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Similarity measure computation of convex polyhedra
revisited

Jos B.T.M. Roerdink and Henk Bekker

Institute for Mathematics and Computing Science
University of Groningen

P.O. Box 800, 9700 AV Groningen, The Netherlands
{roe,bekker }@cs.rug.nl

Abstract We study the computation of rotation-invariant similarity measures of
convex polyhedra, based on Minkowski’s theory of mixed volumes. To compute
the similarity measure, a (mixed) volume functional has to be minimized over a
number of critical orientations of these polyhedra. These critical orientations are
those relative configurations where faces and edges of the two polyhedra are as
much as possible parallel. Two types of critical orientations exist for two poly-
hedraA andB. Type-1 critical orientations are those relative orientations where
a face ofB is parallel to a face ofA, and an edge ofB is parallel to a face of
A, or vice versa. Type-2 critical orientations correspond to the case that three
edges ofA are parallel to three faces ofB, or vice versa. It has been conjectured
that to perform minimization of the volume functional, it is sufficient to consider
Type-1 critical orientations only. Here we present experimental proof showing
this conjecture to be false.

1 Introduction

Shape comparison is one of the fundamental problems of machine vision. Shape sim-
ilarity may be quantified by introducing a similarity measure. The requirement of in-
variance under some set of shape transformations in general leads to complicated opti-
mization problems. Therefore, one often studies shape classes and transformation sets
for which a compromise between generality and efficiency can be found.

Recently, a new approach to similarity measure computation of convex polyhedra
has been developed based on Minkowski addition [2,5]. These similarity measures are
based upon the Minkowski inequality and its descendants, and the central operation is
the minimization of (mixed) volume functionals. An attractive property of this family
of similarity measures is that they are invariant under translations and possibly under
scaling, rotation, and reflection. The method may be used in any-dimensional space, but
we will concentrate on the 3D case.

For computing a rotation-invariant similarity measure of two convex polyhedra, a
(mixed) volume functional has to be evaluated over a number of special relative orien-
tations of these polyhedra, the so-called critical orientations. These critical orientations
are those relative configurations where faces and edges of the two polyhedra are parallel
as much as possible. (Two faces are called parallel when they have the same outward
normal.) Given two polyhedraA andB, the set of critical orientations can be divided
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in two classes, denoted by Type 1 and 2, respectively. Type 1 occurs when a face ofB
is parallel to a face ofA, and an edge ofB is parallel to a face ofA, or vice versa; Type
2 occurs when three edges ofA are parallel to three faces ofB, or vice versa. It was
proved in [5] that (i) for a given rotation axis, it is sufficient to compute the (mixed)
volume functionals only for a finite number of critical angles, thus generalizing a re-
sult for the 2D case [2]; and (ii) the number of rotation axes to be checked is finite.
The second result is trivial for Type-1 orientations, but the proof for Type 2 is more
involved, and only establishes finiteness of the number of axes to be checked, without
giving an explicit upper bound on the number of axes. Such an explicit upper bound
for the number of Type-2 critical orientations was given in [1], where it was shown that
the problem can be reduced to solving an algebraic equation of degree 8, which has to
be solved numerically. So, given three edges ofA and three faces ofB, the number of
critical orientation axes is at most 8.

Experiments on mixed-volume minimization were reported by Tuzikov and Sheynin
in [6]. Only Type-1 critical orientations were taken into account, and the authors con-
jectured that to find the global minimum of the mixed-volume functional it is sufficient
to consider Type-1 critical orientations only. In this paper we reconsider this issue,
and present experimental proof showing this conjecture to be false. Experiments were
carried out with randomly generated pairs of tetrahedra, and the minimum of the mixed
volume functional was computed by taking into account either Type-1 or Type-2 critical
orientations. As a result, we have found that the minimum value of the mixed volume
functional for Type-2 minimization can be larger as well as smaller than that of Type-1
minimization.

The paper is organized in the following way. In Section 2 we define Minkowski
addition of convex polyhedra and their slope diagram representation, and introduce a
rotation-invariant similarity measure based on inequalities for the (mixed) volume. In
Section 3 similarity measure computation by minimization of a mixed-volume func-
tional is considered, and the main results from the literature are summarized. In Sec-
tion 4 we give experimental results on minimization of the mixed-volume functional, by
taking into account Type-1 and Type-2 critical orientations, respectively. Conclusions
are summarized in Section 5.

2 Preliminaries

In this section the Minkowski sum, mixed volumes, a similarity measure based on the
Minkowski like inequality, and the slope diagram representation of convex polyhedra
are introduced. The compact convex subsets ofR

3 are denoted byC = C(R3). Two
shapesA andB are said to beequivalentif they differ only by translation; we denote
this asA ≡ B.

2.1 Minkowski sum and mixed volumes

The Minkowski sum of two setsA,B ⊆ R3 is defined as

A⊕B = {a+ b|a ∈ A, b ∈ B}. (1)
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It is well known [4] that every convex setA is uniquely determined by itssupport
function, given by:

h(A, u) = sup{〈a, u〉 | a ∈ A}, u ∈ S2.

Here〈a, u〉 is the inner product of vectorsa andu, andS2 denotes the unit sphere in
R

3. Also [4]:

h(A⊕B, u) = h(A, u) + h(B, u), u ∈ S2, (2)

for A,B ∈ C.
Denote byV (A) the volume of the setA ⊂ R3. Given convex setsA,B ⊂ R3 and

α, β ≥ 0, the following holds:

V (αA⊕ βB) = α3V (A) + 3α2βV (A,A,B) + 3αβ2V (A,B,B) + β3V (B). (3)

HereV (A,A,B) andV (A,B,B) are calledmixed volumes.
The Minkowski inequality for convex setsA,B ∈ C(R3) reads [4]

V (A,A,B)3 ≥ V (A)2V (B), (4)

where equality holds if and only ifB ≡ λA for someλ > 0.

2.2 Similarity measure

Using the Minkowski inequality (4), a similarity measureσ may be defined as follows:

σ(A,B) = sup
R∈R

V (B)
2
3V (A)

1
3

V (B,B,R(A))
= sup
R∈R

V (B)
2
3V (A)

1
3

V (A,R(B), R(B))
(5)

whereR denotes the set of all spatial rotations, and whereR(B) denotes a rotation
of B by R ∈ R. The second equality follows from the fact thatV (B,B,R(A)) =
V (R(A), B,B) = V (A,R−1(B), R−1(B)). Obviously,0 ≤ σ(A,B) ≤ 1, where
σ(A,B) = 1 whenB ≡ λR(A) for some rotationR and someλ > 0. The similarity
measureσ is invariant under rotations and scalar multiplications. It is not symmetric in
its arguments. Symmetric versions may be defined in various ways; an example is the
measureσ′(A,B) = 1

2 (σ(A,B) + σ(B,A)).
To find the maximum in (5), the mixed volumeV (A,R(B), R(B)) has to be mini-

mized over all orientations ofA.
If B is a convex polyhedron with facesF i and corresponding outward unit normal

vectorsui, i = 1, . . . , k, then [4]

V (A,B,B) = V (B,B,A) =
1
3

k∑
i=1

h(A, ui)S(Fi), (6)

whereS(Fi) is the area of the faceFi of B andh(A, ui) is the value of the support
function ofA for the normal vectorui.
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2.3 Slope diagram representation

Denote facei of polyhedronA byFi(A), edgej byEj(A), and vertexk byVk(A). The
slope diagram representation (SDR) of polyhedronA, denoted by SDR(A), is a unit
sphere covered with spherical polygons. A vertex ofA is represented by the interior of
a polygon on SDR(A), an edge by a spherical arc on SDR(A), and a face by a vertex of
some polygon on SDR(A). To be more precise:

– Face representation.Fi(A) is represented on the sphere by a point SDR(Fi(A)),
located at the intersection of the outward unit normal vectorui onFi(A) with the
unit sphere.

– Edge representation.An edgeEj(A) is represented by the arc of the great circle
connecting the two points corresponding to the two adjacent faces ofEj(A).

– Vertex representation.A vertexVk(A) is represented by the interior of the polygon
bounded by the arcs corresponding to the edges ofA meeting atVk(A).

In Fig. 1 an example of a polyhedron and its SDR is given.
It is easily verified that the facesFi(A) andFj(B) are parallel (that is, have the same

outward normal) when SDR(Fi(A)) coincides with SDR(Fj(B)). Also, an edgeEi(A)
is parallel toFj(B) when SDR(Fj(B)) lies on SDR(Ei(A)). Therefore, the maximum
in (5) is obtained when points of SDR(A) coincide with points or edges of SDR(B).

3 Similarity measure computation

In this section, we consider the problem of computing the similarity measure (5).
Let ` be an axis passing through the coordinate origin andr`,α be the rotation inR3

about` by an angleα in a counter-clockwise direction. The problem to be considered
is the minimization of the functionalV (A, r`,α(B), r`,α(B)). Given a fixed axis̀ and
angleα, (6) can be used to compute this functional.

While rotating the slope diagram of polyhedronA, situations arise when spherical
points of the rotated SDR ofA intersect spherical arcs or points of the SDR ofB. Such
relative configurations ofA w.r.t.B arecritical in the sense that they are candidates for
(local) minima of the objective functional to be minimized. For more precise definitions
we refer to [5].

3.1 Fixed rotation axis

Let ` be a fixed rotation axis. Thè-critical angles ofB with respect toA for mixed
volumeV (A, r`,α(B), r`,α(B)) are the angles{α′j}, 0 ≤ α′1 < α′2 < . . . < α′N <
2π, for which spherical points of the rotated slope diagram SDR(r`,α′j (B)) intersect
spherical points or arcs of SDR(A). The following result was proved in [5].

Proposition 1. Given an axis of rotatioǹ, the mixed volume of the convex polyhedra
A andB, i.e.V (A, r`,α(B), r`,α(B)), is a function ofα which is piecewise concave on
[0, 2π), i.e., concave on every interval(α′k, α

′
k+1), for k = 1, 2, . . . , N andα′N+1 =

α′1.

This result implies that in order to minimize the mixed volume for anyfixed rotation
axis `, it is sufficient to compute it for all̀-critical angles (which are clearly finite in
number), and take the minimum of the values thus obtained.
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Figure1. (a): A tetrahedron with unit normal vectors on its faces. (b): Its slope diagram represen-
tation.

3.2 Minimization over all rotation axes

An extensive analysis in [5] showed that two types of critical orientations have to be
considered for obtaining the global minimum of the mixed volumeV (A,R(B), R(B)):

Type 1 A face ofA is parallel to a face ofB, and an edge ofA is parallel to a face of
B.

Type 2 Three edges ofA are parallel to three faces ofB.

To find the orientations of Type 1 is trivial. When a faceFj(B) is parallel to a face
Fi(A), B has only one degree of freedom left, being a rotation around an axis through
the origin and the spherical point SDR(Fj(B)). Using the slope diagram representations
of A andB, it is easy to find those rotations ofB around this axis that make the slope
diagram representations of faces ofB coincide with the slope diagram representations
of edges ofA. The problem can be restated as solving a quadratic equation in one
variable [6].

To find the orientations of Type 2 means looking for those orientations ofB where
three points on SDR(B) (representing three faces ofB) lie on three spherical arcs of
SDR(A). (Notice that no more than three points have to be checked, since a rotation
is uniquely determined by three parameters.) This problem can be reformulated as fol-
lows: given two triples of 3D vectorsa , b , c andk , l ,m , find the rotationR that
transforms the vectorsa , b , c such thatR(a) is perpendicular tok , R(b) is perpen-
dicular tol ,R(c) is perpendicular tom . That is, the following system of equations has
to be solved forR:

〈k , R(a)〉 = 0
〈l , R(b)〉 = 0
〈m , R(c)〉 = 0
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Using the computer-algebra program MAPLEc©, this system was reduced in [1] to the
solution of an algebraic equation in one variable of degree 8, whose coefficients are
lengthy expressions in the elements of the vectorsa , b , c andk , l ,m . This equation
can be solved numerically using Laguerre’s method [3].

In [6] the minimization of the mixed volume was carried out by taking into account
Type-1 critical orientations only. The authors conjectured that this is actually sufficient
to find the global minimum.

In the next section we report on a number of experiments we did in order to verify
this conjecture.

4 Experimental results

In this section, we give results for minimization of the mixed volumeV (A,R(B), R(B))
of convex polyhedraA andB whenR runs over the set of all spatial rotations. Both
polyhedra were chosen to be tetrahedra, whose edge sizes varied randomly. For each
pairA andB, we performed minimization in two ways, depending on the set of rota-
tions taken into account:

Type-1 minimization All critical rotations are of Type 1: a face ofA is parallel to a
face ofB, and an edge ofA is parallel to a face ofB.

Type-2 minimization All critical rotations are of Type 2: three edges ofA are parallel
to three faces ofB.

To verify the conjecture, we checked for each pair of tetrahedraA andB whether the
result for Type-2 minimization was larger than that of Type-1 minimization.

Remark In fact, in our implementation we use two routines, one which performs Type-
1 minimization, and another one which minimizes over the combined set of both Type-1
and Type-2 critical rotations. If we find that the minimum in the second case is smaller
than that in the first case, then we know that the conjecture is false. Also, instead of
fixing A and rotatingB, we may as well fixB and rotateA in view of the identity
V (A,R(B), R(B)) = V (B,B,R−1(A)).

In the experiments, we found cases among the randomly generated pairs of tetrahedra
for which the result for Type-1 minimization was actually larger than that of Type-2
minimization, although the differences were often small. An example where the differ-
ence is substantial is shown in in Fig. 2. In this case the mixed volume for Type-1 mini-
mization equals 1.81213e+006, and that for Type-2 minimization equals 1.59156e+006,
which is significantly smaller. The corresponding tetrahedra are shown in Fig. 2.

It is interesting to look at the Minkowski sum ofB ⊕ R∗(A), with R∗ the rotation
which realizes the minimum of the mixed volume for Type-1 and Type-2 minimization,
respectively, see Fig. 3. The corresponding slope diagrams are shown in Fig. 4, with
the spherical arcs ofA shown in bold. From the pictures, one can verify that indeed
for Type-1 minimization, a spherical point ofB coincides with a spherical point of
A, and another spherical point ofB is on a spherical arc ofA, whereas for Type-2
minimization, three spherical points ofB are on spherical arcs ofA.
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5 Conclusion

We have studied the computation of a rotation-invariant similarity measure of con-
vex polyhedraA andB, involving the minimization of a mixed-volume functional
V (A,R(B), R(B)) with R running over the set of critical rotations. Two types of criti-
cal orientations were distinguished: for Type-1 critical orientations a face ofA is paral-
lel to a face ofB, and an edge ofA is parallel to a face ofB; for Type-2 critical orienta-
tions three edges ofA are parallel to three faces ofB. We performed experiments with
randomly generated tetrahedra, and computed the minimum of the volume functional
by taking into account either Type-1 or Type-2 critical orientations. We found that the
result for Type-2 minimization can be larger as well as smaller than that of Type-1 min-
imization. Therefore, in contrast to what has been conjectured in [6], one has in general
to take both Type-1 and Type-2 critical orientations into account to compute the global
minimum of the mixed volume.
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PolyhedronA PolyhedronB

Slope diagram ofA Slope diagram ofB

Figure2.PolyhedraA andB as used in the experiment, for whichV (B,B,R∗2(A)), withR∗2 the
rotation which realizes the minimum of Type 2, is smaller thanV (B,B,R∗1(A)), with R∗1 the
rotation which realizes the minimum of Type 1.
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R∗1(A) R∗2(A)

B ⊕R∗1(A) B ⊕R∗2(A)

Figure3. Top row: polyhedronA in the rotated configuration which minimizes mixed volume
according to Type 1 (R∗1(A)) and Type 2 (R∗2(A)). Bottom row: Minkowski sums of polyhedron
B and rotated polyhedronR∗1(A), c.q.R∗2(A).
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SDR(B ⊕R∗1(A)): front view SDR(B ⊕R∗1(A)): back view

SDR(B ⊕R∗2(A)): front view SDR(B ⊕R∗2(A)): back view

Figure4. Top row: two views of the slope diagram of the Minkowski sum of polyhedronB and
rotated polyhedronR∗1(A). Bottom row: two views of the slope diagram of the Minkowski sum
of polyhedronB and rotated polyhedronR∗2(A). HereR∗1 andR∗2 are the rotations which realize
the minimum of Type 1 and Type 2, respectively. Bold curve segments indicate spherical arcs of
polyhedronA.


