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Abstract

This papér studies previously developed nonlinear Hilbert adjoint
operator theory from a variational point of view and provides a for-
- mal justification for the use of Hamiltonian extensions via Giteaux
differentials. The primary motivation is its use in characterizing sin-
gular values of nonlinear operators, and in particular, the Hankel
operator and its relationship to the state space notion of nonlinear
balanced realizations.

1 Introduction

Adjoint operators play an important role in linear control sys-
tems theory. They provide a duality between inputs and out-

puts of linear systems. The properties with respect to in-
" put, e.g. controllability and stabilizability, directly reduce
to the dual results with respect to output, observability and
detectability. Consider a linear operator (transfer function)
Z(s) : E — F with Hilbert spaces E and F. Then its adjoint
operator X'(s) : F/ — E’ is isomorphic to ZT(—s) : F — E.
The adjoint can be easily described by a state-space realiza-
tion if the operator X(s) has a finite dimensional state-space
realization. In this paper we study the nonlinear extension of
such adjoint operators, and apply the results to Hankel theory.

Nonlinear adjoint operators can be found in the mathematics
literature, e.g. [1], and they are expected to play an important
role in the nonlinear control systems theory. So called non-
linear Hilbert adjoint operators are introduced in [6, 11] as a
special class of nonlinear adjoint operators. The existence of
such operators in an input-output sense was shown in [7], but
their state-space realizations are only preliminary available in
[5], where the main interest is the Hilbert adjoint extension
with an emphasis on the use of port-controlled Hamiltonian
system methods. :

Here, we consider adjoint operators from a variational point
of view and provide a formal justification for the use of
Hamiltonian extensions via Gateaux differentials. We in-
vestigate whether one can use their state-space realizations
to characterize singular values of nonlinear operators, and in
particular, the Hankel operator. We also consider the relation

0-7803-6638-7/00$10.00 © 2000 |EEE

to the previously defined singular value functions that have
been defined entirely from the controllability and observabil-
ity functions corresponding to a state space representation of
a nonlinear system [10].

In Section 2 we present the linear system case as a paradigm,
in order to motivate the line of thinking for the nonlinear case.
In Section 3 state-space realizations of nonlinear adjoint op-
erators are introduced in terms of Hamiltonian extensions. In
Section 4 a formal justification of the use of Hamiltonian ex-
tensions for nonlinear adjoint systems is provided. In Section
5 we concentrate on the Hankel operator, and correspondingly
on the controllability and observability operators for nonlin-
ear systems. Then, in Section 6, we extend some results of the
linear case on singular values, see e.g. [12], and their relation
to the Hankel operator to the nonlinear case by using the state
space realizations for adjoint systems as given in Section 3.
Finally, we summarize our conclusions.

2 Linear systems as a paradigm

This section outlines the way linear adjoint operators play
an important role in the linear systems theory, see e.g. [12].
The material is presented here in a way that clarifies the line
of thinking in the nonlinear case. Consider a causal linear
input-output system y = Z(u) : L}'[0,00) — L5[0,00) with
(A,B,C) the state-space realization. The transfer function
matrix is given by G(s) := C(s] —A)~'B . Its adjoint opera-
tor is isomorphic to y, = Z* (ug) : L5[0, 00) — L0, 00) where
the transfer function matrix is given by G*(s) 1= G¥ (—s) =
BT (—sl —AT)~'CT. Here u, and y, have the same dimen-
sions as y and u, respectively. £* satisfies the definition for
Hilbert adjoint operators, namely,

(Z(u), ua) 15 = (1, Z*(ua)) - (1
Since u, has the same dimension as y we have that
IZ@)IZ; = (2(w), E())e5 = (u, Z0Z(w)) 1y

by substituting u, = X(u). This relation can be utilized to
derive the singular values of the corresponding input-output
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map.

Now, consider the Hankel operator of a continuous-time
causal linear time-invariant input-output system S : 4 — y with
an impulse response H which is analytic on [0,00). If § is
BIBO stable then the system Hankel integral operator is the
well defined mapping Hy : LF {0, 00) — L5[0, 00)

My @ d—9(f)= /OOOH(t-f-T)ﬁ(T)d'c.

Define the time flipping operator as the injective mapping
F :LF[0,00) — L (—00, 00) with F(i(t)) = d(—t) fort <0
and F(4(t)) =0 fort > 0. Then clearly Hy = SF, where the
codomain of § is restricted to L5[0, c0). It is well known that
the composition H3Hy is a compact positive semi-definite
self-adjoint operator with a well defined spectral decomposi-
tion [9]:

8

H)’EHEZ C%(‘,V_,‘)L2 Vi, (S_,'ZO, VjEL’z"[0,00)
J

Vi), =86, (vjy (HEHE) ()1, = 05

The nonnegative real numbers 61 > 03 > ... are called the
Hankel singularvalues for the input-output system S.If the re-
alization is asymptotically stable (i.e., A is Hurwitz) then the
Hankel operator can be written as the composition of uniquely
determined observability and controllability operators; that is,
‘Hz = OxCs, where the observability and controllability op-
erators, Oz : R” — L5[0,00) and Cy : L{0, 00) — R”", respec-
tively, are given by

1

Cet'x’ )
s 2e Bu(t)dr. 3
Note that these operators Oy and Cy are also operators on

Hilbert spaces, hence their adjoint operators are given by Os :
L} 0,00) — R"and C5 : R" — L5[0,0)

xo >y = Oz(xo)' =
u—x0=Cs(u) :=

fRd CTu(mdr @)
BTA X0, )
It can’ be easily checked that they satisfy (O);(xo),ua)l_5 =
(2, O (ua))mn and (Cx (u), x°)rn = (u,C5(x%))1p . These ad-

joint operators can be used to calculate the observability and
controllability Gramians, respectively:

10() |3, = (2, J5=CereA  CTde 0)n = (x0,0 )
ICE ()2 = (62, J5°BT A" *eA BT O = (x°, P )

These imply that Q = O30 Os and P = C3* o C5 = Cg o C5.
Furthermore, it is well-known that

Ug = 10 = Of(u) =

Oy, =CE(°) =

Lemma 2.1 [12] The operator H3Hy and the matrix QP
have the same nonzero eigenvalues.

3 State-space realization of nonlinear Hilbert adjoint
operators

This section is devoted to the state-space characterization of
nonlinear Hilbert adjoint operators as an extension of the

properties given in the previous section. The precise defini-
tion of nonlinear Hilbert adjoint operators is given as follows
[6,7, 11].

Definition 3.1 Consider an operator T : E — F with Hilbert
spaces E and F. An operator T* : F X E — E such that

(T(u),yh" = (u, T*(y, u)e, Vue E,¥Yye F ©)
holds is said to be a nonlinear Hilbert adjoint of T.

Remark 3.2 In the most general setting, let F be a topolog-
ical vector space over R with dual space F’ {1]. Let E be a
nonempty set, and 4 a collection of nonempty subsets of E.
Let EP be a linear space of real-valued functions xP on E with
the property that the restriction xg to every A € A is bounded.
A mapping T : E — F is called A-bounded if T maps the sets
of A into bounded subsets of F. For any .4-bounded mapping
T :E — F, the dual map of T is defined as

T : F —EP NG
Y = (T'()w) = (Y oT)(u), Vu € E, ¥y € F (8)

Hence a nonlinear Hilbert adjoint operator 7* yields an ad-
joint operator in the usual sense by

(T’ )W) := (u,T*(y,u))g, u€E,yeF. (9
The converse result can be found in {7].

If T is a linear operator then 7* always exists and is equiv-
alent to T'. Of course T* is a function only defined on F,
le.

(T(),y)r =@, T*())e, Vu€ E,Vye F  (10)

in the previous section.
Now, we consider an input-output system X : L(Q) — L5(Q)

defined on a (possibly infinite) time interval Q = [¢%,¢1] C R
which has a state-space realization

flxu) x(%) =0
= h(x,u)

tu:E(u):{; ~ (11)
with x(¢) € R”, u(t) € R and y(¢) € R". Here we assume that_
the origin is an equilibrium, i.e., f(0,0) =0, #(0,0) = 0 holds
and that all signals and functions are sufficiently smooth. In
order to obtain a state-space characterization of the Hilbert
adjoint of a system in terms of an Hamiltonian extension we
have to introduce the variational system of X. It is given by
(uyuy) — yy =Z,(u,uy) :

X = f(xu) x(t%) =0
i o= Lo+ %u, x(')=0 (12)
»w = %xv + %uv.

The input, state and output (u,,x,,y,) are the so called varia-
tional input, state, and output, respectively, and they represent
the variation along the trajectory (u,x,y) of the original sys-
tem Z.
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The Hamiltonian extension ¥, of Z is given by a Hamilto-
nian control system [2] which has an adjoint in the form of a
variational system. It is given by (u,uz) — yo = Zalu, ug) :

o= 8 =t X0 =0
po= ¥ =*(%51P+%§Tua) p(e')=0
o = @l _ulp al,
y = 8 i)

(13)

with the Hamiltonian

H(x, p,u,ug) := p" f (x, 1) +ugh(x,u). (14)

Remark 3.3 In Section 4, we show that such a Hamiltonian
control system is a nonlinear Hilbert adjoint of the Géteaux
differential of the operator. This interpretation results from
taking the Géateaux differential of the squared L; norm of the
nonlinear operator. Therefore, it is a more restricted interpre-
tation than the Hilbert adjoint definition in terms of the inner
product.

By careful considerations of the Hamiltonian, one can relate
the Hamiltonian extension idea to the Hilbert adjoint of the
original system X (for more details, see [5]). It boils down to
extending the linear system to a (2n+m)-dimensional system
corresponding to

(2603) =59 1,

because the Hamiltonian extension was originally defined as
the adjoint of the variational system. Of course this mapping
coincides with Z*(s) = =T (—s) in the linear case, however,
for nonlinear systems such a relation does not follow.

There also exists a relation between adjoint operators and
port-controlled Hamiltonian systems, as has been established
in [5]. Instead of the interpretation in terms of the Gateaux
differential of the norm (see the next section), the interpreta-
tion is more general, and can be given in terms of the Hilbert
adjoint and the inner product. Despite this more general inter-
pretation for the port-controlled case, we only consider here
the Hamiltonian extensions as defined in [2], since we then
have explicit solutions for the “dual” coordinates p of the
system. Much more can be said about port-controlled Hamil-
tonian systems, however, that falls beyond the scope of this
paper, and we refer to [5] for more details. )

4 Gaiteaux differentiation of dynamical systems

This section develops the concept of Gateaux differentials for
dynamical systems from an input-output point of view. It
is not only important for understanding the meaning of the
Hamiltonian extensions and adjoint systems but Gateaux dif-
ferentials of Hankel operators also play an important role in

the analysis of the properties of Hankel operators, which is
the topic of Section 5 and 6. To this end, we state the defini-
tion of Géateaux differentials.

Definition 4.1 (Gdteaux differential) Suppose X and Y are
Banach spaces, U C X is open, and T :U — Y. Then T has
a Gateaux differential at x € X if, for all § € U the following
limit exits:
. T(x+e)—T(x d
ar()(g) = lim TETE TR _ D, gy

‘ (15)
We write dT (x)(E) for the Gateaux differential of T at x in the
“direction” &,

There is also a chain rule for the Gateaux differential, i.e., the
differential of a composition is given by the following equa-
tion:

d(ToS)x)(E) = dT(S(x))(dS(x)(8))

Perhaps more well-known than the Gateaux differential is the
Fréchet derivative. Fréchet differentiation is a special case of
Giteaux differentiation, although in the cases where we use
it, they are in fact equal. Since the directional notation of
Giteaux differentiation is more suitable for our framework,
we use the Gateaux differential.

(16)

Theorem 4.2 SupposethatX :uv— yasin(11)is input-affine
and has no direct feed-through, i.e., f(x,u) = go(x)+g(x)u
and h(x,u) = h(x) for some analytic functions go, g and
h. Furthermore, suppose that T is Gdteaux differentiable,
namely that there exists a neighborhood U, C L(Q) of 0 such
that

ue LB (Q),u, €U, =y, € L5(Q), a7n
where y, is the output of system (12). Then it follows that
Zo(u,uy) = dZ(u)(uy) (18)

with the variational system X, given in (12).

In order to prove Theorem 4.2 the following property of vari-
ational systems is needed.

Lemmad4.3 [2] Let (x(t,€),u(t,€),y(t,€)), t € [a,b] be a
family of state-input-output trajectories of ¥, parameterized
by €, such that x(t,0) = x(t), u(t,0) = u(t) and y(t,0) = y(t),
t € [a,b]. Then the quantities

ox(t,0)
Je

du(t,0) 9y(t,0)
ae H yv(t) - ae

x,(t) = , u(t) =

satisfy y, = Z,(u, uy).

Note that in case of a fixed initial state x(0) = x° the varia-
tional state x,(0) at time O is necessarily 0. In [4] Theorem
4.2 and Lemma 4.3 have been extended to the more general
non-input-affine case. Now, we can give the

Proof of Theorem 4.2 Let u(r,€) = u(¢) + €u,(¢) in Lemma
4.3. Then we have :
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T(u+ &) (1) = y(t,€) = y(t,0) + 2ee 4 3o, 110
= Z(u) (1) +Z,(u,u) (t) €+ T2 Rilu,u)(1) €,
where R;(u,u,)(t) := 1940 Thig implies (18). o

it o

The Hamiltonian extension X; also has a relation with
Giteaux differentiation and provides a justification for the
fact that it is called the adjoint form of the variational sys-
tem in [2].

Theorem 4.4 Suppose that the 'assumptions in Theorem
4.2 hold, and that u € LY(Q), us € Ly(Q) = ||x(t!)|| <
o0, || p(t%) < oo. Then it follows that

Za(u,uy) = (dZ(u))" (w))

with the Hamiltonian extension X, given in (13).

19)

The fact that the Hamiltonian extension ,(u,u,) is linearly
dependent on u, is crucial in the proof of Theorem 4.4. A
more general version, related to the Hilbert adjoint definition,
can be derived from the differential version of Proposition 2
in [5], but falls beyond the scope of this paper.

5 The -Hankel operator and its derivative

This section gives state-space realizations for nonlinear
Hilbert adjoints of various operators, and relates it to singu-
lar value analysis of energy functions and operators, i.e., the
Hankel operator. We only consider time-invariant input-affine
nonlinear systems without direct feed-through in the form of

N A

h(x)
defined on the time interval Q := (—00,00). Here X is Lp-
stable in the sense that u € L¥(—o0,0] implies that Z(u) re-
stricted to [0, 0o) is in L5[0, c0). Suppose that the input-output
mapping « — y of this system can be described by a Chen-
Fliess functional expansion [3, 8], i.e. the mapping u — y is
represented by the following convergent generating series

u—y(t) =Y cM)En(t,)w), t>° @D
ner*

(20)

where [* is the set of multi-indices for the index set / =
{0, l’,. ..,m} and

t
Eiy.io(t,0)(u) = / i, (DEi_, i (T)wdt  (22)

with Ep(u) :=1 and up(?) := 1. Here ¢(n) € R” is described
by

¢(n) = Lgyh(0) := Lg, Lg, --Lg, h(0) 23)
with go := f. Let us consider the observability and control-
lability operators Os : R" — L5(,) and Cs : L} (Q,) — R”
with Q, := [0, 00) of X given in [6, 7, 11] which are defined
by

L oy) =05(0) = gL;Oh(xO)E &’0/ (¢,0)

ursx' =Cs(u):= Y, (Lgyx)(0)En (0, —00)F_(u).
nerx
Here F_ : L3(Q.) — LF(Q_) with Q_ := (—o00,0] denotes
the so called flipping operator defined by

F_ (@) :={ u(at) teQ_

teQy 24
These are natural generalizations of (2) and (3).

One can employ state-space systems to describe the observ-
ability and controllability operators which are operators of
R"— L} and LT — R", specifically:

xOHyzOz(xo):{ ;c i ig))’ x(0) =" (25)
qu] :C):(u) :{ ;1 i x{((g))'{"g(i)f—(u) (26)

with ¥(—o00) = 0. Furthermore the Hankel operator Hs :
L3 (Q4) — L5 (Q4) of Zis given by

Hy :=XoF_, 27
and Hy = Oz oCsz holds. This has been proven in [6, 7],
along with a deeper and more detailed analysis of the Hankel

operator. We can state the differential version of this fact by
using (16) as

dHz(u)(u,) =dOs(Cs(u))(dCx(u) ().

The state-space realizations of the Géteaux differentiations
dQOs, dCs and d'Hy are then characterized by the following
theorem.

(28)

Theorem 5.1 Consider the system X, and suppose the as-
sumptions of Theorem 4.2 hold. Then

dOs = Oyz  (Cx,dCs)=Cqx  dHs = Hgs.

This theorem directly follows from the definition of Oz, Cs,
Hsz, T and the Gateaux differential d(-). Furthermore their
adjoints can be obtained by using Theorem 4.4.

Theorem 5.2 Consider the operator T as in (20). Sup-
pose that the assumptions of Theorem 4.2 and Theorem
4.4 hold. Then state-space realizations of (dOg(x°))* :
L5(Q ) (X" — R, (dCx(w))* : RA(xL§(R24)) — L(24)
and (dHz(u))* : L5 (Q4)(XLY(Q4)) — L5 () are given by
(2, uq) = p° = (dOg (x))* (ua) :

o= ), x(0) =2
b= L @2 @Wu ploc)=0 9
P’ = p(0)

(p',u) = ya = (dCx(u))*(p") :
x = f(x)+g(x)F-(u), x(—00) =0
» _WEHOFDT ) gy —pl (30)
Ya = Fi(g"(x)p)

5105



(ug,u) = ya = (dHz(u))* (ua) :

¥ o= f0)+e) F(u),  x(-00)=0
po= L Wp-2"Wu plo)=0 GD
Yo = Fuls" () p),

respectively. Here F : LT(Q_) — L}(Q..) denotes another
flipping operator defined by

0 teQ_
f+(")(‘)5={ ul—t) teQ,

The proof of this theorem is obtained by applying the adjoint
Hamiltonian extensions of Section 3, and using techniques
from [5].

(32)

6 Energy functions and singular values

In order to proceed, first consider the following energy func-
tions:

‘Definition 6.1 The observability function L,(x) and the con-
trollability function L.(x) of Z as in (20) are defined by

l o0
L) = 3 /0 ly()|2dt, x(0) =22, u(t) = 0 (33)
1 0
L) = min 5[ u)Par (34)
oo
respectively.

These functions are closely related to the observability and

controllability operators and Gramians in the linear case, see
Section 2. In [10] these functions have been used for the
definition of balanced realizations and singular value func-
tions of nonlinear systems. Also they fulfill corresponding
Hamilton-Jacobi equations, in a similar way as the observ-
ability Gramian and the inverse of the controllability Gramian
are solutions of a Lyapunov/Riccati equation. In order to pro-
ceed, we first review what we mean by input-normal/output-
diagonal form, see [10]:

Theorem 6.2 [10] Consider a system (f,g,h) that fulfills
certain technical conditions. Then there exists on a neigh-
borhood U C V of 0, a coordinate transformation x =
y(z), W(0) = O, which converts the system into an input-
normal/output-diagonal form, where

L) = L(v@)=37%

il

Lo(W(2) = 5 diag(m(2),..,Ta))e

with 11(2) > ... > T4(2) being the so called smooth singular
value functions on W := y~' (V). '

Ly(z) =

Now, we present the relation between the observability func-
tion, operator and Gramian.

1 1 R
EIIOz(xo)Ili;= 10, 03(0s(x),x°))&n

L(x%) = 5(

= 00, 60)me 35)

The function ¢(x°) can always be rewritten by ¢(x°) =
Q(x0) x° using a square symmetric matrix Q(x°). This matrix
coincides with the observability Gramian in the linear case.

In the controllability case, there does not hold such a simple
relation as in the observability case. From equation (35) it
does follow that '

1 1 *
SICEDIEy = 56,8 (i), m

,LC("I) = 3

1
= —2-(x1,(p(x1))mn (36)
with C} : R” — LZ(€), which is the pseudo-inverse of Cz
defined by

ci(xt) = a.rgc):r(xlglexl llullep. 37

Now, we can state the result from [6, 7] that relates the singu-
lar value functions to the Hankel operator:

Theorem 6.3 Let (f,g,h) be an analytic n dimensional
input-normal/output-diagonal realization of a causal L;-
stable input-output mapping S on a neighborhood W of
0. Define on W the collection of component vectors Z; =
©,...,0,z;,0,...,0) for j = 1,2,...,n, and the functions
&%(z;) = t(Z;). Let v; be the minimum energy input which
drives the state from z(—00) = 0 to z(0) = Z; and define
9 = F(v;). Then the functions {6'j}’j'-:1 are singular value
Junctions of the Hankel operator Hs in the following sense:

(), (HzHz)(0))1, = 6429, %), j=1,2,...n. (38)

The above result is quite limited in the sense that it is de-
pendent on the coordinate frame in which the system is in
input-normal/output-diagonal form. We now give a more
general relationship between the singular value functions and
the Hankel operator. The idea is to give an extension of the
linear result of Lemma 2.1 inspired by the proof of the lat-
ter lemma as given in [12]. To this effect, we consider the
Gateaux differential of the Hankel operator output in the fol-
lowing way

d|He@I3() = 2(dHz(w,v), Hz(w))

2 (v (dHsz(u))* o Hz(u))

(39)
(40)

and consider the eigenstructure of the operator u —
(dHsz(u))* o Hz(u) as

(dHz(u))" o Hy(u) = Mu)u, 4D

where A(u) is an eigenvalue depending on eigenvector u.
However, since we want to relate it to the notion of singular
value functions, and thus would like to have the eigenvalue
be dependent on x°, we need an additional step. We propose
to consider eigenvalues &(x°) and corresponding eigenvectors
A0 of the following:

CzodH}oHz(u) = CgodHz o Og(x%) = &(x")x @
Cs(u) =0

This leads to the following result:
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Theorem 6.4 Assume all technical conditions for Theorem
T

6.2 are fulfilled. Let §(%) := Lke (%) = M (9)%, for e W

such that M is invertible on W, then

CyodH}oHy(u) =CzodCsodO%0 O (x0) =
Ca(M(u)u) = Mc(w(x")) 1 %2 (=0)
for xX° = Cs(u), and y(x°) = ¢! (Q%V-(xo)).

Proof: First, observe that the solution of system (29) is given

by p= %%l(x) where x is the solution of system (25), and
uz =y = h{x). Thus,

(43)

7L, , ,
py (x7).

po =d0Oso Oz(xo) =

Furthermore, observe that p = a—gf-f-(i) is the solution of sys-
tem (30), where * is the solution of system (26) and where
u=ys=F;(g" (¥)p). Thus,

-1

T
fl =C}:OdC§(pO)= Mc (¢-l (Q_a_}lj’_(xo)>> PO'

—

(wix0)) =

Remark 6.5 The above theorem applied to a linear sys-
tem yields M (y(x0))~! = P, where P is the controllability
Gramian, and %Q(xo) = Qx0, where Q is the observability
Gramian. Hence, the above theorem can be seen as a nonlin-
ear extension of the proof of Lemma 2.1 of {12)

By taking x° to be an eigenvector of the above operator, we
obtain the relation (42). Observe that the &(x°)’s do not equal
the singular value functions as defined in Theorem 6.2. How-
ever, we are able to relate the eigenvalues of the above theo-
rem to the singular value functions in the following way.

Corollary 6.6 Suppose that the system is in the form of The-
orem 6.2, and write
dL dL,
M. 12220V = —22() =T
V) S0 = S2@ = T)

where T (z) follows from the form of L, in Theorem 6.2. Then
Jor the collection of component vectors Zj, j=1,...,n, as
defined in Theorem 6.3 the eigenvalues pi(Z;) of T(Z;) are
given by

pi(Z;) =T[(Zj),i= Lo.,j—-Lj+1,..4n

Pi(Z) =7(Z) +3 %(ZJ)Z)’

forj=1,...,n
Proof: Note that
fiash P2
u(2) 0 = (D2 S (2)zn
T(z)= . +35 :
0 Tu(2) &2z @
and then pluginz; = ---=z;_1 =zj41 =+ =2, =0. The
result follows straightforwardly. o

i

\

7 Conclusions

We studied the use of Hamiltonian extensions for nonlinear
adjoint systems. We formalized the basic concepts and then
applied them to study the singular values of a nonlinear Han-
kel operator. In our future research, we will use these re-
sults to establish more direct relations between state space
notions stemming from energy functions and input-output no-
tions like the Hankel operator.
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