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Summary. The acronym CaRuD represents an interface spec-
ification and an algorithm for the management of memory
shared by concurrent processes. The memory cells form a di-
rected acyclic graph. This graph is only modified by adding
a new node with a list of reachable children, and by remov-
ing unreachable nodes. If memory is not full, the algorithm
ensures wait-free redistribution of free nodes. It uses atomic
counters for reference counting and consensus variables to
ensure exclusive access. Performance is enhanced by using
nondeterminacy guided by insecure knowledge. Experiments
indicate that the algorithm is very suitable for multiprocessing.
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1 Introduction

The setting of this note is a system of concurrent sequential
processes that operate on a common database of terms, such
as Lisp’s S-expressions or annotated terms as in [2]; see [2]
for an overview of term formats. Terms are to be understood in
their normal mathematical sense. So, typical terms are2 + x,
f(a, x, y, g(a, b)). Terms are very useful and well-known ob-
jects for which many theories and tools are available for rewrit-
ing, unification, automated reasoning, etc. Indeed, terms can
be used as the primary objects to be exchanged between tools.
This is shown, e. g. , in the software coordination architec-
ture of Bergstra and Klop [1]. The architecture we propose
can also be used for concurrent implementations of functional
languages and theorem provers.

From an implementation point of view, terms are simply
directed acyclic graphs where each node is labelled with a
function name. It turns out that terms can be efficiently used
even when we restrict the number of operations on them as
follows. A term can be created once and inspected as long as
needed. Terms that are not in use any longer can be deleted by
a garbage collector. Viewed in this way, creation and deletion
of terms is a memory management problem.

The restriction to these operations on terms has two advan-
tages. First, it allows sharing of subterms, reducing memory

requirements substantially. Second, it allows parallel access to
terms, since terms are basically static objects in memory. Of
course, nothing comes for free. Since terms cannot be changed,
a common operation such as the substitution of a term for a
variable must be carried out by copying the root path of the
variable and providing a pointer to the term.

Some implementations of the CaRuD interface exist, e.
g. , [2,1]. These all assume sequential creation, access and
deletion of terms. The CaRuD architecture, however, makes
it possible that terms are accessed concurrently within shared
memory environments. We found that the use of synchronisa-
tion primitives to guarantee exclusive access is relatively slow
and does not scale up to more processors [14]. Therefore, there
is reason to look for a wait-free solution in which a process
that needs a new node gets one within bounded delay, inde-
pendently of actions of other processes, cf. [8]. Since several
processes may be contending for the same node, consensus is
needed to decide which process succeeds. Consensus can be
forced by delegating redistribution to a central garbage collec-
tor. We prefer not to create this bottleneck and therefore also
distribute the recycling of nodes.

Thus, in comparison with e. g. [16], we extend the con-
cept of garbage collection to include wait-free redistribution.
On the other hand, we simplify matters by the assumption
that accessible terms are not modified, and by an extension
of the repertoire of atomic instructions. Indeed, it is known
that consensus needs more than atomic read-write variables
and therefore wait-free redistribution requires the strength of
consensus variables.

We decided to develop our algorithm on the basis of ref-
erence counting cf. [15], because we thought it the most suit-
able for a wait-free algorithm, for instance because it does
not show periods where processors are suspended for garbage
collection. It might be interesting, however, but no doubt quite
tedious, to come up with correct wait-free algorithms for other
forms of garbage collection.

As far as we know, the garbage collection algorithm pre-
sented by Herlihy and Moss in [9] was the first lock-free
shared-memory multiprocessor algorithm that did not require
some form of global synchronization. Our algorithm belongs
to the same class. In many respects, however, our algorithm is
orthogonal to their proposal. Their memory holds objects of
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arbitrary size with values that can be modified, but they do not
consider trees of objects or deletion of objects. Memory man-
agement in [9] therefore consists of the removal of outdated
versions. Their approach to a solution is also different: they
let each process manage its own portion of shared memory.
In contrast to this, all our nodes have the same size, but we
can use trees of nodes to store and structure bigger values.
In our algorithm, the processes share the management task of
the whole memory. This implies that when some processes
stop functioning, their management tasks are taken care of by
other processes. It is at this point that the algorithm of [9] is
not wait-free. Clearly, either algorithm will be blocked when
the database is full and no nodes can be recycled. Since the
specifications of the algorithms imply that their concepts of
recyclability are completely different, it is hard to make a fair
comparison between our algorithm and the one of [9].

Algorithms in which concurrent processes manipulate a
shared pointer structure are error prone. We therefore pro-
vide a proof of the algorithm by means of invariants. Since
the verification of invariants when processes concurrently ex-
ecute array modifications is rather tricky, we have verified the
invariants mechanically with the theorem prover Nqthm of
Boyer and Moore, cf. [3]. In this paper we give no details of
the mechanical aspects of this proof (it is somewhat simpler
than the proof in [11]). The mechanical proof is available at
the Web site [13].

We did some experiments to test the performance of our
algorithm. The experiments indicate a quite satisfactory be-
haviour, (i. e. linear without any overhead for communication
between processes), except when term nodes start travelling
between the second level caches of processors on a distributed
system.

Overview

In Sect. 2, we describe the data structure and we specify the
interface procedures by means of preconditions and postcon-
ditions. In Sect. 3, we extend these specifications with safety
properties and progress properties. In fact, the interface proce-
dures can be called concurrently by different processes. There-
fore, safety properties of the atomic steps are needed. In this
section we also prove that the properties imply that the graph
remains acyclic.

In Sect. 4 we describe the available repertoire of atomic
actions, and we make a start with the construction of the in-
terface procedures. Section 5 deals with aspects of garbage
collection in the implementation. In Sect. 6, we construct the
remaining interface procedures by combining various proce-
dures constructed before. Section 7 discusses the verification
of the properties promised in Sect. 3. In Sect. 8 we describe ex-
periments, which indicate that the algorithm is quite suitable
for multiprocessing. Finally, Sect. 9 contains some conclu-
sions.

2 The interface

In this section we describe the memory management interface,
as offered to application programmers. It consists of a shared
data structure, and a number of procedures that can be used
in the application processes. The application programmers are
responsible for ensuring that a procedure offered is called only
when its precondition holds. It is therefore a proof obligation
of the system that the precondition of any interface procedure
for a processp is stable under the actions of all processes�= p.

The database is organized as a modifiable directed graph.
It is convenient for arguing about correctness to regard the
attributes of cells as arrays indexed by the unstructured type
Node. Therefore, ifn is of the typeNode, the data ofn is
denoted bydata [n] (instead ofn.data as it would be ifn was
a record with a fielddata).

So, we have a setNodeof (numbers of) nodes. We use
0 /∈ Node to indicate the absence of a node, and define
Node0 = Node ∪ {0}. We assume that all nodesn are equiv-
alent, i. e. , have the same maximal degree. We number the
children of a node by means of some typeIndex. Therefore,
they form a sequence, and the directed graph is given by a
variablechildren, according to the declaration

type Sequence = array Index of Node0 ;
var children : array Node of Sequence.

Thus,children [n] is the sequence of children of noden and
children [n, i] is theith child of noden.

Each application process maintains a private variableroots
that holds the nodes the process has direct read access to. We
write roots.p for the value ofroots of processp. We use a
predicateR(p, n) to express that processp is allowed to read
the data of noden. We shall ensure that predicateR(p, n) can
only be invalidated by processp itself. We define

R(p, n) ≡ (∃ m ∈ roots.p :: m
∗→ n),

where relation
∗→ is the reflexive transitive closure of relation

→ onNodedefined by

m → n ≡ (∃ i ∈ Index :: children [m, i] = n).

For access and modification of the database we provide
the application processes with a number of commands, each
consisting of a number of atomic instructions. In the presen-
tation the keywordprivar stands for a private variable of a
process (cf. [5]). The following procedure serves to extend
the graph with a new node.

procedure Make (x : Data, y : Sequence,

privar v : Node)
{ pre R∗(self , y) ∧ roots.self = X;

post roots.self = X ∪ {v} ∧ data [v] = x

∧ children [v] = y } ,

whereself stands for the calling process andX is a specifi-
cation constant to express the initial value ofroots. The pre-
conditionR∗(self , y) expresses that all children for the new
node must be accessible to the caller. Here, accessibility of a
sequencey is defined by

R∗(p, y) ≡ (∀ i ∈ Index :: y [i] = 0 ∨ R(p, y [i])).
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The requirement that procedureMake does not change the
accessible part of the graph will be expressed in Sect. 3 below.

Under the preconditionR(p, v), processp may inspect the
contents of nodev by calling

procedure Read (v : Node, privar x : Data,
privar y : Sequence)

{ pre R(self, v);postx = data[v] ∧ y = children[v] } .

Access to nodes can be transferred between processes.As-
sume thatv /∈ roots.p, and that processq satisfiesR(q, v) and
has agreed to preserve thatuntil p has acknowledged recep-
tion of nodev. Then processp may claim (direct) access to
nodev by calling

procedure Accept(v : Node)
{ pre v /∈ roots.self = X;guaranteedR(q, v);

post roots.self = X ∪ {v} } .

The application programmer who uses procedureAccepthas
to supply some coordination protocol such that processq does
not release nodev before processp has completedAccept.
Note that procedureAcceptis useful even in the caseq = self;
e. g. when a process wants to remove a tree while retaining a
subtree, it can first accept the root of the subtree in itsroots.
In such a case the coordination is trivial.

If it has v ∈ roots.p , processp can relinquish its direct
rights on a nodev by

procedure Delete (v : Node)
{ pre v ∈ roots.self = X;post roots.self = X \ {v} } .

Example.TakeIndex = {1, 2, 3}. Let the database be initially
empty. Assume processp0 executesMake (a, (0, 0, 0), j)
followed by Make (b, (0, j, 0), k). Thenroots.p0 = {j, k}
andj is a child ofk. Nowp0 executesDelete(j). Thenp0 can
still access nodej via nodek. So it can send a message to some
processp1 with the value ofj andp1 can executeAccept(j)
and acknowledge receipt. Thenp0 may executeDelete(k) and
we haveroots.p0 = {} androots.p1 = {j}. �

Finally, we provide two procedures for memory manage-
ment that, at the interface level, are equivalent toskip :

procedure Serve() ;
procedure Browse().

ProcedureServecan be called by an application process that
has time to do some garbage collecting. ProcedureBrowseis
for a dedicated garbage collecting process. Both procedures
are superfluous and only serve for smoother performance.
Both are wait-free.

3 System properties

We need safety properties and progress properties. In fact,
we want to express that the accessible part of the graph is
never modified (safety), and that procedure calls terminate
(progress). First some notation to express such properties for-
mally.

We writep : P ✄ Q to express that, if preconditionP
holds and processp performs an atomic action, this action has
postconditionQ. We writeP ✄ Q to express thatq : P ✄ Q
holds for all processesq. We writep in Pd to express that

processp is executing procedurePd. We writep : P o→ Q to
express the existence of a constantk such that every execution
that starts in a state whereP holds and that contains at leastk
atomic steps of processp, contains a state that satisfiesQ.

We characterize the reachable nodes of the graph by

ER (n) ≡ (∃ q ∈ Process:: R(q, n)).

The main safety properties are thatdata [n] andchildren [n]
of a reachable noden are not modified, and thatroots.q is
modified only when processq itself executesMake , Accept,
or Delete. This is formalized in the requirements

(Sq0) ER(n) ∧ data [n] = X ✄ data [n] = X;
(Sq1) ER(n) ∧ children [n, i] = X

✄ children [n, i] = X;
(Sq2) p : p �= q ∧ roots.q = X ✄ roots.q = X;
(Sq3) p : ¬ (p in Delete) ∧ X ∈ roots.p

✄ X ∈ roots.p;
(Sq4) p : p in Delete(v) ∧ v �= X ∧ X ∈ roots.p

✄ X ∈ roots.p.

As before,X is a specification constant (logical variable) to
express that the value of a modifiable field is not changed in
the step, or that a protected node remains protected.

Wait-free termination of five of the six interface procedures
is expressed in

(Sq5) p : p in Pd o→ ¬ (p in Pd)
for Pd ∈ {Read, Accept, Delete, Serve, Browse}.

ProcedureMake can only be guaranteed to terminate if there
are free nodes to be found. Therefore, in the progress assertion
for Make , we need an alternativeFull in the following way:

(Sq6) p : p in Make o→ ¬ (p in Make) ∨ Full .

We require that, ifFull holds, all nodes are in use or there exists
a processq that will negateFull within a bounded number of
steps ofq.

Clearly, the alternativeFull violates wait-freedom, but this
is unavoidable, since processes are allowed to claim as much
memory as needed. The problem is also slightly complicated
by the possibility that a process stops functioning when it is
about to make nodes free for reuse. We come back to predicate
Full in Sect. 7.

We now show that reachabilityR(p, n) can only be falsi-
fied by processp itself, and only in procedureDelete. In fact,
for processesp, q, and noden, we claim

(Hq0) p : p �= q ∧ R(q, n) ✄ R(q, n);
(Hq1) p : ¬ (p in Delete) ∧ R(p, n) ✄ R(p, n).

Both assertions follow from the definition ofR(q, n), via
(Sq1), (Sq2), and (Sq3), by induction in the length of the path
to noden in the precondition.

It follows from (Sq2) and (Hq0) that, indeed, the precondi-
tion of any interface procedure for a processp is stable under
the actions of all processes�= p.

We turn to the point that the graph should remain acyclic.
For this purpose, we postulate that an unreachable node does
not become a new child:

(Sq7) ¬ ER(n) ∧ children [m, i] �= n
✄ children [m, i] �= n.
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It follows from (Sq7) and (Sq1) that we have

(Hq2) ¬ ER(n) ∧ ¬ (m → n) ✄ ¬ (m → n) ,
ER(m) ∧ ¬ (m → n) ✄ ¬ (m → n).

Now assume that an atomic action has in its postcondition a
cycle of nodesvi → vi+1 for 0 ≤ i < k, wherek ≥ 1 and
vk = v0. Then the precondition of this atomic action satisfies,
for all i with 0 ≤ i < k,

¬ ER(vi+1) ⇒ vi → vi+1 ,
ER(vi) ⇒ vi → vi+1 ,
ER(vi) ∧ vi → vi+1 ⇒ ER(vi+1),

by the formulas (Hq2) and the definition ofER. It follows that
the cycle also existed in the precondition of the atomic action.
For, in the precondition, the absence of an edge of the cycle
implies that somevj is reachable, and if somevj is reachable
then allvj are reachable and all edges are present.

We now assume that, initially, the graph(Node,→) has
no cycles. Then it follows that the graph invariantly has no
cycles.

4 The implementation

We turn to a proposal for implementing the system in shared
memory.

We use the following repertoire of elementary instructions.
Every elementary instruction refers to at most one shared vari-
able, cf. [17], preferably at most once. We have two types
of shared variablest that can occur more than once in an
atomic instruction: counters and consensus variables. Apart
from reading and writing, such a variablet has one of the
special instructions

t := t ± 1 , or t++ and t-- {counter} ;
if t = 0 then t := w fi {consensus} ;

wherew is a private variable, and± stands for either+ or
−. We assume that modifications of private variables can be
combined atomically with an operation on a shared variable.
Moreover, we assume that the conditional setting of a consen-
sus variable is combined with the setting of a boolean flag, so
that thethen branch and the virtualelsebranch can be com-
bined with private actions. This is called strong consensus in
[11].

In our experiments (see Sect. 8) we had to implement the
atomic counter modification by means of a strong compare&
swap register, as proposed in [7]:

repeat tmp := t ;
〈 b := (tmp = t) ; if b then t := tmp ± 1 fi 〉

until b.

Here and henceforth, the brackets〈 〉 are used to enclose
atomic regions. The above loop is not wait-free, but turns out
to work satisfactorily.

We now turn to the implementation of the CaRuD inter-
face. It is trivial to implement

procedure Read(v : Node, privar x : Data,
privar y : Sequence) =

{ pre R(self, v);post x = data [v] ∧ y = children [v] }
x := data [v] ; y := children [v]

end .

We use the notationv.q to refer to the value of a private
variablev of processq. For an efficient implementation of
Make , we give each process a private variableres of typeset
of Nodeto hold free nodes reserved for private use. Now one of
the problems is to guarantee that, for every processq, if needed,
res.q becomes nonempty within bounded delay. Experience
seems to show that this must be made a shared responsibility
for all processes together. We therefore provide every process
q with a consensus variablewaiting [q] to receive free nodes,
according to the declaration

waiting : array Processof Node0.

By convention,waiting [p] = 0means that processp is waiting
for a new node, whilewaiting [p] = n with n �= 0 means that
p can use the new noden by means of

procedure receive() =
{ pre waiting [self] �= 0 }

25 v := waiting [self];
26 res := res ∪ {v} ; waiting [self] := 0

end .

Here each numbered instruction is one atomic command; we
give each processq a corresponding instruction pointerpc.q.
The bigger atomic instruction 26 is allowed sinceresandv are
private variables. We use numbered instructions and (below)
goto s since the concurrency forces us in the invariants to
be very precise about where which property holds. Moreover,
the use of structured programming withif andwhile tends to
obscure which instructions are regarded as atomic.

We assume that processes share their wealth in a fair way.
For the purpose of redistribution of nodes, we give every
process a private variablefav of type Process(for current
favourite). We say that a functionnext traverses a setX (cf.
[12]) iff, for every pairx, y ∈ X, there is a numberk with
nextk(x) = y. It follows that nextk(x) = x for k = #X.
We give every process a private functionnextp that traverses
Process, the set of process numbers, to choose the next
favourite. A process may try to share its wealth by execut-
ing

procedure share (v : Node) =
{ pre v ∈ res }

29 if waiting [fav] = 0 then
waiting [fav] := v ; res := res \ {v} fi;

30 fav := nextp(fav)
end .

Here we use the fact thatwaiting is an array of consensus
variables and that actions on the private variableres may be
combined atomically. Note that the value ofres is retained if
the test fails.

For the purpose of garbage collecting, we introduce refer-
ence counting by means of a shared array

cnt : array Nodeof Integer

We assume available the atomic increment and decrement op-
erationscnt [n] ++ andcnt [n] -- . The idea is thatcnt [n]
estimates the number of edges directed towardsn plus the
number of processes that have direct access ton. More pre-
cisely, we postulate for all nodesn:
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(Jq0) cnt [n] = (#(m, i) ∈ Edge :: children[m, i] = n)
+(#q ∈ Process:: n ∈ roots.q)
+(#q ∈ Process:: waiting [q] = n)
+(#q ∈ Process:: n ∈ res.q)
+(#q at (*) :: n = w.q).

HereEdge is the set of pairs(m, i) wherem is a node, andi
is an index. Sincecnt [n] is a shared variable which cannot be
modified in the same atomic statement as the shared variable
children [m, i], there are two program locations wherecnt [n]
must be related to a private variable of a process. These loca-
tions will be marked with (*).We now use the notationq at (*)
to indicate that the next action of processq is marked with (*)
and we assume that every processq at (*) has a private vari-
ablew of the typeNode.

In order to prove that (Jq0) is preserved when a process
executes instruction 26 ofreceive, we postulate the invariants

(Jq1) pc.q = 26 ⇒ waiting [q] = v.q;
(Jq2) n ∈ res.q ⇒ cnt [n] = 1.

Note that (Jq0) and (Jq2) together with the typing restriction
res.r ⊆ Node imply

(Hq3) waiting [q] /∈ res.r.

To preserve (Jq1) and (Jq2) inreceive, we postulate

(Jq3) 24 < pc.q ≤ 26 ⇒ waiting [q] �= 0;
(Jq4) waiting [q] �= 0 ⇒ cnt [waiting [q]] = 1.

At this point the reader is invited to verify that (Jq0), (Jq1),
(Jq2), (Jq3), (Jq4) are preserved by all atomic actions in the
proceduresRead, receive, andshare. Note that the precondi-
tions ofreceiveandshareare used in these verifications.

We can now easily implementAccept.

procedure Accept(v : Node) =
{ pre v /∈ roots.self = X;guaranteedR(q, v);
post roots.self = X ∪ {v} }

33 cnt [v] ++ ; roots := roots ∪ {v}
end .

To prove thatAccept preserves (Jq2) and (Jq4), we use the
guaranteeR(q, v) together with the predicates

(Hq4) n ∈ res.q ⇒ ¬ ER(n) ,
(Hq5) n = waiting [q] ⇒ ¬ ER(n),

which follow from (Jq0) and (Jq2).
We introduce a shared variablecleanof typearray Node

of Booleanwith the invariant

(Jq5) clean [n] ⇒ children [n, j] = 0.

We now turn to the implementation ofMake . The top level
design is as follows.

procedure Make (x : Data, y : Sequence,privar v : Node) =
{ pre R∗(self, y) ∧ roots.self = X;
post roots.self = X ∪ {v} ∧ data [v] = x

∧ children [v] = y }
get () ;
choosev ∈ res ;
branch (x, y, v)

end .

Here, procedureget must enable the choice inres by making
res nonempty; its implementation is postponed till Sect. 6.
Procedurebranch inserts nodev into the graph with datax
and sequence of childreny. Its conventional code is

procedure branch (x : Data, y : Sequence, v : Node) =
{ pre R∗(self, y) ∧ roots.self = X ∧ v ∈ res.self

∧ clean [v] ;
post roots.self = X ∪ {v} ∧ data [v]

= x ∧ children [v] = y }
data [v] := x ;
clean [v] := false ;
for all i ∈ Index do
if y[i] �= 0 then

cnt [y[i]] ++ ;
children [v, i] := y[i] fi

od ;
roots := roots ∪ {v} ; res := res \ {v} ;

end .

Since we want a fine grain of atomicity for all instructions
concerning shared memory, we need invariants concerning
the state at all locations in the loop. This forces us to make the
jumps explicit and to introduce a private variableF for the set
of indices that have not yet been treated in the loop. We thus
encode the loop over the indices by means of three jumps and
a shrinking set of indicesF . Omitting the specification, we
get

procedure branch (x : Data, y : Sequence,
v : Node) =

41 data [v] := x;
42 clean [v] := false ; F := Index;
43 if F = ∅ then goto 47 fi ;
44 choosei ∈ F ; F := F \ {i};

w := y [i] ; if w = 0 then goto 43 fi ;
45 cnt [w] ++;
46 (*) children [v, i] := w ; goto 43;
47 roots := roots ∪ {v} ; res := res \ {v};
48 end .

Note that instruction 46 has the star (*). Indeed, the private
variablew is introduced here for the sake of (Jq0).

To prove preservation of (Jq0) in 46, of (Jq2) at 45, and of
(Jq5) at 46, we postulate the invariants

(Jq6) 44 < pc.q ≤ 46 ⇒ children [v.q, i.q] = 0;
(Jq7) 40 < pc.q ≤ 47 ∧ y.q [j] �= 0 ⇒ R(q, y.q [j]);
(Jq8) 42 < pc.q ≤ 47 ⇒ ¬clean [v.q].

For preservation of (Jq6) in 44, we postulate

(Jq9) 42 < pc.q ≤ 46 ∧ j ∈ F.q
⇒ children [v.q, j] = 0.

Preservation of (Jq6) when another process executes 46 will
follow from (Jq0) and (Jq2).

Preservation of (Jq9) in 42 follows from (Jq5) and the new
postulate

(Jq10) v.q ∈ res.q ∧ ¬ clean [v.q] ⇒ 42 < pc.q ≤ 47.

Here it must be mentioned that, in the invariants and in
the mechanical proof, we treat the parameters and the local
variables of the procedures as persistent private variables of
the processes. With regard to the invariants, these variables
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are allowed to be modified nondeterministically before every
procedure call, only subject to the precondition of the call.
In particular, for processq, all parametersv of procedures
called byq are modelled by the same private variablev.q.
This unusual treatment of local variables simplifies the proofs
of the invariants and even their interpretation.

Preservation of (Jq10) is proved by means of the new pos-
tulates

(Jq11) waiting [q] �= 0 ⇒ clean [waiting [q]];
(Jq12) n ∈ res.q ∧ ¬ clean [n] ⇒ n = v.q.

At this point the above invariants (Jq. . . ) can all be proved.
In these proofs we also use the following obvious invariants,
which are only concerned with the private variables of a single
process:

(Pq0) pc.q = 29 ⇒ v.q ∈ res.q;
(Pq1) pc.q = 33 ⇒ v.q /∈ roots.q;
(Pq2) 40 < pc.q ≤ 47 ⇒ v.q ∈ res.q;
(Pq3) 44 < pc.q ≤ 46 ⇒ w.q = y.q [i.q] �= 0;
(Pq4) 44 < pc.q ≤ 46 ⇒ i.q /∈ F.q.

Of course, we also need the application guarantee ofAccept:

(AG) pc.q = 33 ⇒ ER(v.q).

Finally, for the specification ofbranch, we observe thatpc.q =
48 implieschildren [v.q, j] = y.q [j], as follows from the in-
variants

(Jq13) 42 < pc.q ≤ 48
⇒ children [v.q, j] = y.q [j] ∨ j ∈ F.q

∨ (j = i.q ∧ 44 < pc.q ≤ 46);
(Pq5) 46 < pc.q ≤ 48 ⇒ F.q = ∅.

Note that proofs of invariance may be circular: the assumption
is that all invariants hold in the precondition of every atomic
instruction, and for each invariant one then proves that it holds
in the postcondition of every instruction.

5 Garbage collection

We now come to the point where nodes are made free again.
If n ∈ roots.p holds, processp may relinquish its rights on
n (and the dependent nodes) by removingn from roots.p and
decrementingcnt [n].

It is attractive to combine this with garbage collection, if
cnt [n] = 1holds in the precondition.This idea is not sufficient
for garbage collection sincecnt [n] > 1 is not stable in the
precondition: two processes may observe thatcnt [n] = 2 and
both decide to decrementcnt [n] without garbage collection.
We therefore decide to do garbage collection for nodes with
cnt [n] = 0.We thus implement procedureDelete as follows.

procedure Delete (v : Node)
{ pre v ∈ roots.self = X;
post roots.self = X \ {v} }

65 cnt [v] -- ; roots := roots \ {v};
66 collect (v)

end .

To prove preservation of (Jq0), we use the invariant

(Pq6) pc.q = 65 ⇒ v.q ∈ roots.q.

In procedurecollect the decrementing process tests whether
decrementingcnt [n] establishedcnt [n] = 0 and then addsn
to a private variablelist which holds a bounded list of nodes
n that are likely to satisfycnt [n] = 0. The variablelist is
important for the performance of the system, but is formally
superfluous: it does not occur in the invariants.

procedure collect (v : Node) =
if cnt [v] = 0
then list := truncate (v : list ) fi

end .

Herev is placed at the head of the listlist and, if in this way
list becomes too long, the last element oflist is removed. Note
that the elementsv ∈ list.p need not satisfycnt [v] = 0 since
other processes may have incrementedcnt [v], by reclaiming
v via the node distribution strategy described in Sect. 6.

It follows from (Jq0) thatcnt [n] = 0 implies that noden is
free.A free node can be claimed by any process that needs new
nodes. Therefore, if two or more processes want to claim the
same free node they need consensus to decide which claimant
succeeds. We therefore introduce locking of nodes, by means
of shared consensus variables

lock : array Nodeof Boolean.

We now introduce the garbage collecting procedureuntarget
that tries to obtain a nodev for res, after resetting its targets if
necessary.

procedure untarget (v : Node) =
51 if ¬lock [v] then lock [v] := true

else return fi ;
52 if cnt [v] �= 0 then goto 61 fi;
53 if clean [v] then goto 60 else F := Index fi;
54 if F = ∅ then goto 59 fi ;
55 choosei ∈ F ; F := F \ {i};

w := children [v, i] ;
if w = 0 then goto 54 fi ;

56 children [v, i] := 0 ;
57 (*) cnt [w] -- ;
58 collect (w) ; goto 54;
59 clean [v] := true;
60 cnt [v] := 1 ; res := res ∪ {v};
61 lock [v] := false

end .

Note thatlock is an array of “strong” consensus variables; see
the atomic instruction 51.

To prove preservation of (Jq0) in 56, 57, 60, we postulate

(Kq0) pc.q = 56 ⇒ w.q = children [v.q, i.q];
(Kq1) 52 < pc.q ≤ 60 ⇒ cnt [v.q] = 0.

Preservation of (Jq5) follows from

(Kq2) pc.q = 59 ⇒ children [v.q, j] = 0.

Preservation of (Jq10) at 60 follows from

(Kq3) pc.q = 60 ⇒ clean [v.q].

Preservation of (Kq1) underAcceptand instruction 45 follows
from

(Hq6) cnt [n] = 0 ⇒ ¬ ER(n),
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which follows from (Jq0). Preservation of (Kq2) in 54 follows
from

(Kq4) 53 < pc.q ≤ 58 ∧ children [v.q, j] �= 0
∧ j /∈ F.q

⇒ j = i.q ∧ pc.q = 56.

We now have to prove that the above invariants, especially
(Kq0) and (Kq1), are not violated by another process that ex-
ecutesuntarget. So we want to have interference freedom, as
expressed by

(Kq5) 51 < pc.q ≤ 61 ∧ 51 < pc.r ≤ 61
∧ v.q = v.r ⇒ q = r.

This is accomplished by locking. Preservation of (Kq5) easily
follows from the invariant

(Kq6) 51 < pc.q ≤ 61 ⇒ lock [v.q].

Preservation of (Kq6) is proved by means of (Kq5).

6 A strategy for redistribution

The elements oflist are good candidates for procedure
untarget. If list is empty, however, the process can choose
an arbitrary node, if it does so in a fair way. We therefore give
every process a private variablenod and a private function
nextn that traverses the setNode.

We now present procedureget that was used inMake to
make the setres nonempty.

procedure get () =
while res= ∅ do
if waiting [self] �= 0
then receive() else search() fi

od
end .

where

procedure search() =
if list = ∅ then v := nod ; nod := nextn(nod)
else v := head (list ) ; list := tail (list ) fi ;
untarget (v) ;
if v ∈ res then share (v) fi ;

end .

The call ofshare in searchis needed to guarantee wait-free-
dom: each process is served within bounded delay (although
the bound depends on the number of processes and the size of
the memory).

In Sect. 7, we’ll show that procedureget is wait-free pro-
vided there are always enough free nodes to be found.

We turn to memory management activities that are invisi-
ble at the interface level.The application processes are allowed
to accumulate nodes in their setsres, provided they try to share
andres does not become too large. We therefore provide each
process with a private constantmaxres≥ 1, with the invariant

(Pq7)#res.q ≤ maxres.q.

It is easy to see that (Pq7) is only threatened byuntarget, and
that it is preserved whenuntarget is called with precondition
#res.p < maxres.p.

Therefore, whenever processq has time to do some
garbage collecting, it may call

procedure Serve() =
if #res < maxres then search()
else choosev ∈ res ; share (v) fi

end .

For the sake of efficiency it may be preferable to have one
additional garbage collecting processgc with maxres.gc = 1.
Processgc only frequently calls

procedure Browse() =
search() ;
if res �= ∅ then

choosev ∈ res ;
〈 res := ∅ ; cnt [v] := 0 〉

fi
end .

ProcedureBrowsedetects free nodes with sons. It frees the
sons, by decreasing their incounters, thus making it easier for
the other processes to find free nodes. It preserves (Pq7) since
it hasres.gc = ∅ in the idle states.

Remark.The conditional jump in 53 ofuntargetis only useful
if Index is large and the probability ofcnt [v] = 0 ∧ clean [v]
is sufficiently high. In particular, the jump is useless if we have
the invariant

clean [n] ⇒ (∃ q :: n = waiting [q] ∨ n ∈ res.q
∨ (n = v.q ∧ pc.q = 60)).

This predicate is preserved by all procedures except for
Browse. So, in a system that does not useBrowseor in which
Indexis very small, we had better remove the jump and replace
instruction 53 by

53’ F := Index;

In that case, variablecleanbecomes a ghost variable and can
therefore be removed from the algorithm.�

7 Verification of properties

It remains to verify the global properties (Sq0) through (Sq7).
Since data and children are modified only inbranch and
untarget, the properties (Sq0), (Sq1), (Sq7) follow from (Hq4)
and (Pq2), and (Hq6) and (Kq1), and the specification of
branch. Sincerootsis a private variable, the validity of (Sq2),
(Sq3), and (Sq4) is easily verified. The loops inbranchand
untargetare bounded by the size ofIndex. Therefore, the only
unbounded loop occurs inget. Sincegetis only used in the in-
terface procedureMake , this implies that the other interface
procedures are wait-free, i. e. , (Sq5).

In order to prove (Sq6), we define predicateFull by

Full ≡ (∀ n :: cnt [n] > 0 ∨ lock [n]).

Now, informally, property (Sq6) is shown as follows. IfFull
is false during an execution sequence in which processp exe-
cutesget, there are always unlocked nodesn with cnt[n] = 0.
After having exhausted its listlist, processp traverses the set
Nodeand eventually finds unlocked nodes withcnt [n] = 0.
It executesuntargeton every such node, and then callsshare;
this advancesfav.p. Therefore, if processp does not terminate
early enough, a state is reached withfav.p = p. Then process
p serves itself, and the call ofget terminates. The argument
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can be made formal by means of the techniques developed in
[12].

We finally show that, ifFull holds, then all nodes are in
use, or there is a process that will negateFull within a bounded
number of steps. For this purpose, we formalize “noden being
in use” by predicateUsed(n) defined by

Used(n) ≡ ER(n) ∨ (∃ q :: waiting[q] = n ∨ n∈ res.q).

The definition ofUsedtogether with the invariants (Jq5), (Jq6),
(Jq9), (Jq10), (Jq11) implies

(Hq7)Used(m) ∧ m → n ⇒ Used(n).

We now define

LL (n) ≡ (cnt [n] = 0 ∧ lock [n])
∨ (∃ q :: pc.q = 57 ∧ n = w.q).

Let a noden be called anorphaniff it does not have a parent,
i. e. , iff ¬ (m → n) holds for every nodem.

Lemma. Let noden be an orphan with¬ Used(n) . Then
we have

(a) cnt [n] = (#q :: pc.q = 57 ∧ n = w.q);
(b) Full ⇒ LL (n).

Proof. (a) Sincen is an orphan, it follows from (Jq0) and
¬ Used(n) that cnt [n] = (#q at (*) :: n = w.q) . The
marker (*) only occurs at 46 inbranch, and at 57 inuntarget.
The assertion follows, sincew.q isUsedat 46 because of (Pq3).

(b) If cnt [n] > 0, then LL (n) follows from (a). If
cnt [n] = 0, thenLL (n) follows fromFull . �

Since the graph(Node,→) is acyclic, every node has an
ancestor that is an orphan. If a noden is not Used, every
ancestor ofn is also notUsedbecause of (Hq7). Therefore,
the Lemma implies

Theorem. Assume that Full holds. Then every noden sat-
isfies

Used(n) ∨ (∃ m :: LL (m) ∧ m
∗→ n). �

This theorem shows the absence of memory leakage. In
fact, for every unreachable noden with LL (n), there is a
unique processq that will releasen within a bounded number
of steps. Therefore, ifFull holds and not all nodes areUsed,
there exists at least one process that will negateFull within
a bounded number of steps. Note that establishing¬ Full is
not wait-free, since the actions of a specific process may be
required.

The efficiency of redistribution is hard to estimate. If every
process claims new nodes more or less in the same rate as it
relinquishes old ones, communication of the nodes plays no
significant role. If these rates differ wildly, however, the sets
list of some processes are often empty, in which case these pro-
cesses to some extent rely on the charity of other processes in
procedureshare, although they also get new nodes by inspec-
tion of arbitrary nodes. Then it is important that congestion
of node inspections is avoided by making the traversal func-
tionsnextnof the processes all different, see [10], Sect. 8.1.
Similarly, to avoid congestion of charity, one should take the
traversal functionsnextpall different.

Table 1.Making terms in million nodes/sec on a SGI Origin 2000

sharing: none 1/10 full none 1/10 full

#list : 0 0 0 12 12 12

#P = 1 0.59 0.46 0.53 1.2 1.1 0.95

2 0.15 0.12 0.15 1.9 1.5 0.83

4 0.13 0.15 0.13 4.0 2.1 0.70

8 0.20 0.15 0.13 7.9 3.3 0.85

16 0.17 0.15 0.14 11.5 4.4 0.81

8 Performance

How does the algorithm that we present perform? From a the-
oretical viewpoint the answer is easy. All operations except
Make operate in constant time. Assuming that there are al-
ways sufficiently many free nodes available,Make also op-
erates in constant time on average.

This does not answer the question, however, whether our
algorithm is competitive from a practical viewpoint. In par-
ticular, the compare and swap operator may turn out to be a
bottleneck. Also, some architectures of parallel systems may
be unfavourable to the algorithm. They may cause substantial
constant overhead to the operations and thus may make more
classical solutions to parallel memory management preferable.

We implemented the algorithm and ran it on a single pro-
cessor SGI O2 (180 Mhz) and on a multiprocessor SGI Origin
2000 (with 250Mhz and 300Mhz processors), for different
numbers of processes, to get an impression whether the algo-
rithm scales up linearly, as was expected. We let each process
iteratively construct, inspect and delete binary trees with 63
nodes. We studied the effect oflist by taking as its lengths 0
and 12. It turned out that, on the SGI Origin, performance is
quite negatively influenced by sharing. Therefore we obtained
benchmarks where sharing is on, where sharing only takes
place once in every 10 times (but in this case the algorithm
is still wait-free), and where sharing of nodes is switched off
completely.

Our conclusion is thatreading nodes scales up linearly
with the number of processors (where we managed to read
108 nodes per second using 16 processors).

Making nodes is heavily influenced by the length oflist.
On the single processor machine, a list length of 0 forces the
processes to search for the nodes, whereas a list length of 12
takes care that free term nodes can be picked up immediately.
The former was approximately 3 times slower than the latter
(2 · 105 versus6 · 105 makes per second). Sharing nodes leads
to a 25% speed increase when the list has length 12, compared
to not or sometimes sharing. The number of processes does
not have any effect on the speed of the system meaning that
our algorithm scales up perfectly. For comparison we imple-
mented a straightforwardP andV synchronisation solution to
the CaRuD problem, which showed a substantial performance
degradation when the number of processes are increased.

From this we conclude that one of the strongest reasons to
study wait-free or lock-free algorithms is their almost perfect
scalability.

Making nodes on the parallel machine gives a much more
diverse picture. We provide the data that we obtained in Table
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1. The first column gives the number of processors used. The
other entries contain the number (in millions) of terms that
can be made per second. Whenlist has length 0, it appears
that adding processors does not lead to any speed increase.
The reason for this is that term nodes reside in second level
cache, and travel from processor to processor. This completely
dominates performance.

Sharing of nodes on the parallel machine also leads to
reduced performance. Only non sharing, and a sufficiently
long list leads to sufficient locality of termnodes to observe a
linear speed up.

Note that even in those cases where adding processors does
not appear beneficial for making nodes, the algorithm can still
be very fruitfully applied on parallel machines, since there
can be a substantial speed up in reading and manipulating the
nodes. However, further adaption of the algorithm to maximize
locality of nodes may lead to an even better performance.

9 Conclusions

The CaRuD interface is a useful and viable abstraction for
a graph-like data structure shared by concurrent processes.
We show this using a wait-free algorithm that scales up per-
fectly in theory, and quite well in practice, showing that the
wait-free paradigm is a good technical means to obtain high
performance on parallel computers. Our algorithm can be im-
proved for cache based multiprocessor machines, such as the
Origin 2000, by forcing a better locality to term nodes. We
leave this, however, for further research.

From the experience we obtained writing this article we
believe that it would be useful to develop wait-free versions of
standard sequential algorithms to obtain efficient, fault tolerant
parallel versions. One may think of wait-free mark and sweep
garbage collectors, to circumvent the acyclicity constraint of
reference counting garbage collectors, of wait-free equivalents
for linked lists, to circumvent searching the array of term nodes
(see [18] for a lock-free implementation), and of wait-free
hashtables, to efficiently implement sharing of terms [6].

We found, however, that it is much more difficult to design
these algorithms, especially on the level of the ordering of in-
dividual assignments. It is not without reason that we resorted
to the Boyer-Moore theorem checker for verification of the
invariants that we needed. We also would strongly favour the
situation where such checkers would become a common tool
for the designers of parallel algorithms.
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