated by constraints of type (ii).
They will be modeled explicitly in our second model for optimizing the daily supply
schedules.

2.2 Modeling uncertain demand for electricity

The decision on the quotd., M, H) for next year has to be taken in advance, that

is, under uncertainty about the demand for electricity. Not only the daily volume of
demand is relevant, but also its dispersion over that day. We assume that a probability
distribution for such demand data is available, for example based on historical data.

We aggregate the entire year covered by the contract to one period, so that the decision
model becomes a two-stage model. Accordingly, and in order to arrive at a manageable
model size, we do not consider random demand for each future day separately, but
instead consider so-calle@gpresentative day&n example of a representative day is

a working day in the spring season, which represents all working days in that season.
This aggregation is motivated by the assumption that all working days in the spring
have a similar demand pattern and volume. On the other hand, the demand is different
from that on e.g. a holiday or a Saturday in the same season, and also different from
the pattern and/or volume observed on working days during other seasons.

Let R, ..., R" denote the collection of representative days, for example consisting of
working days, Saturdays, Sundays, and holidays for each season, §iwing6. From

the available data now a discrete probability distribution can be estimated for the rep-
resentative days. For eathits realizationso™* = (o, ..., i), k = 1,..., K, are

then possible demand patterns on representativeRéla@f course, the corresponding
probabilitiesp’* are such thad_, p’* equals the relative number of days of tyRein
ayear.

To simplify the notation, we will use a single index ferand p from now on.



2.3 Optimizing the contract with the power plants

For given quota L, M, H) and a realization of a one-day demand patterthe mini-
mal costs for satisfying this demand are

4

v(L,M,H,) = min P DI +Z(q"yf +er?) 1)
Y4

teT \ i=1 jelJ
4 .
st. Y x4+ by zw., teT
i=1 jeJ
xtlfL,xtsz,xffH, teT
(v, z/) e C/, jedJ
x>0, i=1...,4,teT
vl .z €{0, 1}, jel teT

whereJ is the set of small generators. The first constraint reflects that demand has to
be satisfied at all times, either by supplyfrom the power plants or by supply from
small generators, which have fixed capadity j € J. This is a mixed-integer (binary)
optimization problem, with 4T | continuous variables and @J |- |T | binary variables.
(Notation:|S| denotes the cardinality of a s&f)

Thus, for fixed quota L, M, H), the expected costs for satisfying the demand of one
day areE, [v(L, M, H, w)], giving yearly expected costs 36%,, [v(L, M, H, ®)].
In the contract with the power plants, the goal of the distributor is to determine quota
that minimize thetotal expected costsvhich is the sum of the direct cost for fixing the
guota and the expected costs of satisfying demand during the contract year. Thus, the
goal is to find an optimal solution of the followirte/o-stage integer recourgeoblem:

min  CL + C?M + C3H +365-E, [v(L, M, H, )]

L.M.H (2)
s.t. L,M,H >0,

whereC’, i = 1, 2, 3, are the unit costs for reserving capacity by means of the quota,
andv is the second-stage value function defined above.

In the next section we propose techniques that appear to be useful for solving this
model. However, since we do not have access to realistic data, we will not be able to
apply these ideas in numerical experiments. Instead, we performed a simple simulation,
using artificial (but not unrealistic) data and the assumption that the small generators
provide 10% of the supply needed. The results show that for optimal quota the direct
costs are about 52% of the total expected costs, which are approximately 304 million



Dutch guilders (Dfl). Moreover, we found that small deviations from the optimal quota
(plus or minus 5% fol.) give an increase of total expected costs of up to 7 million Dfl
(2.3%). These results indicate that it is worthwhile to investigate the recourse model
presented above.

2.4 On solving the integer recourse model

In order to solve the integer recourse model we have to be able to evaluate the ob-
jective function, or at least to provide a reasonably good approximation. That is, for
given quota(L, M, H) and a realization of the demand we have to solve the mixed-
integer second-stage problem (1). Indeed, we need to perform these calculations many
times, so that it is important to do this efficiently. To this end we consider two tech-
nigues, both inspired by the structure of this particular problem. Such problem-specific
solution methods (both algorithms and heuristics) have proved to be very fruitful for
deterministic mixed-integer problems, see e.g. [10] [2]. This case study illustrates the
use of this strategy in a stochastic setting.

Since supply obtained from small generators is more expensive than supply from the
power plants at unit costs', and because the demand for electricity is relatively low
and stable during the night (23.00 till 7.00), it follows that it is never optimal to use
supply from small generators during the night. Therefore, this part of the twenty-four
hours can be ignored in our optimization model, so that from now on we only consider
supply and demand for the houest + 1),r € T :={7,8,...,22}.

Even after this reduction, the second-stage problem is a mixed-integer problem with
at least 1280 binary variables, given that there are 30 to 40 small generators involved.
Our first computations (using a different but correct formulation of the second-stage
problem) already failed for an instance with as few as 5 small generators: the branch-
and-bound solver ZOOM [12] did not find an optimal solution in several hours CPU
time, see [5]. Therefore, we need to improve the formulation of the second-stage prob-
lem as shown below.

2.4.1 Valid inequalities

First, we observe thathe constraintsy’,z’) € C’, j € J, do not depend on the
first-stage decisiond., M, H) nor on the observed demand patternConsequently,
we can improve the formulation of the second-stage problem by adding so-zaliéd
inequalities(see e.g. [10]), which arealid in all second-stage problepthat is, for
every choice of L, M, H) andw.



Adding valid inequalities results in a better lower bound obtained by solving the LP
relaxation of the problem, which hopefully improves the performance of the usual
branch-and-bound algorithm for mixed-integer problems. In general it is difficult to
find strongvalid inequalities that result in a substantial reduction of the computing time.
However, since the same valid inequalities can be used for all second-stage problems,
we can afford to spend (a lot of) time on determining such strong valid inequalities.

For example, assume that a small generator has to be switched on at kgasis per
day, and that if it is switched on, it has to stay on for at leggsériods (see (ii) and (iv)
in Section 2.1). Then the following valid inequalities prove to be very useful:

ny Z mn’
teT

Z zg>m—1 VteT,
seT\S(1)

whereS(¢) := {¢t,t+1, ..., t+n}. The first of these valid inequalities is trivial (but very
powerful); the second reflects the observation that the small generator can be switched
on only once im + 1 consecutive time periods, so that it has to be switched on at least
m — 1 times during the remaining periods.

Using these valid inequalities (among others) in the formulation (1) of the second-stage
problem, the instance with 5 small generators is now solved by CPLEX 5.0 [1] in 1.02

seconds (on a Pentium 450 Mhz with 384 MB memory). This spectacular reduction
of the computing time is partly due to defining the variatzlésto be binary: this al-

lows CPLEX to automatically generate additional valid inequalities (so-called cover

and cligue inequalities). In any case, this illustrates that valid inequalities (user defined
or automatically generated) work very well for this problem.

2.4.2 Lagrange relaxation

Even with valid inequalities included, the second-stage problem (1) can not yet be
solved fast enough. Indeed, instead of 5 small generators as in the computational ex-
ample, the actual number of small generators is 30 to 40. Moreover, the second-stage
problem needs to be solved many times, so that even a computing time of 1 second
is prohibitive. Next we consider further reduction of computing time by applying La-
grange relaxation.

In the second-stage problem (1), thmall generators are loosely coupledhe sense
that they are only connected through the constraints prescribing that demand should be



satisfied at all times:

4

Zx,i + ijyf >w,, teT.
i=1 jed

It is therefore natural to consider Lagrange relaxation of these constraints, since this re-

sults in a separable second-stage problem. Indeed, éoR'f', the Lagrange function

IS

4
AG\,L,M,H,w) = min ZZ(cl’—/\t)x;' (3)
X
T i=1
st. xeX(L,M,H)

+y min Y- ((q’ — byl +r72])
T

7 y/)z./
st (,z)ecC

+ Z)"ta)t’
T

whereX (L, M, H,w) :={x >0:x} <L, x><M, x><H VteT).

The first term of (3) is a simple LP problem for which the the optimal value can be
given in closed form. Obviously, sina¢ is not bounded from above, the optimal value

is —oco if A, > ¢*for anyr e T, so that optimal values of the Lagrange multipliers

are contained in the hypercup@ ¢*]'”!. Given the interpretation of, as the unit price

of electricity obtained from an alternative supplier, the upper badns natural, since

an unlimited amount of electricity can be obtained from the power plants at unit costs

.

The second term of the Lagrange function (3) consisid p§eparatgure-binary prob-

lems: one for each individual small generator. Using valid inequalities as discussed in
the previous section, each of these small problems is solved by CPLEX in 0.01 sec-
onds on average. Consequently, each evaluation of the Lagrange function for given
A, L, M, H andw, takes about 0.5 seconds.

The Lagrange dual

max A\, L, M, H,w)
re€[0,cHIT]

provides a lower bound far(L, M, H, w). This convex non-smooth problem can be
solved efficiently by special purpose software, for example by NOA (see Kiwiel [6]).

10



The interpretation of. suggests that, € [c?, ¢®],t € T, is a good starting point for
such iterative methods.

2.4.3 Implementation

The goal of using valid inequalities and Lagrange relaxation is to speed up the eval-
uation of the second-stage value function defined in (1). Of course, this is only one
ingredient of an algorithm for solving the two-stage integer recourse problem (2), re-
sulting in optimal quota., M, and H. Since we do not have the necessary data, we
did not attempt such computations. However, it seems that existing algorithms such as
Stochastic Branch-and-Bound [11] can be applied.

3. Supply schedule for the next day

The second problem faced by the distributor is to determine a schedule for the next
day, specifying the amount of supply from the power plants and the small generators
for each period during that day. This schedule has to be conveyed to the suppliers one
day ahead (at noon).

The goal of the distributor is to find a schedule that minimizes the costs of supply for
the next day, and that also takes into accdwstinds on the total number of hours that
a small generator can be used during the whole.year

The following information is available:

() The current quotdL, M, H) and corresponding unit prices in the contract with
the power plants.

(i) The contracts with the small generators, including restrictions on the total usage
per year.

(iii) An accurate prediction of the electricity demand for the next day, and proba-
bilistic information on demand during the remainder of the year.

In practice, the prediction of demand for the next day is accurate enough to be treated
as deterministic information, denoted by, ¢+ € T. Hence, also this problem can be

11



formulated as a two-stage integer recourse model:

4
min 3| Y ocx 3 (ay! +rE) | + o) (4)

teT i=1 jelJ
4 .
S.t. Zx,’ +ijyi’ > d,, teT
i=1 jed
xt<L,x?<M,x3<H, teT
(y/,zl) e, JjeJ
x>0, i=1...,4teT
i,z €{0, 1}, jel teT,

where the functiorQ reflects the expected recourse costs due to not meeting the restric-
tions on the yearly usage of the small generators. Below we propsigesée recourse
structure to model these future costs.

The first stage of the current model is exactly the same as the second-stage part of
the previous model. Thus, thealid inequalitiesthat we derived for the constraints
(y/,z/) € CJ, j € J, can again be used to speed up the computations. Moreover,
the samd.agrange relaxatioas above results here ircampletely separated problem
since the separation of the first stage matches the separation of the fu@otibith

is due to the simple recourse structure. Before we discuss this in more detail, we first
present the simple recourse model, starting with the corresponding representation of
uncertainty about future demand.

3.1  Future demand for supply from small generators

The simple recourse model that we have in mind assigns penalty costs to a surplus or
shortage of yearly usage for each small generator. To model this, we need to trans-
late the known distribution of future demand for electricity to a distribution of future
demand for supply from the small generators.

Consider again a collection of representative d&ys..., R", as defined in Sec-
tion 2.2. For each®’, with its typical demand patterns, we compute the optimal supply
schedules giving in particular the optimal usagjeof each small generator SGj < J.

On dayr of the year, let the random vectgr = (52, ..., n") denote the remainder
of the year, withy. the number of days of type (obviously, > , 70 = 365— 7).
Given the probabilities of the realizations gf, we can compute the distribution of the

12



number of hourg/ that supply from SGis needed in the remainder of the year, since

N
= hin.
i=1

By this preprocessing step we can obtain the distribution of the random \gcter
(gL, ... gl'1) for each dayr.

3.2  Modeling expected penalty costs

Let L/ andU- be the lower and upper bound on the total number of hours that&s
be used during the contract year. At dayve know how much supply is taken from
SG so far, giving current bounds

-1

Li="L = ul

©
=

[any

.-
vl =U'-)» ul,

N

Il
N

whereu? is the number of hours that S@as used on day. Thus, for given usage, =

(ul, ..., u!") and a realizatio, of desired future supply by the small generators, the
value function
Vg, &) == min g y" +q7y" (5)

st yt>& +u, —U,

gives the minimal penalty costs for not meeting the yearly lower and upper bounds for
each of the small generators. Since any surplus can be bought at unitcivets the
power plants, we take all componentsqdf equal toc*. On the other hand, if the total
yearly supply from SGfalls below the lower bound./, it seems reasonable to charge
unit penalty costs equal to a fractiongf + r/.

Due to thesimple recoursestructure, this second-stage problem is separable. Hence,
the functionv gives the total penalty costs as the sum of the penalty costs for each small
generator individually:

I/

Ve, &) = Y v/ (u], E)),

j=1

13



wherev’ is the one-dimensional version of (5). Consequently, also the expected penalty
costs functionQ (u,) := Eg, [v(u., &,)] is separable, with term@/ (u/) = E, [v/(ui, ED)].

Using this penalty costs model may lead to the undesirable result that already early in
the year the supply obtained from one or more small generators is close to one of its
bounds, thus limiting the options for scheduling in the rest of the year. (Even if such
a sequence of supply schedules has minimal total expected costs, it is undesirable in
the sense that it does not correspond to current practice.) This effect can be avoided by
means of the following refinement of the second-stage problem. The idea is to ‘aim’ to-
tal expected supply from each $@t the average valud./ + U/)/2, which is achieved

by putting a small penalty on deviations from this value. In the refined model, penalty
costs are given by

w(,, &)= min gyt + g%y 4 gty 4¢Py (6)
sty 4y -yt =y =& 4u, — (L, + Uy)/2
yl+ S (U‘L’ - L‘L’)/z
y17 S (Ur - Lr)/z
yit, y#t oyl v e R

whereg?* andg¢?~ are equal to™ andg~ in the previous model, and the values of
gt < g%t andg'~ < g2 are for example determined by numerical experiments (and
are possibly decreasing wit).

This refined model is called multiple simple recoursenodel (see [7]), and has the
same separability properties as the simple recourse model. In fact, it follows from The-
orem 3.1 in [8] that such a multiple simple recourse model is equivalent to a simple
recourse model in the following sense.

Corollary 3.1  Consider the one-dimensional multiple simple recourse value func-
tion w,

w(s) ‘— min q2+y2+ +ql+yl+ +ql’yl’+q2’y2’
st yl-i- + y2+ _ yl— _ y2— =
yl-i- <u
y<i
yl+’ y2+’ yl—’ y2— €R+,
and the one-dimensional simple recourse value funatjon
v(s) := min g*"yt +4¢*y"
st. yr—y =s
yhoyT eRy,

14



whereg?t > gt > 0> —g'~ > —¢%.

For any random variable; with finite mean value, whose cumulative distribution func-
tion (cdf) is denoted by,

Ey[wx =] =Ey [v(y —x)] —¢, x€R,
wherey is a random variable with cd#,
_ ql+ +qlf
q2+ + q2—
The constant is given by
q2+ (qz— _ ql—)l + qz— (q2+ _ q1+) u
q2+ + q2— :

2+ 1+ - 1-
Wis) e (A —
9" +q 4 +4q

F(s)+ F(s—1),

PROOF  The result follows from Theorem 3.1 in [8] by straightforward computation.
O

Since the multiple simple recourse expected value function (BMFp (§ — x)], x €

R", is separable, Corollary 3.1 implies that this function is equal (up to a known con-
stant) to a related simple recourse EVF with known distribution of the right-hand side
parameters. Hence, such a multiple simple recourse model can be solved by existing
algorithms for simple recourse models.

3.3 Optimal supply schedules

Putting the ingredients discussed above together, we see that the problem of finding
an optimal supply schedule for the next day can be modeled as a two-stage (multiple)
simple recourse model, with mixed-binary first-stage variables and continuous second-
stage variables.

In practice, next days supply schedule has to be specified for each quarter of an hour or
even every 5 minutes. In the latter case there are 11520 binary first-stage variables (to
model 30 small generators). Even using valid inequalities as discussed in Section 2.4.1,
direct computations for the full model are probably too time consuming. Also for this
model Lagrange relaxation of the constraints relating supply and demand appears a
useful option, since the resulting problem separatéd jr{multiple) simple recourse
problems for each SG@ndividually (plus an LP problem corresponding to supply from

the power plants).
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Again, we did not actually perform these computations because the necessary data were
not available to us.

4, Conclusions

We have shown that the application at hand can (or even should) be modeled by two-
stage mixed-integer recourse models. This illustrates the wide applicability of such
models. Moreover, we have investigated the use of problem specific solution tech-
niques, thus following an approach that has been very successful for deterministic
mixed-integer problems. In particular, we showed how the use of valid inequalities
and Lagrange relaxation may leaddemputationally tractablenodels for problems of
realistic size.

In future research we will investigate similar approaches to other specific mixed-integer
recourse problems.
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