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Abstract. This paper describes an extension to Fourier-wavelet volume rendering (FWVR), which is a Fourier
domain implementation of the wavelet X-ray transform. This transform combines integration along the line of sight
with a simultaneous 2-D wavelet transform in the view plane perpendicular to this line. During user interaction, only
low resolution images are computed based on wavelet approximation coefficients. When user interaction ceases, the
images are refined incrementally with the wavelet detail coefficients. The extension proposed in this paper is similar
to a technique called view interpolation, which originates from the field of computer graphics. View interpolation
is used to speed up rendering of complex scenes by precomputing images from a number of selected viewpoints.
For intermediate viewpoints, rendering is performed by interpolating the precomputed images. In this paper, we
show that for FWVR the speed of rendering low resolution images is increased by interpolation of precomputed
sets of wavelet approximation coefficients in the Fourier domain. The differences with traditional view interpolation
are that (i) interpolation is performed on the wavelet approximation coefficients in the Fourier domain and not on
images, and (ii) interpolation is performed during user interaction only. When interaction ceases, ordinary FWVR
progressively renders an image at high quality. Medical CT data are used to assess the accuracy and performance
of the method. We use regular angular sampling of spherical coordinates which determine the viewing direction.
The results show that angle increments as large as 10 degrees result in only a small degradation of image quality.

Keywords: Fourier domain volume rendering, wavelet X-ray transform, client-server visualization system, view
interpolation

1. Introduction

Volume rendering is a technique for visualizing digital
data representing large three-dimensional (3-D) vol-
umes, arising from physical measurements (as in com-
puterized tomography) or from computer simulations.
Volume visualization techniques have been developed
for viewing these data from different viewpoints, using
advanced computer graphics techniques such as illu-
mination, shading, and colour [11]. Due to their large
size, the transmission and display of these data sets
is time consuming. Therefore, multiresolution models
are developed, which allow decomposition of the data
into versions at different levels of resolution, so that
the data can be visualized incrementally as they arrive

(‘progressive refinement’). Wavelets are a natural can-
didate for such a multiresolution approach [24].

Volume visualization methods are generally divided
into two classes, i.e.surface rendering, where one re-
duces the volume to a number of surfaces representing
the boundary between materials [10, 13], anddirect
volume rendering[4], which does not make use of inter-
mediate graphical primitives, but tries to map the infor-
mation in the 3-D data set directly onto the view plane.
A standard method in direct volume rendering, called
X-ray volume rendering, is to integrate the volume data
along the line of sight. The method supports shading
and depth-cueing [20], but no occlusion or perspective
projection. Nevertheless, it turns out to be one of the
preferred techniques for medical applications, because



104 Westenberg and Roerdink

physicians are well-trained in interpreting X-ray like
images for diagnosis. The corresponding mathematical
concept is theX-ray transform, well-known from com-
puterized tomography [17]. There exists an efficient
way to compute this transform, calledFourier volume
rendering (FVR),which makes use of frequency do-
main techniques [15, 16, 20], and is based upon the
Fourier slice theorem [17]. Note that in contrast to com-
puterized tomography, where one has to compute the
inverse X-ray transform, in volume rendering one has
to compute the forward X-ray transform. The func-
tion to be visualized by computing X-ray projections
is known, albeit only at a digital sampling grid. Fourier
volume rendering can be summarized as follows: After
an initial 3-D Fourier transform of the data, a view-
ing directionθ is chosen and the values of the Fourier
transform in a plane, called theslice plane, through the
origin in Fourier space and perpendicular toθ are com-
puted. Interpolation in frequency space is necessary to
obtain the values of the Fourier transform of the func-
tion to be visualized at a regular grid in the slice plane.
A subsequent inverse 2-D Fourier transform gives the
desired image in the view plane. The time complexity
of FVR isO(N2 log N) for a volume data set of size
N× N× N.

Recently, we developed Fourier-wavelet volume ren-
dering (FWVR) [19, 26] as a wavelet-based extension
to Fourier volume rendering. FWVR is a Fourier do-
main implementation of the wavelet X-ray transform
[19], which combines integration along the line of sight
with a simultaneous 2-D wavelet transform in the view
plane perpendicular to this line. We derived in [26]
an efficient algorithm for computing the wavelet X-ray
transform by using a frequency domain implementation
of the wavelet transform. This is particularly efficient
when the length of the wavelet decomposition and/or
reconstruction filters is large, as is the case for some of
the basic wavelets (e.g. B-spline wavelets [3, 22]) used
below. This results in an algorithm whose initial step,
i.e. computation of Fourier coefficients in a slice plane
in frequency space, is identical to that of ordinary FVR.
The additional step is a wavelet decomposition of the
slice plane data in Fourier space to a given level of de-
tail. Approximation images are then obtained by a par-
tial wavelet reconstruction in Fourier space, followed
by a 2-D inverse Fourier transform. Since wavelet detail
coefficients are available in Fourier space, progressive
refinement is straightforward. Progressive refinement
is important for client-server based visualization sys-
tems, where the volume data are stored on a central

server, while (part of) the rendering is performed on
client systems. Not all of these clients will have a high-
bandwidth connection, so a mechanism which visual-
izes data incrementally as they arrive can improve the
response time of the system. FWVR enables us to im-
plement such a client-server visualization system.

Another wavelet-based volume rendering method
based on the X-ray transform iswavelet splatting[12].
This is a modification of the standard splatting algo-
rithm [28] through the use of wavelets as reconstruction
filters. Splatting is an object order method in which the
voxels are represented by 3-D reconstruction kernels.
Integration of these kernels along the line of sight re-
sults in building blocks calledfootprints. A mapping
to the image plane by superposition of the footprints,
weighted by the voxel values, forms the image in the
view plane. Just as the original splatting method, the
time complexity of wavelet splatting isO(N3) for a vol-
ume data set of sizeN× N× N. In contrast, FWVR
has the same time complexity as ordinary FVR, i.e.
O(N2 log N). For a detailed comparison of FWVR and
wavelet splatting with respect to time complexity and
memory requirements, the reader is referred to [26].
Recently, Horbelt et al. have shown that the computa-
tion time of wavelet splatting can be reduced by adapt-
ing the resolution of the projection grid to the size of the
B-spline wavelet basis functions [6]. The projection of
the wavelet coefficients on this grid yields an approx-
imation in dual B-spline space. An image in the view
plane is then obtained by B-spline interpolation [21] of
the projection grid to the size of the view plane. Another
method to reduce the computation time is called two-
stage splatting [27]. The method separates the splatting
process in two stages: (i) coefficient projection and ac-
cumulation in a weight arrayW, and (ii) a 2-D convolu-
tion of W with the footprint of a wavelet basis function,
which yields an image in the view plane.

A disadvantage of FWVR in the form presented
in [26] is that it requires resampling of a slice in
Fourier space at full resolution in order to perform a
2-D wavelet decomposition. The purpose of this pa-
per is to extend FWVR with a technique similar to
view interpolation. This is a method used in the field of
computer graphics to speed up rendering of complex
scenes [1], and consists in precomputing images for a
number of viewing directions. Images for intermediate
viewing directions are then obtained by interpolating
the precomputed images. A similar technique was in-
troduced in an image-based volume rendering method
[2] that is based upon shear-warp factorization [9]. The
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extension proposed in this paper uses a set of pre-
computed sequences of wavelet approximation coef-
ficients in the Fourier domain for different viewing
directions. The approximation coefficients for interme-
diate viewing directions are then computed by interpo-
lation. This decreases the computation time to obtain an
approximation image substantially, allowing fast inter-
action with the data. When interaction ceases, ordinary
FWVR is applied to refine the image incrementally to
full resolution.

The organization of this paper is as follows. Section 2
summarizes standard Fourier volume rendering includ-
ing interpolation and accuracy issues, introduces the
basic wavelet concepts and describes Fourier-wavelet
volume rendering as introduced in [26]. In Section 3,
we describe the new method which introduces view
interpolation in the Fourier-wavelet domain. Section 4
presents some experimental results, and we conclude
with a discussion in Section 5.

2. Fourier-Wavelet Volume Rendering

We start by summarizing the main ideas of standard
Fourier volume rendering, and briefly discuss inter-
polation and accuracy issues, showing that with a
judicious combination of zero-padding of the data and
good interpolation filters accurate renderings are ob-
tained. Then we introduce a number of basic wavelet

Figure 1. View plane perpendicular to the direction vectorθ.

concepts, followed by a short description of Fourier-
wavelet volume rendering.

2.1. Fourier Volume Rendering

Fourier domain volume rendering methods [15, 16]
provide an implementation of X-ray volume rendering,
where the volume data are integrated along the line of
sight. That is, if f (x), x = (x, y, z) ∈ R3, is integrated
along a direction vectorθ, with u andv two mutually
orthogonal vectors perpendicular toθ (see Fig. 1), then
the result, also called the X-ray transform off , is given
by

Pθ f (u, v) =
∫
R

f (uu + vv + tθ) dt.

The Fourier projection slice theorem [7] states that
the 2-D Fourier transform ofPθ f equals the 3-D
Fourier transform off along a slice plane through the
origin in Fourier space and perpendicular toθ. De-
note then-dimensional Fourier transform of a function
f ∈ L2(Rn) byFn f :

Fn f (ω) =
∫
Rn

e−2π iω·x f (x) dx, ω ∈ Rn.

Then the Fourier projection slice theorem states that

F2Pθ f (ωu, ωv) = F3 f (ωuu+ωvv). (1)
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This theorem is the key to Fourier volume rendering.
Given volume data sampled on a uniform grid, the FVR
algorithm consists of the following steps:

Algorithm 1. FVR

– Preprocessing.Compute the3-D discrete Fourier
transform of the volume data by FFT.

– Actual volume rendering.For each directionθ, do:

1. Interpolate the Fourier transformed data and re-
sample on a regular grid of points in the slice
plane orthogonal toθ (‘slice extraction’).

2. Compute the2-D inverse Fourier transform,again
by FFT. This yields a discrete approximation to
Pθ f .

The first step is just preprocessing: the 3-D Fourier
transform is computed only once. The next two steps
are repeated for each viewing direction, and must there-
fore be implemented as efficiently as possible. For a
slice of sizeN by N, the complexity of the Fourier
transform isO(N2 log N), and that of 3-D interpola-
tion isO(K 3N2), whereK is the linear size of the inter-
polation filter (K much smaller thanN). Although the
Fourier transform is asymptotically dominant, in prac-
tice most of the running time is spent on interpolation.

Since interpolation is the most critical step in FVR,
accurate interpolation filters are necessary to avoid arte-
facts such as aliasing (due to insufficient sampling),
and dishing, resulting in reduced intensities away from
the center of the image. To reduce aliasing, one pads
the data in the spatial domain with zeros before the
initial 3-D Fourier transform. The price to pay is in-
creased memory usage. Cubic interpolation [8] with
20% zero-padding has shown to offer a good com-
promise for FVR, resulting in small aliasing error and
small dishing artefact [26]. Cubic B-spline interpola-
tion [21] has turned out to reduce aliasing even more.
Since the computational costs of cubic interpolation
and cubic B-spline interpolation are comparable, we
use the latter method for slice resampling.

The 3-D Fourier transform requires complex arith-
metic and a floating point representation. Because
the Fourier transform of a real signal is hermitian, a
factor of two in the number of computations during
slice extraction can be saved by dropping half of the
Fourier transformed data, e.g. using a real-to-complex
/complex-to-real FFT [5]. Also, one can reduce mem-
ory requirements by a factor of two by quantizing the
floating point values to 2-byte shorts, without seriously
affecting the accuracy [26].

2.2. Wavelet Representation

A wavelet decomposition of a signal is obtained by con-
volving the signal with an analysis filter, followed by
downsampling. This results in a number ofapproxima-
tioncoefficients giving the coarse features of the signal,
and a set ofdetailcoefficients giving the finer structure.
The process can be repeated a number of times, say
M ; this number is called thedepthor levelof the de-
composition. The signal can be reconstructed from the
approximation and detail coefficients by upsampling,
followed by convolution with a synthesis filter.

In our application, we will need two-dimensional
wavelet decomposition and reconstruction filters,
which are constructed from a one-dimensional bi-
orthogonal wavelet basis. Such a basis derives from
a scaling functionφ with associatedbasic waveletψ ,
and dual scaling functioñφ with dual basic wavelet
ψ̃ . The corresponding basis functions are{φ j,k} and
{ψ j,k}, j, k∈Z, whereφ j,k(x)= 2− j/2φ(2− j x− k)and
ψ j,k(x) = 2− j/2ψ(2− j x− k); the dual basis functions
are defined similarly. Herej andk denote scale and
translation, respectively. From the 1-D basis, a 2-D sep-
arable wavelet basis is constructed with four basis func-
tions, i.e. one scaling function80

j,k,l (x, y) and three
wavelet basis functions9τ

j,k,l (x, y), τ ∈ T = {1, 2, 3}:
80

j,k,l (x, y) = φ j,k(x)φ j,l (y)

91
j,k,l (x, y) = φ j,k(x)ψ j,l (y)

(2)
92

j,k,l (x, y) = ψ j,k(x)φ j,l (y)

93
j,k,l (x, y) = ψ j,k(x)ψ j,l (y)

A similar definition holds for the dual scaling function
8̃0

j,k,l (x, y) and wavelet basis functions̃9τ
j,k,l (x, y).

Then theM-level wavelet representation of a 2-D func-
tion f is given by

f (x, y) =
∑
k,l

cM
k,l8

0
M,k,l (x, y)

+
M∑

j=1

∑
τ∈T

∑
k,l

d j,τ
k,l 9

τ
j,k,l (x, y). (3)

The approximationcoefficients arecM
k,l =〈 f, 8̃0

M,k,l 〉
and thedetailcoefficients ared j,τ

k,l =〈 f, 9̃τ
j,k,l 〉, where

〈·, ·〉 denotes the inner product in the spaceL2(R2) of
square integrable functions onR2.

In the case of digital data, thefast wavelet transform
and its inverse compute wavelet decomposition and
reconstruction very efficiently by a subband filtering
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scheme called the pyramid algorithm [14]. The ba-
sis functions are represented by discrete filtersh =
(hn)n∈Z, g = (gn)n∈Z for synthesis, and dual filters
h̃ and g̃ for analysis. The 2-D basis (2) is repre-
sented by the four possible tensor products,hh, hg,
gh and gg, of the 1-D filtersh and g. (For example
(hh)k,l = hk hl .) Wavelet decomposition is performed
recursively starting at level 0 by convolution followed
by downsampling by a factor of two. Wavelet recon-
struction is performed recursively starting at levelM by
upsampling by a factor of two followed by convolution.

2.3. Fourier-Wavelet Volume Rendering

The wavelet X-ray transformwas introduced in [19],
and an efficient implementation was derived in [26]
by computing the wavelet transform in the frequency
domain. The result is an algorithm that starts by com-
putation of the Fourier transform in a slice plane, as
in ordinary FVR, followed by a wavelet decomposi-
tion of the slice plane image in Fourier space. Here we
summarize the main steps of this method.

2.3.1. The Wavelet X-Ray Transform.The wavelet
X-ray transformis defined by expanding the X-ray
transformPθ f of a function f in a 2-D wavelet se-
ries (cf. (3)):

Pθ f (u, v)=
∑
k,l

cM
k,l (θ)8

0
M,k,l (u, v)

+
M∑

j = 1

∑
τ ∈ T

∑
k,l

d j,τ
k,l (θ)9

τ
j,k,l (u, v). (4)

Note that the approximation coefficientscM
k,l and detail

coefficientsd j,τ
k,l , τ ∈ T = {1, 2, 3}, now depend on the

viewing directionθ. This transform is closely related to
the wavelet X-ray transform defined in [25, 29], which
combines integration over a line with a simultaneous
1-D wavelet transform along this line. The difference
is, that we perform a 2-D wavelet transform in the plane
perpendicular to the line.

Efficient computation of the wavelet coefficients in
(4) depends on the following theorem, cf. [26] for a
detailed derivation.

Theorem 1. The coefficients in the wavelet represen-
tation (4) for the X-ray transform of f∈ L2(R3) are
given by

cM
k,l (θ) = F−1

2

(
F2Pθ f · F28̃

′0
M

)
(2Mk, 2Ml ) (5)

d j,τ
k,l (θ) = F−1

2

(
F2Pθ f · F29̃ ′

τ

j

)
(2 j k, 2 j l ), (6)

where

8̃′
0
M(u, v) = 8̃0

M,0,0(−u,−v),

9̃ ′
τ

j (u, v) = 9̃τ
j,0,0(−u,−v),

andz̄ denotes the complex conjugate of z.

By the Fourier slice theorem (1),F2Pθ f (ωu, ωv) =
F3 f (ωuu + ωvv). Therefore, the wavelet coefficients
at scalej in (4) can be computed by multiplying a slice
of the 3-D Fourier transform off by the 2-D Fourier
transform of the scaling or wavelet function at scalej ,
followed by an inverse 2-D Fourier transform evaluated
at the points of the form(2 j k, 2 j l ) in the view plane. We
now turn to a description of the actual implementation.

2.3.2. The Wavelet Transform in the Fourier Domain.
The wavelet transform and its inverse consist of up- or
downsampling and convolution.

2.3.2.1. Up- and Downsampling.Let Xk,l ,k= 0, . . . ,
N1−1, l = 0, . . . , N2−1, denote the elements of the
2-D discrete Fourier transform (DFT) of a 2-D signalx
of lengthN1 by N2, with N1 andN2 both even. Down-
sampling corresponds to taking the samples with even
index in both dimensions. By applying abiphase de-
composition[18, 23], one obtains that the valuesXdown

k,l ,
k = 0, . . . , N1/2−1, l = 0, . . . , N2/2−1 of the 2-D
DFT of the downsampled signal are given by

Xdown
k,l =

1

4

(
Xk,l + Xk− N1

2 ,l
+ Xk,l− N2

2

+ Xk− N1
2 ,l−

N2
2

)
. (7)

Let X be the matrix whose elements are the Fourier co-
efficientsXk,l of x, andXdown the corresponding matrix
for the downsampled signal. Then (7) can be written in
matrix notation as

Xdown= 1

4
(Xa + Xb + Xc + Xd) when

X =
(

Xa Xb

Xc Xd

)
, (8)

whereXa,Xb,Xc,Xd are the four submatrices obtained
by equally dividingX into two along the row and col-
umn direction.
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Conversely, upsampling by a factor of two in the spa-
tial domain means inserting zeros between the samples
in both dimensions. One easily derives the following
relation between the matrixX of Fourier coefficients of
the original signal, and the corresponding matrixXup

of the upsampled signal [26]:

Xup =
(

X X
X X

)
(9)

So, the DFT matrixXup of the upsampled signal is ob-
tained by replicating the matrixX in both dimensions.

2.3.2.2. Wavelet Decomposition and Reconstruction.
Let the input of the wavelet transform be a finite
2-D input sequence, represented by an arrayc0 of
size N1× N2. Let cj andd j,τ denote 2-D sequences
of approximation coefficientscj

k,l and detail coeffi-
cients d j,τ

k,l , respectively, cf. (2). Denote byC j and
D j,τ the corresponding matrices of Fourier coeffi-
cients, obtained by applying a 2-D DFT tocj andd j,τ ,
respectively.

Define 2-D filter matricesH j andG j,τ , τ = 1, 2, 3,
by

(H j )k,l = H j
k H j

l , (G j,1
)k,l = H j

k G j
l ,

(G j,2)k,l = G j
k H j

l , (G j,3
)k,l = G j

k G j
l .

HereH j
k andG j

k are the DFT values of the 1-D synthe-
sis filtersh andg. For example, if the signal length in
a given spatial direction is 2− j N (assumed to be larger
than the lengthL of the filterh), then

H j
k =

L−1∑
n=0

hne−
2π ink2 j

N = H0
k2 j ,

k = 0, 1, . . . , 2− j N− 1. (10)

Dual filter matricesH̃ j andG̃ j are defined in a similar
way in terms of the dual filters̃h andg̃. Note from (10)
that it is sufficient to compute the filtersH0 andG0.
The filters for the other scales are obtained by down-
sampling the filters for the finest scalej = 0. A similar
remark holds for the analysis filters.

In the frequency domain, the wavelet decomposition
has the matrix representation [26]

C j+1 = [H̃ j · C j ]down, D j+1,τ = [G̃ j,τ · C j ]down,

(11)

whereA·B denotes elementwise multiplication of ma-
tricesA andB, and [· · ·]down is defined as in (8).

Wavelet reconstruction has the following matrix rep-
resentation in the frequency domain [26]:

C j = H j · [C j+1]up+
3∑
τ=1

G j,τ · [D j+1,τ ]up, (12)

where [· · ·]up is defined as in (9).
We will refer to (11) and (12) asFourier-wavelet

decomposition(FWD) and Fourier-wavelet recon-
struction (FWR), respectively. The result of anM-
level decomposition yields an approximation arrayCM

of size 2−M N1× 2−M N2, and detail arraysD j,τ , j =
M,M − 1, . . . ,1, τ = 1, 2, 3, of size 2− j N1× 2− j N2.
A reconstruction at a desired levelK is first computed
in the Fourier domain by (12) and the resulting approxi-
mationCK is then inversely Fourier transformed to give
the desired approximationcK in the spatial domain.

As shown in [26], the complexity of the Fourier do-
main implementation of the 2-D wavelet transform (or
its inverse) isO(N2 log2 N), whenN1= N2= N.

2.3.3. The Fourier-Wavelet Volume Rendering Algo-
rithm. The wavelet extension of FVR requires only
a small modification of the standard algorithm. The
resulting algorithm, referred to as Fourier-wavelet vol-
ume rendering (FWVR), is summarized as follows.

Algorithm 2. FWVR

– Preprocessing.Compute the3-D FFT of the volume
data(size N3).

– Actual volume rendering.For each directionθ, do:

1. Interpolate the Fourier transform on a regular
grid of size(2N)2 in the slice plane orthogonal
to θ. This yields the array C0 to be used for ini-
tializing the wavelet transform.

2. Perform a 2-D Fourier-wavelet decomposition
(FWD) of depth M, yielding approximation
coefficients CMk,l and detail coefficients Dj,τk,l ,
where j=M,M − 1, . . . ,1, respectively.

3. Perform a partial Fourier-wavelet reconstruction
(FWR) from CM

k,l , by putting all detail signals Dj,τk,l
equal to zero, followed by a2-D inverse Fourier
transform, yielding an initial approximation(size
(2N)2) in the spatial domain.

4. Refine the approximation by partial FWR using
the detail signals Dj,τ

k,l with K < j ≤M , followed
by a2-D inverse Fourier transform to obtain an
approximation(size(2N)2) at a finer scale K in
the spatial domain.
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In order to prevent aliasing, the sampling step size of
the slice plane should be sufficiently small. If the origi-
nal step size of the 3-D Fourier transform of the volume
data isF0, resampling should be done with a step size
of at mostF0/

√
3 [15]. The scale factor

√
3 originates

from the length of the diagonal of a unit cube. In prac-
tice, one usually takesF0/2, giving rise to a resampling
grid of size(2N)2.

The choice of the decomposition depthM depends
on the desired level of detail for the low resolution im-
ages, the size of the data, and the length of the wavelet
filters. Typically, we takeM = 2 or M = 3 for datasets
of size 128× 128× 128 or 256× 256× 256. LargerM
blurs the low resolution images too much, making in-
terpretation difficult.

The approach taken in Algorithm 2 is well-suited
to implement aclient-servervisualization system. The
server performs the initial 3-D Fourier transform, slic-
ing, and FWD at each view angle (steps 1 and 2), and
sends the required approximation/detail coefficients to
the client. The client performs the FWR and inverse
Fourier transform to obtain an approximation image
(steps 3 and 4). During user interaction, only the Fourier
domain approximation coefficientsCM

k,l are used. When
user interaction ceases, the Fourier domain detail co-
efficientsD j,τ

k,l are taken into account, so that the client
can obtain reconstructions at higher levels of detail.
This progressive refinement can be implemented most
efficiently by a so-callednon-pyramidalreconstruction
scheme, which involves upsampling of the wavelet co-
efficients to full resolution, followed by application of
a precomputed filter which combines the effect of all
intermediate resolution filters into a single one [26].
The coefficients can be quantized to shorts (2 bytes),
with a quantization error in the order of 10−8, without
introducing visible artefacts. The progressive refine-
ment inherent in the algorithm can improve interaction
with the data, since the response time of the system
drops significantly.

3. View Interpolation in the Fourier-Wavelet
Domain

In this section, we introduce a technique similar to view
interpolation [1] for Fourier-wavelet volume rendering.
The differences are that (i) interpolation is performed
on the wavelet approximation coefficients in the fre-
quency domain and not in the image domain, and (ii)
interpolation is performed during user interaction only.
By user interaction, we mean rotation of the view vector

θ. When user interaction ceases, ordinary FWVR is ap-
plied to render an accurate image. This relaxes the accu-
racy requirements imposed on the interpolation method
used during interaction.

A view vectorθ is determined by spherical coor-
dinates(θ, φ), where 0≤ θ ≤π and 0≤φ <2π . For
the X-ray transform, we can restrictθ to 0≤ θ ≤ π

2 ,
since we can obtain images forπ2 <θ ≤ π by mirror-
ing the respective images. View interpolation requires
an appropriate sampling of the parametersθ andφ.
Here, a compromise has to be found between mem-
ory requirements and image quality. A large number of
precomputed viewing directions produces high quality
images for intermediate viewing directions, but suffers
from high memory costs. On the other hand, too few
precomputed views result in low quality images which
suffer from extreme blurring. Regular angular sampling
of θ andφ is sub-optimal for traditional view interpo-
lation, since the sampling densities are not uniformly
spread. For instance, withθ close to zero, the sampling
density is very high, i.e. the neighbouring views are
close to each other, whereas the density is much lower
for θ = π

2 . For FWVR, the situation is different. A
view corresponds to a slice passing through the origin
in Fourier space, which means that the sampling den-
sity decreases away from the origin. Since interpolation
is performed in the Fourier domain, this means that low
frequencies are sampled at a higher rate than high fre-
quencies. Therefore, the only effect of regular angular
sampling is loss of detail if the sampling rate is too low.
This is not really a problem, because interpolation is
performed on the wavelet approximation coefficients,
which contain mainly low frequencies. Moreover, view
interpolation will be performed only during user inter-
action, when low resolution views are taken from the
data by rotatingθ, and the human eye is not very sen-
sitive for loss of detail when motion is involved.

In the following, we take a number ofNθ values for
θ andNφ values forφ, respectively, resulting in a total
of Nθ × Nφ precomputed slices. The view vectorθ is
denoted by(θi , φ j ), where

θi = iπ

2(Nθ − 1)
and φ j = j 2π

Nφ
,

0≤ i < Nθ , 0≤ j < Nφ.

Recall thatu and v defining the view plane are two
mutually orthogonal vectors perpendicular toθ. We
requireu to be in thex-y plane, so that it depends
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on φ only. The vectorv is then fixed by takingv =
u×θ, resulting in a right-handed coordinate system.
For our application, view interpolation is performed
on the wavelet approximation coefficients only. These
precomputed coefficients are denoted byCM

k,l (θi , φ j ).
For a chosen viewing direction(θ, φ),0≤ θ ≤ π

2 ,
and 0≤φ <2π , slice interpolation is performed
as follows. Find i and j , such thatθi ≤ θ < θi+1

and φ j ≤φ <φ j+1. Then, compute the interpolated
approximation coefficientsCM

k,l (θ, φ) by bilinear
interpolation:

CM
k,l (θ, φ) = (1−α) (1−β)CM

k,l (θi , φ j )

+ (1−α)β CM
k,l (θi , φ j+1)

+α(1−β)CM
k,l (θi+1, φ j )

+αβ CM
k,l (θi+1, φ j+1),

where

α = θ − θi

θi+1− θi
, and β = φ−φ j

φ j+1−φ j
.

Viewing directions for whichπ2 <θ <π require mir-
roring of the final images. Figure 2 illustrates the
meaning of the parameters for the special case that
θ lies in thex-y plane and is rotating around thez-
axis. In this case,θ = π

2 = θNθ−1 and, therefore,α= 0.
Figure 2(a) shows the situation in 3-D. The vertical

Figure 2. (a) Precomputed slices in Fourier space for fixedθ = π
2 and Nφ = 8. (b) Interpolation of the precomputed slicesCM

k,l (θ, φ1) and
CM

k,l (θ, φ2). The resulting approximation coefficients areCM
k,l (θ, φ).

planes represent the precomputed slices forNφ = 8.
Figure 2(b) shows the scene projected on theωx-ωy

plane. Two precomputed slices are shown in black, and
the interpolated slice is shown in grey.

The extension of Fourier-wavelet volume render-
ing (Algorithm 2) with view interpolation is now as
follows.

Algorithm 3. FWVR with view interpolation

– Preprocessing.Compute the3-D Fourier transform
of the volume data, and compute a setCM

k,l (θi , φ j )

of wavelet approximation coefficients in frequency
space for a number of different viewing directions
(θi , φ j ), 0≤ i < Nθ , 0≤ j < Nφ.

– Actual volume rendering.For each directionθ do:

1. Interpolate the precomputed coefficientsCM
k,l

(θi , φ j ) in the slice plane orthogonal toθ. This
yields the array CM

k,l (θ).
2. Perform a partial Fourier-wavelet reconstruc-

tion from CM
k,l (θ), followed by a 2-D inverse

Fourier transform to obtain an approximation in
the spatial domain.

4. Experimental Results

Experiments with two CT data sets were carried out
to assess quality and performance of the proposed al-
gorithm. We used a small CT data set of size 1283

and a large CT data set of size 2563. A fourth-order
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B-spline wavelet was used as the basic wavelet. An
important property of FWVR is that other wavelets
give only marginally different timing results [26]. For
the small data set, we used two decomposition levels
and for the large data set three decomposition levels,
so that the size of the precomputed sequence of ap-
proximation coefficients is the same for both data sets.
The decomposition depthM cannot be set larger for
the fourth-order B-spline wavelets, because the size of
the downsampled data should always be larger than
the length of the filters used for the wavelet decom-
position (41 coefficients). Cubic B-spline interpolation
[21] with 20% zero-padding was applied for resam-
pling slices in Fourier space.

Figure 3 shows plots of relative error norms of the
difference between an approximation image obtained
by view interpolation (Algorithm 3) and by direct com-
putation by FWVR (Algorithm 2) for the small CT
data set. Angle increments of 5 degrees and 10 de-
grees were used for the view vectorθ rotating around
the z-axis, i.e.θ = π

2 . Figure 3(a) shows a plot of the
L∞ norm (absolute difference), and Fig. 3(b) shows
a plot of theL2 norm (mean squared difference). The
plots show that the relativeL2 norm is very small for
both 5 degree and 10 degree angle increments. On the
whole, it is less than one grey value. On average, the
relative L2 norm for 5 degree angle increments is a
factor of 9.5 smaller than for 10 degree angle incre-
ments. TheL∞ norm may be large at certain view an-
gles when using 10 degree angle increments. For ex-
ample, expressed in grey values, it can be as large as
32. On average, theL∞ norm for 5 degree angle incre-

Figure 3. Plots of relativeL∞ (a) andL2 (b) norms of the difference between an approximation image obtained by view interpolation and by
direct computation. Angle increments of 5 degrees and 10 degrees were used.

ments is a factor of 2.9 smaller than for 10 degree angle
increments.

Although theL∞ norm may be large for 10 degree
angle increments, the approximation images still look
acceptable. The problem with theL∞ norm is that it
takes the maximum absolute difference over the whole
image. To obtain a better impression of theamountof
pixels that deviate from the exact value, we can look
at the histograms of the absolute differences between
images obtained by view interpolation and by direct
computation. This is done for the viewing direction
θ= ( π2 , 166π

180 ), for which theL∞ error is maximal. The
cumulative histograms are shown in Fig. 4(a) and (b) for
5 degree angle increments and 10 degree angle incre-
ments, respectively. The histograms show that, in spite
of a largeL∞ error at 10 degree angle increments, 93%
of the pixels are within an error margin of 5 grey values.
For 5 degree angle increments this number is 98%. A
difference within a range of 5 grey values is so small
that the human eye cannot distinguish it, especially not
in bright areas.

Figure 5(a) shows an exact image obtained by direct
computation, and Fig. 5(b)–(c) show difference images
obtained by subtracting the exact image from images
obtained by view interpolation using 5 degree angle in-
crements and 10 degree angle increments, respectively.
The grey values of the difference images were scaled
to show better contrast, where white corresponds to a
positive difference and black to a negative difference.
The view vector is( π2 ,

7π
180). This viewing direction was

chosen because theL∞ norms are large for both 5 de-
gree angle increments and 10 degree angle increments.
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Figure 4. Cumulative histograms of the absolute difference between images obtained by direction computation and view interpolation.
(a) 5 degree angle increments. (b) 10 degree angle increments.

The images in Fig. 5(b)–(c) show that differences are
small and distributed uniformly over the image, result-
ing in a slight blurring. This effect is only visible in still
images, and we want to emphasize that these approxi-
mation images are shownonlyduring user interaction,
when a user chooses new viewing directions several
times per second. Since the human eye is less sensi-
tive for loss of detail in images involving motion, the
blurring is not a problem.

When user interaction ceases, we apply Algorithm 2
to refine the images incrementally to full resolution as
shown in Fig. 6 for the large CT data set. The level 1
approximation (Fig. 6(c)) uses only 25% of the wavelet
coefficients, yet differences with the full reconstruction
(Fig. 6(d)) are hardly distinguishable, providing an ex-
tra motivation for the use of wavelets.

Figure 5. (a) Exact approximation image for the view vector( π2 ,
7π
180) obtained by direct computation. (b)–(c) Difference images obtained by

subtracting the exact image from images obtained by view interpolation with 5 degree angle increments (b) and 10 degree angle increments (c).

Table 1 shows rendering times of FWVR with view
interpolation (Algorithm 3) and cumulative render-
ing times of ordinary FWVR (Algorithm 2). Tim-
ings were performed on a Pentium III 500 MHz pro-
cessor. All results include the time used by the in-
verse 2-D FFT. While a user is interacting with the
data, FWVR with view interpolation (Algorithm 3)
is performed. The results show that this allows for
fast interaction; for a volume of size 2563 the method
renders at 5.6 frames per second, whereas ordinary
FWVR manages only 0.7 frames per second (com-
puted from the table entry corresponding to the time
to obtain a level 3 approximation). When interac-
tion ceases, a slice is extracted from the 3-D Fourier
transform of the data, in order to render an exact
image for that viewing direction, which is obtained
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Figure 6. FWVR (Algorithm 2) rendering by a three-level fourth-order B-spline wavelet decomposition of the large CT data set.

after slightly more than 2 seconds by ordinary FWVR
(Algorithm 2).

5. Discussion

Fourier-wavelet volume rendering is a computation-
ally efficient method to visualize data at progressively
higher levels of detail, which is useful in client-server
systems. In this paper, we have overcome one of the
disadvantages of FWVR, i.e. the need to interpolate
a slice in Fourier space at full resolution in order to
perform a 2-D wavelet decomposition. This was ac-
complished by precomputing sets of wavelet approxi-

mation coefficients in the Fourier domain for a set of
selected fixed viewing directions. The new algorithm
computes images for intermediate viewing directions
by interpolation of the precomputed coefficients. The
main differences between ordinary view interpolation
(as used in computer graphics) and view interpolation
in Fourier-wavelet space are that (i) interpolation is
performed on the wavelet approximation coefficients
in the frequency domain and not in the image domain,
and (ii) interpolation is performed during user interac-
tion only.

We have used simple bilinear interpolation for view
interpolation. This was done for two reasons: (i) it is
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Table 1. Rendering times (in seconds) of FWVR ex-
tended by view interpolation (Alg. 3) and ordinary
FWVR (Alg. 2). During user interaction, low resolution
images are computed by FWVR with view interpola-
tion. When interaction ceases, an exact image is com-
puted by ordinary FWVR. The table entries for Alg. 2
are cumulative.

CT head CT head
(1283) (2563)

User interaction—(Alg. 3)

FWVR with view interpolation 0.04 0.18

User interaction ceased—(Alg. 2)

Slice extraction 0.25 1.05

Fourier-wavelet decomposition 0.32 1.35

Level 3 approximation 1.45

Level 2 approximation 0.34 1.63

Level 1 approximation 0.37 1.44

Full reconstruction 0.42 2.14

computationally more efficient than higher order inter-
polation methods, and (ii) higher order interpolation
methods give only marginally different results. Since
view interpolation is appliedonly during user inter-
action, we consider speed to be more important than
accuracy. Furthermore, the results show that bilinear
interpolation gives acceptable errors, and angle incre-
ments as large as 10 degrees result in only a small
degradation of image quality.

The computational cost of view interpolation is in-
dependent of the angle increments, and changing these
only affects the precomputation stage. If the angle
increments are made smaller, it takes more time to
precompute the approximation coefficients, and also
storage space requirements increase. However, render-
ing always takes the same amount of time, but image
quality increases when smaller angle increments are
used.
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