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Enridged Contour Maps

Jarke J. van Wijk∗ Alexandru Telea∗

Eindhoven University of Technology

Abstract

The visualization of scalar functions of two variables is a classic and
ubiquitous application. We present a new method to visualize such
data. The method is based on a non-linear mapping of the func-
tion to a height field, followed by visualization as a shaded moun-
tain landscape. The method is easy to implement and efficient, and
leads to intriguing and insightful images: The visualization is en-
riched by adding ridges. Three types of applications are discussed:
visualization of iso-levels, clusters (multivariate data visualization),
and dense contours (flow visualization).

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Display algorithms;

Keywords: Contours, mapping, height fields, multivariate visual-
ization, flow visualization

1 INTRODUCTION

The display of scalar data defined over surfaces is possibly the most
ubiquitous application of visualization. Typical examples are maps
of temperature, height, and air pressure. Also, 3D volume data are
often visualized by taking slices, thereby reducing the dimension of
the data to be visualized.

Many techniques are available for the visualization of scalar func-
tions f (x, y), each with its own strengths [11]. A natural way to in-
terpret such data is as a height field, and hence to display them as a
mountain landscape. A perspective view can be used, but this leads
to occlusion of data. A top view on a shaded surface is more effec-
tive (fig. 1a). Structures can easily be discerned, as the human visual
system is trained in the interpretation of shaded surfaces. Also, for
the description of features typically 3D metaphors are used: ridges,
peaks, valleys, and saddle-points. A drawback of such displays is
that quantitative information is hard to extract: It is not easy to judge
for instance which of the peaks is the highest. One solution is to map
the scalar data to a grey shade or color (fig. 1b). Each color corre-
sponds to a fixed level, the associated value can be read from a color
map. Though popular, this method is not without problems and will
not always lead to an improvement [4]. The popular rainbow color
map can lead to false interpretations, grey shade images look fuzzy
and not attractive. Another solution to visualize quantitative infor-
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mation is to use contours or iso-lines (figure 1c). They enable the
viewer to establish precise quantitative information locally, but do
not show the structure as clearly as shaded surfaces. Furthermore,
labels are required to retrieve the magnitude of the function at some
arbitrary point at the contour.

a b

c d

Figure 1: Visualization of scalar field

Each method has its own strengths and weaknesses, hence their
combined use often gives the best results (fig. 1d). The price to
be paid is that this requires several graphical means simultaneously:
lines, shading, and color, which cannot be used anymore for the vi-
sualization of other information in the same image. A method that
shows both qualitative and quantitative information using only one
graphical channel would be helpful in such circumstances.

In this paper we present such a method. We use shaded moun-
tain landscapes as the basic visualization technique, and show how
via non-linear transformations of the height quantitative information
can be visualized more directly. We have used a similar concept be-
fore. In [10] we have shown how treemaps can be enhanced with
hierarchical shading, in [6] we have used cushions to enhance vari-
ous types of Voronoi diagrams. Here we show how a combination of
shading and non-linear transformations aid in understanding scalar
functions (section 2), 2D representations of clusters (section 3), and
dense contour plots (section 4). Finally, we present some applica-
tions (section 5) , and summarize the results in section 6.

2 SCALAR DATA

Suppose we want to visualize a scalar function f (x), with x ∈ IR2.
Extension to the more general case, where the domain is a surface
embedded in three-dimensional space, is straightforward, for sim-
plicity we limit ourselves to the base case. A standard mapping of
this function to a height z(x) is via straightforward linear scaling

z(x) = s f (x)
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Figure 2: Mapping for various values of a

where s is a suitably chosen scale factor. We aim at emphasizing var-
ious levels of the height, and to this end we use a non-linear mapping

z(x) = s f (x)+ sh g

(
f (x) mod h

h

)
with g(x) = ax(1− x).

In other words, for succeeding intervals of f with width h we
add a parabola. The factor a determines the height of the parabo-
las. Negative values of a give concave ridges, positive values give
convex ridges. For values of a ∈ [−1, 1] the mapping is monotonic.
In figure 2 the graphs of g(x) and the graphs of the mapping of f to z
are shown. The deviation from a linear mapping is small, especially
for small values of a.

In figure 3 results for various values of a for a shaded image are
shown. The following observations can be made:

• The parameter a gives a good control over the strength of the
banding effect. The user can easily tune this parameter to get just
as much emphasis on the ridges as needed.

• The discontinuities provide quantitative information, and the
smoothly varying bands between these discontinuities allow for
easy tracking of in-band function value equivalence.

• Convex ridges are more pleasant and natural then concave ridges,
the visual system is more used to convex than to concave shapes.

• The ridges show up very clearly, although the geometric defor-
mation is fairly small. To illustrate the latter, figure 4 shows the
value of z(x) directly mapped to grey shades, and here the bands
are hardly discernable, the difference with the linear mapped ver-
sion (figure 1b) is small. This effect can easily be explained. For
the geometric version the intensity depends on the normal on the
surface, i.e. the variation in the value of f (x), and not on the
value of f (x) itself. Hence, the first order discontinuities of the
height function show up much stronger than for direct mapping
to grey shades.

• The method is somewhat similar to cyclic color maps, an option
that has long been available in visualization packages. However,
with such maps the order of the different bands is much harder
to discern.

A subtle effect is that the different bands seem to have a different
grey shade value: for positive a, the closer to the tops, the darker
they seem, while for negative a the reverse holds. This is an op-
tical illusion, known as the Cornsweet effect [11]. The brain con-
structs the overall brightness of the bands based largely on edge
contrast information. At a transition between two ridges the lower
ridge is more horizontal for a positive a and hence brighter than
the upper ridge, so the brain decides that the lower ridge must be

a) a = 0.6

b) a = 0.3

c) a = −0.3

Figure 3: Non linear mapped scalar field
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brighter. Also, the visual system seems to use transitivity: If ridge
1 is brighter than ridge 2, and ridge 2 is brighter than ridge 3, then
ridge 1 must be much more bright than ridge 3, etc.. We can verify
that this is an illusion by looking at figure 3 from a distance. If the
sharp transitions can not be observed, the ridges all appear to have
the same color.

Figure 4: Non-linear mapping to grey values, a = 0.6

Figure 5: Hierarchical ridges

For the judgement of the absolute values this effect is very bene-
ficial. Areas for which f (x) is within a certain interval can easily be
discerned, for the comparison of heights one often does not have to
count the number of contour lines. Also, the dynamic range of the
output device is exploited very well. Each band can in principle use
the full range, while the described visual effect produces yet another
series of grey shade bands.

A straightforward generalization is to use hierarchical ridges. In-
stead of a single parabola, multiple parabolas can be added with dif-
fering widths and heights. In figure 5 we used a = 0.5 for the major
and a = 0.25 for the minor ridges.

We have experimented with different profiles for the ridges. We
have even implemented a version where the user can define the func-
tion g(x) interactively by editing a spline. However, we found that
always the best results were achieved with a simple convex parabola,
with one parameter a to control the strength of the effect.

3 CLUSTERS

Consider a large number of items (such as cities, persons, brands),
where each item has a number of attributes (such as size, length,
market-share). How can we visually get insight in such multivari-
ate data? The use of scatterplots [2] is a popular method. Items are
shown as points or icons, and projected on a 2D area, where the axes
correspond to two different attributes. Scatterplot matrices enable
the user to view more than two attributes. Another approach is to
use Multi-Dimensional Scaling (MDS) [1]. The principle of MDS
is to project a set of items with a number of attributes to a space of
lower dimensionality (typically a plane), such that the mutual dis-
tances are preserved as well as possible. Many different techniques
can be used to calculate optimal positions as well as many differ-
ent measures for the distances between points in high-dimensional
space.

In such plots two types of features are of particular interest. The
first one is correlation. If the points fit more or less on a line or curve,
this can indicate a linear or more complex relation between two vari-
ables. Second, we consider clusters. If the items fall apart into dis-
joint groups, the points in a scatterplot will cluster also into separate
groups. Clusters often have a hierarchical character. Dependent on
the threshold for the similarity measure used, small clusters merge
into larger clusters.

A great example in this respect are the ThemeScapes of Wise et
al. [12]. MDS is used here to visualize news archives. From the
positions of the points, each representing an article, a height field
is derived, which is visualized via a cartographically inspired, very
well designed combination of shading, color, and contours. As a re-
sult, large numbers of closely related articles give rise to mountains.
Another large class of examples are software visualization tools that
map software systems to graphs, where the distance between com-
ponents is related to their interdependence.

Hence, the visualization of clusters in projected multivariate data
can be transformed into the same problem as discussed in the pre-
ceding section: Visualization of a function f (x), where f represents
a density. For this application however, it would be nice if we can
aid the user in the interpretion of the projected multivariate data as
a set of nested clusters.

Figure 6: Nested clusters

An obvious way to realize this is via the use of contours, which by
definition form hierarchically structured Venn-diagrams. A draw-
back here is that for complex contour sets the interior and exterior
of contours can not be distinguished. An alternative is shown in fig-
ure 6. The test function used was defined by convolving a number
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of randomly positioned points, shown in red, with a Gaussian. For
the visualization we used a variation on the method presented in the
previous section. Instead of a parabola, we used a cubic mapping

g(x) = x(x − 1)(x − 2).

As a result, at the lower side of a band a steep wall is visible, while at
the upper side the surface is horizontal and has zero curvature. Our
aim was to visualize clusters as stacked drops of fluid. We show that
this can be realized without a complex physical model, but instead
just by a simple non-linear mapping. The hierarchy in the levels can
easily be observed, without using color. Another strong visual effect
is that minima and maxima can easily be distinguished.

A delicate aspect of the use of contours in general and also of our
method, is that they suggest more than is contained in the data. A
small change in the settings can lead to drastically different shapes.
Hence, such methods should be embedded in an interactive system,
such that the user can experiment with different values for the con-
tour spacing.

4 DENSE CONTOURS

Each point on a contour provides precise information on the magni-
tude of the value of the visualized function, as well as on the local
change in the value, i.e. the gradient. The magnitude of gradients
is shown via the density of the contours, as anybody who has used
a map with height contours will know. A disadvantage here is that
in areas with a low magnitude of the gradient, i.e. more or less flat
areas, large gaps lie between contours, and hence no information on
local structure is shown.

Saito and Takahashi have introduced dense contours [5]. Con-
tours are generated such that the distance between contours is con-
stant in the space of the domain of the function. A related topic is
the generation of streamlines for 2D flow fields. How can we gen-
erate streamlines such that the area is uniformly covered? Turk and
Banks [7] use a complex optimization based method to realize this,
a simpler method is given by Jobard and Lefer [3].

The generation of dense streamlines in general is inherently more
complex than the generation of dense contours. However, when
streamlines can be defined as contours, a simpler method can be
used. For two-dimensional flows that are dominated by viscosity
and where inertia can be ignored, the vector field can be modelled as
v = [∂9/∂y,−∂9/∂x], where 9(x) is the stream function. Con-
tourlines of9(x) are streamlines. However, the method we propose
here is not limited to just stream function based flow fields. The only
requirement here is that the contours of some function are stream-
lines of a given flow field. In [9] we have described how such func-
tions can be calculated by prescribing a varying concentration at the
boundaries, followed by a convection step.

We use an approach similar to Saito and Takahashi, and use shad-
ing and non-linear mapping again to improve the images. The cal-
culation of dense contours proceeds as follows. We define a set of
contour-lines with spacing h in the range of f as

L(h) = {x ∈ IR2 | f (x) = kh, k ∈ IN}
and a hierarchy of sets as

L(bi), i ∈ IN,

where b ∈ IN is a multiplication factor for the spacing from level i
to level i+1. Dependent on the gradient ∇ f = [∂ f/∂x, ∂ f/∂y] we
select an appropriate level. Consider a line q(s), perpendicular on a
contour:

q(s) = x0 + s∇ f/‖∇ f ‖, s ∈ IR.

Figure 7: Dense contours

Figure 8: Shaded dense contours

Along this line will hold (by definition, using a first order approxi-
mation) that

‖1 f/1s‖ ≈ ‖∇ f ‖,
where 1 f denotes the change in f when a small step 1s along the
line is made. We determine first an optimal level p ∈ IR, such that
for a given distance d between contours in the domain of f the cor-
responding change in f is of the form bp . In other words, we request
contours at an equal distance d in the geometric space of the domain,
and search for the corresponding level p of contour lines to be used.
Substitution gives

bp/d = ‖∇ f ‖,
hence

p = log(‖∇ f ‖d)/ log b.

This value p cannot be used directly, because contours would
then depend not only on f , but also on ∇ f . Instead, we use p to
select two discrete levels L0 and L1:

Li = L(hi), with h0 = bbpc and h1 = bdpe.
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Figure 9: Hierarchical shaded dense contours

Figure 10: Wide ridges

Furthermore, we use two weights w0 and w1

w0 = dpe − p, w1 = p − bpc.
The graphical representation is constructed as a linear combination
of graphical elements at the levels L0 and L1, the weights denote the
strength to be used per level.

Figure 7 shows a result. The function f is sampled pixel by pixel
(similar to [5, 8]) and for each pixel is determined whether or not it
lies on a contour. Here we used b = 2, i.e. between two diverging
contours a single new contour starts. The width and the intensity of
the contours are modulated by the weights, leading to tapered ends
of contours. Note that the contours of L1 are a subset of L0, hence
the sum of the weights for the contours of L1 equals 1, leading to
thick, black lines.

The equally spaced lines lead to a vibrating image, larger struc-
tures are difficult to discern, tracking lines visually with the eye is
hard. One partial solution is to use a hierarchy of contours, just
like the ticks on a ruler. Instead of a single value for d, we use for
instance also 4d, and use larger weights for the lines with a wide
spacing. For a further improvement, we use non-linear mapping to
height again. We insert parabola shaped bands again between con-
tours and use the weights to blend the parabolas of succeeding lev-
els. Specifically, we use

January

July

Figure 11: Average temperature (color) and precipitation (height) in
Europe

z(x) =
1∑

i=0

swi hi g

(
f (x) mod hi

hi

)
,

with g(x) = ax(1 − x) again. Figure 8 shows that parabolas
between diverging contour lines are split. The visual result, com-
pared to figure 7, is improved, in the sense that the vibration is less.
Saddle-points are rendered correctly, though in the shaded version
they are harder to interpret.

The strongest effect, however, is obtained when this method is
used with parabolas at multiple levels (figure 9). This gives an im-
age that enables the viewer to extract both global, structural infor-
mation as well as local gradient information. The higher level ridges
are shown apart in figure 10. They clearly show how the parabolic
ridges smoothly join and split.

5 EXAMPLES

Weather maps are a typical example where the simultaneous dis-
play of multiple variables, such as temperature, air pressure,
and precipitation, is useful. Examples are shown in figure 11.
Data were obtained from the IRI/LDEO Climate Data Library
(www.ldeo.columbia.edu). Here the average temperature and pre-
cipitation in January and July over the period 1960-1990 are shown.
Both for the mapping of the temperature to hue and for the mapping
of precipitation to height a non-linear parabolic mapping was used.
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Figure 12: Average temperature (color) and precipitation (height) in
Europe, July, high resolution precipitation data

These images visualize the different climates in Europe. Another
application is the selection of a destination for a summer vacation,
looking for a place where temperature is reasonable and precipita-
tion low.

A similar effect could be achieved if only contours instead of
ridges would have been used. However, local extrema can much eas-
ier be classified as maxima or minima here. Another useful applica-
tion in the same spirit would be to represent air pressure via height
and ridges. Not only low and high pressure areas would be easy to
locate, but also the contours are directly meaningful, as they indicate
the wind direction.

The resolution of the precipitation data is low, on a grid of 2.5
degrees squared. We also used data from the IPCC Data Distribu-
tion Centre (www.ipcc-ddc.cru.uea.ac.uk), which had a resolution
of 0.5 degrees squared. A result is shown in figure 12. This image
reveals much clearer the strong influence of mountains on precipita-
tion. The use of ridges is less effective for such high-resolution data
with high-frequency local features, the locally steep gradients lead
to cluttered ridges. A confirmation is shown in figure 13, where we
zoomed in on the Alpes, using the same data. Again, smooth struc-
tures are visible, well supported by the ridges.

These results show that the combined use of enridged contours
and color can lead to a clear simultaneous visualization of two vari-
ables. It remains to be seen if the technique is also effective for more
than two variables. Texture or contour lines could be used for a third
variable, but chances are high that this will interfere strongly with
the data already displayed.

6 CONCLUSIONS

We have considered a traditional topic in visualization: the visual-
ization of scalar functions of two variables. We have shown that
non-linear mapping of the function, followed by visualization as a
shaded height field, can be an effective means to show different as-
pects of such functions. In other words, we have shown how a vi-
sualization of a scalar function of two variables can be enriched by
adding ridges. Three types of applications were discussed: visual-
ization of iso-levels, clusters, and dense contours. The method is
easy to implement. Furthermore, it is efficient in terms of CPU-time
as well as in terms of graphical resources. The images shown here
took each at most a few seconds to generate, using non-optimized
code on a R5K SGI workstation. Concerning the graphical re-
sources, only grey shades are used, whereas color, texture, and lines
can be used for other purposes. And, above all, it leads to intriguing
and insightful images.

Figure 13: Average temperature (color) and precipitation (height)
Alpes, July
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Figure 6: Nested clusters

January

Figure 11: Average temperature

Figure 12: Average temperature (color) and precipitation (height) in
Europe, July, high resolution precipitation data

Figure 9: Hierarchical shaded dense contours

July

(color) and precipitation (height) in Europe

Figure 13: Average temperature (color) and precipitation (height)
Alpes, July
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