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Chapter 4

Matrix Renumbering ILU applied to

the Navier-Stokes equations

4.1 Matrix Renumbering ILU

In the previous chapters we have considered preconditioners based on an (M)ILU fac-

torization with respect to a repeated red-black ordering. A disadvantage of such a pre-

conditioner is that the numbering of the unknowns is based on the grid. To be able to

make such a numbering a structured grid is needed. Furthermore, the decision to drop an

element is based on its position only and not on its size. A preconditioner which works

with a numbering based on the grid as well but drops the �ll when its value is smaller

than some threshold is the nested grid ILU (NGILU) factorization [48]. Both kind of

preconditioners share the drawback that the numbering of the unknowns is based on the

grid and not on the matrix. For this reason a preconditioner, the matrix renumbering

ILU factorization (MRILU) [8] has been developed in which both the ordering and the

dropping is based on the matrix. The MRILU preconditioner is a generalization of the

NGILU preconditioner.

We will describe in short the ordering and dropping strategy of the MRILU precon-

ditioner. The ordering is determined during the construction of the factorization and is

based on the sparsity pattern of the matrix and the magnitude of the elements. During

the factorization small elements are dropped, resulting in an incomplete LU factorization.

To decide whether or not an element will be dropped, a lump space is determined which is

based on the diagonal of the factorization. To make sure the lump space is not consumed

too fast some additional restrictions are made.

In Algorithm 4.1 the steps of the construction of the MRILU factorization are given.

Assume the factorization has progressed to the point that the Schur complement A(i�1)

has been computed. The steps needed to compute the next Schur complement will be

explained.

In step 1 a reordering of the unknowns and a partitioning of the Schur complement

A(i�1) is made. For sparse matrices the unknowns can be divided such that the matrix

A11 is diagonal, i.e. the unknowns of A11 form an independent set. By allowing also weak

connections between the unknowns of A11, i.e. they form a nearly independent set, A11

can be enlarged. The partitioning is made in such a way that the matrix A11 is strongly

49
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A(0) = A

for i=1:M

1 Make a reordering and partitioning of A(i�1)

 
A11 A12

A21 A22

!

2 Approximate A11 by a diagonal matrix ~A11

3 Drop small elements of A12 and A21

4 Make an incomplete factorization 
I 0

~A21
~A�111 I

! 
~A11

~A12

0 A(i)

!

where A(i) = A22 � ~A21
~A�111 ~A12

end

Make an exact or incomplete factorization of A(M)

Algorithm 4.1: construction of MRILU factorization

diagonally dominant, i.e. the elements of A11 satisfyX
k 6=i

jaikj � �jaiij with " < 1:

The ordering of the unknowns is constructed by a greedy algorithm. By keeping track of

the absolute sum of the columns belonging to the unknowns selected for A11, it can easily

be decided whether or not to add a new unknown to the near independent set selected so

far.

In step 2 the matrix A11 is replaced by a diagonal matrix ~A11. This is an accurate

approximation because by construction the matrix A11 is strongly diagonally dominant.

The approximation simpli�es the construction of the next Schur complement A(i). The

unknowns belonging to A11 can be eliminated simultaneously, which means that the or-

dering of these unknowns is not important.

In step 3 small elements will be dropped to limit the number of nonzero elements

in the factorization. The dropping outside A11 is limited to A12 and A21. Gustafsson's

modi�cation can be used when an element is dropped. With this modi�cation the dropped

element is added to the diagonal. When an element aij is dropped row i and column j are

modi�ed Whether or not it is acceptable to drop this element is measured by the ratio of

the element aij and the diagonal elements aii and ajj and on the amount dropped so far

in row i and column j.
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To obtain an accurate dropping strategy these criteria have to be adjusted. A bet-

ter strategy is obtained when the dropping criteria are not based on the diagonal of A22

only. The diagonal of the next Schur complement A(i) may di�er signi�cantly from the

diagonal of A22, especially for matrices with strongly varying elements. Relatively small

modi�cations compared to the diagonal of A22 may be large compared to this new diago-

nal. Therefore, the dropping criteria should be based on the diagonal D of the complete

factorization. The diagonal of A11 becomes (slightly modi�ed) a part of D. Therefore,

dropping elements outside A11 is much more critical. The diagonal D of the complete

factorization is not known. Within A22 it is approximated by the diagonal of the next

Schur complement, which is temporarily calculated without the dropping outside A11.

An element on row or column i is dropped when the sum of the absolute values of all

discarded elements on this row or column (including those discarded on earlier levels) is

smaller than "jdij. In the present implementation of MRILU the dropping strategy is just

based on the diagonal of A22.

The available space for dropping has to be restricted even further. When dropping

an element aij of A21 row i is modi�ed. On subsequent levels of the construction more

elements of this row may be discarded. Therefore, the row space for dropping within

A21 is restricted by multiplying the remaining space by the number of columns of A21

divided by the dimension of A. Furthermore, the available space for lumping on rows of

A21 should not be consumed by a few large elements but rather by many small elements.

Therefore, only entries smaller than a certain fraction of this space are dropped. Similar

restrictions are made for the dropping within columns of A12.

Finally, in step 4 the incomplete factorization can be computed, resulting in the next

Schur complement. Step 1 to 4 can be repeated until the �nal Schur complement is of

low order. Then, the �nal Schur complement can be factorized by a standard (I)LU

factorization.

Matrices arising from the discretization of a system of partial di�erential equations can

be written in block form, the elements of the matrix are small blocks instead of scalars. For

these matrices a block form of the MRILU factorization can be used. To decide whether

or not an entry of a block row can be dropped, this block row is multiplied from the left

with the inverse of the corresponding diagonal block. This can be somewhat simpli�ed

by considering only the absolute maximum in each column of this inverse. The dropping

in a column can be handled in a similar way using multiplication from the right.

4.2 Results for the Poisson and convection-di�usion

equation

For Laplace-like equations a comparison between MRILU and other linear solvers is made

in [7]. MRILU performed well for all test problems. In [8] such a comparison is made for

other test problems. In this section we will recapitulate the results given in [8] for the

Poisson and convection-di�usion equation. Unless denoted otherwise Bi-CGSTAB [49] is

used as linear solver.

First the homogeneous Poisson equation with zero Neumann boundary conditions

has been solved on an exponentially stretched grid with the ratio of the maximum and
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Figure 4.1: Results for the Poisson equation on an exponentially stretched grid.
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Figure 4.2: Results for the Poisson equation on a �nite element grid.

minimum mesh size given by hmax=hmin = 100. As starting vector a nonzero vector has

been used. The stopping criterion is given by (u(i)max�u
(i)
min) < 10�6(u(0)max�u

(0)
min). In Figure

4.1 the symmetric version MRICCG of MRILU (with a simpli�ed dropping strategy) is

compared with the methods SOR, ICCG and MICCG. The �gure shows for an M �M
grid the number of 
ops per unknown as a function of M . Clearly, MRILU outperforms

the other methods. Moreover, it shows nearly grid-independent convergence.

Then the Poisson equation ��u = f with Dirichlet boundary conditions has been

solved on an unstructured �nite-element grid. As stopping criterion the 2-norm of the

residual of the preconditioned system has to be decreased by at least a factor 106. In

Figure 4.2 MRILU with a simpli�ed dropping strategy method is compared with a direct

method, ILU and MILU. Again MRILU outperforms the other methods and is nearly grid-

independent. The performance of MRILU is equally well on structured and unstructured

grid. This shows that MRILU can handle general sparsity patterns.
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approach rel. �ll it. 
ops

Point 2.0 35 2390

� = 2417 2.6 11 911

2.8 5 451

Block 0.9 8 435

� = 18 1.4 4 268

1.8 3 230

Table 4.1: Convection-di�usion problem (4.1) with a = 10000; b = 1000.

Another test case in [8] is the convection-di�usion equation

�uxx � uyy + aux + buy = f; a; b� 1; (4.1)

with dominating convection. A second-order discretization has to be used to obtain

su�cient accuracy. The central discretization provides this accuracy. A drawback of this

discretization is that the coe�cient matrix is not an M matrix. The diagonal is small with

respect to the o�-diagonal elements. This causes problems in incomplete decompositions.

With MRILU these problems can be overcome by using a block approach. The unknowns

are divided into pairs by keeping the unknowns of two subsequent grid points in the

dominant 
ow direction together.

The problem is described by equation (4.1) with a = 10000; b = 1000 with the unit

square as domain and with Dirichlet boundary conditions at x = 0; y = 0 and Neumann

boundary conditions at x = 1; y = 1. The computations have been performed on a 32�32

grid until the preconditioned residual was decreased with a factor 10�6. A convection

dominated 
ow (mesh Peclet number of about 150) has been computed and the standard

approach without blocks (which is equal to the approach in [19]) has been compared with

the block approach. The results are shown in Table 4.1. In the �rst column the condition

number of the �rst Schur complement in both approaches is given. The condition number

in the block approach is signi�cantly smaller than in the point-wise approach. In the

second column the �ll of the decomposition relative to the original matrix is given. The

third column shows the number of iterations and the last column the 
op count for the

solution process. The large condition number has a negative e�ect on convergence. In

the point-wise approach more �ll-in is needed to get an acceptable number of iterations.

4.3 Results for the Navier-Stokes equations

In the previous section we have considered the performance of the MRILU preconditioner

in test cases described by the Poisson and convection-di�usion equation. In this section

we will solve the incompressible two-dimensional Navier-Stokes equations. The resulting

linear systems are harder to solve than those occurring in the previous test cases.

The incompressible two-dimensional Navier-Stokes equations in conservation form are

given by



54 Chapter 4

Z
�
~u:n d� = 0;Z




@u

@t
d
 +

Z
�
(u~u� �ru):n d� = �

Z
�
p(n:e1) d�;Z




@v

@t
d
 +

Z
�
(v~u� �rv):n d� = �

Z
�
p(n:e2) d�;

with arbitrary domain 
 with boundary �. We will consider various discretization meth-

ods in order to get insight in the accuracy of the MRILU factorization for di�erent types

of matrices.

4.3.1 Symmetry-preserving discretization

In order to preserve the symmetry of the Navier-Stokes equations when discretizing the

system, the di�usive terms have to be discretized in a symmetric positive de�nite way

and the convective terms in a skew-symmetric manner. In [53] it is shown that with

such a discretization the semi-discrete system is stable. We will show how to obtain a

symmetry-preserving discretization.

We will discretize the equations by using a �nite-volume approach. Though our start-

ing point are central di�erences an upwind discretization of the convective terms can easily

be obtained by adding arti�cial di�usion �art to the real di�usion �. The discretization

is explained by looking at the x-momentum equation and the continuity equation. The

grid is given in Figure 4.3, note that hxc =
1
2
(hxw + hxe) and hyc =

1
2
(hyn + hys). The

6

?
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6
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hyn
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-�
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o
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o
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F
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2
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6
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6
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���
F
i;j+1

2

Figure 4.3: The two-dimensional grid and control volume.
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convective and di�usive 
uxes of the x-momentum equation are given by

F (~u) = (F1(~u); F2(~u)) = (uu� �ux; uv � �uy):

The semi-discrete x-momentum equation is

hxchyc
dui;j

dt
+ hyc(F1(~u)i+ 1

2
;j � F1(~u)i� 1

2
;j) + hxc(F2(~u)i;j+ 1

2

� F2(~u)i;j� 1

2

) =

�hyc(pi+1;j � pi;j);

where

F1(~u)i+ 1

2
;j = F1(~ui+ 1

2
;j) = ui+ 1

2
;j

ui+1;j + ui;j

2
� (� + � (�art)i+ 1

2
;j)
ui+1;j � ui;j

hxe
;

and

F2(~u)i;j+ 1

2

= F2(~ui;j+ 1

2

) = vi;j+ 1

2

ui;j+1 + ui;j

2
� (� + � (�art)i;j+ 1

2

)
ui;j+1 � ui;j

hyn
;

with

(�art)i+ 1

2
;j =

jui+ 1

2
;jjhxe

2
; (�art)i;j+ 1

2

=
jvi;j+ 1

2

jhyn

2
:

The velocities ui+ 1

2
;j and vi;j+ 1

2

are not de�ned in those points. They can be computed

by taking an average of their surrounding values

ui+ 1

2
;j =

1

2
(ui;j + ui+1;j) ; vi;j+ 1

2

=
1

2
(hxwvi;j + hxevi+1;j)=hxc:

The parameter � satis�es � 2 [0; 1]. By varying � one can adjust the amount of upwind

in the scheme. For � = 1 this is a �rst-order upwind scheme, and for � = 0 this is a

second-order central scheme.

For the continuity equation we take as control volume the standard grid cell. The

discretization of the continuity equation at the cell around pi;j yields

hyc(ui;j � ui�1;j) + hxw(vi;j � vi;j�1) = 0:

The above discretization has a property which is important for stability: the central term

of the convective part in the momentum equations vanishes, resulting in a skew-symmetric

discretization of the convective term. From the equations we observe that this term equals

1

2
[hyc(ui+ 1

2
;j � ui� 1

2
;j) + hxc(vi;j+ 1

2

� vi;j� 1

2

)]ui;j

=
1

4
[hyc(ui+1;j � ui�1;j) + hxw(vi;j � vi;j�1) + hxe(vi+1;j � vi+1;j�1)]ui;j:

Note that, apart from the factor 1/4, this central term is precisely the sum of the continuity

equations at the cells around pi;j and pi+1;j and hence is zero.
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4.3.2 Monotone discretization

Another class of discretizations is formed by the monotonicity preserving schemes. For

simplicity we will look at the one-dimensional convection equation

@u

@t
+
@f(u)

@x
= 0:

A weak solution of this equation has the following monotonicity preserving properties (see

[24]) as a function of t:

� no new local maximum or minimum is created,

� the value of a local minimum is nondecreasing and the value of a local maximum is

nonincreasing.

From these properties it follows that the total variation

TV (u(t)) := sup
X
i

ju(xi+1; t)� u(xi; t)j

is a nonincreasing function of t.

The monotonicity properties should be preserved by the discretization scheme. The

equation is discretized with a �nite volume method. The grid is given in Figure 4.4.

� � �

-�
�x

ui ui+1ui�1

fi+ 1

2

fi� 1

2

Figure 4.4: One-dimensional grid.

After semi-discretization we obtain

un+1i = uni �
�t

�x
(f(un)i+ 1

2

� f(un)i� 1

2

): (4.2)

By an appropriate discretization of the 
uxes at the boundaries of the control volume the

discretization can be made total variation diminishing (TVD). A scheme is TVD when

TV (un+1) � TV (un);

with

TV (un) =
1X

i=�1

juni � uni�1j:

In [24] it is shown that a linear TVD scheme is of �rst-order accuracy. Therefore,

to obtain a higher accuracy, nonlinear schemes are needed. For the construction of such

schemes the next lemma plays an important role.
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Lemma 3 (Harten [24]): consider a discretization of (4.2) given by

un+1i = uni �
�t

�x
[An

i+ 1

2

(uni+1 � uni ) +Bn
i� 1

2

(uni � uni�1)]; (4.3)

where

An
i+ 1

2

= A(: : : ; uni�1; u
n
i ; u

n
i+1; : : :);

Bn
i+ 1

2

= B(: : : ; uni�1; u
n
i ; u

n
i+1; : : :):

If the coe�cients An
i+ 1

2

and Bn
i+ 1

2

satisfy

An
i+ 1

2

� 0; Bn
i+ 1

2

� 0; 1�
�t

�x
(Bn

i+ 1

2

� An
i+ 1

2

) � 0;

the discretization (4.3) is TVD.

With this lemma a higher order monotone scheme can be derived [45]. Assume the 
ux

function f(u) can be split in a forward and backward 
ux:

f(u) = f+(u) + f�(u);

with

d

du
f+(u) � 0;

d

du
f�(u) � 0:

A �nite volume discretization can then be written as

un+1i = uni �
�t

�x
[(f+(uL n

i+ 1

2

) + f�(uR n
i+ 1

2

))� (f+(uL n
i� 1

2

) + f�(uR n
i� 1

2

))]: (4.4)

The left and right values of u at the cell boundaries are taken as

uL
i+ 1

2

= ui +
1

2
 (ri)(ui � ui�1); (4.5)

uR
i+ 1

2

= ui+1 +
1

2
 (

1

ri+1
)(ui+1 � ui+2);

with

ri =
ui+1 � ui

ui � ui�1
:

These expressions for u consist of a �rst-order term and a higher-order term. The function

 is called a limiter function. By writing the discretization (4.4) in the form of equation

(4.3) from lemma 3 restrictions can be put on  in order to obtain a TVD scheme. The

limiter  has to satisfy (see [44])

 (r)

r
�  (s) � 2:
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We will consider monotone schemes based on the �-schemes. With the �-schemes [51]

second-order accuracy can be obtained. These discretization schemes are given by

uL
i+ 1

2

= ui +
1 + �

4
(ui+1 � ui) +

1� �

4
(ui � ui�1); (4.6)

uR
i+ 1

2

= ui+1 +
1 + �

4
(ui � ui+1) +

1� �

4
(ui+1 � ui+2);

with � 2 [�1; 1]. For � = �1 one gets the second-order accurate, fully one-sided upwind

scheme, for � = 1 the standard, second-order accurate scheme and for � = 1
3
a third-order

scheme. Equation (4.6) can be written in the form (4.5), with

 (r) =
1� �

2
+
1 + �

2
r:

This limiter does not satisfy the conditions for a TVD discretization. Hence, the �-schemes

are not TVD.

The � = 1
3
-scheme, the highest order �-scheme, will be made TVD. For � = 1

3
we

obtain

uL
i+ 1

2

= ui +
1

2
(
1

3
+
2

3
ri)(ui � ui�1): (4.7)

Koren [30] constructed a limiter consistent with this discretization. This limiter is given

by

 (r) = max(0;min(2r;min(
1

3
+
2

3
r; 2))):

A disadvantage of this limiter is that it is not continuously di�erentiable. Therefore,

Koren [29] constructed a continuously di�erentiable limiter by writing (4.7) as

uL
i+ 1

2

= ui +
1

2
�(ri)(

1

3
+
2

3
ri)(ui � ui�1):

Additional to the TVD conditions for the limiter �(ri)(
1
3
+ 2

3
ri), the function � has to

ful�ll the requirements �(1) = 1;�(0) = 0;�0(1) = 0 and � has to be bounded for large

jrj. A limiter  (r) = �(r)(1
3
+ 2

3
r) that satis�es these conditions is

 (r) =
2r2 + r

2r2 � r + 2
: (4.8)

Jacobian from a monotone discretization

The diagonal of the coe�cient matrix is of great in
uence on the accuracy of the MRILU

factorization. The stronger the diagonal the better the factorization will be. We will

consider the diagonal of the coe�cient matrix stemming from a monotone discretization.
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Figure 4.5: The diagonal element of the Jacobian when using the monotone scheme with

the continuously di�erentiable limiter.

With the monotone discretization scheme the convective term a@u
@x

with a > 0 is

discretized as follows:

a

�x
(uL

i+ 1

2

� uL
i� 1

2

) =
a

�x
(1 +

1

2
 (ri)�

1

2

 (ri�1)

ri�1
)(ui � ui�1):

This scheme is TVD when

(1 +
1

2
 (ri)�

1

2

 (ri�1)

ri�1
) � 0:

This means that the coe�cient for ui is positive and for ui�1 is negative, resulting in

an M-matrix. However, when a full Newton method is used the coe�cient matrix is the

Jacobian of the discretized system.

The contribution to the diagonal of the Jacobian is obtained by taking the derivative

with respect to ui:

@

@ui
((1 +

1

2
 (ri)�

1

2

 (ri�1)

ri�1
)(ui � ui�1)) =

�
1

2
(ri + 1)

@ 

@r
(ri)�

1

2

@ 

@r
(ri�1) + 1 +

1

2
 (ri):

We see that this diagonal is dependent on both  and its derivative. To obtain a nice

coe�cient matrix, which is good to factorize, this diagonal element has to be positive.

This gives the condition

1 +
1

2
 (r)�

1

2
(r + 1)

@ 

@r
(r)�

1

2

@ 

@r
(s) � 0:

For the �-schemes

 (r) =
1� �

2
+
1 + �

2
r:

Hence, the diagonal coe�cient is

3

4
(1� �);
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which is positive for � in [�1; 1]. For increasing � the diagonal of the matrix will become

weaker.

For the continuously di�erentiable limiter  (r) = 2r2+r
2r2�r+2

the plot of the diagonal

element under the assumption s = r, which is a reasonable assumption when the 
ow

is slowly changing in space, is given in Figure 4.5. From this plot we observe that the

diagonal element may become negative. This may cause problems when constructing a

factorization.

4.3.3 Block form and scaling of the coe�cient matrix

We will solve the Navier-Stokes equations simultaneously. Consequently, very large sys-

tems have to be solved. The equations of this system, the momentum equations and

the continuity equation, are of di�erent character. To avoid that one of the equations

will dominate the factorization, the unknowns of a grid cell are put together in a vec-

tor wij = (uij; vij; pij). This introduces in a natural way a block form of the discretized

system. The elements of this system are three by three blocks.

As preconditioner for this system we will use the block form of the MRILU factoriza-

tion. To obtain an accurate factorization with a moderate �ll, the matrix has to be scaled.

In the construction of the MRILU factorization the inverses of the diagonal blocks are

needed. To prevent that, as a consequence of the premultiplication with these inverses,

the elements of the factorization will di�er greatly in size, the elements of the inverses

have to be of equal size.

After discretization of the Navier-Stokes equations a typical diagonal block of the

coe�cient matrix will look like 0
B@ u� 0 1

hx

0 v� 1
hy

1
hx

1
hy

0

1
CA

We will scale the diagonal block instead of its inverse. When the elements of the diagonal

block are of equal size, so are the elements of its inverse. In general u� and v� will be
of about the same size, and so will 1

hx
and 1

hy
. But u� and v� will di�er in size from 1

hx

and 1
hy
. By scaling the third column and row of the diagonal block with a factor s, its

elements can be made of about equal size. The elements will be of equal size when

u� =
s

hx
; v� =

s

hy
:

Summing both equations and solving for the scaling factor s, results in

s = (u� + v�)
hxhy

hx + hy
:

The scaled diagonal block0
BB@

u� 0 (u� + v�) hy

hx+hy

0 v� (u� + v�) hx
hx+hy

(u� + v�) hy

hx+hy
(u� + v�) hx

hx+hy
0

1
CCA ;
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and hence its inverse, has elements of about equal size.

We observed that using this scaling decreased the cpu-time for the linear solver with

about a factor 2. More research is needed to improve the scaling.

4.3.4 Results

To test the performance of the MRILU factorization when applied to the Navier-Stokes

equations, the lid-driven cavity problem has been solved. In order to solve both convection

and di�usion dominated 
ows, the problem has been solved for Reynolds numbers 1000,

5000 and 10000. The di�usive terms have been discretized with the usual second-order

method. For the convective terms various discretization methods have been used: the

upwind and central discretization as described in subsection 4.3.1, the �-schemes for

various values of � and a monotone scheme.

In all the computations as stopping criterion for Newton's method the in�nity norm

of two succeeding iterates has to be smaller than 10�6. The Bi-CGSTAB method [49]

preconditioned with an MRILU factorization has been used to solve the resulting linear

systems. As stopping criterion for the linear solver the 2-norm of the residual of the

preconditioned system has to be decreased by at least a factor 106.

The results are displayed in tables showing the relative �ll of the MRILU factorization,

the number of iterations of the linear solver and the 
ops per unknown needed to compute

a solution. For each case factorizations with a low, medium and high �ll have been

considered. The parameters determining the MRILU factorizations were tuned such that

for the di�erent cases the relative �ll of the factorizations remained almost equal. Only

when the linear solver needed more than 80 iterations to converge, the relative �ll was

increased in order to obtain an acceptable number of iterations. The linear solver was

considered inadequate (denoted with a dash in the tables) when a relative �ll higher than

6 was needed to obtain convergence within 80 iterations.

In Table 4.2 the results for the upwind and central discretization as described in

subsection 4.3.1 are given. In this table the relative �ll, de�ned by the quotient of the �ll

of the MRILU factorization and the �ll of the original matrix, the number of iterations and

the number of 
ops needed for the solution process are given. The equations have been

discretized on a 128� 128 grid which has been stretched near the walls. The stretching

is determined by the mapping

xs =
1

2
(1 + tanh(2s(xu �

1

2
))=tanh(s)):

This expression maps grid points xu from a uniform grid to those of a non-equidistant

stretched grid xs. In both x- and y- direction we use the stretching s = 1:5.
For the upwind discretization increasing the Reynolds number results in an increase of

the number of iterations when the relative �ll in the factorization is kept �xed. Apparently,

the 
ows dominated by convection are harder to compute. This is caused by the fact

that the contribution of the discretization of the convection terms to the diagonal of

the Jacobian is smaller than that of the di�usion term. A weak diagonal results in a

poor factorization. For the central discretization it is not possible to obtain an adequate

factorization when the Reynolds number is increased. The discretization of the convection
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upwind central

rel. �ll it. 
ops rel. �ll it. 
ops

2.6 36 5497 2.6 55 8270

Re=1000 3.3 27 4821 3.3 43 7654

4.0 25 4995 4.0 39 7044

2.6 38 5815 - - -

Re=5000 3.3 33 5930 - - -

4.0 25 5097 - - -

2.6 50 7617 - - -

Re=10000 3.3 45 8006 - - -

4.0 40 8046 - - -

Table 4.2: Performance of MRILU for upwind and central discretization.

Re=1000 Re=5000 Re=10000

rel.�ll 2.2 2.9 3.4 2.9 3.6 4.3 3.5 4.0 4.5

� = �1 it. 41 24 20 47 42 37 57 49 39


ops 7169 4909 4495 9648 9717 9642 12867 12084 10550

rel.�ll 2.2 2.9 3.5 3.5 4.0 4.4 4.5 5.1 5.7

� = 0 it. 40 27 22 58 54 45 67 58 42


ops 7012 5544 5002 13014 13280 11929 18205 17131 13551

rel.�ll 2.3 2.9 3.3 3.9 4.4 5.1 - - -

� = 1
3

it. 36 28 22 59 52 46 - - -


ops 6357 5654 4906 14451 13649 13384 - - -

rel.�ll 2.3 2.9 3.4 - - - - - -

� = 1
2

it. 34 26 22 - - - - - -


ops 6040 5364 4972 - - - - - -

rel.�ll 2.3 3.0 3.4 4.1 4.5 5.1 - - -

monotone it. 36 26 23 62 44 38 - - -


ops 6356 5397 5207 15495 11902 11250 - - -

Table 4.3: Performance of MRILU for �-schemes and a monotone scheme.

term does not contribute to the diagonal. Therefore, the diagonal of the Jacobian is very

small in case of convection dominated 
ows. Comparing the results at Reynolds number

1000 of the upwind discretization and the central discretization, the number of iterations

with the upwind discretization is smaller than with the central discretization. A strong

diagonal, as results from the upwind discretization, results in a better factorization.

Table 4.3 shows the performance of the MRILU factorizations when the convection

terms are discretized with a �-scheme or a monotone scheme based on the � = 1
3
-scheme.
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The computations have been performed on an 128� 128 equidistant grid. The �-schemes

that are considered are those with � = �1 (second order upwind), � = 0 (Fromm's

scheme), � = 1
3
(third-order accurate) and � = 1

2
(the Quick method). In the end of Sec-

tion 4.3.2 we showed that for increasing values of � the contribution of the discretization

of the convective terms to the diagonal of the Jacobian becomes smaller. Therefore, in

Table 4.3 for a �xed Reynolds number a drop in the performance of the MRILU factor-

ization is observed when � is increased. This table also shows the deterioration of the

performance as a consequence of the increase of the Reynolds number.

The monotone scheme most consistent with the third-order accurate � = 1
3
-scheme has

limiter  (r) = max(0;min(2r;min(1
3
+ 2

3
r; 2))). This limiter is not continuously di�eren-

tiable, and hence causes convergence problems for Newton's method. Therefore, we have

used the limiter  (r) = 2r2+r
2r2�r+2

. In the end of Section 4.3.2 the plot of the contribution of

this monotone discretization to the diagonal of the Jacobian is shown. This contribution

may become small or even negative, which will results in a bad factorization. In Table 4.3

this is seen from the inadequate convergence for Reynolds number 10000. Nevertheless,

the performance for the monotone scheme is better than for the � = 1
3
-scheme.

From the results we have seen that a faster convergence is obtained when the Jacobian

of the system has a strong diagonal. A way to improve the diagonal is by adding a time

derivative, i.e. solving the time-dependent equations. In Table 4.4 the performance of

the MRILU factorizations for such time-dependent computations is shown. The time

step is taken such that the Courant number is close to 1. In these computations the

relative �ll can be taken much smaller than in the steady computations. If the time step

is su�ciently small the performance of the MRILU factorization is equally well for all

discretization methods and Reynolds numbers.

Re=1000 Re=5000 Re=10000

rel.�ll 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0

upwind it. 25 20 15 26 17 16 24 19 16


ops 2638 2283 2017 2727 1965 2111 2536 2178 2144

rel.�ll 1.2 1.5 2.0 1.2 1.5 2.0 1.2 1.5 2.0

central it. 24 19 16 25 18 16 25 18 16


ops 2534 2196 2125 2633 2076 2145 2635 2065 2144

rel.�ll 1.3 1.6 2.0 1.3 1.6 2.0 1.3 1.6 2.0

� = 1
3

it. 23 17 14 21 18 13 22 17 14


ops 3176 2576 2387 2888 2739 2205 3029 2588 2372

rel. �ll 1.3 1.6 2.0 1.3 1.6 2.0 1.3 1.6 2.0

monotone it. 23 17 14 23 16 13 21 15 12


ops 3185 2587 2397 3172 2457 2232 2891 2289 2036

Table 4.4: Performance of MRILU for time-dependent systems.
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4.4 Conclusions

Preconditioning techniques are very important when solving systems iteratively. The

matrix renumbering ILU factorization (MRILU) has proven to be very succesful as pre-

conditioner. The ordering of the unknowns is determined during the factorization. Both

the ordering and dropping are based on the size of the elements of the matrix. Because of

this property MRILU can deal with matrices with an arbitrary sparsity pattern, stemming

from a discretization on an unstructured grid.

The MRILU factorization has already been applied successfully to many problems [8],

both symmetric, non-symmetric and inde�nite. Compared to other advanced iterative

methods the number of 
ops has decreased signi�cantly. For the Poisson problem almost

grid independent convergence has been observed.

We have applied the MRILU factorization to the Navier-Stokes equations, which are

harder to solve than the Poisson and convection-di�usion equation, and obtained good

results. The MRILU factorizations give better results when the system has a strong

diagonal. Therefore, the discretization of the convection terms is of great in
uence on

the performance of the MRILU factorization. A strong diagonal can also be obtained by

adding a time derivative to the system.

The development of the MRILU factorization is still in progress. Therefore, further

improvements can be expected in the future.
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MRILU in a continuation method

5.1 Introduction

In physical applications one is often interested in stationary solutions of partial di�erential

equations and how their behaviour depends on physical parameters. For instance, one

would like to know what the possible steady solutions are for particular values of the

parameters and whether these solutions are stable or not. A continuation method can be

used to trace branches of stable and unstable solutions. The stability of a solution and

the bifurcation points of the system can be determined by solving a generalized eigenvalue

problem. Since long, continuation methods are used in problems with a small number of

degrees of freedom. Only recently they are successfully applied to large systems, resulting

for instance from discretization of partial di�erential equations governing 
uid 
ows. The

bottle-neck in applying continuation methods to large systems is solving the occurring

linear systems and generalized eigenvalue problems.

The continuation code that we have used has been obtained from the oceanography

group of Utrecht University, see [14] for a complete description of this code. In this

code a pseudo-arclength continuation [28] is used to step along the solution branch. The

respective solutions on such a branch are computed with a predictor-corrector method.

Furthermore, the stability of the solutions and the position of the bifurcation points can be

determined. A linear solver and an eigenvalue solver had to be added to this continuation

code.

For solving large linear systems direct methods are too expensive in both cpu-time

and storage requirements. Therefore, iterative methods are preferred. Preconditioned

conjugate gradient type methods are widely used. The preconditioner is the main factor

determining the quality of this kind of methods. An important class of preconditioners

are the incomplete LU factorizations. In the previous chapter we showed that the MRILU

factorization is an e�ective preconditioner. Therefore, as linear solver in the continuation

code we use the Bi-CGSTAB method [49] preconditioned with an MRILU factorization.

Small generalized eigenvalue problems can be solved by the QZ method. However,

for large systems this method is not practical. Large eigenvalue problems are commonly

solved by the Arnoldi method. Recently, Fokkema, Sleijpen and van der Vorst have

developed the Jacobi-Davidson QZ (JDQZ) method [20] as an alternative to the Arnoldi

method. The JDQZ method is very well suited for computing a number of eigenvalues

65
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close to some user speci�ed target. It computes iteratively a partial Schur form, i.e. a

partial QZ factorization, with the Jacobi-Davidson method. Unlike the Arnoldi method,

the JDQZ method does not have to solve systems exactly. To obtain an acceptable

convergence of the JDQZ method a preconditioner is needed. We will use the MRILU

factorization as described in the previous chapter.

As an application of the continuation code we have computed Rayleigh-B�enard 
ows.

This problem has also been studied in [15]. In that paper the streamfunction-vorticity

formulation of the problem has been used. We have applied the continuation method to

the formulation in primitive variables. In [15] a preconditioned gradient like method as

presented in [47] has been used as linear solver. We have used the Bi-CGSTAB method

preconditioned with an MRILU factorization. In [50] it has been shown that for this

problem the JDQZmethod is more e�cient for solving the generalized eigenvalue problems

than the SIT method which has been used in [15]. In [50] an exact LU factorization has

been used as preconditioner in the JDQZ method. However, for large problems this is not

very e�cient. Therefore, we have used an MRILU factorization as preconditioner in the

JDQZ method.

In the remainder of this chapter we will explain the various aspects of the continuation

code. In Section 5.2 the parametrization of the branches and the predictor-corrector

method to compute solutions on a branch are treated. Furthermore, in that section it

is explained how to detect bifurcation points, switch at these points to another branch

and determine the stability of a solution. The arising generalized eigenvalue problems are

solved with the JDQZ method, which is described in Section 5.3. As an application we

computed Rayleigh-B�enard 
ows in a rectangular box of aspect ratio ten. The results are

given in Section 5.4. Finally, in Section 5.5 we give some conclusions.

5.2 Continuation method

After semi-discretization, an autonomous time-dependent system of nonlinear partial dif-

ferential equations can be written as

B _u(t) = f(u(t); �);

with � 2 R a parameter, u(t) 2 Rn the solution vector, B 2 Rn�n a matrix representing

the time dependency (this matrix may be singular) and f a nonlinear mapping from

Rn � R! Rn.

In this chapter we will consider stationary solutions of this system,

f(u; �) = 0:

The solutions u depend on the parameter � and for �xed values of � more solutions may

exist. With a continuation method all branches of solutions can be calculated.

In the remainder of this section the di�erent parts of the continuation method are

explained. First, ways to parametrize the branches are given; a parametrization with �
is not always a good choice. Then, a predictor-corrector method is explained. Assuming

a solution on a branch is known, this method computes the next solution on this branch.

Finally, it is explained how to determine the stability of a solution and the position of

branch points.
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5.2.1 Parametrization

To be able to follow a branch, a parametrization of this branch is needed. Various

parametrizations can be used. An obvious choice is to parametrize it by �, the prob-

lem parameter. With this choice di�culties are encountered at turning points. At such

points the system will be singular. With a di�erent parametrization this singularity can

be avoided.

A general approach for the parametrization is to choose another variable, say 
, as

parameter. The solutions of f(u; �) = 0 depend on 
 and are given by (u(
); �(
)). Now,

an additional equation is needed to establish the parametrization: n(u; �; 
) = 0. The

extended system is given by

f(u; �) = 0;

n(u; �; 
) = 0:

The parametrization by � falls in this setting by taking n(u; �; 
) = �� 
.
As parameter on the branch the arc-length can be used, that is 
 = s. A normalization

of the arc-length gives the equation

n(u; �; s) = k _u(s)k2 + j _�(s)j2 � 1 = 0:

Assuming a solution on the branch is known, say (u(s0); �(s0)), this normalization equa-

tion can be approximated by

n1(u; �; s) = ku(s)� u(s0)k
2 + (�(s)� �(s0))

2 � (s� s0)
2 = 0:

One likes to avoid the nonlinearity in this equation. This is possible when the derivative

( _u(s0); _�(s0)) is known as well. Then the linear equation

n2(u; �; s) = _u(s0)
T (u(s)� u(s0)) + _�(s0)(�(s)� �(s0))� (s� s0) = 0

can be used in the extended system. The equation n2 is called a pseudo-arclength nor-

malization. In the used code this parametrization is used, where the derivatives are

approximated using the last two computed solutions.

5.2.2 Predictor-corrector method

Assume a solution (u0; �0) is known on the branch. With the continuation method the

next solutions (u1; �1); (u2; �2); : : : on the branch are computed. In the j-th continuation

step the solution (uj+1; �j+1) has to be computed from the solution (uj; �j). With a

predictor-corrector method this is split into two steps. The predictor provides an initial

guess (�uj+1; ��j+1) for the corrector step, which calculates the solution (uj+1; �j+1) on the

branch.

As predictor we use the Euler method. The prediction (�uj+1; ��j+1) of (uj+1; �j+1) is
given by

(�uj+1; ��j+1) = (uj; �j) + �s( _uj; _�j):
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The tangent ( _uj; _�j) to the branch can be computed from @f

@u
du
ds

+ @f

@�
d�
ds

= 0. But since

this involves another solve, the tangent is approximated by

( _uj; _�j) � (
uj � uj�1

�s
;
�j � �j�1

�s
):

By this approach the predictor has become a standard extrapolation.

In the corrector step we use the Newton method. The result from the predictor is

used as initial guess for the Newton method

(u(0); �(0)) = (�uj+1; ��j+1):

The k-th step of the Newton method applied to the extended system

f(u; �) = 0;

n2(u; �; s) = 0

is formulated as"
fu(u

(k); �(k)) f�(u
(k); �(k))

_uTj
_�j

# "
�u

��

#
=

"
�f(u(k); �(k))

�n2(u
(k); �(k); s)

#
;

(u(k+1); �(k+1)) = (u(k) +�u; �(k) +��):

The solution of this system is obtained by solving the two systems

fu(u
(k); �(k)) z = �f(u(k); �(k));

fu(u
(k); �(k)) y = f�(u

(k); �(k)):

Then, �u and �� are given by

�� =
�n2(u

(k); �(k); s)� _uTj z

_�j � _uTj y
;

�u = z ���y:

5.2.3 Branch points

With the continuation method a branch of solutions can be traced. Upon varying �

the number of solutions may change. New branches may emerge, branches may end,

or branches may intersect. To get a complete picture of all the solution branches it is

important to locate the branch points.

Branch points can be divided in turning points and bifurcation points. A turning point

occurs when solutions exist for � < �0 (or � > �0) only. At a bifurcation point branches

intersect. We will consider only simple bifurcation points. In these points exactly two

branches with di�erent tangent intersect. These branch points can be characterized as

follows:



MRILU in a continuation method 69

Turning point:

(i) fu has a simple eigenvalue 0 at (u0; �0) or, equivalently, rank fu(u0; �0) is n� 1,

(ii) f�(u0; �0) =2 range fu(u0; �0).

Simple bifurcation point:

(i) fu has a simple eigenvalue 0 at (u0; �0) or, equivalently, rank fu(u0; �0) is n� 1,

(ii) f�(u0; �0) 2 range fu(u0; �0).

From the conditions (ii) it follows that the Jacobian of the extended system is singular in

bifurcation points and nonsingular in turning points. Therefore, with a pseudo-arclength

parametrization turning points cause no problem in the continuation method. In our

study of stationary solutions we restrict ourselves to these two types of branch points.

For completeness we mention Hopf bifurcations as well. At these bifurcation points

periodic, and hence time-dependent, solutions emerge. These bifurcation points can be

characterized by:

Hopf bifurcation:

(i) fu(u0; �0) has a simple pair of purely imaginary eigenvalues �i� and no other

eigenvalue with zero real part.

At a Hopf bifurcation point the emerging periodic solution has period 2�
�
.

In the remainder of this subsection we will explain how the exact position of a branch

point can be found, and how to switch to another branch once a branch point is located.

Detecting branch points

In general, the continuation method will jump over a branch point. A test function

�(u(s); �(s)) is needed to monitor whether a branch point is passed. The test function is

chosen such that a branch point is indicated by its zero,

�(u(s); �(s)) = 0:

Because it is unlikely to �nd this zero (or branch point) exactly, a change of sign of � in

the j-th continuation step

�(uj+1; �j+1)�(uj; �j) < 0

indicates a branch point is passed.

A turning point can be detected by monitoring

�(u(s); �(s)) =
d�

ds
:

When a turning point is passed this test function changes sign.
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To detect a bifurcation point the real part of the eigenvalues of fu are monitored. If

an eigenvalue passes the imaginary axis a bifurcation point is passed. When �1; : : : ; �n
are the eigenvalues of fu the test function is given by

�(u(s); �(s)) = max(Re(�1); : : : ;Re(�n)):

Denoting the eigenvalue with real part equal to zero by �0 a Hopf bifurcation is passed if

in addition jIm(�0)j > 0.

After a branch point is detected its exact position has to be determined. The secant

method is used to determine the zero of � . If � changes sign between sa and sb the zero

of � can be found with the iterative procedure

sl+1 = sl � �(sl)
sl � sl�1

�(sl)� �(sl�1)
;

with s0 = sa and s1 = sb.

Branch switching

Once the location of a bifurcation point has been determined, a �rst solution on the

emanating branch has to be calculated. This solution can be used as a starting point for

the continuation method on this new branch. We denote the �rst solution on the new

branch by (unew; �new) and the known solution at the bifurcation point by (u0; �0). The
Euler predictor is used to obtain a �rst guess for (unew; �new):

�unew = u0 +�s _unew;
��new = �0 +�s _�new:

Hereafter, the Newton method is used to calculate the solution on the new branch.

The tangent ( _unew; _�new) of the emanating branch is unknown. Di�erentiating the

equation f(u(s); �(s)) = 0 with respect to s shows that a tangent (du
ds
; d�
ds
) to a solution

branch satis�es

fu(u(s); �(s))
du

ds
+ f�(u(s); �(s))

d�

ds
= 0: (5.1)

In a simple bifurcation point two branches with di�erent tangent intersect. Hence, at such

a bifurcation point the solution space of equation (5.1) is two dimensional. Therefore,

we cannot determine the desired tangent from the above equation. In fact, the local

behaviour is determined by higher-order terms which lead to the so called bifurcation

equation (see [14], [28]). One solution of the bifurcation equation is the tangent to the

known branch at the bifurcation point, ( _u0; _�0). Since we need only a way to get away

from the current branch we use a crude approximation to ( _unew; _�new), namely a vector

(du
ds
; d�
ds
) in the two dimensional solution space of equation (5.1) orthogonal to ( _u0; _�0).

This vector is given by"
fu(u0; �0) f�(u0; �0)

_uT0
_�0

# "
du
ds
d�
ds

#
=

"
0

0

#
:
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To obtain the solution of this system, the equations

fu(u0; �0)z = 0;

fu(u0; �0)y = f�(u0; �0)

are solved. The vector z is the eigenvector corresponding to the eigenvalue 0. If this

eigenvector is not known at the bifurcation point, it can be obtained with inverse iteration.

The vector orthogonal to ( _u0; _�0) is given by

(
du

ds
;
d�

ds
) = (z �

d�

ds
y;�

_uT0 z
_�0 � _uT0 y

):

Now, the Euler predictor step can be performed with ( _unew; _�new) = (du
ds
; d�
ds
).

5.2.4 Stability of stationary solutions

The continuation method can follow stable as well as unstable branches. Because only

the stable solutions are physically relevant, it is important to know whether a solution is

stable or not. We will denote a stationary solution by û and use

û is stable if lim
t!1

u(t) = û for all solutions u(t) with u(0) close to û.

To determine the stability of a solution, we recall that the stationary solutions are

solutions of the di�erential equation

B _u(t) = f(u(t); �):

After linearizing f around û, this equation can be written as

B _u(t) = f(û; �̂) +
@f

@u
(û; �̂) (u(t)� û):

Assuming u(t) = û+ e�tw and using that f(û; �̂) = 0, because û is a stationary solution

of the di�erential equation, leads to the generalized eigenvalue problem

�Bw =
@f

@u
(û; �̂)w: (5.2)

When the matrix B is nonsingular, which is not the case in our application, this is

equivalent to a normal eigenvalue problem.

The real parts of the eigenvalues �i (i = 1; : : : ; n) determine the stability of the

stationary solution as follows:

(i) Re(�i) < 0 8i ) û is stable,

(ii) Re(�k) > 0 for some k ) û is unstable.

In the next section we will describe the Jacobi-Davidson QZ method which we use to

solve the generalized eigenvalue problem (5.2).
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5.3 Eigenvalue solver

In the continuation method both the position of bifurcation points and the stability of

solutions are determined. As described in the previous section this can be done by solving

a generalized eigenvalue problem

�Aq = �Bq: (5.3)

To solve these generalized eigenvalue problems we will use the Jacobi-Davidson QZmethod.

Recently, this method has been developed by Sleijpen, van der Vorst and Fokkema. In

this section we �rst explain the Jacobi-Davidson method which is then used in the Jacobi-

Davidson QZ method. Our presentation of these methods follows largely the presentation

in [20].

5.3.1 Jacobi-Davidson method

Assume an approximate eigenvector ~q and the corresponding approximate generalized

eigenvalue h~�; ~�i of the generalized eigenvalue problem are known.

In each step of the Jacobi-Davidson (JD) method a new approximation ~q of the eigen-

vector is selected from a search space spanfV g. This approximate eigenvector ~q and the

corresponding approximate generalized eigenvalue h~�; ~�i are tested with respect to a test

space spanfWg:

r = ~�A~q � ~�B~q ? spanfWg:

This results in the following projected generalized eigenvalue problem

~�W �AV u = ~�W �BV u; (5.4)

with ~q = V u. The spaces V and W are of small dimension and hence the projected

generalized eigenvalue problem can for instance be solved by the QZ method.

In each step of the JD method the subspaces spanfV g and spanfWg are expanded.

First compute ~z = �0A~q + �0B~q and the residual r = ~�A~q � ~�B~q. Then ~z and ~q are

normalized such that k~zk2 = k~qk2 = 1. The search space is expanded by the vector v
satisfying v ? ~q and the correction equation

(I � ~z~z�)( ~�A� ~�B)(I � ~q~q�)v = �r:

The test space is expanded by the vector w given by w = �0A~v + �0B~v. The scalars

�0 and �0 are such that j �0 j
2 + j�0 j

2 = 1. We will return later to the choice of these

scalars. The vectors v and w are orthogonalized and added to spanfV g and spanfWg,

respectively.

Restart

The projected generalized eigenvalue problem (5.4) is solved with the QZ method. With

this method a generalized Schur form is obtained:

W �AV Q = ZS ; W �BV Q = ZT;
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with Q and Z orthogonal j � j matrices and S and T j � j upper triangular matrices.

This generalized Schur form will be ordered. This ordering can be used to select the

approximations h~�; ~�i and ~q and to restart the JD method when the dimensions of the

spaces spanfV g and spanfWg become too large.

Assume we want an eigenvalue close to some target � . Then the ordering will be such

that

j
S(1; 1)

T (1; 1)
� � j � j

S(2; 2)

T (2; 2)
� � j � : : : � j

S(j; j)

T (j; j)
� � j:

With this ordering hS(1; 1); T (1; 1)i and the vector V Q(:; 1) are the approximations of the

eigenvalue closest to the target � and its corresponding eigenvector. When the dimensions

of spanfV g and spanfWg extend some value jmax the JD method is restarted. The

dimensions are reduced to jmin by continuing the method with

V = V Q(:; 1 : jmin) ; W =WZ(:; 1 : jmin):

Choices for the test space

The test space spanfWg is expanded with the vector �0Av+�0Bv, where v is the expansion
vector of the search space spanfV g. The parameters �0 and �0 are scaled such that

j �0 j
2 + j�0 j

2 = 1 and can be chosen in various ways. If h�; �i is a generalized eigenvalue

and q the corresponding eigenvector then Aq = �z and Bq = �z. By taking

�0 =
��q

j�j2 + j�j2
and �0 =

��q
j�j2 + j�j2

;

the quantity k �0Aq + �0Bq k2 = j �0� + �0� j k z k2 is maximized. This can be viewed as

an attempt to expand the test space optimally in the direction of z.

However, the generalized eigenvalue h�; �i is not known in advance. Therefore, an

option is to take

�0 =
��q

1 + j� j2
and �0 =

1q
1 + j� j2

;

where � is the target.

Another variant would be to adapt �0 and �0, and use the available approximations

of the eigenvalues ~� and ~�. This leads to the choice

�0 =
�~�q

j~�j2 + j~�j2
and �0 =

�~�q
j~�j2 + j~�j2

;

The two variants described so far are called the standard Petrov and the variable standard

Petrov approach [20].

A third option would be to take

�0 =
1q

1 + j� j2
and �0 = �

�q
1 + j� j2

;

This is called the harmonic Petrov approach. In this way the selection of the appropriate

approximations of the eigenpair is optimized instead of expanding the test space optimally

as happens in the standard Petrov variants.
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5.3.2 Jacobi-Davidson QZ method

In the Jacobi-Davidson QZ (JDQZ) method the Jacobi-Davidson method is used to com-

pute a partial generalized Schur form

AQk = ZkSk ; BQk = ZkTk; (5.5)

withQk and Zk n�k orthogonal matrices and Sk and Tk k�k upper triangular matrices. A

generalized eigenvalue h�; �i of (S; T ), which is easy to obtain, is a generalized eigenvalue

of (A;B) as well, and if u is an eigenvector of (S; T ) then Qku is an eigenvector of (A;B).
Suppose a partial Schur form is already known

AQk�1 = Zk�1Sk�1 ; BQk�1 = Zk�1Tk�1:

To expand this Schur form we need vectors q and z that satisfy

A [ Qk�1 q ] = [ Zk�1 z ]

"
Sk�1 s
0 �

#

and

B [ Qk�1 q ] = [ Zk�1 z ]

"
Tk�1 t
0 �

#
:

The vector q and h�; �i have to satisfy

q ? Qk�1 ; (I � Zk�1Z
�

k�1)(�A� �B)(I �Qk�1Q
�

k�1)q = 0:

Hence, they satisfy the generalized eigenvalue problem

�(I � Zk�1Z
�

k�1)A(I �Qk�1Q
�

k�1)q = �(I � Zk�1Z
�

k�1)B(I �Qk�1Q
�

k�1)q;

which can be solved with the JD method.

The procedure is as follows. Construct orthogonal n� j matrices V and W satisfying

V �Qk�1 = W �Zk�1 = 0 and �nd an approximate generalized eigenvector ~q in the search

space spanfV g and test with respect to the test space spanfWg. This leads to the

projected generalized eigenvalue problem

~�W �(I � Zk�1Z
�

k�1)A(I �Qk�1Q
�

k�1)V u = ~�W �(I � Zk�1Z
�

k�1)B(I �Qk�1Q
�

k�1)V u;

or equivalently

~�W �AV u = ~�W �BV u; (5.6)

with ~q = V u. This projected eigenvalue problem is solved with the QZ method, which

gives a generalized Schur form W �AVQ = ZS and W �BV Q = ZT . This Schur form

is ordered with respect to the target � . The �rst column of V Q is the approximate

eigenvector ~q.

In each step of the JD process the search space spanfV g and test space spanfWg are

expanded. First compute the residual r = (I � Zk�1Z
�

k�1)(
~�A � ~�B)(I � Qk�1Q

�

k�1)~q
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and ~z = �0A~q + �0B~q, and scale ~q and ~z such that kqk2 = k~zk2 = 1. The search space

spanfV g will be expanded with the vector v satisfying the correction equation

Q�k�1v = 0 ; ~q�v = 0;

(I � ~z~z�)(I � Zk�1Z
�

k�1)(
~�A� ~�B)(I �Qk�1Q

�

k�1)(I � ~q~q�)v = �r; (5.7)

and the test space spanfWg will be expanded by w = �0A~v+�0B~v. The vectors v and w

are orthogonalized and added to V and W , respectively. This process is continued until

the generalized eigenvalue is computed accurately enough. Then Qk = [Qk�1 ~q ] and

Zk = [Zk�1 ~z ].

If we want to expand the Schur form further, the search and test spaces of the JD part

have to be adapted. The conditions V �Qk = 0 and W �Zk = 0 are not satis�ed anymore.

The process is continued with V = V Q(:; 2 : j) and W =WZ(:; 2 : j), where Q and Z are

the orthogonal matrices obtained with the QZ method applied to the projected eigenvalue

problem (5.6).

5.3.3 Preconditioning

The image space of the operator in the correction equation (5.7) di�ers from its origin

space. Therefore, a Krylov subspace method like GMRES [40] or BiCGstab(l) [43] cannot

be applied straightforwardly to this equation. Incorporating an (approximate) inverse

solves this problem. Let K be an incomplete LU factorization of A� �B and denote

~Qk = [ Qk�1 ~q ], the matrix Qk�1 expanded by the vector ~q,

~Zk = [ Zk�1 ~z ], the matrix Zk�1 expanded by the vector ~z,

~Yk = K�1 ~Zk, the expanded matrix of preconditioned vectors,

~Hk = ~Q�k
~Yk, the projected preconditioner ~Q�kK

�1 ~Zk.

Then the preconditioned correction equation can be written as

~Q�kv = 0 and (I � ~Yk ~H
�1
k

~Q�k)K
�1( ~�A� ~�B)v = �r̂;

with r̂ = (I � ~Yk ~H
�1
k

~Q�k)K
�1r. Since ~Q�kr̂ = 0 the Krylov space generated by the matrix

(I � ~Yk ~H
�1
k

~Q�k)K
�1( ~�A� ~�B) and r̂ is perpendicular to Qk. Therefore, this matrix can

be used in a Krylov subspace method.

5.3.4 JDQZ in a continuation method

In a continuation code we need to determine the stability of the solutions and the bifur-

cation points of the system. Therefore, we need to compute the eigenvalues of (5.2). The

eigenvalues of interest are those crossing the imaginary axis. In case of a real bifurcation

point these eigenvalues are going through zero.

In each continuation step we solve the generalized eigenvalue problem (5.2). Assume

we want to compute kmax eigenvalues and assume at a certain continuation step we have
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the generalized Schur form (5.5) with k = kmax. At the next continuation step the new

Jacobian will not di�er much from the old one. Therefore, the eigenvalues and eigenvectors

will not di�er much from those of the previous continuation step as well. We can use the

information of the JDQZ method from the previous continuation step to compute the new

eigenvalues. The idea is to use this information to obtain a better search space spanfV g

in order to improve the convergence of the JDQZ method. We will consider three variants

of starting the construction of the new search space of the JDQZ method at the new

continuation step. The �rst variant is to start the search space with a random vector.

The second variant is to take as the �rst vector of the search space the �rst Schur vector,

i.e. the �rst column of the matrix Qkmax
, computed in the previous continuation step.

The third variant is to start with all kmax Schur vectors, that is all columns of Qkmax
,

obtained in the previous continuation step.

5.4 Rayleigh-B�enard problem

In order to test the performance of the MRILU factorization in the continuation code, we

consider the Rayleigh-B�enard problem [15]. A liquid layer in a rectangular box of aspect

ratio 10 is heated from below. The temperature at the top and bottom of the box is

constant, the sidewalls are isolated and at all walls the 
ow satis�es the no-slip condition.

The horizontal and vertical velocity are denoted by u and w respectively, the pressure by

p and the temperature by T . The governing equations are given by

1

Pr
(
@u

@t
+ u

@u

@x
+ w

@u

@z
) = �

@p

@x
+
@2u

@x2
+
@2u

@z2
;

1

Pr
(
@w

@t
+ u

@w

@x
+ w

@w

@z
) = �

@p

@z
+
@2w

@x2
+
@2w

@z2
+Ra T; (5.8)

@u

@x
+
@w

@z
= 0;

@T

@t
+ u

@T

@x
+ w

@T

@z
=
@2T

@x2
+
@2T

@z2
;

with boundary conditions

u = w = 0; T = 1 at z = 0;

u = w = 0; T = 0 at z = 1;

u = w = 0; Tx = 0 at x = 0; 10;

where Pr is the Prandtl number and Ra the Rayleigh number. In our calculations Pr=5.5

and Ra is used as the continuation parameter. We are interested in the steady solutions.

For all Rayleigh numbers the trivial, motionless solution (u = w = 0; T = 1 � z) is

a solution of the steady partial di�erential equations. For Ra above some critical value

other 
ow patterns can occur.

The time-independent equations are discretized on a staggered grid. The convective

terms are discretized with a central scheme and the di�usive terms with a second-order

central scheme. With the mapping

ys =
1

2
(1 + tanh(s(yu �

1

2
))=tanh(

s

2
))
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a uniform grid yu can be stretched to obtain a non-equidistant grid ys. This stretching

can be used in both the x- and z-direction, the stretching factors in these directions are

denoted by sx and sz respectively.

In the remainder of this section we will �rst determine which grid gives accurate results

and compute the bifurcation diagram for that grid. Then we will discuss the e�ect of the

MRILU preconditioner on the performance of the linear solver. Finally, we will consider

the performance of the JDQZ method with MRILU as preconditioner for solving the

arising generalized eigenvalue problems.

5.4.1 Bifurcation results

The temperature di�erence between the top and bottom wall causes buoyancy forces.

For low Rayleigh numbers the di�usive forces will dominate and the only solution is the

motionless solution. When the Rayleigh number is increased at some point the buoyancy

forces will dominate the di�usive forces causing the 
uid to 
ow. Bifurcation points on

the branch of motionless solutions are called primary bifurcation points.

At the �rst and second primary bifurcation point a branch of solutions with a 10- and

9-cell 
ow pattern, respectively, will emerge. In Table 5.1 these two bifurcation points are

Nx Nz sx sz Ra1 Ra2 sx sz Ra1 Ra2 sx sz Ra1 Ra2

128 16 1 1 1694.6 1698.0 1 3 1735.4 1738.5 3 3 1735.2 1738.4

128 32 1 1 1719.5 1723.4 1 3 1730.0 1733.8 3 3 1729.8 1733.7

128 64 1 1 1726.0 1730.1 1 3 1728.6 1732.7 3 3 1728.5 1732.6

256 16 1 1 1695.1 1698.0 1 3 1735.9 1738.6 3 3 1735.9 1738.5

256 32 1 1 1720.0 1723.5 1 3 1730.5 1733.9 3 3 1730.4 1733.9

Table 5.1: The �rst two bifurcation points for several grids.

shown for several grids. From the position of these bifurcation points we will determine

which grid is best suited for these computations. The buoyancy forces are caused by the

temperature di�erence between the bottom and top wall of the box. Hence, re�ning and

stretching the grid in z-direction will have more in
uence than re�ning and stretching

in x-direction. From Table 5.1 we observe that for a �xed number of grid points in z-

direction and for �xed stretching factors sx and sz the number of grid points in x-direction
has hardly any in
uence on the position of the bifurcation points: for 256 and 128 grid

points in x-direction these positions are almost similar. With extrapolation the values of

the �rst two primary bifurcation points for a 128�1 grid can be obtained; these values

are 1728.1 and 1732.2. The position of the bifurcation points on a 128 � 32 grid with

stretching in z-direction di�er about 1 percent with the extrapolated values, and hence

are accurate enough. Stretching in x-direction does hardly change the position of the

bifurcation points. But, because the changes in number of cells in the solution will be in

x-direction we will use stretching in this direction as well. Therefore, the remainder of

the calculations will be performed on a 128� 32 grid with stretching in both directions.
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Figure 5.1: Bifurcation diagram for Pr=5.5, solid curves indicate stable states, dashed

curves unstable states and circles bifurcation points.

For a 128� 32 grid with stretching in both directions the bifurcation diagram is given

in Figure 5.1. On the vertical axis the vertical velocity at grid point (2; 24) is plotted. At
the �rst primary bifurcation point (Ra=1729.8) the motionless solution becomes unstable

and a stable solution with a 10-cell 
ow pattern branches o�. At the second primary

bifurcation point (Ra=1733.7) a solution with 9 cells branches o�, this solution is unstable

up to the secondary bifurcation point Ra=1883.1, and stable for higher Ra numbers. At

this secondary bifurcation point an unstable branch appears. This branch consists of

solutions with an asymmetric 
ow pattern where a new cell develops near the left wall of

the box. At the third and fourth primary bifurcation point (Ra=1790.8 and Ra=1811.6)

unstable branches of 11- and 12-cell solutions, respectively, branch o�. In Figure 5.2

various 
ow patterns are shown.

5.4.2 MRILU in a linear solver

In this subsection we consider the part of the continuation method which computes the

solutions on the branches. This part consists of an Euler prediction method and a New-

ton method. Assuming a solution is known on a branch, the Euler prediction gives an

approximation to the next solution at distance �s on that branch. This approximation

is used as initial vector in the Newton method. To solve the linear systems occurring in

the Newton method we make use of the Bi-CGSTAB method [49] preconditioned with an

MRILU factorization. We will look at the in
uence of the step size �s and the accuracy

of the MRILU factorization on the performance of the continuation method.

In all calculations the Newton method is stopped when the updates of the solution

and parameter satisfy:

max(k�uk1; j��j) � 10�6:

The linear systems Ax = b occurring in the Newton process are solved with the Bi-

CGSTAB method preconditioned with an MRILU factorization. The linear solver is
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Figure 5.2: Various 
ow patterns, from top to bottom a stable 10-cell, an unstable 9-cell,

an unstable asymmetric 10-cell, an unstable 11-cell and an unstable 12-cell solution.
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applied until the preconditioned residual is reduced with three digits:

kP�1(Axi � b)k2 � 10�3kP�1(Ax0 � b)k2;

where P is the MRILU factorization and i the iteration count of the Bi-CGSTAB method.

Convergence on a branch

We will look at the convergence of the Newton method and the preconditioned Bi-

CGSTAB method when computing solutions on the branches avoiding the vicinity of

bifurcation points. In this case the occurring systems are nonsingular.

In Table 5.2 the results for computing solutions on the branch of ten-cell solutions

are shown. For di�erent step sizes �s and di�erent MRILU factorizations the number

of Newton iterations to compute one solution, the number of Bi-CGSTAB iterations to

solve one linear system occurring in the Newton method, the cpu-time needed for the

construction of an MRILU factorization, the cpu-time needed for solving one linear system

and the total cpu-time needed for computing one solution on a branch are given. In the

�rst step of the construction of the MRILU factorization a quarter of the unknowns is

eliminated exactly. The �ll per row given in Table 5.2 is the �ll of the factorization of the

reduced system. The iterative method is applied to the reduced system.

�ll Newton Bi-CGSTAB cpu-time cpu-time cpu-time

per row it. it. MRILU Bi-CGSTAB cont. step

�s = 5 49 3 34 6.5 5.4 44.1

�s = 10 49 4 33 6.4 5.3 57.7

�s = 5 70 3 23 8.3 4.5 46.1

�s = 10 70 4 21 8.2 4.2 59.0

�s = 5 76 3 17 9.1 3.6 46.6

�s = 10 76 4 16 9.0 3.4 58.5

Table 5.2: The performance of the Newton method and the preconditioned Bi-CGSTAB

method at one continuation step for di�erent step sizes �s and di�erent �lls in the MRILU

factorizations.

First, we will look at the in
uence of the step size �s on the convergence. The con-

vergence of the Newton method is quadratic. When a smaller step size is used the Euler

predictor, which is used as starting vector in the Newton method, is a better approxima-

tion to the next solution on the branch. Indeed, from Table 5.2 we see that with step

size �s = 5 three Newton iterations are needed to compute one solution on the branch,

whereas for step size �s = 10 four Newton iterations are needed. From Table 5.2 it is seen

that the step size has no in
uence on the performance of the preconditioned Bi-CGSTAB

method used to solve the linear system within the Newton method: the cpu-time for

constructing the MRILU factorization and solving a linear system is equal for both the

step sizes. Because the number of Newton iterations is higher for �s = 10, the total

cpu-time needed for one continuation step, i.e. computing one solution on the branch,
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will be higher when �s = 10. With step size �s = 10 a part of a branch is traced with

half the number of continuation steps as with step size �s = 5. The cpu-time needed for

one continuation step is only about a factor 1.3 higher when �s = 10. When choosing the

step size, one has to �nd a balance between the number of continuation steps needed to

trace a branch and the cpu-time needed for one continuation step. Furthermore, the step

size has to be chosen such that all bifurcation points are found and a smooth bifurcation

diagram can be drawn.

Next, we will consider the in
uence of the accuracy of the MRILU factorization on

the convergence of the Bi-CGSTAB method. We have considered MRILU factorizations

with di�erent �lls per row. The di�erent factorizations were constructed with 8 levels.

As threshold in the ILU factorization of the last level we used 5:10�3, 10�3 and 5:10�4,

resulting in a �ll per row of the complete factorization of 49, 70 and 76, respectively. The

MRILU factorization with a higher �ll per row is more accurate, as can be seen in Table

5.2: the number of iterations and the cpu-time needed for the preconditioned Bi-CGSTAB

method is lower. The construction of the MRILU factorization is more expensive when

the �ll per row is higher. From the table we can see that the sum of the cpu-time needed

for the preconditioned Bi-CGSTAB method and for the MRILU factorization is almost

the same for the di�erent MRILU factorizations. This implies that the accuracy of the

preconditioner is not of crucial in
uence. But, when more �ll is allowed in the factorization

more storage capacity is demanded. Therefore, it is advisable to use a preconditioner with

a lower �ll per row.

In each continuation step the starting vector in the Newton method is already a good

approximation to the solution. Therefore, the Jacobian will not change much during the

Newton process. Hence, the MRILU factorization constructed in the �rst Newton step

can be used in the complete Newton process, this will save a considerable amount of

cpu-time. In our computations we have not made use of this feature.

Convergence when switching branches

So far we have considered the convergence on a branch out of the neighbourhood of a

bifurcation point. If one is interested in the bifurcation points and one wants to trace

the branches emerging from these points as well, the position of and the solution at the

bifurcation points have to be determined.

After a bifurcation point is detected by monitoring the eigenvalues, the secant process

is used to �nd its exact position. Only two secant iterations are needed to determine this

position. Then the direction orthogonal to the current branch is determined. The JDQZ

method which is used to compute the eigenvalues can compute the eigenvectors as well.

Therefore, we use the eigenvector to determine this direction.

Once the solution at the bifurcation point and the direction orthogonal to the current

branch are known, the continuation method can be started from the bifurcation point

in order to compute a solution on the emerging branch. In Table 5.3 the convergence

behaviour of the �rst continuation step starting from the �rst bifurcation point is shown.

At this bifurcation point a solution with a ten-cell 
ow pattern emerges. As continuation

step �s = 5 is used.
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�ll Newton Bi-CGSTAB cpu-time cpu-time cpu-time

per row it. it. MRILU Bi-CGSTAB cont. step

49 12 41 6.5 6.6 229.3

70 11 31 8.2 6.0 218.2

76 11 25 9.2 5.3 216.5

Table 5.3: The performance of the Newton method and the preconditioned Bi-CGSTAB

method for di�erent �lls in the MRILU factorizations at a continuation step starting from

a bifurcation points with �s = 5.

At the bifurcation point the system is singular. Therefore, problems with the conver-

gence can be expected. The number of Newton steps to compute the �rst solution on the

branch with ten-cell 
ow patterns is signi�cantly higher than the number of Newton steps

needed to compute a solution elsewhere on the branch. We observed that the Newton

process did not converge optimally: at the beginning of the Newton process the conver-

gence was linear, only when converged close enough to the solution the convergence of

the Newton method became quadratic. First of all this is caused by the singularity of the

system at the bifurcation point. Secondly, the Euler prediction may be inaccurate because

the direction orthogonal to the current branch does not have to be the actual direction of

the emerging branch, which will result in a poor starting vector for the Newton method.

The �ll per row of the MRILU factorization and the cpu-time needed to construct

this preconditioner does not di�er from computations elsewhere on the branch. However,

the number of Bi-CGSTAB iterations needed has become higher. The construction of

the factorization is not a�ected by the singularity of the system, but the preconditioned

Bi-CGSTAB method is.

5.4.3 MRILU in JDQZ

To determine the stability of the solutions and the position of the bifurcation points we

need to solve generalized eigenvalue problems of the form

Aw = �Bw;

where A is the Jacobian and B a diagonal matrix incorporating the time-dependency of

system (5.8). For the Rayleigh-B�enard problem the matrix B is singular because the mass

equation does not depend on time. To solve this generalized eigenvalue problem we use

the JDQZ method.

A solution is unstable if at least one of the generalized eigenvalues has real part greater

than zero. Because we only consider steady solutions, a bifurcation point occurs when a

generalized eigenvalue is zero. Therefore, the generalized eigenvalues of interest are those

close to zero. To make sure we compute all eigenvalues with real part greater than zero

we take as target in the JDQZ method � = 1. To determine the �rst bifurcation points it

was su�cient to compute the four eigenvalues closest to this target.

The maximal dimension of the search space spanfV g is taken as jmax = 20. When the

dimension exceeds jmax it is reduced to jmin = 10. To build the search space spanfV g in a
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relatively cheap way the correction equation is solved with GMRES1 until the dimension

of the search space is larger than jmin. When the dimension becomes larger than jmin,

the correction equation is solved more accurately with either GMRESm, i.e. full GMRES

[40] with a maximum of m steps, or BiCGstab(l) [43]. To expand the test space spanfWg

the harmonic Petrov approach is used.

As stopping criterion for the iterative method used to solve the correction equation

we use k~rik2 � 2�jk~r0k2, with ~r0 the initial residual, ~ri the residual at the i-th step of the

iterative method and j the iteration number for the current eigenvalue approximation in

the outer iteration. The outer iteration is stopped when the approximate eigenvalue ~�

and its corresponding eigenvector ~w are accurate enough, kA ~w � ~�B ~wk2 < 10�9j~�j.

When solving the correction equation an MRILU factorization of A � �B, with �

the target, is used as preconditioner. This means that the preconditioner is kept �xed

throughout the whole JDQZ method. In [20] a justi�cation of this strategy is given. To

obtain convergence when solving the correction equation, the MRILU factorization needs

to be very accurate. Therefore, we allow only three levels in the MRILU factorization

and use an exact factorization of the last Schur complement. In the �rst step of the

factorization a quarter of the unknowns is eliminated exactly. In the box below the �ll

per row of the factorization of the reduced system, the total cpu-time needed for the

construction of the MRILU factorization and the cpu-time needed for the factorization of

the last level are shown.

�ll per row 180

cpu-time construction total MRILU factorization 16.6

cpu-time construction LU factorization last level 14.8

At each continuation step this preconditioner is constructed just once and used throughout

the whole JDQZ method. Therefore, a lot of e�ort can be put in the construction of an

accurate factorization.

In advance it is not clear whether to use GMRESm or BiCGstab(l) for solving the

preconditioned correction equation. We will compare the results of BiCGstab(2) and

GMRES20. In addition we will compare the di�erent variants of the JDQZ method, i.e.

di�erent ways of starting the construction of the search space spanfV g. The search space

is started with a random vector in the �rst variant (JDQZ1), with the �rst Schur vector

computed in the previous continuation step in the second variant (JDQZ2) and with

all four Schur vectors computed in the previous continuation step in the third variant

(JDQZ3).

Table 5.4 shows the results of the di�erent JDQZ variants at one continuation step

on the branch of unstable nine-cell solutions (results on other branches are similar). The

computed eigenvalues are

4:84 10�2 ; �0:433 ; �0:585 ; �0:981:

In the continuation process two di�erent step sizes (�s = 5 and �s = 1) were used.

The table displays the number of matrix-vector multiplications, JDQZ iterations and the

cpu-time needed for computing four eigenvalues.
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JDQZ1 JDQZ2 JDQZ3

mv jdqz cpu mv jdqz cpu mv jdqz cpu

�s = 5 GMRES20 440 54 531 372 52 457 351 41 401

BiCGstab(2) 627 47 514 429 47 434 486 42 446

�s = 1 GMRES20 405 51 509 391 47 473 212 37 313

BiCGstab(2) 529 45 477 493 41 458 190 30 254

Table 5.4: The performance of the GMRES20 and BiCGstab(2) for solving the precondi-

tioned correction equation in di�erent variants of the JDQZ method, in the continuation

process di�erent step sizes have been used.

We allowed the BiCGstab(2) method to make maximal 100 matrix-vector multipli-

cations per solve. Therefore, this method can solve the correction equation more accu-

rately than the GMRES20 method, which uses maximally 20 matrix-vector multiplica-

tions. When the correction equation is solved more accurately, less JDQZ iterations will

be needed to compute the eigenvalues. In Table 5.4 this is clearly seen: with the GMRES20
method more JDQZ iterations but less matrix-vector multiplications are needed for com-

puting four eigenvalues than with the BiCGstab(2) method.

The computational costs for solving one correction equation will be higher when using

the BiCGstab(2) method than when using the GMRES20 method because the correction

equation is solved more accurately with the BiCGstab(2) method. But, as a consequence

of the higher accuracy less JDQZ iterations are needed and hence less correction equations

have to be solved. In Table 5.4 we see that for almost all cases the BiCGstab(2) method

needs less cpu-time than the GMRES20 method. The decrease in cpu-time caused by the

decrease of the number of JDQZ iterations is enough to compensate for the increase of

cpu-time caused by the increase of the number of matrix-vector multiplications.

From Table 5.4 we see that the cpu-time for the JDQZ3 variant is less than for the

other two variants and that the cpu-time for the JDQZ2 method is less than for the

JDQZ1 variant. The di�erence between the cpu-time of the di�erent variants is larger for

�s = 1 than for �s = 5.

To be able to make a good comparison between the di�erent JDQZ variants, in Figure

5.3 the convergence behaviour of the JDQZ variants in the continuation code with step

size �s = 5 and �s = 1 are shown. The BiCGstab(2) method has been used to solve

the preconditioned correction equation. The residual of the BiCGstab(2) method when

solving the preconditioned correction equation is shown against the number of JDQZ steps.

In this way we can observe for di�erent step sizes the in
uence of using information of

the previous continuation step in the JDQZ method.

For �s = 5 the di�erences between the three variants of the JDQZ method are small.

Random e�ects can be the cause of these di�erences. The Schur vectors from the previous

continuation step are not accurate enough approximations of the new Schur vectors to

have a positive e�ect on the convergence of the JDQZ method.

For �s = 1 the convergence of the JDQZ method becomes faster when more Schur

vectors of the previous continuation step are used to form the search space. With a small
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Figure 5.3: Convergence behaviour of the di�erent variants of the JDQZ method for

di�erent step sizes in the continuation method.

step size these Schur vectors are accurate approximations of the new Schur vectors and

will have a positive e�ect on the convergence. The JDQZ2 variant converges faster than

the JDQZ1 variant when computing the �rst eigenpair. With the JDQZ2 version the

search space is started with the �rst Schur vector computed in the previous continuation

step. Therefore, the search space in the JDQZ2 variant contains more information about

the �rst eigenvector than the search space in the JDQZ1 variant. From the convergence

behaviour of the JDQZ2 variant it can be seen that when the JDQZ method converges

slowly for one eigenpair, relevant information for the remaining eigenpairs is added to the

search space resulting in a fast convergence for these remaining eigenpairs. The JDQZ3

variant converges fast for all eigenpairs. In this variant the search space is started with all

four Schur vectors from the previous continuation step. Hence, this search space contains

accurate information about all eigenvectors

Concluding, for �s = 5 the three JDQZ variants have similar convergence behaviour,

whereas for �s = 1 the JDQZ3 and JDQZ2 variant converge faster than the JDQZ1

variant. When �s is small the Schur vectors from the previous continuation step will be

a better approximation to those of the current continuation step than when �s is larger.

5.5 Conclusions

In this chapter we have used a continuation method to compute all solutions of a system

of partial di�erential equations which depends on a parameter. With such a method all
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branches of solutions can be traced, bifurcation points can be detected and the stability

of a solution can be determined. The continuation method can be split in two parts. The

�rst part is the actual continuation part: assuming that at some point on the branch the

solution is known a new solution at the next point is computed. An Euler prediction

is used to obtain an approximation to the new solution. This approximation is used as

starting vector in Newton's method, which is used to compute the new solution. The

other part determines the stability of a solution and the position of the bifurcation points

by solving a generalized eigenvalue problem. We have used the JDQZ method to solve

the generalized eigenvalue problems. In both parts of the continuation method we have

used the MRILU factorization: in the Newton method as preconditioner when solving the

linear systems and in the JDQZ method to precondition the correction equation.

We have applied the continuation method successfully to the Rayleigh-B�enard prob-

lem. On a 128�32 grid with stretching in both directions we have computed a bifurcation

diagram. Furthermore, we have considered the convergence of both the linear solver and

the eigenvalue solver. The MRILU factorization is an e�cient preconditioner for both of

these solvers.

When computing a solution on a branch the Newton process converges quadratically.

For a smaller step size in the continuation method, the Newton method needs less iter-

ations because for this case the Euler approximation is more accurate. In each Newton

step the linear systems are solved with the Bi-CGSTAB method preconditioned with an

MRILU factorization. We have compared the performance of MRILU factorizations with

a �ll per row of 49, 70 and 76. When the �ll per row is low the cpu-time needed for the

construction of the factorization is low. However, with a low �ll the factorization will be

less accurate. Therefore, the number of Bi-CGSTAB iterations and hence the cpu-time

needed for solving the linear system will be higher. For the di�erent MRILU factorizations

the sum of the cpu-time needed for the construction of the factorization and the solve

of the linear system is equal. Apparently, when computing a solution on a branch the

quality of the preconditioner is not very crucial. But, from the point of view of storage

capacity it is advantageous to use a factorization with a low �ll per row.

The secant method, which is used to compute the location of a bifurcation point,

needed only two steps to converge. Once this location is found, the branch emerging from

this bifurcation point can be traced. At a bifurcation point the system is singular. This

causes a deterioration of the convergence of the Newton method. In the continuation step

starting from a bifurcation point the Newton method converges linearly. The construction

of the MRILU factorization is not in
uenced by the singularity. However, the precondi-

tioned Bi-CGSTAB method needs more iterations near the singularity than elsewhere on

the branch.

In the JDQZ method the correction equation is preconditioned with an MRILU fac-

torization. To obtain convergence the factorization needs to be very accurate, resulting

in a �ll per row of 180. This factorization is made once during the whole JDQZ method,

justifying the large e�ort made to construct the factorization. We have solved the precon-

ditioned correction equation with the BiCGstab(2) method and the GMRES20 method.

With the BiCGstab(2) method the preconditioned correction equation is solved more ac-

curately (and hence more expensively) than with the GMRES20 method. Therefore, the

JDQZ method will need less JDQZ iterations when using the BiCGstab(2) method. The
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cpu-time for the BiCGstab(2) method is lower than for the GMRES20 method. The de-

crease in cpu-time caused by the decrease of the number of JDQZ iterations is enough to

compensate for the increase of cpu-time caused by the increase of the number of matrix-

vector multiplications.

We have considered three variants to start the search space of the JDQZ method:

variant one starts with a random vector, variant two with the �rst Schur vector from

the previous continuation step and variant three with all Schur vectors from the previous

continuation step. With the third variant the JDQZ method needs the least iteration

steps. It is bene�cial to start with a search space that already contains information about

the Schur vectors. The results for this variant are even better when a small step size

is used in the continuation method: in this case the previous Schur vectors are a better

approximation to the new Schur vectors.

When the step size is taken smaller in the continuation method the convergence of

both the Newton method and the JDQZ method improves. The cpu-time needed for one

continuation step will be lower. But, the total number of continuation steps needed to

trace a given part of a branch will be higher. Consequently, the step size should not be

taken too small or large.
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Chapter 6

Bifurcation analysis of driven cavity


ow by the Newton-Picard method

6.1 Introduction

In this chapter we will study the transition from steady to (quasi) periodic 
ow. The 
ows

under consideration are governed by the incompressible Navier-Stokes equations. Such

studies are not only interesting from a theoretical point of view, but from a practical

one as well. For example, consider a 
ow around an object which becomes periodic at a

certain Reynolds number. At that stage the 
ow will exert a periodic force on the object,

which may give such strong vibrations that, due to fatigue of the material, the object will

eventually get damaged. In such a case one could change the form of the object in order

to improve its aerodynamic properties such that the periodic behaviour is delayed to a

much higher Reynolds number which does not or only rarely occur in practice.

The study on the transition will be done for the lid-driven cavity. This problem is

a well known test case for numerical methods for solving the Navier-Stokes equations.

Nevertheless, little is known about its bifurcation behaviour. Cazemier et al. [12] have

performed a bifurcation analysis for the lid-driven cavity using a low-dimensional dy-

namical system resulting from a Galerkin projection of the Navier-Stokes equations on a

basis obtained by a proper orthogonal decomposition (or singular value decomposition) of

snapshots of the 
ow on a very �ne grid (see Section 6.2.2). The low-dimensional system

admits to compute the monodromy matrix, the order of which is equal to the number of

degrees of freedom in the system, whose eigenvalues determine the bifurcation behaviour.

They observed that the behaviour of the low-dimensional dynamical system predicted the

behaviour of the high-dimensional system on the very �ne grid reasonably well.

For our bifurcation analysis we have used the software tool PDECONT, which has

been developed by Lust and Roose [32]. This tool is based on the Newton-Picard method

which in itself is a generalization of the RPM of Shro� and Keller [42]. In this method

the monodromy matrix restricted to the space consisting of the most critical modes is

constructed. Therefore, the tool allows to study the bifurcation behaviour of the high-

dimensional system itself. In the tool the user has to specify the right-hand side and the


ow, i.e. a map which gives the time-dependent solution of the PDE for a given time,

Reynolds number and initial solution. We have computed this 
ow by using an implicit

89
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time-integration method where MRILU (Chapter 4 and [8]) has been applied to solve the

occurring linearized systems. Due to limited computer resources we have used a somewhat

coarser grid than Cazemier et al. Nevertheless, the results are very similar.

6.2 Problem description and results of others

In this section we will describe the problem and summarize the information about its

bifurcation behaviour found by others.

6.2.1 Lid-driven cavity

The problem under consideration is the lid-driven cavity problem; the 
ow in a square

cavity with constant moving lid. The domain and boundary conditions of this problem

are shown in Figure 6.1.

u = 1 v = 0

u = v = 0

u = v = 0 u = v = 0

!" x
y

0

1

1

Figure 6.1: Geometry for the lid-driven cavity problem.

The 
ow is described by the two-dimensional incompressible Navier-Stokes equations,

which in conservation form are given byZ
�
~u:n d� = 0;Z




@u

@t
d
 +

Z
�
(u~u� �ru):n d� = �

Z
�
p(n:e1) d�;Z




@v

@t
d
 +

Z
�
(v~u� �rv):n d� = �

Z
�
p(n:e2) d�;

for arbitrary domain 
 with boundary �.

6.2.2 Results by Cazemier

The 
ow in a lid-driven cavity was also studied by Cazemier et al. [11, 12]. In their work

a direct numerical simulation is performed at Reynolds number 22,000 on a 250�250 grid

(about 200,000 unknowns) with a fourth-order �nite-volume discretization. This Reynolds

number is far beyond the transition point from steady to periodic 
ow; the 
ow is already

chaotic. From this simulation 700 snapshots are taken at constant time intervals (5 sec).

By a proper orthogonal decomposition (POD), or in linear algebra terms a singular value
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f 0.27 0.44 0.11 0.16 0.32 0.53 0.70 0.06 0.38 0.60 0.88

Table 6.1: Occurring frequencies (Hz) in DNS calculation at Re=10,000.

decomposition, of these snapshots an orthogonal basis is constructed. They showed that

a basis of dimension 80 is enough to capture 95% of the energy in the system. Then, these

80 basis functions are used for a Galerkin approximation of the Navier-Stokes equations.

The thus derived low-dimensional dynamical system is used to study the bifurcation

behaviour. At certain Reynolds numbers the results of this dynamical system were veri�ed

by performing a DNS. The results were qualitatively similar, but quantitatively di�erent.

The DNS results in [11] yield some important data to compare our results with. First,

the transition from a stationary to a periodic 
ow is observed at Re=7972, the emerging

period T is 2.2 seconds. Secondly, at Re=10,000 a plot is given of the power spectral

density of the time signal. We clearly see a frequency 0.44 Hz (about the reciprocal of the

period 2.2) in the plot. In Table 6.1 the most important frequencies, as good as we can

read it from the plot, in that signal are listed in order of signi�cance. The signal contains

already a lot of frequencies, among which there will be combination frequencies. In our

experiments (see Section 6.5) we will see that for this Reynolds number the steady state

solution has already 5 unstable modes. Many of the occurring frequencies shown above

can be found as combination frequencies of these modes.

The analysis with the low-dimensional dynamical system showed at Re=7819 a transi-

tion from a stationary to a periodic 
ow with time period 1.63 seconds, which corresponds

to a frequency of about 0.60 Hz. This frequency is quite di�erent from the frequency 0.44

Hz obtained from the DNS, which is explained in Cazemier's thesis [11] from the fact that

the POD basis has been obtained at Re=22,000. However, our experiments also indicate

that the frequency 0.60 Hz is rather important.

6.2.3 Results by Poliashenko and Aidun

Poliashenko and Aidun described in [38] a direct method to compute a simple bifurcation.

They solve an augmented system which give the critical parameter value at once, avoiding

a continuation process. Similar techniques are discussed in [1]. This direct method was

applied to compute the �rst bifurcation of the 
ow in the lid-driven cavity. Based on the

results on some grids they concluded that this critical value is at 7763 � 2%. By using

Richardson extrapolation on the results of their �nest two grids we come to the value

7952 which is quite close to the value 7972 found by Cazemier et al. It surprised us that

on a 57� 57 grid using biquadratic �nite elements such an accurate determination of the

bifurcation point is possible.

Another interesting result they obtained is that for a square cavity the �rst (Hopf)

bifurcation is supercritical, which means that the solution is unique before the �rst bi-

furcation. They show a result of a non-square cavity with height-width ratio 1.5 where

this is not the case; next to the steady state there are a stable and an unstable periodic

solution.
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6.3 Discretization

In general a parameter dependent autonomous partial di�erential equation (PDE) is con-

sidered. With the method of lines this PDE is �rst discretized in space, resulting in a

large system of ODEs

dx

dt
= f(x; 
) t > 0;

x(0) = x0;

with x 2 Rn and 
 the parameter. To solve this system and perform a bifurcation analysis

we use the software tool PDECONT. This tool requires from the user two subroutines: one

which computes the right-hand side f(x; 
) and one which computes the 
ow '(x0; t; 
),

i.e. the solution of the PDE at time t for a given initial solution x0. To compute this


ow we employ as time integration the �-method. In the following we treat, according to

the method of lines, the discretization of the Navier-Stokes equations in space and time

separately.

6.3.1 Space-discretization

In order to perform an accurate bifurcation analysis, we wish to preserve the stability

of the Navier-Stokes equations when discretizing the system. In order to obtain this,

the convective terms have to be discretized skew-symmetric [53]. In the continuous case

convection corresponds to a skew-symmetric and di�usion to a symmetric positive de�nite

operator. When preserving these properties in the discretized case, the resulting coe�cient

matrix will be positive de�nite. In [53] it is shown that if after semi-discretization the

coe�cient matrix is positive de�nite the energy of the solution is decreasing in time. This

implies that the semi-discretized system is stable. We will use the symmetry-preserving

�nite-volume discretization as described in Section 4.3.1.

The starting point in this discretization is a central discretization of the convective

terms, but by adding arti�cial di�usion to the real di�usion an upwind discretization can

be obtained. In our computations we want to eliminate the in
uence of arti�cial di�usion

on the results. Hence, we set it equal to zero. We will use a 128� 128 grid, and re�ne the

grid near the walls in order to prevent unphysical wiggles. This re�nement is determined

by the mapping

ys =
1

2
(1 + tanh(2s(yu �

1

2
))=tanh(s)):

This expression maps grid points yu from a uniform grid to those of a stretched grid ys.

As stretching factor we use s = 1:5 in both x- and y-direction.

6.3.2 Time-discretization

For the time-discretization we used the �-method, which is given by

xn+1 = xn +�tf((1� �)xn + �xn+1);
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with � 2 [0; 1]. For � = 1=2 and � = 1 this is the implicit midpoint and backward

Euler method, respectively. The choice of � in the application is delicate and will be

considered separately below. As initial guess for the solution at time step n + 1 we used

the extrapolation formula xn+1 = 2xn � xn�1. The implicit relations are solved by the

Newton method and the thereby occurring linear equations by MRILU. In the Newton-

Picard method we are computing perturbations of a steady state over a certain time

period. It appeared that those perturbations are so small that one MRILU factorization

for the whole time period su�ced.

Choice of �

In the time-continuous case the high-frequency components are highly damped, and com-

ponents with eigenvalues with a large imaginary part and a small positive real part are

unstable. When using a time discretization, for instance the �-method, we wish to pre-

serve these properties. We will consider the in
uence of the choice of � on the damping

of the di�erent components.

Suppose we want to study the e�ect of perturbations of a steady state over a time

period T with n equal time steps, hence �t = T=n. Then, for each eigenvalue � of the

Jacobian matrix of f we have the following ampli�cation factor r

r = [(1 + (1� �)��t)=(1� ���t)]n: (6.1)

The Newton-Picard method, discussed below, computes the most dominant r's, i.e. those
r's which are in magnitude larger than a certain user speci�ed value. We want that the

corresponding dominant subspace contains the same perturbations as those dominating in

the time-continuous case. So on the one hand we want � = 1=2, since then the important

eigenvalues near the imaginary axis are not damped too strongly, avoiding that they will

not be treated as dominant by the Newton-Picard method and consequently will become

invisible. On the other hand we want � larger than 1=2 in order to damp the �'s large
in magnitude. So we try to �nd � close to 1=2 such that for �'s large in magnitude the

magnitudes of the corresponding r's are less than those corresponding to �'s close to the

imaginary axes. For large ��t we have from (6.1) the approximation

jrj � [(1� �)=�]n � exp[�4(� � 1=2)n]: (6.2)

We will clarify the above with a numerical example. Assume we wish to compute all

r's which are in magnitude larger than 0.95. In our computations the number of time

steps we used is about 10 to 20. For 10 time steps and � = 0:51 we �nd for �'s large in
magnitude jrj � 0:7, which is only slightly below 0.95 and therefore a further decrease of �

is not desirable, since this would increase r. For eigenvalues with imaginary part of about

2 to 4 and close to the imaginary axis we observed in our computations an in
uence of

the time discretization on the damping when � = 0:51. Hence, on this ground we would

like to decrease �. We see that these considerations for the choice of � are in con
ict.

When the time step is halved n is doubled and we are allowed (see (6.2)) to decrease � to

0.505 in order to keep the same damping behaviour for the high-frequency components.
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Computation of eigenvalues from r

At this place we discuss an application of equation (6.1) which can be used to compute

where the stationary solutions of the semi-discretized equations become unstable. As

mentioned before the Newton-Picard method will compute the value of r. From equation

(6.1) we can compute the corresponding eigenvalue �. Due to the n-th root that has to

be taken � is multi-valued. Only one of these values is the sought eigenvalue. This true

eigenvalue is of course unchanged under perturbation of the time period T . The others

values do change under such a perturbation. To see this, consider the expression

r = exp(�T );

which is the continuous variant of equation (6.1) which we use here to simplify the analysis.

Now, for the true eigenvalue �̂ we have

dr

dT
= �̂ exp(�̂T ); (6.3)

which we will observe after a perturbation of T . The pseudo eigenvalues mathematically

yield after a perturbation of T

dr

dT
= T exp(�T )

d�

dT
+ � exp(�T ):

When we equate this to the observed one (6.3) we �nd

d�

dT
= (�̂ exp[(�̂� �)T ]� �)=T:

So in general d�
dT

di�ers from zero if � di�ers from �̂ and hence we can detect �̂ by changing
T a little for a �xed parameter (the Reynolds number). The most constant value among

the solutions is the sought eigenvalue.

This can be used during the continuation process as well. For the steady state we see

that the Newton-Picard algorithm also changes T . By picking the most constant value in

the set of computed values for � we can identify the eigenvalue.

6.4 PDECONT

In this section the so-called Newton-Picard method which is at the basis of PDECONT

will be described in short (see [32] for an extensive treatment). The underlying idea of

the method can already be found in [27, 42], where it is applied to steady computations.

Shro� and Keller called their method the recursive projection method (RPM).

To introduce the underlying idea we con�ne ourselves to the steady case. If we use

a time-integration method, eventually the error is dominated by a set of slowly decaying

(periodic) components. It is possible to make a basis for this set of slowly decaying

components which forms an invariant subspace of limited dimension. The update in this

invariant subspace and its orthogonal complement will be computed separately. In the

former Newton's method is used and in the latter the time integration is still employed.

To explain the Newton-Picard method we begin with a description of the RPM, in

order to point out the main ideas.
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6.4.1 RPM

Suppose we have a �xed-point problem

x = g(x):

One may think here of a steady-state computation by means of a time-integration method

over some period, or of detecting a periodic solution of a PDE. The �xed-point iteration

xn+1 = g(xn) may converge slowly or even diverge when the eigenvalues of the Jacobian

of g are in magnitude close to 1 or larger than 1.

To stabilize this procedure the space will be split in two orthogonal subspaces P and

Q with projectors P and Q = I�P . The subspace P is of low dimension, and corresponds

to the slowly converging and unstable modes. Let p0 = Px0 and q0 = Qx0, then we iterate

according to

pi+1 = pi + C1(Pg(xi)� pi);

qi+1 = qi + C2(Qg(xi)� qi);

xi+1 = pi+1 + qi+1:

Here, C1 and C2 should be chosen such that good convergence is obtained in both sub-

spaces. In the paper of Shro� and Keller [42] C2 is the identity matrix, yielding a Picard

iteration in Q, and C1 is minus the inverse of the Jacobian of Pg(xi)� pi,

�(
@(Pg(pi + qi)� pi)

@pi
)�1;

resulting in the Newton method in P.

In the iteration we need the projectors P and Q. Let the columns of V be the orthog-

onal vectors spanning P. Then the projectors are given by P = V V T and Q = I � P =

I � V V T . In the actual computations we do not work with p but with its representation

p̂ in the basis V , every p 2 P can be written as p = V p̂. Hence, we can rewrite the p
update equation as

V p̂i+1 = V p̂i + C1(V V
Tg(V p̂i + qi)� V p̂i):

Premultiplying this equation by V T yields

p̂i+1 = p̂i + V TC1V (V
T g(V p̂i + qi)� p̂i):

In order to obtain a good convergence in the subspace P we zero the Jacobian of the

right-hand side in this formulation. This gives

V TC1V = (I � V TgxV )
�1:

Here, the directional derivatives gxVi where Vi is the i-th column of V can be found by

numerical di�erentiation

gx(xn)Vi = (g(xn + "Vi)� g(xn))=": (6.4)
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Remark In the periodic case the matrix V TgxV is an approximation to the monodromy

matrix restricted to P.

We are left with the problem of �nding V . Its columns build the invariant subspace

P which usually is the space corresponding to the dominant eigenvalues of gx. V can be

found in various ways. We will return to this problem in the next section.

Note that the presented iteration is in general more contractive than the original

�xed-point problem. Even if the �xed-point problem is mildly unstable, i.e. only a few

eigenvalues of gx are in magnitude larger than one, then the RPM is converging if the

eigenvectors corresponding to those unstable eigenvalues are in P.

6.4.2 Newton-Picard method

Lust and Roose reconsidered and generalized the RPM for periodic problems starting

from a linear algebra point of view and called their method the Newton-Picard method.

We will describe the part of the algorithm that we have used in our computations. For the

other features we refer to [32, 31]. An outline of the algorithm including a continuation

process is given in Algorithm 6.1. In the remainder of this section we will clarify the main

part of this algorithm.

Given an initial guess for a solution at a given parameter

1. Compute the solution accurately

(a) Construct an invariant subspace

(b) Compute the correction

(c) Check convergence

(d) If not converged go to (a)

2. Increment the parameter

3. Generate a guess for the solution at the new parameter value

4. Go to 1 or stop if goal is reached

Algorithm 6.1: Newton-Picard method.

Construction of the invariant subspace

The invariant subspace is found by a variant of orthogonal iteration with Ritz acceleration

(see [21, page 423]) or subspace iteration with projection [39]. The iteration process is

given by Algorithm 6.2. Here, M stands for the monodromy matrix or in terms of the

previous section gx. If Steps 2 to 4 are omitted and V = W , we just have the standard

orthogonal iteration process (a generalization of the Power method). The e�ect of these
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Given some V0 with V
T
0 V0 = I and M

Set k = 1 and perform the following steps

1. Apply M to Vk�1: Wk =MVk�1

2. Compute the restriction of M to the space spanned by Vk�1:

Mk = V T
k�1Wk(� V T

k�1MVk�1)

3. Convert Mk to its real Schur normal form where the eigenvalues

on the diagonal of R are in decreasing order of magnitude:

UTMkU = R

4. Combine columns in Wk such that they correspond to the order

of the eigenvalues: Vk =WkU

5. Orthogonalize Vk

6. Increment k and go to 1 or stop if converged

Algorithm 6.2: Construction of invariant subspace.

steps is the following. They construct a basis for the subspace such that the eigenvector

(eigenspace) corresponding to the eigenvalue (eigenvalue pair) largest in magnitude is on

the �rst position, repeating itself for the remaining eigenvalues. This is an acceleration of

the orthogonal iteration where eventually also the eigenvectors will appear in the desired

order.

In the standard acceleration [21, page 423] Step 2 is replaced by �rst orthogonalizing

W , which allows to omit Step 5, and then computing Mk = ~W T
k M

~Wk. This requires a

new application ofM , which will slow down the construction by almost a factor two. The

di�erence is that in the algorithm used the reordering is based on the old V , this di�erence

has only a limited e�ect on the convergence. Eventually, when the respective subspaces

are converging, U tends to the identity matrix, and the eigenvalues on the diagonal of R,

i.e. the eigenvalues of the monodromy matrix M restricted to the invariant subspace, are

the ampli�cation factors mentioned in subsection 6.3.2.

Convergence behaviour In exact arithmetic we could, by omitting the orthogonalization,

simplify the construction to the iteration Vk = MVk�1, requiring only that the distance

[21, page 76] of V0 and the dominant eigenspace is less than one. If d is the dimension of

the space spanned by Vk then the i-th Ritz value converges as (�d+1=�i)
k. Here the Ritz

value can be obtained by orthogonalizing Vk, restricting M to that space as in Step 2,

and computing the eigenvalues of that restriction in decreasing order (the i-th eigenvalue

of this matrix is the i-th Ritz value).

In order to get the same result in the presence of rounding errors, Vk has to be or-

thogonalized now and then (usually at each step), resulting in orthogonal iteration. In

orthogonal iteration the eigenvectors will converge in order of decreasing magnitude of the
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eigenvalues. In order to accelerate the convergence of the eigenvectors, one recombines

the columns in Vk when the Ritz values are computed (here at every step), yielding the

same convergence in the eigenvectors as in the Ritz values. For more considerations we

refer to [39, Ch.5].

Parallelization The computation of MV is well parallelizable. Since this is the most

time consuming operation of the code this is very attractive. V consists of the order of

30 columns. So almost a factor 30 can be gained, since the work is strongly balanced.

Stopping criterion and locking For the stopping criterion the matrix

(I � V V T )MV

is considered. Here (I � V V T ) is the projector on the orthogonal complement of V .

Hence, if V is an invariant subspace then this expression is zero. It is not necessary that

all columns of V have converged. The user speci�es a lower bound for the magnitude

of the eigenvalues that must converge and a tolerance which is used as follows. If the

eigenvalues corresponding to the space spanned by the �rst k columns of V are larger

than the lower bound and if the norm of the �rst k columns of (I � V V T )MV is less

than the tolerance then these k columns are assumed to have converged. Of course, the

space V must be taken large enough such that all wanted eigenvectors are in it. A larger

space than strictly necessary is even bene�cial as we have seen in the paragraph on the

convergence behaviour.

As we have seen the eigenvectors converge in order, this can be exploited by freezing

(or locking) a converged vector. In this case Step 1 of Algorithm 6.2 is only performed

for the not-converged part. The other steps are still applied to all vectors in V .

Remark We did not make use of the ability of the program to add and delete vectors in

V . In the case of adding, random vectors are employed. We observe an algebraic e�ect

in the convergence of such a vector which delays the overall convergence considerably. In

our view �rst a number of iterations on new (random) vectors have to be done while the

old ones are locked. In the course of our study we got su�cient information on how to

choose the dimension of the space spanned by the columns of V .

Computation of the correction

In order to describe the computation of the correction we rewrite our problem. Let us

describe the solution of the system in terms of the 
ow ': x(t) = '(x(0); t; 
). So the

solution depends on the initial solution and the parameter 
. If a periodic solution exists

then the 
ow must have a �xed point

x = '(x; T; 
): (6.5)

Note that the �xed point is not unique, if x is a �xed point then '(x; t; 
) is one as well.

The solution is often made unique by imposing a so-called phase condition, which we

write formally as

s(x; T; 
) = 0: (6.6)
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Remark By substituting '(x; t; 
) in the �xed-point equation and taking the derivative

with respect to t we see immediately that 't(x; t; 
) is an eigenvector of 'x('(x; t; 
); T; 
)

with eigenvalue 1. For t = 0, this means we have the eigenvector 't(x; 0; 
) and the matrix

'x(x; T; 
). In the latter case the eigenvector is equal to f(x; 
). We will use this result

later on.

Of course, one likes to solve the above two coupled equations (6.5) and (6.6) with the

Newton method. The Newton-correction equation is given by"
'x � I 'T

sx sT

# "
�x

�T

#
= �

"
r

s

#
;

where r is the residual of the �xed-point equation. Here, 'x is an approximation to the

so-called monodromy matrix, therefore it is usually denoted by M . As explained in the

remark above, 'T can be approximated by f(x; 
). The matrix 'x is full, and hence, for

large systems, the Newton method will be too expensive.

To obtain a rapidly linearly converging method ideas from the RPM are used. Write

�x as �x = V�p̂ + �q, and note that �q = Q�q where Q is the orthogonal projector

on the complement of spanfV g, Q = I � V V T . Herewith, the correction equation is

rewritten as2
64 Q(M � I)Q Q(M � I)V Q'T

V T (M � I)Q V T (M � I)V V T'T

sxQ sxV sT

3
75
2
64 �q
�p̂
�T

3
75 = �

2
64 Qr
V T r
s

3
75 :

If V is an invariant subspace of M then Q(M � I)V = 0, we will assume that this is the

case. Moreover, we will assume that Q'T is negligible ; for the periodic solution 'T is

an eigenvector of M with eigenvalue 1 (see the remark above) and hence a vector of the

subspace P, therefore Q'T will be small during the Newton process. This results in a

Gauss-Seidel like iteration. First we have to solve for �q and then the other unknowns

follow from the reduced system"
V T (M � I)V V T'T

sxV sT

# "
�p̂

�T

#
= �

"
V T r + V TM�q

s+ sx�q

#
: (6.7)

In order to solve for �q we need to solve a system with the matrix Q(M � I)Q. This

forms the bottle-neck in the computations since we do not want to compute this full matrix

explicitly. However, we can compute a multiplication of M with a vector by numerical

di�erentiation as in (6.4). Hence we can try to approximate the inverse of Q(M � I)Q by

a polynomial. In the present version a truncated Neumann series is used

[Q(M � I)Q]+ � Q+QMQ + (QMQ)2 + ::: + (QMQ)k; (6.8)

where + denotes the pseudo-inverse; this yields exactly the inverse of M � I restricted

to the orthogonal complement of V . The value of k is speci�ed by the user (in our

applications we have used k = 10 and k = 20).

Once the reduced system is computed, its solution can be found by a direct method

since the system is small (in our case of order 30).
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Automatic phase condition through pseudo-inverse In order to avoid giving a phase con-

dition a variant based on least-squares is also available. This variant has been used in our

computations. Here, the reduced system to be solved ish
V T (M � I)V V T'T

i " �p̂

�T

#
= �

h
V T r + V TM�q

i
: (6.9)

This system is underdetermined. Hence, the solution is not unique. A way to make it

unique is to �nd the solution with minimal two-norm. This solution is found by employing

the pseudo-inverse, which implicitly de�nes a phase condition. We will make the form of

this condition more explicit in the following.

In case of a periodic solution 'T is the eigenvector of M with eigenvalue 1. In general

this is a simple eigenvalue and due to the construction in the Newton-Picard process it is

contained in the invariant subspace V . Hence, if [ �p̂ ; �T ]T is a solution of the underde-

termined system then [�p̂+�V T'T ;�T ]T is a solution as well. Minimization of the length

of this vector leads to the condition that the inner product (V T'T ;�p̂+�V
T'T ) = 0. Or

in other words, the unique solution of the system has to be perpendicular to [V T'T ; 0]
T .

This is the implicit phase condition when the system is solved using the pseudo-inverse.

In [31, 32] it is shown that this condition is close to a desirable one.

We have also used the code on the steady branch. In that case, V T (M � I)V is in

general non-singular, but 'T = 0 and hence V T'T = 0. Then the solution with minimal

two-norm is the one with �T = 0, which is precisely what we want.

As usual in the application of the pseudo-inverse the user has to specify a drop toler-

ance for the singular values. Here, a singular value is dropped if it is less than the drop

tolerance times the maximum singular value.

Stopping criterion The stopping criterion of the Newton-Picard process is based on the

residual and the corrections. More precise, the root mean square of both the residual, �p

and �q and the magnitude of �T should be less than a user speci�ed tolerance.

Pseudo-arclength method In continuation often pseudo-arclength parametrization is used

in order to be able to pass through a fold point. Then, an equation has to be added to

the system. When the pseudo-arclength parameter is denoted by �, this equation is given

by

n(x; T; 
; �) = 0:

The precise form is given in formula (2.1) of Lust and Roose. In our computations we did

not use this pseudo-arclength variant.

6.5 Numerical results

The PDECONT tool can be used to compute both steady and periodic 
ows and their

stability. For the lid-driven cavity problem depending on the Reynolds number both types

of 
ows can occur. In this section we will present results from computations on both a

steady and a periodic branch. All computations have been performed on a 128 � 128

stretched grid.
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6.5.1 Along the steady solution branch

As a starting solution for the Newton-Picard process we computed the steady-state solu-

tion at Re=7500. This was done by a separate program using the backward Euler method

(� = 1).

Setting of the parameters in PDECONT

The tool PDECONT is a cascade of iterative procedures, we will shortly indicate the

criteria used for each procedure.

Continuation process In the continuation process the Reynolds number is used as the

continuation parameter. The process is started at Re=7500 with step size 250. During

the process the step size is automatically adjusted. The smallest and largest step size we

allow are 25 and 500, respectively.

Subspace iteration During the computation we keep the dimension of spanfV g �xed at

22. For the invariant subspace we require that the stopping criterion is satis�ed with

tolerance 0.01 for all eigenvalues greater than 0.95. The parameter used in the numerical

di�erentiation is 10�5. This is small but necessary for two reasons. First of all, we

obviously want that the error is small. Secondly, we have to deal with the non-linearity

in case of a complex eigenvalue. To be more precise, suppose that a certain eigenvalue

is complex then the two eigenvectors span a two-dimensional space. In the algorithm we

iterate on two real orthogonal vectors which approximately span this space. Application

of the nonlinear matrix M gives as result two new real vectors which are orthogonalized

in order to give the new basis. Since M is nonlinear the respective spaces built in this

way will not converge when the parameter in the numerical di�erentiation is too large.

The criterion in the time stepping process is also very important in this respect.

Time integration We set the time step at 0.125. This is adapted by the program such

that its multiple �ts in the period. For the Newton method a stopping criterion of

10�12 is imposed on the correction (maximum norm). This is needed for the numerical

di�erentiation in order to have a su�cient small error in MV . Since the periods we

are computing are of order 1 about ten time steps are needed yielding an error in the

integration over one period of about 10�11. Due to the numerical di�erentiation this

error will become 10�6(= 10�11=10�5). We experimented with this stopping criterion and

observed that this high accuracy was needed to maintain convergence of the eigenvalues.

We think that also the non-normality of M will play an important role here.

The problem to �nd the magnitude of variation in the numerical di�erentiation is

absent when using the di�erential equation for the perturbation, using the exact Jacobian.

We are inclined to do this in future experiments. We need only half of the accuracy for

the time integration. So it is equally expensive.

Solving correction equation The value of k in the Neumann series (6.8) in the Picard

step is set to 10. For the computation of the pseudo-inverse of the reduced system (6.9)
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the drop tolerance for the singular values is 10�4. The tolerance for the stopping criterion

of the Newton-Picard process is 0.005.

Computation of eigenvalue data

In Table 6.2 eigenvalues and corresponding periods and frequencies are given. In each

column one can see how an eigenvalue evolves as a function of the Reynolds number. A

plot of this data is given in Figure 6.2. These eigenvalues are computed from equation (6.1)

as discussed in Section 6.3.2. Hence, the eigenvalues are independent of �. The results

indicated with y in the table are not fully converged. These results usually belong to an

eigenvalue with a large imaginary part for which the ampli�cation factor (see Section 6.3.2)

is not in the range of accurately computed ampli�cation factors.

Re �1 Test 1=Test �2 Test 1=Test
7500 -0.0159� 0.9406i 6.6799 0.1497

7750 -0.0152� 0.9398i 6.6858 0.1496 -0.0163� 2.7813i 2.2590 0.4427

8000 -0.0144� 0.9392i 6.6897 0.1495 -0.0068� 2.7762i 2.2633 0.4418

8375 -0.0138� 0.9371i 6.7049 0.1491 0.0009� 2.7640i 2.2732 0.4399

8875 -0.0130� 0.9357i 6.7152 0.1489 0.0189� 2.7518i 2.2833 0.4380

9375 -0.0124� 0.9345i 6.7233 0.1487 0.0313� 2.7354i 2.2970 0.4353

9875 -0.0115� 0.9322i 6.7403 0.1484 0.0473� 2.7247i 2.3060 0.4337

10375 -0.0110� 0.9330i 6.7346 0.1485 0.0608� 2.7148i 2.3144 0.4321

Re �3 Test 1=Test �4 Test 1=Test
7750 -0.0245� 1.8672i 3.3650 0.2972 -0.0391� 0.9355i 6.7166 0.1489

8000 -0.0268� 1.8667i 3.3660 0.2971 -0.0375� 0.9347i 6.7222 0.1488

8375 -0.0241� 1.8632i 3.3723 0.2965 -0.0360� 0.9335i 6.7310 0.1486

8875 -0.0223� 1.8598i 3.3784 0.2960 -0.0336� 0.9312i 6.7471 0.1482

9375 -0.0220� 1.8571i 3.3833 0.2956 -0.0314� 0.9301i 6.7556 0.1480

9875 -0.0214� 1.8545i 3.3881 0.2952 -0.0296� 0.9289i 6.7641 0.1478

10375 -0.0194� 1.8489i 3.3983 0.2943 -0.0274� 0.9264i 6.7822 0.1474

Re �5 Test 1=Test �6 Test 1=Test
8375 -0.0312� 3.7956iy 1.6554 0.6041

8875 0.0275� 3.8058i 1.6509 0.6057 -0.0151� 3.3252iy 1.8896 0.5292

9375 0.0583� 3.7903i 1.6577 0.6032 0.0259� 3.2788i 1.9163 0.5218

9875 0.0871� 3.7818i 1.6614 0.6019 0.0490� 3.2702i 1.9214 0.5205

10375 0.1136� 3.7755i 1.6642 0.6009 0.0717� 3.2565i 1.9294 0.5183

Re �7 Test 1=Test �8 Test 1=Test
8875 -0.0348� 4.4752iy 1.4040 0.7123

9375 0.0303� 4.3597i 1.4412 0.6939

9875 0.0640� 4.3418i 1.4471 0.6910 -0.0120� 4.8817iz 1.2871 0.7769

10375 0.0952� 4.3249i 1.4528 0.6883 0.0291� 4.8370i 1.2990 0.7698

Table 6.2: Eigenvalues and corresponding estimated periods and frequencies.
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Figure 6.2: Eigenvalues in the complex plane for various Reynolds numbers.

We veri�ed the results by requiring two extra digits of accuracy for the solution at

Re=9875. It appeared that the maximal di�erence in the eigenvalues was less than 14e-4.

Hence the above results are rather accurate. We also halved the time step and decreased �
to 0.505. Now, we observed the result indicated with a z in the table. This component is

unstable for Re=10,375 as we can see from the last result in the table. Such a component

with a large imaginary part is indeed not seen if � is too large.

Comparison to Cazemier's results

From Table 6.2 we see that in our computations the �rst bifurcation occurs in the neigh-

bourhood of Re=8375. The di�erence with Cazemier's DNS value 7972 is due to our

coarser grid and lower-order discretization.

In Cazemier's analysis with the low-dimensional dynamical system the frequency 0.60

Hz appeared at the �rst transition point, whereas with both Cazemier's DNS and our

analysis the frequency 0.44 Hz occurred. In our results the frequency 0.60 Hz seems to

be connected to the eigenvalue which causes the second Hopf bifurcation and has the

largest real part for the higher Reynolds numbers. Hence, it does not surprise us that

this frequency plays a prominent role.

Comparing our results for Reynolds number 10,000 to those of Table 6.1 we observe

many common components, the remaining frequencies in that table can almost always be

formed by a combination of the frequencies that we have found. To be more precise, from

Table 6.2 we �nd for Re=10,000 the unstable modes with frequencies 0.43, 0.52, 0.60, 0.69

Hz which correspond to the frequencies 0.44, 0.53, 0.60, 0,70 Hz in Table 6.1. These are

the frequencies of the Hopf bifurcations, hence the others must be integer combinations of

them. In Table 6.3 we give a possible realization of the remaining frequencies in the same

order as in Table 6.1. The most important frequency in Table 6.1 is 0.27 Hz, which has a

large amplitude in Cazemier's DNS computations and which was believed to originate from

a Hopf bifurcation. From our computations we �nd that it is a combination frequency.
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This is con�rmed by the computation along the periodic solution branch starting from

the period corresponding to the frequency 0.44 Hz, see Section 6.5.2. The �rst unstable

mode on this branch is the one corresponding to the frequency 0.70 Hz.

f reconstr.

0.27 0.70-0.44

0.44 Hopf

0.11 0.70-0.60

0.16 0.60-0.44 or 0.70-0.53

0.32 2(0.60-0.44)

0.53 Hopf

0.70 Hopf

0.06 0.60-0.53

0.38 (0.70-0.44)+(0.70-0.60)

0.60 Hopf

0.88 2(0.44)

Table 6.3: Reconstruction attempt of unstable modes.

6.5.2 Along periodic solution branches

As mentioned before the �rst bifurcation in our computations occurs in the neighbourhood

of Re=8375. This is determined by computing the eigenvalues of the Jacobian with

equation (6.1), and looking when they pass the imaginary axis. However, if we want

to switch to the periodic solution branch, we have to consider the transition of the time-

integration process, i.e. to determine where the ampli�er r leaves the unit circle. This may

shift the transition point, because the eigenvalues do not depend on the time-integration

method whereas the ampli�cation factor r does.

We increased the accuracy of the time integration by using � = 0:502 and �t =

0:06125. The continuation process was started again at Re=8000 with step size 100. We

increased the dimension of the invariant subspace to 30 and used k = 20 in the truncated

Neumann series (6.8). At the start of this extension we see an algebraic e�ect on the

convergence behaviour. After a while the ampli�cation factors of the additional vectors

settle down at about 0.78 which complies with equation (6.2) which gives approximately

0:74. This is quite close to our region of interest.

We again observed that the steady solution becomes unstable at Re=8400 for a per-

turbation with period about 2.3 seconds. We started on the periodic branch at Re=8550

using the steady solution plus 0.5 times the �rst vector in the basis, i.e. the vector belong-

ing to �2. The factor was found after some trials (0.05 still returned the steady solution).

A plot of how the Floquet multipliers move is shown in Figure 6.3. The marks in this

plot make it possible to follow the Floquet multipliers for increasing Reynolds numbers;

they follow two consecutive sequences of �;�;+; �;2; �. All occurring multipliers can be

traced back to the components given in Table 6.2. The radius of the Floquet multipliers

is scaled in order to stretch the plot near the unit circle. On the dash-dotted and dashed

line the radius is 0.90 and 0.95, respectively.
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Figure 6.3: Floquet multipliers of the periodic solution emerging at the �rst Hopf bifur-

cation for Reynolds numbers in the range 8550-10,000. The radius of the values is scaled

with 100r�1:
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Figure 6.4: Floquet multipliers of the periodic solution emerging at the second Hopf

bifurcation for Reynolds numbers in the range 8700-10,000. The radius of the values is

scaled with 100r�1:

From Figure 6.3 we observe that at Re=9150 a pair of complex conjugate Floquet

multipliers leaves the unit disc and hence the periodic solution becomes unstable. The

frequency of the unstable mode is about 0.70. This is again computed with equation

(6.1), which holds approximately now. This component is clearly generated from �7 in

Table 6.2. Since a pair of complex conjugate Floquet multipliers has left the unit disc

a 2-periodic or quasi-periodic solution will emerge, we can not compute such solutions
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~8375 ~8600 ~8800 ~9000 ~9150 ~10000

stable stationary

unstable stationary

stable periodic

unstable periodic

Reynolds number

Figure 6.5: Bifurcation diagram.

with our method. From Re=9250 we followed the unstable periodic solution branch with

increments 250 until we reached Re=10,000. No new unstable modes occur.

To compute the periodic branch emerging from the second bifurcation point at the

steady-state branch, we started the computation at Re=8700 using the steady solution

plus 0.5 times the vector corresponding to the eigenvalue �5 which causes the bifurcation.

The Reynolds number is increased with step size 100 until Re=10000. The movement of

the Floquet multipliers is shown in Figure 6.4.

At this second bifurcation point the steady-state solution remains unstable. The

periodic solution has period 1.7 seconds, and from the Floquet multipliers in Figure 6.4

we see that the emerging periodic solution is unstable. However, we see that at about

Reynolds number 8800 a pair of complex conjugate Floquet multipliers reenters the unit

disc and hence at that Reynolds number the periodic solution becomes stable and a 2-

periodic or quasi-periodic solution will disappear. The periodic solution remains stable

for the remainder of the computation to Re=10000. Since the DNS results from Cazemier

show a stable periodic solution with frequency 0.6 Hz. (period 1.7 seconds) at Re=12000

we think that in between this periodic solution is stable as well.

6.5.3 Bifurcation diagram

In Figure 6.5 a partial bifurcation diagram based on our results is shown. This picture

only gives a qualitative behaviour of the system. We see that when the stationary solution

becomes unstable at Reynolds number 8375 a periodic branch occurs. This periodic

branch is stable up to a Reynolds number of about 9150. At Reynolds number of about

8600 a second periodic branch emerges from the steady-state branch. This periodic branch

is unstable up to Reynolds number of about 8800, where it becomes stable. We observe

that for Reynolds numbers in the range from 8800 to 9150 two stable periodic solutions

exist. From the unstable stationary branch other periodic branches occur at Reynolds

numbers of about 8600, 9000, 9100 and 10,000. These branches are all (initially) unstable.
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6.6 Conclusions

We split our conclusions in two parts: the numerical approach and the bifurcation be-

haviour. With respect to the numerical approach we mention:

� Large scale bifurcation analysis of periodic solutions is possible. However, the cur-

rent version of PDECONT consumes a lot of computer time, which is due to the

slow convergence of the invariant subspace.

� The use of an implicit method is possible with good iterative solvers, such as CG

type methods preconditioned by an MRILU factorization. Special care has to be

taken that only the Floquet multipliers of interest are found.

� The space discretization is chosen such that it remains stable if no arti�cial viscos-

ity is used, this is an important reason why we �nd bifurcations at low Reynolds

numbers.

With respect to the bifurcation behaviour on the range Re=7500 to 10,000 we �nd the

following:

� The �rst Hopf bifurcation occurs with our model at about Re=8375. This is a bit

higher than the value of Cazemier Re=7972, which we attribute to the fact that our

grid is twice as coarse and only second-order accurate discretizations are used.

� The next Hopf bifurcations occur at about Re=8600, 9000, 9100 and 10,000. The

frequencies corresponding to the corresponding modes are also encountered on the

branches of periodic solutions. They can also be used to explain the time signals

found by Cazemier.

� The periodic solution occurring at Re=8375 is stable to about Re=9150. Thereafter,

no new unstable modes occur before Re=10,000.

� The periodic solution emerging at Re=8600 is unstable until about Re=8800. After

that point it is stable to at least Re=10,000.
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Chapter 7

Conclusions

In this thesis we have considered preconditioners based on an incomplete LU factorization,

and applied them in solving problems originating from the �eld of computational 
uid

dynamics. The 
ows that we have computed are described by the Navier-Stokes equations.

Instead of using the popular pressure-correction approach, we have solved the equations

fully coupled. With this approach non-symmetric large sparse systems have to be solved.

With the increase of computer power and the development of fast linear solvers this

approach has become feasible.

A good preconditioner is essential when solving large sparse systems, originating for

instance from the discretization of partial di�erential equations, iteratively. An impor-

tant class of preconditioners is formed by the (modi�ed) incomplete LU factorizations

((M)ILU). The quality of these preconditioners strongly depends on the ordering of the

unknowns and the dropping strategy employed during the factorization.

In Chapter 2 and 3 we have considered block (M)ILU factorizations with respect to a

repeated red-black ordering. The ordering in such factorizations is �xed, and the drop-

ping is based only on the position of the �ll and not on the size of the elements. This

type of preconditioners is attractive because the construction of the factorization is cheap

and can easily be vectorized.

In Chapter 2 we have applied several variants of the block RRB preconditioner to

some test cases. We used either an ILU or MILU factorization, of which the last level was

factorized exactly or approximated by a block diagonal matrix. The fastest convergence

was obtained with the MILU factorization with an exact factorization of the last part. For

the Poisson system this method was almost grid independent. However, for the (Navier-

)Stokes equations the convergence stagnated when the number of levels was taken too

high in this factorization.

In Chapter 3 we have given theoretical estimates for the condition number of the pre-

conditioned system. Furthermore, we have estimated for some test cases the eigenvalues

of the preconditioned system, and with these results explained the convergence behaviour

observed in Chapter 2.

The factorizations can be improved by using in the MILU factorizations a relaxed

modi�cation, and by replacing the diagonal approximation at the last level with a more

advanced one. Furthermore, the method can be made more competetive when a time
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derivative is added to the system. A disadvantage of this method is that the ordering is

�xed. Therefore, the grid has to be structured. Another disadvantage is that the dropping

is based on the position of the �ll and not on its size. The factorization will become worse

when the elements of the matrix will vary largely in size.

In Chapter 4 we consider the MRILU factorization. With this method the ordering of the

unknowns and the dropping are determined during the factorization, and are both based

on the size of the elements in the factorization. This factorization has succesfully been

applied in a variety of problems. Because both the ordering and dropping are based on

the matrix, the method can handle matrices with a general sparsity, for instance matrices

stemming from the discretization on an unstructured grid. For the Poisson problem the

method shows grid independent convergence. We have applied the MRILU factorization

in solving the Navier-Stokes equations. We observed that the performance of the factor-

ization is better when the diagonal of the system is stronger, which can be obtained by

using a suitable discretization for the convection terms or adding a time derivative to the

system. In the future the MRILU factorization will be improved further.

Continuation methods are used to perform a bifurcation analysis of a parameter dependent

system. Until recently, these methods have only be applied to low-dimensional systems

(about 10 degrees of freedom). The bottle-neck in computations on high-dimensional

systems (about 105 degrees of freedom) is formed by the necessity to solve large linear

systems and eigenvalue problems. With the development of fast linear solvers and eigen-

value solvers such computations have become feasible.

In Chapter 5 we have used a pseudo-arclength continuation method to perform a bi-

furcation analysis of the Rayleigh-B�enard problem. For this problem the solutions are

stationary. The MRILU factorization has been used to compute the solutions, and turned

out to be very robust. The Jacobi-Davidson QZ method has been used to solve the

eigenvalue problem which determines the stability of the solutions and the position of the

bifurcation points. This method allows to compute a few eigenvalues near a user speci�ed

target, and hence is well suited for application in a continuation method. The MRILU

factorization can be used as preconditioner in the JDQZ method.

We have used the Newton-Picard method in Chapter 6 to perform a bifurcation anal-

ysis of the lid-driven cavity problem. With this method both stationary and periodic

solutions of high-dimensional systems can be computed and their stability determined.

For the time discretization of the Navier-Stokes equations we have used an implicit

method, which is possible when a good preconditioner as MRILU is used. We have used

a second-order spatial discretization with no arti�cial di�usion.

On a 128 � 128 grid we found that the �rst Hopf bifurcation is at about Re=8375.

The next Hopf bifurcations are at about Re=8600, 9000, 9100, 10,000. The frequencies

corresponding to the corresponding unstable modes are also encountered on the branch of

periodic solutions occurring at Re=8375. This periodic solution is stable up to Re=9150,

and no new unstable modes occur before Re=10,000. The periodic branch emerging from

the second Hopf bifurcation point at Re=8600 is unstable up to Re=8800, and thereafter
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stays stable to at least Re=10,000. Our results are in good comparison with results

obtained by others.

More accurate results can be obtained when using a higher-order discretization and a

�ner grid. To make the latter possible the Newton-Picard method has to become faster,

especially the convergence of the invariant subspace has to be improved.
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Samenvatting

In het dagelijkse leven hebben we veel te maken met stromingen van vloeisto�en en

gassen. Men kan hierbij denken aan de stroming van lucht om een auto, vliegtuig of

gebouw, de stroming van water in rivieren en oceanen en natuurlijk de stromingen in

de atmosfeer. Een manier om inzicht te krijgen in het gedrag van stromingen is het

uitvoeren van experimenten. Hierbij kan men denken aan het doen van metingen aan

stromingen rond een auto of vliegtuig in een windtunnel. Dit soort experimenten is echter

vaak duur, tijdrovend, of soms zelfs gevaarlijk (denk bijvoorbeeld aan onderzoek aan

verbrandingsprocessen of explosies). Daarom worden stromingen tegenwoordig veelvuldig

gesimuleerd met behulp van een computer; hiervoor zijn krachtige computers en snelle

numerieke algoritmen nodig. De ontwikkeling van dergelijke algoritmen is nog steeds in

volle gang en dit proefschrift hoopt hieraan een bijdrage te kunnen leveren.

De beweging van een vloeistof of gas wordt beschreven door de tijdsafhankelijke Navier-

Stokes vergelijkingen. Deze vergelijkingen zijn reeds in de eerste helft van de negentiende

eeuw opgesteld. Ze worden gevormd door de behoudswetten voor massa en impuls, die

in het geval van een samendrukbaar gas aangevuld worden met de behoudswet voor

energie. In dit proefschrift beperken we ons tot de onsamendrukbare vergelijkingen. Om

de koppeling tussen de afzonderlijke behoudswetten goed weer te geven hebben we er voor

gekozen om alle vergelijkingen van het stelsel tegelijk op te lossen, dit in tegenstelling tot

een aanpak waarbij de vergelijkingen alternerend worden opgelost. Voor de tijdsintegratie

gebruiken we een impliciete methode. Na discretisatie en linearisatie ontstaan hierdoor

grote lineaire stelsels, waarvan (gelukkig) de meeste elementen gelijk zijn aan nul.

Het is derhalve belangrijk om snelle algoritmen voor het oplossen van lineaire stelsels

Ax = b, met de matrix A groot en ijl, te ontwikkelen. Dergelijke stelsels kunnen met een

directe of een iteratieve methode opgelost worden. Met een directe methode wordt door

middel van Gauss eliminatie een onderdriehoeksmatrix L en een bovendriehoeksmatrix U

geconstrueerd zodanig dat A = LU . Vervolgens wordt de oplossing van het lineaire stelsel

verkregen door de twee stelsels Ly = b en Ux = y op te lossen. Het nadeel van deze

methode is dat, alhoewel de matrix A ijl is, de matrices L en U dat niet hoeven te zijn,

waardoor veel geheugencapaciteit nodig is. Verder is het maken van een LU ontbinding

voor grote matrices erg duur. Hierdoor is het aantrekkelijker om de stelsels met een

iteratieve methode op te lossen.

De convergentiesnelheid van iteratieve methoden hangt af van de eigenwaarden van de

matrix A; het is met name ongunstig wanneer het spectrale conditiegetal, het quoti�ent van

de grootste en kleinste eigenwaarde, groot is. Om de convergentiesnelheid te verhogen

kan gebruik worden gemaakt van preconditionering. In plaats van het oorspronkelijke

stelsel wordt dan het stelsel P�1Ax = P�1b opgelost. De preconditioner P moet een
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benadering zijn van A; hierdoor lijkt het gepreconditioneerde stelsel op een identiteitsma-

trix, waardoor het spectrale conditiegetal veel gunstiger wordt. Verder moet het oplossen

van Py = r, voor gegeven r, goedkoper zijn dan het oplossen van Ay = r.

In dit proefschrift worden preconditioners gebaseerd op een incomplete LU ontbinding

van de matrix A beschouwd: A = LU +R, waarbij de matrix R de fout in de ontbinding

representeert. De incomplete ontbinding wordt door middel van Gauss eliminatie gecon-

strueerd: er wordt een LU ontbinding van A gemaakt waarbij tijdens het eliminatieproces

matrixelementen weggegooid worden. De ordening van de onbekenden en de weggooi-

strategie van elementen is van grote invloed op de kwaliteit van de preconditioner. Het

verkrijgen van meer inzicht in deze afhankelijkheid vormt een belangrijk onderdeel van

het onderzoek dat in dit proefschrift wordt beschreven.

In hoofdstuk 2 worden preconditioners beschouwd waarbij de onbekenden genummerd

zijn volgens een herhaalde schaakbordvolgorde. Tijdens het eliminatieproces worden ele-

menten weggegooid op basis van hun positie. Een aantrekkelijk punt van deze precondi-

tioner is dat hij eenvoudig te construeren is. Doordat het criterium om elementen weg te

gooien niet is gebaseerd op de grootte van de elementen, functioneert de preconditioner

niet goed als de elementen sterk van grootte verschillen (bijvoorbeeld als gevolg van een

discretisatie op een sterk gerekt rooster).

Om de kwaliteit van de preconditioners te verklaren is in hoofdstuk 3 een theoretische

analyse uitgevoerd waarbij we een verzameling a
eiden waarin de eigenwaarden van het

gepreconditioneerde systeem bevat zijn. Vervolgens is met behulp van Fourier analyse

voor verschillende testproblemen een afschatting gemaakt van deze verzameling. Het

blijkt dat we op deze manier het convergentiegedrag redelijk kunnen verklaren.

In hoofdstuk 4 wordt een meer geavanceerde preconditioner, de MRILU (matrix renum-

bering ILU) preconditioner, beschouwd. In deze preconditioner wordt de nummering van

de onbekenden bepaald tijdens de factorisatie. Verder wordt de beslissing om een element

weg te gooien gebaseerd op zijn verhouding tot de diagonaal van de matrix en op de som

van de elementen die reeds weggegooid zijn. Hierdoor ontstaat een accurate factorisatie.

Deze preconditioner is in een aantal toepassingen getest en geeft goede resultaten.

Zoals reeds vermeld worden stromingen van vloeisto�en en gassen beschreven door

de Navier-Stokes vergelijkingen. In deze vergelijkingen bevindt zich een parameter, het

Reynolds getal. Dit getal kan beschouwd worden als een maat voor de snelheid van de

stroming; hoe sneller de stroming beweegt, hoe hoger het Reynolds getal is. Het uitvoeren

van een bifurcatieanalyse, d.w.z. het berekenen van stromingen voor een reeks Reynolds

getallen, de stabiliteit van die stromingen (d.w.z. of ze in de praktijk kunnen voorkomen)

en de waarde van het Reynolds getal waarbij de stroming van karakter verandert (bifur-

catiepunt), is zowel vanuit theoretisch als praktisch oogpunt interessant. Voor bijvoor-

beeld de stroming om een object is het van belang of een stationaire stroming rond dit

object kan veranderen in een periodieke stroming. In dat geval gaat de stroming een pe-

riodieke kracht uitoefenen op het object waardoor dit beschadigd kan raken (bijvoorbeeld

door vermoeidheidsverschijnselen van het materiaal).

Een numerieke techniek waarmee een bifurcatieanalyse uitgevoerd kan worden is een

continuatiemethode. Continuatiemethoden worden reeds veelvuldig gebruikt voor proble-
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men met een klein aantal (circa 10) vrijheidsgraden. Pas recent worden ze ook toegepast

in problemen met een groot aantal vrijheidsgraden (circa 105), waaronder problemen uit

de stromingsleer. Door de ontwikkeling van snelle numerieke algoritmen en de toename

van de geheugencapaciteit van computers zijn berekeningen aan dergelijke grote systemen

mogelijk geworden.

Hoofdstuk 5 beschrijft een bifurcatieanalyse voor het Rayleigh-B�enard probleem: een

rechthoekige bak is gevuld met een vloeistof, de temperatuur van de onderkant van de bak

is hoger dan de temperatuur van de bovenkant. De relevante parameter in dit probleem

is het Rayleigh getal. Dit getal is een maat voor het temperatuurverschil tussen de

bovenkant en onderkant van de bak. Als het temperatuurverschil hoog genoeg is zal de

vloeistof gaan bewegen. Afhankelijk van het temperatuurverschil kunnen verschillende

stromingspatronen ontstaan. In dit speci�eke probleem zijn de stromingspatronen niet

afhankelijk van de tijd. Hierdoor wordt de stabiliteit van een stromingspatroon bepaald

door de eigenwaarden van de Jacobiaan van het systeem. Deze eigenwaarden berekenen we

met de Jacobi-Davidson QZ methode, waarbij we de MRILU ontbinding als preconditioner

gebruiken. De MRILU preconditioner passen we tevens toe om de stromingspatronen zelf

te berekenen.

Vervolgens wordt in hoofdstuk 6 een bifurcatieanalyse beschreven voor het driven-

cavity probleem: de bovenkant van een vierkante bak wordt met constante snelheid naar

rechts bewogen, waardoor de vloeistof in de bak gaat ronddraaien. De snelheid waarmee

de bovenkant van de bak naar rechts wordt bewogen bepaalt hoe de stroming er uit zal

zien; het Reynolds getal is een maat voor die snelheid en fungeert derhalve als continue-

ringsparameter. Ondanks dat het driven-cavity probleem veel gebruikt wordt om nieuwe

methoden voor het oplossen van de Navier-Stokes vergelijkingen te testen is er nog weinig

bekend over zijn bifurcatiegedrag. Als de bovenkant harder gaat bewegen zullen de stro-

mingen afhankelijk worden van de tijd: er ontstaan periodieke stromingen en uiteindelijk

zelfs turbulente stromingen. Hierdoor is de methode van hoofdstuk 5 niet meer bruikbaar;

er is een krachtigere methode nodig om het bifurcatiegedrag te kunnen bepalen. De bifur-

catieanalyse wordt uitgevoerd met de Newton-Picard methode van Lust en Roose. Deze

methode maakt gebruik van het feit dat, ondanks dat we te maken hebben met een hoog-

dimensionaal systeem, de dynamica van het systeem laag-dimensionaal is. Als gevolg

hiervan vormen de eigenvectoren behorende bij de eigenwaarden die verantwoordelijk zijn

voor de bifurcaties en de instabiliteit een relatief laag-dimensionale ruimte. Door gebruik

te maken van deze eigenschap kunnen de periodieke stromingen en hun stabiliteit e�ci�ent

berekend worden.

Met dit proefschrift hopen we een bijdrage te hebben geleverd aan de ontwikkeling van

goede preconditioners voor het oplossen van stelsels lineaire vergelijkingen. Doordat we de

beschikking hebben over goede continuatiemethoden en snelle methoden voor het oplossen

van lineaire stelsels zijn we in staat om bifurcatieanalyses uit te voeren. We hebben dit

gedaan voor zowel tijdsonafhankelijke als tijdsafhankelijke problemen. Verder onderzoek

is nodig om de kwaliteit van preconditioners verder te verbeteren; de strategie voor het

ordenen van de onbekenden en het weggooien van elementen tijdens de factorisatie spelen

hierbij een belangrijke rol.
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