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Abstract 
This paper studies previously developed nonlinear Hilbert adjoint 
operator theory from a variational point of view and provides a for- 
mal justification for the use of Hamiltonian extensions via Glteaux 
differentials. The primary motivation is its use in characterizing sin- 
gular values of nonlinear operators, and in particular, the Hankel 
operator and its relationship to the state space notion of nonlinear 
balanced realizations. 

1 Introduction 

Adjoint operators play an important role in linear control sys- 
tems theory. They provide a duality between inputs and out- 
puts of linear systems. The properties with respect to in- 
put, e.g. controllability and stabilizability, directly reduce 
to the dual results with respect to output, observability and 
detectability. Consider a linear operator (transfer function) 
Z(s) : E .+ F with Hilbert spaces E and F .  Then its adjoint 
operator C’(s) : F’ + E’ is isomorphic to CT(-s) : F -+ E .  
The adjoint can be easily described by a state-space realiza- 
tion if the operator C(s) has a finite dimensional state-space 
realization. In this paper we study the nonlineat extension of 
such adjoint operators, and apply the results to Hankel theory. 

Nonlinear adjoint operators can be found in the mathematics 
literature, e.g. [I], and they are expected to play an important 
role in the nonlinear control systems theory. So called non- 
linear Hilbert adjoint operators are introduced in [6, 111 as a 
special class of nonlinear adjoint operators. The existence of 
such operators in an input-output sense was shown in [7], but 
their state-space realizations are only preliminary available in 
151, where the main interest is the Hilbert adjoint extension 
with an emphasis on the use of port-controlled Hamiltonian 
system methods. 

Here, we consider adjoint operators from a variational point 
of view and provide a formal justification for the use of 
Hamiltonian extensions via Giiteaux differentials. We in- 
vestigate whether one can use their state-space realizations 
to characterize singular values of nonlinear operators, &d in 
particular, the Hankel operator. We also consider the relation 

to the previously defined singular value functions that have 
been defined entirely from the controllability and observabil- 
ity functions corresponding to a state space representation of 
a nonlinear system [ 101. 

In Section 2 we present the linear system case as a paradigm, 
in order to motivate the line of thinking for the nonlinear case. 
In Section 3 state-space realizations of nonlinear adjoint op- 
erators are introduced in terms of Hamiltonian extensions. In 
Section 4 a formal justification of the use of Hamiltonian ex- 
tensions for nonlinear adjoint systems is provided. In Section 
5 we concentrate on the Hankel operator, and correspondingly 
on the controllability and observability operators for noniin- 
ear systems. Then, in Section 6,  we extend some results of the 
linear case on singular values, see e.g. [ 121, and their relation 
to the Hankel operator to the nonlinear case by using the state 
space realizations for adjoint systems as given in Section 3. 
Finally, we summarize our conclusions. 

2 Linear systems as a paradigm 

This section outlines the way linear adjoint operators play 
an important role in the linear systems theory, see e.g. [ 121. 
The material is presented here in a way that clarifies the line 
of thinking in the nonlinear case. Consider a causal linear 
input-output system y = C(u)  : Ly [0, m) -+ L$[O, CO) with 
( A ,  B,  C) the state-space realization. The transfer function 
matrix is given by G(s) := C(s1 -A)-’B . Its adjoint opera- 
tor is isomorphic toy, = C* (U,) : L$ [0, CO) .+ LF [O,oo) where 
the transfer function matrix is given by G*(s) := GT(-s)  = 
BT(-sl  - A T ) - ’ C T .  Here U, and y ,  have the same dimen- 
sions as y and U, respectively. C* satisfies the definition for 
Hilbert adjoint operators, namely, 

(1) (Z(u), 4% = (U, Z* ( u a ) ) q .  

ll~(u)112; = (W), w4)y = (U, ~ * o W ) q  

Since U, has the same dimension as y we have that 

by substituting U, = E(.). This relation can be utilized to 
derive the singular values of the corresponding input-output 
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The Hamiltonian extension Z, of C is given by a Hamilto- 
nian control system [2] which has an adjoint in the form of a 
variational system. It is given by (U, U,) H ya = C,(u, U,) : 

i = g a H T  =f(x,U) .(to) = 0 

= - ( g p  + g T u a )  p( t1)  = 0 p = -= aH 

a~~ = g T P + a ;  ah Ua 
Yo = x 
y = ET = h(x,u) 

(13) 

(14) H(x, p ,  U ,  U,) := p T f ( x ,  U )  + U:h(x, U). 

I 
with the Hamiltonian 

Remark 3 3  In Section 4, we show that such a Hamiltonian 
control system is a nonlinear Hilbert adjoint of the Gateaux 
differential of the operator. This interpretation results from 
taking the Gateaux differential of the squared L2 norm of the 
nonlinear operator. Therefore, it is a more restricted interpre- 
tation than the Hilbert adjoint definition in terms of the inner 
product. 

By careful considerations of the Hamiltonian, one can relate 
the Hamiltonian extension idea to the Hilbert adjoint of the 
original system Z (for more details, see [5]). It boils down to 
extending the linear system to a (2n + m)-dimensional system 
corresponding to 

1 (. C(s) t)* = s F(- s )  -, 
S 

because the Hamiltonian extension was originally defined as 
the adjoint of the variational system. Of course this mapping 
coincides with Z* (s) = X T  (-s) in the linear case, however, 
for nonlinear systems such a relation does not follow. 

There also exists a relation between adjoint operators and 
port-controlled Hamiltonian systems, as has been established 
in [5]. Instead of the interpretation in terms of the Gateaux 
differential of the norm (see the next section), the interpreta- 
tion is more general, and can be given in terms of the Hilbert 
adjoint and the inner product. Despite this more general inter- 
pretation for the port-controlled case, we only consider here 
the Hamiltonian extensions as defined in [2], since we then 
have explicit solutions for the “dual” coordinates p of the 
system. Much more can be said about port-controlled Hamil- 
tonian systems, however, that falls beyond the scope of this 
paper, and we refer to [5] for more details. 

4 Gateaux differentiation of dynamical systems 

This section develops the concept of Giiteaux differentials for 
dynamical systems from an input-output point of view. It 
is not only important for understanding the meaning of the 
Hamiltonian extensions and adjoint systems but Gsteaux dif- 
ferentials of Hankel operators also play an important role in 

the analysis of the properties of Hankel operators, which is 
the topic of Section 5 and 6. To this end, we state the defini- 
tion of Gateaux differentials. 

Definition 4.1 (Gateaux differentid) Suppose X and Y are 
Banach spaces, U X is open, and T : U 4 Y .  Then T h,as 
a Gciteaux differential at x E X i f ,  for all 6 E U the followi,ng 
limit exits: 

(15) 
We write dT ( x )  (5 )  for  the Gciteaux differential of T at x in the 
“direction” 5. 
There is also a chain rule for the Giiteaux differential, i.e., the 
differential of a composition is given by the following equa- 
tion: 

d ( T o W 4 ( 5 )  = dT(S(x) ) (dS(x) (5) )  (16) 

Perhaps more well-known than the Gateaux differential is the 
Frechet derivative. Frechet differentiation is a special case of 
Gateaux differentiation, although in the cases where we use 
it, they are in fact equal. Since the directional notation of 
Gateaux differentiation is more suitable for our framework, 
we use the Gateaux differential. 

Theorem 4.2 Suppose that C : U H y as in ( I  I )  is  input-afJine 
and has no direct feed-through, i.e., f ( x , u )  go(x) +g(x)u 
and h(x, U) = h(x) for  some analytic functions go, g and 
h. Furthermore, suppose that C is Gateaux differentiable, 
namely that there exists a neighborhood U, C (Q) of 0 such 
that 

(17) 

C ” ( U , U V )  = dZ(u)(uv) (18) 

E C ( Q ) , U v  E U, + Y V  E G(Q), 
where yv is the output of system (12).  Then it follows that 

with the vuriutionul system Z, given in (12). 

In order to prove Theorem 4.2 the following property of vari- 
ational systems is needed. 

Lemma4.3 [2] Let (x( t ,E) ,u( t ,&) ,y ( t ,E)) ,  t E [u,b] be U 

fumily of state-input-output trajectories of C ,  pnrumeterized 
by&, suchthatx(t ,O)=x(t) ,  u( t ,O)=u( t )undy( t ,O)=y( t ) ,  
t E [a, b]. Then the quantities 

sutisfyy, = Cv(u,uv).  

Note that in case of a fixed initial state x(0) = xo the varia- 
tional state ~ “ ( 0 )  at time 0 is necessarily 0. In [4] Theorem 
4.2 and Lemma 4.3 have been extended to the more general 
non-input-affine case. Now, we can give the 

Proof of Theorem 4.2 Let u( t ,  E )  = U ( Z )  + &uV(t) in Lemma 
4.3. Then we have 
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The Hamiltonian extension Ca also has a relation with 
Giiteaux differentiation and provides a justification for the 
fact that it is called the adjoint form of the variational sys- 
tem in [2]. 

Theorem 4.4 Suppose that the assumptions in Theorem 
4.2 hold, and that u E LT(R), U, E L5(R) Ilx(t')ll < 
00, Ilp(to) < m. Then it follows that 

C U ( U , U " )  = (dC(u))*(uv) (19) 

with the Humiltonian extension Ca given in (13). 

The fact that the Hamiltonian extension &(U, U , )  is linearly 
dependent on U,, is crucial in the proof of Theorem 4.4. A 
more general version, related to the Hilbert adjoint definition, 
can be derived from the differential version of Proposition 2 
in [ 5 ] ,  but falls beyond the scope of this paper. 

5 The Hankel operator and its derivative 

This section gives state-space realizations for nonlinear 
Hilbert adjoints of various operators, and relates it to singu- 
lar value analysis of energy functions and operators, i.e., the 
Hankel operator. We only consider time-invariant input-affine 
nonlinear systems without direct feed-through in the form of 

defined on the time interval R := (-m,co). Here C is L2- 
stable in the sense that u E LF(-m,O] implies that C(u)  re- 
stricted to [0, m) is in L$ [0, m). Suppose that the input-output 
mapping u H y of this system can be described by a Chen- 
Fliess functional expansion [3, 81, i.e. the mapping u H y is 
represented by the following convergent generating series 

= c(rl)Eq(t,tO)(u), t >to,  (21) 
q €1- 

where I*  is the set of multi-indices for the index set I = 
{0,1,. . . , m }  and 

4k.. . io(t , to)(u) = /f ui,(~)Ei, -,...i,(.5,to)(u)dr (22) 
10 

withE@(u) := 1 and uo(t) := 1. Here c(q) E R r  is described 

(23) 
with go := f .  Let us consider the observability and control- 
lability operators 0 2  : R" -+ L$(R+) and Cx : km(R+) -+ R" 
with R+ := [0, m) of C given in [6, 7, 111 which are defined 

by 
4-l) =Lgqh(0) :=J%,oLgl, . . .L,,,h(O) 

by 
00 

xo H Y ( t )  = Ox(x0)  := ~L; ,h (xo)EO. . . o  ( t , O )  
i=O Y 

u H X 1  = Cx(u) := x (Lgqx)(0)Eq(O, -Oo)F-(u). 
q E I *  

Here F- : q ( R + )  + LT(R-) with R- := (-m,O] denotes 
the so called .&ping operator defined by 

u( - t )  t E R -  { 0 t E R +  * 
F-(u)(t) := 

These are natural generalizations of (2) and (3). 

One can employ state-space systems to describe the observ- 
ability and controllability operators which are operators of 
R" -+ L$ and LT -+ R", specifically: 

k = f ( x ) ,  x(0 )  =xO 
Y = h b )  

with 3-CO) = 0. Furthermore the Hankel operator 3-12 : 
LT(R+) -+ L$(R+) of Z is given by 

3-12 := Z O F - ,  (27) 

and 3-12 = Ox o CZ holds. This has been proven in [6, 71, 
along with a deeper and more detailed analysis of the Hankel 
operator. We can state the differential version of this fact by 
using (16) as 

d3-1x(u) (uv) = d@~(Cx(u))(dCx (U) (uv)).  (28) 

The state-space realizations of the GLteaux differentiations 
dO2, dC2 and d X 2  are then characterized by the following 
theorem. 

Theorem 5.1 Consider the system C, and suppose the as- 
sumptions of Theorem 4.2 hold. Then 

d e  = c?dx (CZ, dCx) = c d x  d'Hx = &. 

This theorem directly follows from the definition of Ox, C2, 
3-12, Z and the Gateaux differential d ( . ) .  Furthermore their 
adjoints can be obtained by using Theorem 4.4. 

Theorem52 Consider the operator C as in (20). Sup- 
pose that the assumptions of Theorem 4.2 and Theorem 
4.4 hold. Then state-space reulizations of (dOx(&'))* : 

and(d%z(u))* :q(R+)(xLT(R+)) -+LT(R+) aregiven by 
($,ua) H P O  = (dOr.(no))*(ua) : 

L;(R+)( xR") -+ R", (dCx(u))* : a'*( xLT(R+)) -+ LT(R+) 

15 = f(4, x ( 0 )  = xo 

( x )  p -  g T ( x )  ua, p ( m )  = o (29) 

( P ' , u )  H Ya = ( ~ C Z ( ~ ) ) * ( P ' )  : 

k = f ( x )  + g ( x ) F -  (U), x(-m) = 0 

ya = F + ( g T ( X )  P )  
{ P -  ax p ,  p(o)  = (30) - - a ( f ( x ) + g ( x ) F - ( u ) )  
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The proof of this theorem is obtained by applying the adjoint 
Hamiltonian extensions of Section 3, and using techniques 
from [5]. 

6 Energy functions and singular values 

In order to proceed, first consider the following energy func- 
tions: 

Definition 6.1 The obsewabilityfunction L&) and the con- 
tmllabiliryfunction L,(x) of Z as in (20) are defined by 

Lo(xo) := 2 A IIy(t)l12dt, x(0) =xo, u ( t )  = 0 (33 )  
l o o  

respectively. 

These functions are closely related to the observability and 

The function $(xo) can always be rewritten by $(A!) = 
Q(xo) xo using a square symmetric matrix e($). This matnix 
coincides with the observability Gramian in the linear case. 

In the controllability case, there does not hold such a simple 
relation as in the observability case. From equation (35) it 
does follow that 

with CA : R" + LT(sZ+), which is the pseudo-inverse of Cz 
defined by 

Now, we can state the result from [6,7] that relates the singu- 
lar value functions to the Hankel operator: 

Theorem 6 3  Let ( f  , g,  h)  be an analytic n dimensioizul 
input-nomzavoutput-diagonal reulizution of U cuusul L2- 

stuble input-output mapping S on a neighborhood W of 
0. Defne on W the collection of component vectors 2, = 
(0,. . . , O , z j , O , .  . .,O) for j = 1,2 , .  . .,n, and the functions 
i32(z,) = ~(2,). Let vj be the minimum energy input which 
drives the state from z(-m) = 0 to z(0) = Z, und dejne 
$, = .F(v,). Then thefunctions {&j};='  ure singular vulue 
functions of the Hunkel operutor 'Hz in the following sense: 

( E j , ( ' H i ' H - t z ) ( O j ) ) L 2  = 6 ? ( z j ) ( $ j , C j ) ~ 2 ,  j =  1,2,...n. (38)  
controllability operators and Gramians in the linear case, see 
Section 2. In [lo] these functions have been used for the 
definition of balanced realizations and singular value func- 
tions of nonlinear systems. Also they fulfill corresponding 
Hamilton-Jacobi equations, in a similar way as the observ- 
ability Gramian and the inverse of the controllability Gramian 
are solutions of a LyapunovEccati equation. In order to pro- 
ceed, we first review what we mean by input-normal/output- 
diagonal form, see [lo]: 

The above result is quite limited in the sense that it is de- 
pendent on the coordinate frame in which the sysrem is in 
input-normal/output-diagonal form. We now give a more 
general relationship between the singular value functions and 
the Hankel operator. The idea is to give an extension of the 
linear result of Lemma 2.1 inspired by the proof of the lat- 
ter lemma as given in [12]. To this effect, we consider the 
G2teaux differential of the Hankel operator output in the fol- 
lowing way 

Theorem 6.2 [ lo]  Consider U system ( f ,  g, h )  that fuljills 
certain technical conditions. Then there exists on n neigh- 
borhood U c V of 0, a coordinate transformation x = 
~ ( z ) ,  ~ ( 0 )  = 0, which converts the system into an input- 
nomuzvoutput-diagonal form, where 

1 z,(z) := L,(w(z)) = 2z*diag(.sl(z), . . . ,T,(z))z 

with TI ( z )  2 . . . 2 T,(z) being the so culled smooth singular 
valuefunctions on w := ~I- ' (u ) .  
Now, we present the relation between the observability func- 
tion, operator and Gramian. 

1 1 

1 

L O ( X 0 )  = ,IlOz(xO)ll2; = ~ ~ X ~ , U ~ ~ C 7 r ~ X ~ ~ , X ~ ~ ~ I B 1 ~  

(35) =: 5 (xO, $ ( X o ) ) R n  

d11'Hz(u)1/;(v) = 2 (d'Hz(u,v),'Hz(u)) (39) 
= 2 (v, (dWz(u))* 0 3-tdu)) (40) 

and consider the eigenstructure of the operator U H 

(d'Hz(u))* 0 'Hz(u)  as 

(d'Hz(u))* o'Hz(u) = h(u)u, (41) 

where h(u) is an eigenvalue depending on eigenvector U. 
However, since we want to relate it to the notion of singular 
value functions, and thus would like to have the eigenvalue 
be dependent on xo, we need an additional step. We propose 
to consider eigenvalues e($) and corresponding eigenvectors 
$ of the following: 

Czod'H$o'Hz(u) = C z o d ' H ~ o & ( ~ O )  =B(XO)XO 
(42) 

CZ(U) = xo 
This leads to the following result: 
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Theorem 6.4 Assume all technical conditions for  Theorem 
6.2 are fulfilled. Let $(3) := %(i) = Mc(3) i ,  for  3 E W 
such that Mc is invertible on W ,  then 

Czod'Hso'Hz(u) =Ci:odCgodOgoOx(xo)  = 
(43) 

Cz(h(u)u) = Mc(Ur(x0))-' 

for xo = &(U), and w(xo) = @-' (Q (x ' ) ) .  

Proof: First, observe that the solution of system (29) is given 
by p = % ( x ) ,  where x is the solution of system (25), and 
ua = y  = h(x). Thus, 

aTLo 
ax po =dOZoOx(xO)  = -(x0). 

Furthermore, observe that p = %(E) is the solution of sys- 
tem (30), where i is the solution of system (26) and where 
U = yo = F+(gT(T)p) .  Thus, 

Remark6.5 The above theorem applied to a linear sys- 
tem yields M,(y(xo)) - '  = P ,  where P is the controllability 
Gramian, and %(xo) = exo, where Q is the observability 
Gramian. Hence, the above theorem can be seen as a nonlin- 
ear extension of the proof of Lemma 2.1 of [ 121 

By taking xo to be an eigenvector of the above operator, we 
obtain the relation (42). Observe that the 6(xo) 's  do not equal 
the singular value functions as defined in Theorem 6.2. How- 
ever, we are able to relate the eigenvalues of the above theo- 
rem to the singular value functions in the following way. 

Corollary 6.6 Suppose that the system is in the form of The- 
orem 6.2, and write 

,aL, aL; 
ax ax M,(w(z))- -(z) = -(z) = T ( z ) z  

where T ( z )  follows from the form of Lo in Theorem 6.2. Then 
fur the collection of component vectors Z j ,  j = 1, .  . . ,n,  as 
dejned in Theorem 6.3 the eigenvalues p i ( Z j )  of T(Zj) are 
given by 

pi(Zj)  = T ~ ( Z , ) ,  i = 1,. . ., j - 1, j + 1, .  . ., n 

1 &r. 
pj (Z j )  = T j ( Z j )  + 3 ~ ( Z j ) z )  

for  j = 1, .  . . ,n .  

Proof: Note that 

a n d t h e n p l u g i n z l = . - . = z j - ~  =zj+l  = . - - = z n = O .  The 
result follows straightforwardly. 0 

7 Conclusions 

We studied the use of Hamiltonian extensions for nonlinear 
adjoint systems. We formalized the basic concepts and then 
applied them to study the singular values of a nonlinear Han- 
kel operator. In our future research, we will use these re- 
sults to establish more direct relations between state space 
notions stemming from energy functions and input-output no- 
tions like the Hankel operator. 
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