

 University of Groningen

Ontological Overhearing
Aiello, Marco; Busetta, Paolo; Donà, Antonia; Serafini, Luciano

Published in:
EPRINTS-BOOK-TITLE

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2001

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Aiello, M., Busetta, P., Donà, A., & Serafini, L. (2001). Ontological Overhearing. In EPRINTS-BOOK-TITLE
University of Groningen, Johann Bernoulli Institute for Mathematics and Computer Science.

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license.
More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne-
amendment.

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 11-10-2022

https://research.rug.nl/en/publications/95fac429-77c1-4761-a677-3f2babb49cd3

Ontological Overhearing?
Marco Aielloy, Paolo Busetta�, Antonia Donà�, and Luciano Serafini�y ILLC and ISIS, University of Amsterdam

Plantage Muidergracht 24, 1018 TV Amsterdam, the Netherlandsy DISA - University of Trento, Via Inama 5, 38100 Trento, Italy� ITC-IRST, Via Sommarive 18, 38050 Povo, Trento, Italy

Abstract. The collaboration between two intelligent agents can be greatly en-

hanced if a third agent, who has some understanding of the communication be-

tween the first two, intervenes giving appropriate information or acting helpfully

without having been explicitly involved. The behavior of this third agent, quite

common in human interaction, is called overhearing. We present an agent archi-

tecture modeling this behavior. In particular, we focus on overhearing based on

ontological reasoning; that is, the overhearer semantically selects pieces of com-

munication according to his own knowledge (ontologically organized) and goals.

In our architecture, overhearing is performed by a team of agents playing two

different roles: the first role (overhearer) classifies the overheard communication

according to a formal ontology; the second role (suggester) makes appropriate

suggestions at the appropriate time point. We present a formal language for the in-

teraction between agents in the overhearing team. A prototype of the architecture,

implemented using JACK Intelligent Agents, is briefly described and preliminary

experimental results are discussed.

1 Introduction

Humans work well in teams. In a collaborative environment, whenever people are faced

with tasks that they cannot manage, or know that can be managed better by others,

they seek assistance. This observation is not new, and has inspired much research in

cooperative agents, for example [13, 18, 17].

We choose to analyze teamwork through a slight shift in perspective. While asso-

ciation between agents can readily be achieved by requesting help when needed, equal

or even improved results can be achieved when associates observe the need for help,

and initiate actions or offer suggestions with the aim of improving the plight of their

colleague. In fact, these associates may communicate not only when a colleague needs

assistance, but also when they feel that they can help improve the productivity of their

team, or when they believe to achieve a personal gain from the suggestion.

As part of our work on frameworks for collaboration, we have introducted an ab-

stract architecture based on a principle called overhearing [10]. The intuition behind

overhearing comes from the modeling of such human interaction as aforementioned,? We thank Floriano Zini for his participation in the definition of the architecture, and the dis-

cussions on PTALC . Special thanks are due to ITC-IRST, to the University of Trento and to

Prof. Fausto Giunchiglia for supporting the extended visit by Marco Aiello that lead to this

research.

Contact Author: Luciano Serafini, e-mail serafini@itc.it, Tel +39 0461 314319, ITC-

IRST Via Sommarive 18, 38050 Povo, Trento, Italy

SUGGESTER

SERVICE A SERVICE B

OBSERVE

OVERHEARING

AGENT

SUGGESTSUGGEST

NOTIFY
SUBSCRIBE

COMMUNICATION CHANNEL

Fig. 1. Overhearing architecture.

in a collaborative observable environment. The overhearing architecture describes how

non-planned collaboration in a community of artificial agents can be achieved by means

of unobtrusive observations and unsolicited suggestions.

This paper focuses on a single aspect of the architecture: the observation of the

conversations between two or more agents. Our goal is to provide a framework for

querying a communication channel on the development of a conversation; queries are

typically submitted by agents willing to provide unsolicited assistance. To this end,

we have defined a formal language, designed the software components required for its

interpretation, and performed some experiments on a real-life, multi-agent, observable

channel (a web-based newsgroup). Our formal language includes both temporal and

ontological components, and allows the formulation of complex queries on contents,

performatives, and order of the messages being exchanged.

The paper is organized as follows. Next section gives an overview of the overhearing

architecture. In Section 3 we provide the definition of the language for querying the

communication channel, and show how formulas of the language are interpreted. In

Section 4, we present the use of the formal language within the overhearing architecture.

An actual implementation and some experimental results, showing the effectiveness of

the proposed framework, are presented in Section 5. Section 6 discusses some related

work. We conclude identifying potential future research (Section 7).

2 The Overhearing Architecture: an Overview

The overhearing abstract architecture is summarized in Figure 1. Service Agent A and

Service Agent B are communicating over a channel and observed by the Overhearing

Agent (overhearer from here on). A Suggester Agent (suggester) subscribes with the

overhearer to be notified if a certain type of event has occurred on the channel. Finally,

the Suggester is able to issue suggestions to any of the service agents; a suggestion

is a special message carrying information or commands. In general, a running system

contains many couples of agents covering the role of services, more than one agent

acting as suggesters, and at least one overhearer; an agent may cover more than one

role simultaneously (such as service and suggester).

Overhearing differs from blackboard-based architectures (see, for instance, the Open

Agent Architecture [11]) because it is not concerned with connecting services, nor con-

trolling the flow of messages. Our aim is not providing yet another communication

facility, rather supporting a flexible development methodology for complex, adaptive

systems. In the initial phases of development, only those agents (services in the ter-

minology defined above) required to achieve the basic functionality should be built.

The behavior of these services, however, should be modifiable by external observers

via suggestions. While functionality of the basic services required by an application are

assumed to be immutable, suggesters may be added and removed dynamically without

hampering the ability of the system to reach its main objectives.

This approach has various advantages. Firstly, it is possible to enhance function-

ality of a running system. As an example, state-of-the-art machine-learning or tunable

components can be plugged into the system, as and when they become available, with-

out the need to bring down, rebuild, and then restart the system. Secondly, the output

of a system can be enhanced either by suggesting additional related information, or

requesting the deletion of outdated or unrelated results. In [10] we present, as a case

study, an agent-based Web server where suggesters can send additional data to assis-

tant agents building dynamic HTML pages from databases of museum collections and

other cultural information. Schema and contents of these databases are stable over time.

Temporary facts (e.g., exhibitions) and data that cannot easily be fit into an relational

database (e.g., unstructured text, targeted advertising based on dynamically built user

profiles) are collected by suggesters, and sent to the assistants whenever appropriate.

The flexibility offered by the overhearing architecture comes at a cost. Indeed, a

full implementation of the overhearing architecture requires the suggester to be able

to perform agent state recognition, based on a model of the service agents and the

messages they exchange. Communication – or at least some selected conversations –

needs to be observable, e.g., by using a broadcast service, and this in turn may introduce

issues with performance, timing and security. Last but not least, services need to be

engineered to handle suggestions and to change their behavior accordingly.

In what follows, we concentrate on the interaction between suggester and over-

hearer. As mentioned above, its objective is for suggester to be notified of all and only

those messages that are relevant to him.

3 Overhearer–Suggester Interaction Language

In the architecture presented above, an overhearer has two main goals: monitoring a

communication channel, and responding to the queries of suggester agents about the

conversations taking place.

Depending on the application, messages exchanged by services may vary from fully

structured (e.g., most client/server interactions, auctions, etc.), to semi structured (e.g.,

XQL queries and XML pages), to unstructured (e.g., the body of email or newsgroup

messages). Often, content is in natural language; sometimes it may even be of a multi-

media nature such as images and sound tracks. In many situations, it is not feasible for

an overhearer to keep track of the entire content of all messages. In case of intensive

communication, indeed, this simply requires too much memory space. An overhearer

keeps track of the conversations by logging a suitable amount of data for each mes-

sage traveling on the channel, that is a “summary” representing an interpretation of the

message with respect to a certain formal domain ontology.

PT
ALC

OVERHEARING

AGENT

SUGGESTER

SERVICE BSERVICE A

Subscriptions

Log File
private clock

suggestions

(content in natural language,

XML, etc.)

Fig. 2. Overhearing architecture: the interaction language and facilities of the overhearer.

Suggesters that want to be notified of the messages regarding specific topics can

subscribe to the overhearer. In its subscription, a suggester specifies a matching criteria

(a pattern), which the overhearer has to apply to select the messages to be forwarded to

the suggester.

To provide a reliable and well founded tool for expressing such a selection criteria,

we developed a multi-modal language inspired by description logics and modal tempo-

ral languages. We called the languagePTALC since it is a modal T emporal logic over a

simple description language of the ALC family enriched with Performatives. Figure 2

highlights the use of PTALC for subscriptions, and the main facilities used by the over-

hearer: a list of subscriptions, an internal clock to time the channel, and a log file for

the messages. As discussed later, the latter contains message interpretations in PALC ,

which is a subset of PTALC without temporal operators.

3.1 A temporal ontological language

Suppose a suggester’s goal is to bring a certain castle, the Buonconsiglio Castle in

Trento, to the attention of potential tourists of the Trentino region. This can be achieved

in various ways. For instance, the suggester could ask to be informed of all the messages

passing on a public channel between an agent browsing the web and an agent serving

web pages; or, he could ask to be informed of all the messages containing a specific set

of words (e.g., fCastle, Trento, Tourismg). Alternatively, he could ask to be informed

whenever a message containing concepts related to castles and tourism has been ut-

tered. The latter appears to be the most appropriate approach, therefore we require the

overhearer-suggester interaction language to be able to express structured concepts. In

addition, a temporal dimension is necessary to express properties of the temporal order

of messages.

The suggester can ask if an agent has uttered a request regarding castles located in

Trentino, or regarding a particular castle located in Trentino, in the following way:3p(ASK(�; �; castleu 8is located:T rentino))
The suggester is expressing information of a very different nature with the above for-

mula. Let us analyze it bottom-up:

– Conceptual: ALC. castleu8is located:T rentino The suggester is express-

ing the concept of things that are both castles and that for all roles ‘is located’ have

a filler of type Trentino. We denote this formula by '.

– Performative:PALC . ASK(�; �;') The suggester is interested in performance

of the type ASK from any agent to any other agent. The � stands for a wild-card, in

alternative he could have explicitly referred to the name of agents involved in the

channel. We denote this formula by .

– Temporal: PTALC . 3p The suggester is interested of performances oc-

curred at some point in the past, expressed by the temporal operator3p.

In the next three subsections, we give the precise syntax and semantics of all the pieces

of the language PTALC .

The conceptual language Description logics are a family of formalisms spun off from

research in semantic networks. One of the main advantages of description logic for-

malisms over previous approaches is the availability of a precisely defined semantics

which ensures correctness of reasoning tasks such as subsumption checking. In what

follows, we use notation and semantics borrowed from the description logics commu-

nity (see for instance [20, 5]).

The alphabet is composed of three main sorts: one for atomic concept names, one for

role names and one for object names. For instance, castle is an atomic concept name:

that of all entities being castles. is located is a role name: that connecting concepts to

other concepts in which they are located. Buonconsiglio is the name of an object: in

this case, a physical castle located in Trento.

From the alphabet symbols it is possible to define the set of concepts as follows.

Notationally,A represents an atomic concept name, C and D denotes any concept, andR denotes a role name.C;D ::= A j C tD j C uD j 8R:C j 9R:C
Relations among concepts, and relations among objects and concepts can be expressed

by means of two types of formulas:

– o : C is an instance selection,

– C v D is a subsumption statement.

Formulas of ALC, or equivalently ALC-formulas are denoted by small Greek letters,�, ; : : : . Using the syntax above, we can specify that Buonconsiglio is an object

(also referred to as instance) of the concept of things which are castles and are located

somewhere in the province of Trentino:Buonconsiglio : castle u 8is located:T rentino
We can also state that the concept of castle is less general than the concept of large

building, by the formula castle v building u large
The semantics is given in terms of interpretations I . An interpretation is a pair com-

posed of a domain �I , and a interpretation function �I that assigns a subset of �I to

each concept name, a subset of �I ��I to every role name, and an element of �I to

each object name. The interpretation I for all the concepts is defined as follows:(C tD)I = CI [DI(C uD)I = CI \DI(8R:C)I = fp 2 �I j for all q 2 �I , hp; qi 2 RI implies q 2 CIg(9R:C)I = fp 2 �I j there is a q 2 �I , such that hp; qi 2 RI and q 2 CIg
Formulas can be verified or falsified by an interpretation I according to the following

rules: I j= o : C if and only if oI 2 CII j= C v D if and only if CI � DI
A Terminological box, (TBox) is a set of subsumption statements; an assertional box

(ABox) is a set of instance selections. A TBox together with an ABox form a knowledge

base. We use� to denote a knowledge base. An interpretation is a model of a knowledge

base � if every sentence of � is satisfied in the interpretation.

The performative language The performative level of the language allows to express

intentions in connection with concepts. In general, such intentions can be of very differ-

ent sorts: asking a question, replying to a comment, requesting an action, etc. In general,

we identify a set of performatives Per, which represents all performances that can be

recognized by the overhearer from the messages passing on the channel. For the sake

of simplicity, we concentrate on the two performatives ASK and TELL, representing the

performance of a query and the performance of an assertion, respectively. The set of

message patterns of PALC is any object of the form:

PER(i; j; �) (1)

where PER is either ASK or TELL, i; j are either names of agents or the wild-card �,

and � is either an object name or a concept, or an instance selection, or a subsumption

statement. Message patterns are denoted by small Greek letters �; �. We also denote

the set of agent names with Ag. Message patterns that does not contains wild-cards are

called messages.

Intuitively, the message pattern ASK(i; �; C) represents the set of messages which

are queries posted by agent i to any other agent, concerning the conceptC. The formula

ASK(i; �; o : C) represent the set of messages which are queries posted by agent i to

any other agent, concerning the object o as an instance of a concept C. To formalize

this intuition we need to extend the semantics of ALC. Formally: an interpretation I ofALC can be extended to an interpretation for PALC in the following way:iI = fig if i is not a wild-card; Ag otherwise (2)(PER(i; j; o))I = fhPER; x; y; oIi j x 2 iI and y 2 jIg (3)(PER(i; j; C))I = fhPER; x; y;DIi j x 2 iI and y 2 jI and I j= D v Cg (4)(PER(i; j; o : C))I = fhPER; x; y; oI ; DIi j x 2 iI and y 2 jI and I j= D v Cg (5)(PER(i; j; C v D))I = fhPER; x; y; CI ; EIi j x 2 iI and y 2 jI , I j= E v Dg (6)

Subsumption between message patterns is defined in terms of containment of their

interpretation. Formally: I j= � v � if and only if �I � �I (7)

Intuitively I j= � v � means that, according to the interpretation I , any message that

matches patterns � match also pattern �; put differently, the pattern � is more specific

(less general) than the pattern �.

The full temporal languagePTALC The last channel phenomenon we want to model

is time. We chose the same formalism of Since and Until logics (see for instance [21]),

which gives us the ability to refer to the past, to the future, to the next temporal interval

(the next utterance) but also to place conditions on future or past events.

The syntax of the temporal language PTALC is as for the previous languages, with

the addition of the following operators over formulas of PALC : :, Xf , 3f , 2f , Xp,3p, 2p as temporal monadic operators, S, U (since and until) as temporal dyadic oper-

ators and the classical connectives. ^, _, and :. Operators labelled with a p [f] refers

to the past [future]. Rather than over propositional letters, all these operators work over

message patterns. Therefore, the atomic formulas of PTALC are message patterns. In-

tuitively the atomic formula composed of the message pattern � means that a message

that matches � is now passing on the channel. The formula �^ � means that a message

that matches both � and � is now passing on the channel. The formula Xp� means

that a message that matches the pattern � has passed on the channel at the previous

time stamp. Formulas in PTALC are denoted by Greek letters �, �, etc. Notice that any

message pattern � is a formula (actually an atomic formula) of PALC .

Since the objects of our temporal logic are performatives over message patterns,

rather than propositional letters that can be true or false at a given time point as in usual

logics, we need to specify the semantics for PTALC in terms of Kripke structures on

interpretations of message patterns. This semantics is an extension of the Kripke-like

semantics for since and until logics in the case of linear discrete time, bounded in the

past.

A model M or PTALC on the knowledge base � is an infinite sequenceM =M(1);M(2); : : :
indexed by natural numbers, where for each natural number s,M(s) is a pair h�(s); I(s)i,
composed of a message �(s) and an interpretation I(s) of ALC that is a model of �.

Satisfiability for PTALC is defined as follows:M; s j= � iff I(s) j= �(s) v � M; s j= :� iff M; s 6j= �M; s j= � _ � iff M; s j= � or M; s j= � M; s j= � ^ � iff M; s j= � and M; s j= �M; s j= Xf� iff M; s+ 1 j= � M; s j= Xp� iff s > 0 and; M; s� 1 j= �M; s j= 3f� iff for some t > s, M; t j= � M; s j= 3p� iff for some t < s, M; t j= �M; s j= 2f� iff for all t > s, M; t j= � M; s j= 2p� iff for all t < s, M; t j= �M; s j= �S� iff for some t < s, M; t j= �, and for all t � w < s, M;w j= �M; s j= �U� iff for some t > s, M; t j= �, and for all s � w < t, M;w j= �
Intuitively, the truth condition M; s j= � represents the fact that the message passed at

time s (i.e., �(s)) matches the message pattern �, according to the current interpretation

of conceptual language given by the overhearer (i.e., I(s) j= �(s) v �). Connectives

are treated classically; truth conditions for temporal operators are the usual conditions

for linear past and future temporal logic bounded in the past.

4 Answering Queries from the Suggester

We now focus on the use of PTALC by overhearer and suggester. When the suggester

needs to be informed of something regarding the communication among service agents,

he formulates the knowledge he wants to gain in terms of a PTALC message pattern.

Suppose that the suggester wants to be notified when an agent i has asked about castles

in Trentino, and nobody has answered mentioning the existence of the Buonconsiglio

Castle. The suggester would then subscribe to the overhearer with the following pattern:3p(ASK(i; �; castle u 8is located:T rentino))U (TELL(�; i; Buonconsiglio)) (8)

The intended meaning of this subscription is to notify the subscribing agent at every

time instant for which the subscribed formula is true. If, for instance, agent i at timet has performed ASK(i; j; castle) and at time t + 1 no agent has performed a TELL

to i with Buonconsiglio as content, then at time t + 1 formula (8) becomes true and

the overhearer will notify the suggester.1 One may imagine that the suggester would

then directly send a message to the agent i at time t+ 2, informing of the existence of

the Buonconsiglio Castle in Trentino. The informative action of the suggester, if done

over the same communication channel observed by the overhearer, would also make

formula (8) false at all times greater than t + 2, so he will not be notified again. The

question is now, how does the overhearer know if and when a given PTALC formula is

true?

4.1 Checking the log

As shown in Figure 2, the overhearer updates two main data structures: a log file, storing

information about the communication on the channel, and a file of the active subscrip-

tions from the various agents.

In order to interpret the messages he logs, the overhearer needs to use an ontology.

In the following, we assume that this ontology is a knowledge base � as described in

Section 3.1.

The log file has a structure similar to the following:

Key Time Sender Receiver Performative Content in '
1 12:38:59 PM i j ASK castle
2 12:39:07 PM j i TELL Buonconsiglio : castle
3 12:39:08 PM k j ASK wheather u forecast: : : : : : : : : : : :

and it is updated every time that a performance has occurred on the channel. The ac-

tive subscription file is simply a list of couples with a suggester’s name and a PTALC
subscribed formula, updated every time a suggester subscribes or unsubscribes.

1 Note the subsumption of the concept of the castles located in Trentino by the more general

concept of a castle, i.e., � j= castle u 8is located:T rentino v castle.

The log file closely resemble a model for PTALC . Indeed, we have a family of
messages indexed by natural numbers bound both in the past and in the future; if we

associate the ontology� with each formula and think of an infinite future (just add>
as formula to every future time step), we get a model for PTALC . The overhearer uses

this model to check whether any subscribed formula is true at the current time point.

The procedure to follow when a new message has been observed is straightforward:

1. interpret the message using �, and update the log file;
2. for all subscribed formulas:

(a) check if it is true in the current time step
(b) if it is, notify the corresponding suggester

Various optimizations to the algorithm are immediate. If a formula is never going to be

true in the future (see the example at the beginning of this section), never check it again.

If a formula refers to the past (e.g.,3p) keep a trace of its relevant truth values in the past

time instants, instead of recalculating the truth at each time step. The overhearer could

try to check the truth of a formula at each time step incrementally, just by checking if a

new message has modified its truth value.

5 From Theory to Practice

We ran some experiments to verify that PTALC is an adequate language of interaction

between overhearer and suggester. More specifically, we wanted to see if the expressive

power of PTALC is sufficient and, at the same time, not too powerful, so to enable the

suggester to ‘hear’ all the messages, and only those, in which he is interested.

We prototyped the overhearer–suggester interaction using JACK Intelligent Agents

[2], a Java-based BDI platform. The overhearer was equipped with a parser, developed

with JavaCC [3], for a subset of the performative languagePALC , which was chosen as

the core of the completePTALC . The overhearer had an ontology, in the form of a set of

beliefs, implementing a knowledge base as described in Section 3.1. Finally, the over-

hearer was provided with some weak natural language processing (NLP) capabilities

(see for instance [7]); most notably, a list of stop-words for Italian.

In order to implement the matching conditions expressed in equations (2–6) we de-

veloped algorithms for instance checking, for checking the identity of instances, and

for subsumption checking. The first two are rather trivial; the interesting portion is the

subsumption checking. Traditionally, there are two ways to tackle this problem: in the

syntactic approach, tableau methods are used (see for instance [16]); in the semantic

approach, it is necessary to build a so called ‘description graph’ representing the model

of the formula with respect to the knowledge base. We chose to follow the latter, ex-

tending the algorithm of Borgida and Patel-Schneider [9]. The extension was necessary

because we allow concept disjunctions t. We embedded also the instances (not dealt

with in [9]) in the graphs. Unlike the work in [9], we do not allow cyclic axiom defi-

nition. The modifications we made to the algorithm were possible since we deal with

small ontologies and small formulas. In fact, the description graphs tied to PALC grow

exponentially in the size of the formula and also grow with the size of the ontology.

We tested the prototype on Italian newsgroups. A newsgroup can be seen as a com-

munication channel between intelligent agents exchanging messages in natural lan-

guage. We used the subjects of the messages as the content of the communications,

interpreted by the overhearer according to its own ontology and transformed in formu-

las of PALC .

5.1 Experimental results

We launched the prototype on two newsgroups on an Italian web site, called Global

News (http://www.globalnews.it). The topic of the first newsgroup is mete-

orology, while that of the second is traveling. We created two different ontologies: one

about meteorological phenomena, consisting of 68 concepts (mainly divided in 4 cat-

egories: meteorological phenomena, time periods, political geography and orography)

and 230 instances; a second one about traveling, made up of 190 concepts and 519 in-

stances. We used a list of 544 Italian stop-words. The overhearer observed a total of 160

messages on the meteorological newsgroup and 754 messages on the traveling one.

The top table of Figure 3 contains ten subscription queries posed by suggesters to

the overhearer. Questions Q1-Q4 were posed on the meteorological newsgroup using

the meteorological ontology. For Q5, the same meteorological ontology was used, but

on the traveling newsgroup. Finally, Q6-Q10 were posed on the traveling newsgroup

with the traveling ontology. Even though the system allows for roles in the grammar,

we did not used roles in the queries, because our ontologies were too simple.

The bottom tables of Figure 3 present the results of the queries under different

assumptions. R is the number of messages that generated a notification event for the

suggester (in parenthesis the number of wrong retrievals). T are the messages that were

supposed to generate the notification (ground truth). Prc. and Rec. are the standard

information retrieval measures [7] of precision and recall; specifically, Prc.=
jR\T jjRj and

Rec.=
jR\T jjT j . The last columns of the tables represent the two main causes of missing

notification to suggesters: # ont. is the number of errors due to insufficient care in the

design and implementation of the ontology, while # NLP is the number of errors due to

misuse of NLP-information retrieval techniques.

The numbers in the right table were obtained by assuming that overhearer and the

newsgroup members share the same ontology, i.e. same word, same meaning. For the

left table, we assumed that this is not necessarily the case – “snow” can be either frozen

water or a color (as in “snow white”). Since the messages contain no reference to an

ontology and our NLP capabilities are very limited, we arbitrarily derived an instance

concept by assuming that this was the closest word preceding it, following the Italian

syntax – snow (“neve”) in snow white (“bianco come la neve”) would be an instance of

white (“bianco”).

The results shown in Figure 3 seem to demonstrate that our language has a discrim-

inating power among the messages, and that the suggesters could express their wishes

of notification without ambiguity. The only problematic case is the one of query Q5,

where the structure of the meteorology ontology causes the very low value of precision.

This is because some of the concepts related to geography and orography subsume part

of the concepts on the traveling domain, so causing wrong notifications.

It should be noted that our aim was not that of building an information filtering sys-

tem. If a robust system for interpreting natural language has to be developed, it would

be necessary to employ better NLP tools. Presently only stop-words are removed; stem-

ming techniques are also necessary, acronyms should be eliminated, given names should

be handled, synonyms solved, and so on; some shallow parsing could also help. Also,

the ontologies were rather small; for instance, the traveling ontology only contained

geographical information of the main tourist resorts. To increase both precision and re-

call, richer ontologies should have been developed, but this was beyond the scope of the

experimentation.

id. Query Translation

Q1 ASK(�; �;>) everything

Q2 ASK(�; �; neve) snow

Q3 ASK(�; �; vento t (maret lago)) wind or sea or lake

Q4 ASK(�; �; precipitazioni u grafici) graphs of precipitation

Q5 ASK(�; �;>) everything

Q6 ASK(�; �;>) everything

Q7 ASK(�; �; crociera t (Caraibi tEuropa) cruising

Q8 ASK(�; �; offerte) special offers

Q9 ASK(�; �; alloggio) accommodation

Q10 ASK(�; �; alloggio u (mare tEuropa) accommodation in Europe or at sea

id.

Q1

Q2

Q3

Q4

Q5

Q6

Q7

Q8

Q9

Q10

R T Prc. Rec. # ont. # NLP

66 (4) 82 0. �93 0.756 6 14

14 16 1 0.875 1 1

11 12 1 0.917 0 0

0 2 UNDEF 0 0 0

23 (18) 5 0.217 1 0 0

306 (26) 358 0.915 0.782 48 32

32 129 1 0.248 0 0

7 7 1 1 0 0

26 38 1 0.684 0 0

10 30 1 0.�3 13 7

R T Prc. Rec. # ont. # NLP

83 (6) 82 0.928 0.939 5 0

14 16 1 0.875 1 1

12 12 1 1 0 0

2 2 1 1 0 0

153 (148) 5 0.0�3 1 0 0

357 (26) 358 0.927 0.925 12 15

103 (7) 129 0.932 0.744 29 4

7 7 1 1 0 0

27 38 1 0.711 5 6

15 30 1 0.5 8 7

Fig. 3. Experimental results, left: different ontologies, right: shared ontology

In spite of the current limitations, PALC is significantly more powerful than using

simple pattern matching expressions for single words. For instance, the patterns corre-

sponding to Q10 are generated by the cartesian product of the set of objects subsumed

by ‘alloggio’ (accommodation, i.e. everything from hotels to camp sites) with the union

of objects subsumed by ‘mare’ (sea) and ‘Europa’ (any European place defined in the

overhearer’s ontology).

6 Some comparisons

It is worthwhile to highlight differences and relationships between PTALC and agent

communication languages (ACLs) such as FIPA-ACL [1] and KQML [14].PTALC is a

logic language used by suggesters to query the log of messages kept by an overhearer

in a way similar to, for instance, how database applications use SQL to interrogate a re-

mote relational database. An ACL may be used to transport both the queries formulated

in PTALC and the messages exchanged by service agents. If this is the case, the cho-

sen ACL implicitly constrains the performatives that should be expressed in PTALC .

Moreover, ACLs usually allow an ontology to be explicitly referred to, so to allow the

correct interpretation of the contents of a message. The ontology used by an overhearer

is his own, and may or may not match (e.g., subsume) the ontologies used by services in

their conversations (see the experiments in Section 5.1). It should be noted that nothing

prevents an application from deploying multiple overhearers, with suggesters submit-

ting PTALC queries to those overhearers whose ontologies match theirs. The analysis

of such a scenario, as well as optimizations of the interpretation of message content

based on subsumption of overhearer’s and services’ ontologies, is left to future work.

An alternative feasible approach to the overhearer-suggester interaction is the adop-

tion of temporal databases [8]. In this setting, the overhearer would manage an internal

database updated with values extracted from the messages traveling on the channel, and

the suggester would ask for notification by directly expressing temporal SQL queries

(TSQL2, [19]). Some advantages can probably be gained from the point of view of per-

formance and engineering, in particular if an application needs to permanently store the

messages. On the other hand, since there is no ontological interpretation, the precision

of the overhearing would be greatly reduced, affecting the quality of the suggestions.

The solution with PTALC is at a higher abstraction level and seems to be more general.

In the field of description logics, some systems are closely related to the one pre-

sented here (see [22] for an example, while [4] is an overview of temporal description

logics). Often these formalisms are concerned with the modeling of concepts related

to time within the terminological axioms, while in the overhearing architecture we are

actually interested in the evolution in time of terminological expressions enriched with

performatives. The latter does not mean that one cannot express temporal concepts in

the ontology of the overhearer, but it does mean that these concepts do not have a spe-

cific temporal semantics assigned (e.g., like those achievable by using concrete domains

[6]). Temporal concepts follow the semantics of the terminological language just like

any other expressible concept.

7 Conclusions and Future Work

The work presented here originated in the field of cooperative software agents, and

in particular from the overhearing architecture described in [10]. Our general focus is

on interaction languages of a high abstraction level. In this work, we combined ele-

ments from temporal and description logic to provide a terse language for querying a

log of messages exchanged among agents. In our opinion, its application within the

overhearing architecture brings an useful enhancement to the state-of-the-art in agent

collaboration, since it enables an easy detection of certain communication patterns; this

may eventually lead to unsolicited help by collaborative agents.

In the current setting, the overhearer has the capability to tap a channel, to use an

ontology and to parse query messages in PTALC . Mentalistic interpretation of conver-

sations – that is, building a model of the behavior of the service agents – is entirely left

to the suggesters. From a performance perspective, the overhearer acts as a filter that

reduces the (potentially onerous) workload of the suggesters.

In Section 5, we mentioned a few ways of enhancing the current implementation

of the overhearer. We are also considering giving him some simple mental recognition

capability. If, for example, an agent is asking whether someone has a pen, one is willing

to think that he does not have one and it is his intention to borrow a pen and then to

use it. If an agent is asking about the result of a given soccer match, one is willing

to think that he does not know about the result. Once the overhearer has this extra

information, the suggester must be given the chance to make queries also regarding

such content. We are thinking along the lines of epistemic logics [15]. Of particular

interest is the temporal epistemic multi-agent logics presented in [12], which could be

an interesting starting point. It would be necessary to work out a semantics in the same

style of PTALC , where instead of the usual valuation function, a truth definition based

on description logics reasoning mechanisms is used.

In addition to improving PTALC , future work on the overhearing architecture will

look at the many conceptual and computational challenges involved in understanding

when to intervene in a conversation, and how to deal with unsolicited suggestions.

References

1. FIPA ACL Message Structure Specification. Foundation for Intelligent Physical Agents,

2000. http://www.fipa.org.
2. JACK Intelligent Agents ver. 3.0, User Manual. Agent Oriented Software, 2001.

http://www.jackagents.com.
3. JavaCC Documentation, ver. 2.0. Metamata and Sun Microsystems, 2001.

http://www.metamata.com/javacc/.
4. A. Artale and E. Franconi. A survey of temporal extensions of description logics. Annals of

Mathematics and Artificial Intelligence, 2001. To appear.
5. F. Baader, H. Burckert, J. Heinsohn, B. Hollunder, J. Muller, B. Nebel, W. Nutt, and H. Prof-

itlich. Terminological knowledge representation: a proposal for a terminological logic. Tech-

nical report, DFKI, Saarbrucken, 1992.
6. F. Baader and P. Hanschke. A Scheme for Integrating Concrete Domains into Concept Lan-

guages. In IJCAI, pages 452–457, 1991.
7. R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval. Addison Wesley, 1999.
8. M. Boehlen, J. Chomicki, R. Snodgrass, and D. Toman. Querying TSQL2 databases with

temporal logic. In 5th International Conference on Extending Database Technology (EDBT),

Avignon, 1996.
9. A. Borgida and P. Patel-Schneider. A Semantics and Complete Algorithm for Subsumption

in the CLASSIC Description Logic. JAIR, 1:277–308, 1994.
10. P. Busetta, L. Serafini, D. Singh, and F. Zini. Extending Multi-Agent Cooperation by Over-

hearing. Technical Report 0101-01, ITC-irst, Trento, 2001.
11. P. R. Cohen, A. Cheyer, M. Wang, and S. C. Baeg. An open agent architecture. In Proceed-

ings of the AAAI Spring Simposium on Software Agents, pages 1–8. AAAI Press, 1994.
12. C. Dixon, M. Fisher, and M. Wooldridge. Resolution for Temporal Logics of Knowledge.

Journal of Logic and Computation, 8(3):345–372, 1998.
13. J. Doran, S. Franklin, N. Jennings, and T. Norman. On Cooperation in Multi-Agent Systems.

The Knowledge Engineering Review, 12(3), 1997.
14. T. Finin, Y. Labrou, and J. Mayfield. KQML as an agent communication language. In Jeff

Bradshaw, editor, Software Agents. MIT Press, Cambridge, 1997.
15. J. Y. Halpern and Y. Moses. A guide to completeness and complexity for modal logics of

knowledge and belief. Artificial Intelligence, 54:319–379, 1992.
16. I. Horrocks. Using an expressive description logic: FaCT or fiction? In A. G. Cohn, L. Schu-

bert, and S. C. Shapiro, editors, Principles of Knowledge Representation and Reasoning

(KR’98), pages 636–647. Morgan Kaufmann Publishers, San Francisco, California, 1998.
17. M. Klusch, editor. Intelligent Information Systems. Springer-Verlag, 1999.
18. T. Oates, M. Prasad, and V. Lesser. Cooperative Information Gathering: A Distributed Prob-

lem Solving Approach. IEEE Proc. on Software Engineering, 144(1), 1997.
19. B. Salzberg and V. J. Tsotras. Comparison of Access Methods for Time-Evolving Data.

Computing Surveys, 31(2):158–221, 1999.
20. M. Schmidt-Schau and G. Smolka. Attributive concept descriptions with complements. Ar-

tificial Intelligence, 48:1–26, 1991.
21. Y. Venema. Temporal logics. In L. Goble, editor, Blackwell’s Guide to Philosophical Logic.

Basil Blackwell Publishers, Cambridge, MA, To appear.
22. F. Wolter and M. Zakharyaschev. Temporalizing description logics. In FroCoS’98, Amster-

dam, 1998. Kluwer.

