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Abstract  

Sliding Mode Control is a well-known technique capable of 
making the closed loop system robust with respect to certain 
kinds of parameter variations and unmodeled dynamics. The 
sliding mode control law consists of the linear control part 
which is based on the model knowledge and the discontin- 
uous control part which is based on the model uncertainty. 
This paper describes two known adaption laws for the switch- 
ing gain for continuous-time sliding mode controllers. Be- 
cause these adaption laws have some fundamental problems 
in discrete-time, we introduce a new adaption law specifically 
designed for discrete-time sliding mode controllers. 

1 Introduction 

Sliding mode control is a well known robust control algo- 
rithm for linear- as well as nonlinear systems [2],[3],[5],[9]. 
Continuous-time sliding mode control has been extensively 
studied and have been applied to various applications. Much 
less is known of discrete-time sliding mode controllers, in 
practice it is often assumed that the sampling frequency is 
sufficiently high to assume that the controller is continuous- 
time [12]. Another possibility is to design the sliding mode 
controller in discrete-time, based on a discrete-time model, 
however stability has not yet been assured [1],[4],[7],[10],[13]. 

This paper focuses on an adaptive switching gain for a 
discrete-time sliding mode controller. Section 2 introduces 
two known adaption laws for the continuous-time sliding 
mode controller which are discretized in section 3 to work 
in discrete-time. The first adaption law (Method I) has some 
severe drawbacks, even in continuous-time, and the second 
adaption law (Method 11) has some problems occurring in 
discrete-time. To overcome the drawbacks these two adap- 
tion laws have in discrete-time, a new adaption law specif- 
ically designed for discrete-time sliding mode controllers is 
introduced (Method 111) in section 3.4. Section 4 demon- 
strates the Method I1 and Method I11 adaption laws by a 
simple simulation example of a pendulum. Finally section 5 
presents the conclusions. 

2 Continuous-Time Sliding Mode Control  

2.1 Introduction 
We consider the (single input) system: 

x(t) = ( A  + AA)x(t) + ( B  + AB)u(t)  + d( t )  (1) 

where x ( t )  E R" is the state of the system, u(t)  E R the 
input, d ( t )  E R" an unknown disturbance, (A,  B )  the nominal 
model and (AA, AB) the modeling error. The disturbances 
and modeling errors are assumed to be matched, i.e, they 
are in the subspace spanned by B and thus can be directly 
cancelled by the input. For simplicity we will omit the time 
variable t in the rest of this paper. We will now define the 
switching surface S by: 

S = A e  (2) 

with e = x - xd and A E RIXn. After transforming the 
system to the regular form A can be determined with the aid 
of a classical control method [3]. 

We now define a Lyapunov function V = is2 which proves 
asymptotical stability if 

v = ss 5 -qlSI (3) 

(q  > 0) is fulfilled. Inequality (3) is called the Sliding Con- 
dition [8] or Reaching Law (41, it guarantees that the system 
will (asymptotically) reach sliding motion. If we choose a 
constant K 2 q we get S = -K sign(S). Substituting equa- 
tions (I), (2) and e = x - xd in the previous equation results 
in: 

U = -  (A(A + AA)x + Ad - Axd - K sign(S)) 
A(B  + AB) 

(4) 
where of course (AA, AB) and d are unknown. The sliding 
mode controller is now defined as: 

(5) = -- 1 (AAX - Axd) ---K 1 sign(S) AB AB 
7 7 

=U, = U d  

with AB # 0 which is easily satisfied if B # 0 since A is a 
design parameter. The controller part ul is called the linear 
control part, if the system is perfectly known (and with the 
proper initial conditions) it keeps the system on the desired 
surface s = 0. The controller part ud is called the discontin- 
uous control part, it drives the system towards the switching 
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surface S = 0. In case A B  = 0, the sliding condition (in- 
equality (3)) is met if: 

K Z 77 + IA(AAx + d)l (6) 
If the above condition is fulfilled (and the modeling error is 
matched) then, once the system is in sliding mode, the sys- 
tem’s dynamics become invariant to the modeling errors [9]. 
This rule can be extended to disturbances and uncertainties 
in B ,  see for example [8]. 

One major problem in determining the switching gain in this 
way is that one has to know the bound on the uncertainty. 
In practice this information may not always be available so 
the switching gain has to be determined by experimentation 
(tuning) or by the use of an adaption law for the gain. An- 
other disadvantage is that the bound on the error is not only 
a function of the model but also on the demands. A slowly 
varying and amplitude limited input signal could result in a 
smaller error than a rapidly varying and high amplitude in- 
put signal. Determining the switching gain for the worst case 
will result in a relatively high switching gain which leads to 
high controller activity. It would be better to have a switch- 
ing gain which is automatically adapted to the circumstances, 
two methods methods of doing this are described in the next 
sections. 

2.2 Adaptive Switching Gain, Method I 
The most straightforward adaption mechanism for the switch- 
ing gain is given by Wang et. al. [ll]: . 

K = / ( S J d t  (7) 

This adaption law is based on the fact that once the switch- 
ing gain is sufficiently large, the system will be forced to the 
switching surface S = 0. However, this adaption law has 
three major drawbacks: 
(1) In case of a large initial error, the switching gain k will 
increase fast due to this error and not because of a model- 
mismatch. This may result in a switching gain which is sig- 
nificantly larger then the desired gain. 
(2) Noise on the measurements will prevent S to be exactly 
zero so the adaptive gain will continue to increase. 
(3) The adaption law can only increase the gain but never de- 
crease it. So if the circumstances change such that a smaller 
switching gain is permitted the adaption law is not able to 
adapt to these new circumstances. 

2.3 Adaptive Switching Gain, Method I1 
Another way of determining the switching gain is by the adap- 
tion law introduced by Lenz et. al. [6]. For this adaption law 
it is necessary to replace the switching term -&K sign(S) 
in the sliding control law (5)  by: 

if &K S < - @  

Now, u d  steers the system within the boundary region IS1 < 
@. Once the system enters the boundary region and stays in 
it, the system is said to be in pseudo sliding mode [8]. 

The switching gain K can now be adapted according to: 

K = 1 (IS1 - Q) dt 

where 0 < Q < @ is constant. Intuitively equ?tion (8) is 
simple to explain: increase the switching gaip K while you 
are outside the region IS1 < Q and decrease K if IS[ < 9. If 
we compare this adaption law with the drawbacks of the first 
method then we see that: 
(1) In case of a large initial error, the switching gain 2 will in- 
crease fast due to this error, but once the system has reached 
the boundary region JSI < Q the switching gain will be de- 
creased again. 
(2) Noise on the measurements do not disturb the adaption 
procedure if the boundary region is chosen sufficiently large. 
(3) The Method I1 adaption law seeks the lowest possible 
switching gain which keeps the system within the boundary 
region IS1 < Q. So when the circumstances permit a lower 
switching gain, the adaption law will automatically adjust 
the switching gain to the new circumstances. 

3 Discrete-Time Sliding Mode Control 

3.1 Introduction 
The switching part in a sliding mode control brings the sys- 
tem to the switching surface and keeps the system on the 
surface despite any modeling errors and disturbances with 
known bound. The underlying motivation is given by the fact 
that the switching part can instantaneously react to an error 
such that it is cancelled out directly, which is in discrete-time 
no longer possible. The switching function can only change 
its value at specific time-instants dictated by the sampling 
frequency. Because of this limitation to the switching time, 
the system will no longer stay on the switching surface and 
the closed loop system is no longer invariant against matched 
disturbances. According to Gao [4], a discrete-time sliding 
mode controller should have the following properties: 

I Starting from any initial state, the trajectory will move 
monotonically toward the switching plane and cross it 
in finite time. 

I1 Once the trajectory has crossed the switching plane 
the first time, it will cross the plane again in every 
successive sampling period, resulting in a zigzag motion 
about the switching plane. 

I11 The size of each successive zigzagging step is nonin- 
creasing and the trajectory stays within a specified 
band. 

Once the systems’ (error) trajectory fulfills the last two condi- 
tions the system is said to be in Quasi Sliding Mode [4] which 
we will call in this paper Discrete-time Sliding Mode. The 
band within which quasi sliding mode takes place is called 
the Quasi Sliding Mode Band [4]. A Sliding Mode Controller 
is said to satisfy a reaching condition if the resulting closed- 
loop system possesses all three attributes (I, I1 and 111) [4]. 

We will now define a sliding mode controller for the discrete- 
time system defined by: 

~ [ k  + 11 = (Ad + AAd)x[L] + (Bd + ABd)u[k]+ d[k]  (9) 

where the disturbance d [ k ]  and the model uncertainties AAd 
and ABd are assumed to be matched again. The switching 
function is defined by S[k]  = Ae[k] (e[k] = x[k]-xd[k]) where 
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A can be found in the same way as for the continuous-time 
case [4]. The discrete-time version of the continuous-time 
reaching condition (3) can be defined by [4] 

S [ k  + 11 - S[k] = -QS[k] - K sign(S[k]) 

(0 < Q < 1) from which, together with equation (9), we can 
determine the required input to be u[k] = u~[k] +ud[k] where: 

~ [ k ]  = (A~d[k  + 1) - AAdx[k] + (1 - Q)S[k]) 

-- K sign(S[k]) 
AB 

3.2 Adapt ive  Switching Gain,  Method I 
The Method I adaption law defined for the continuous-time 
sliding mode controller (section 2.2) cannot be applied di- 
rectly in discrete-time. The adaption law expects the sys- 
tem to reach sliding mode which is for a discrete-time sys- 
tem no longer possible. However, we can use the definition 
of discrete-time sliding mode in a similar way to come to an 
adaption law. Rule I1 for discrete-time sliding mode demands 
that the switching surface is crossed within each sampling 
interval so we should increase the switching gain until this 
happens by: 

. .  

(10) 
This adaption law works in a similar way as the continuous- 
time version of Method I, it increases the switching gain until 
the system is in sliding mode. Unfortunately, this discrete- 
time implementation of Method I still has the same disad- 
vantages as the continuous-time version. 

3.3 Adapt ive  Switching Gain, Method I1 
The Method I1 adaption law introduced in section 2.3 can be 
discretized by: 

k [ k ]  = k [ k  - 11 + T, (IS[k]l - 9) 

where T, is the sampling time. The above adaption law still 
increases the gain I? until the system remains within in the 
boundary IS1 < 9. However, since in discrete-time “true” 
sliding mode is no longer achievable, the boundary region 
IS1 < 9 can be chosen-so small that it cannot be reached 
regardless the value-of K .  In that case the adaption scheme 
will not stop and K will grow unbounded. The simulation 
example in section 4 demonstrates this. 

3.4 Adapt ive  Switching Gain,  Method I11 
3.4.1 Adap t ion  Law Definition: The Method I1 

adaption law works in continuous-time (for matched uncer- 
tainties) rather well but as described in the previous section 
it is not always suitable in the discrete-time case. To over- 
come this problem we introduce a new adaption law in this 
section. 

The optimal gain KO is defined as the smallest possible 
switching gain which drives and keeps the system in discrete- 
time sliding mode. We propose the following adaption law: 

~ 
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where y > 0 is the adaption constant which determines the 
speed of adaption. The term sign(S[k]) sign(S[k - 11) is +1 if 
the system did not cross the switching surface (gain should be 
larger) and -1 if the system did cross the switching surface 
(gain should be smaller) so the adaptive gain K is altered in 
the oppropriate direction. In the next section it will be shown 
that the adaptive gain K will converge to the region: 

KO - y < K < KO +y (12) 

where KO is the optimal gain which is the smallest switching 
gain which results in: 

Important to notice is that the previous equation does not 
satisfy condition I1 for discrete-time sliding mode. However, 
the smallest switching gain which fulfills the above equation 
will keep the system close to the switching surface and thus 
can be considered to be a valid (discrete-time) sliding mode 
definition. In the remainder KO is considered to be constant. 

3.4.2 Proof of Convergence: Any switching gain 
which leads to 

M - 
o = sign(~[kl)  sign(S[k - 11) (14) 

k = l  

(with proper initial conditions) is denoted by K,p. The low- 
est possible gain which fulfills this equation is called the op- 
timal switching gain KO (which is by assumption constant). 
Once again y e  study the adaption !aw (11). First it will be 
shown- that K will increasewhen K < KO and successively 
that K will decrease when K > KO: 

1. k [ k  - 11 < KO: If we will assume that will reach or 
pass po in N I  time-steps, we have to show: 

1 ” - { Ik[k] - KO[  - I k [ k  - 11 - K,I} < --e (15) 
N1 k = l  

with E = w. This leads to: 

1 ” 
- { k [ k  - 11 - k[k]} = --e (16) 
N 1  k = l  

With equation (11) this results in: 

1 N 1  
c { y  sign(S[k]) sign(S[k - l])] = E (17) 
k = l  

As long as the system is not in discrete-time sliding 
mode, S[k] and S [ k  - 11 will most of the time have 
equal signs. The above equation implies y = E which 
can easily be satisfied since NI  can be chosen arbitrarily 
large. 

2. k [ k  - 11 > KO: Again we assume that I? will reach or 
pass KO in NZ time-steps. We have to show: 

1 Nz - { Ik[k] - KoI - l k [ k  - 11 - KoI} < -E (18) 
N2 k = l  



with E = w. Rewriting (18) gives: 

1 Nz { K[k] - K[k - l]} = -€ (19) 
k = l  

With equation (11) this results in: 

Since the system is in discrete-time sliding mode, u[k] 
and o [ k  - 11 will have opposite signs. The above equa- 
tion then implies 7 = E which again can be easily sat- 
isfied since NZ can be chosen arbitrarily large. 

Thus it is shown that K will always move in the direction of 
KO but because of the step sizes y the optimal gain KO cannot 
be reached exactly. If we assume that K [ k -  11 = KO + 6 [ k -  11 
and 6[k - 11 approximates zero then K[k] will be: 

So we may conclude that the best K can do is to stay within 
the region: 

KO - y < B < KO +y (21) 

3.4.3 Improved Convergence: The adaption con- 
stant y is a trade-off between switching gain accuracy and 
adaption speed. In the case that the circumstances under 
which the system operates do not change this trade-off could 
be by-passed by the introduction of a non-constant adaption 
constant. If we would start with a relatively high adaption 
constant and then decrease it, then the optimal gain KO could 
be reached fast and accurate. Two ways of doing this are: 

Time-dependent adaption constant: A straight- 
forward method of decreasing the adaption constant is 
make it a function of time, for example by: 

where 7a should be sufficiently large to be able to 
reach the region ( K  - K O (  < y[k] before y[k] had 
decayed to much. Despite the fact that this method 
is easy to implement it has the drawback that it is 
possible that the adaption constant is decceased too 
fast which may prevent the switching gain K to reach 
the optimal value KO as close as possible. 

Goal-dependent adaption constant: Another 
way of adjusting the adaption constant is to monitor 
the gain K. It is known (see section 3.4.2) that once 
I? in the region [I([.] - K,J < y, it will not leave that 
region anymore. This is based on the assumption that 
the optimal gain KO is constant which will generally 
yot be the case. One could howeJer monitor whether 
K stays within a certain region IK[.] - K,I < IE,  where 
K. > y Ifor example IE = lay), for a certain time span. 
Once K stays within the specified region for a sufficient 
time, the adaption constant could be decreased slowly. 

Figure 1: Simulation results for the Method I1 adaption law 
with 9 = 0.5@ and @ = 0.1. 

4 Applied to the Pendulum 

In order to demonstrate the developed adaption law we will 
apply it to a driven pendulum [3],[6]. The discretized Method 
I1 adaption law (see section 3.3) will be applied as well as the 
Method I11 adaption law (see section 3.4). The dynamics of 
a pendulum with friction can be described by: 

.. 1 . . 1  0 = -- sln(8) - cf8 + -U 
9 m12 

where 8 is the angle, g is the gravity constant, m the mass 
and I the length of the pendulum. By appropriate scaling this 
equation can be reduced to the normalized pendulum given 
by: 

which we can write in state-space form by: 

y + azy + a1sin(y) = U 

where z1 = y and 2 2  = y. In this example a1 and a2 are 
taken to be 0.25 and 0.1 respectively. 

The sliding mode controller is designed for the discrete-time 
linearized model (sampling time T, = 5e-3 s) around the 
origin (x = [0 O I T )  represented by equation (9) where A d  

and & are given by: 

1.0 5.0 e-3 ] Bd = [ 0.0 ] 
~d = [ -1.2 e-3 1.0 5.0 e-' 

The unmodeled nonlinearity can now be considered as a 
matched disturbance. The switching surface is computed by 
the use of LQR techniques, which leads to: 

S[k] = Re[k] = [-6.23 - 0.98]e[k] 

The control law is taken as derived in section 3 wher: the 
switching gain K is now adaptive (i.e. replaced by K [ k ] ) .  
The system has to track the following signal: 

w sin(&) 
xd = [ cos(wt) ] 

so the angle and the angular velocity of the pendulum should 
be a perfect sine- and cosine function of the time (w = g) .  
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Figure 2: Simulation results for the Method I1 adaption law 
with 9 = 0.5% and 9 = 0.01. 

Figure 3: Simulation results for the Method I11 adaption 
law with y = le-3. 

The controller is tested on a (simulated) system with a,l = 
$ami and as2 = 2am2 (where the subscript s stands for the 
(simulated) system and the subscript m stands for the model 
which is used for the controller design). The simulation re- 
sults for the Method I1 adaption law are given in figures 1 
and 2. Figure 1 demonstrates that the Method I1 adaption 
law works satisfactory. The gain adapts very rapidly and the 
sliding variable S stays within the defined quasi sliding mode 
band (SI < 9. However figure 2 shows that if the quasi slid- 
ing mode band is selected too small, the adaption law will 
become unstable since it is trying to force the system into 
the quasi sliding mode band which is no longer achievable. 

The simulation results for the Method I11 adaption law are 
given in figure 3. Initially the adaptive gain is rather large 
because of the error in the initial conditions. Once the sliding 
surface is reached, the adaptive gain is reduced considerably 
because it only has to compensate for the modeling error. 
The results are about similar to the Method I1 results with 
9 = 0.1, Method 111 keeps S slightly closer to zero. However, 
there is no danger of instability. The adaptive gain can be 
further smoothened if a smaller adaption constant y is chosen. 

In this paper, a new adaption law for for the switching gain 
was introduced. It has been specifically designed for discrete- 
time sliding mode controllers. This new method proved to 
have an important advantage over the discretized version of 
the adaptive gain introduced in [SI, namely that there is no 
danger of instability of the adaption procedure because of a 
bad choice of adaption parameters. With the latter method 
a boundary region (quasi sliding mode band) within which 
(discrete-time) sliding mode will take place has to be selected. 
This region can be chosen smaller than achievable in which 
the adaptive gain can grow unbounded. With the new adap- 
tion law this can no longer happen. Simulation results visu- 
alize the above statements. 
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