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Abstract. Experimenting and building integrated, operational systems in compu-
tational vision poses both theoretical and practical challenges, involving method-
ologies from control theory, statistics, optimization, computer graphics, and inter-
action. Consequently, a control and communication structure is needed to model
typical computer vision applications and a flexible architecture is necessary to
combine the above mentioned methodologies in an effective implementation. In
this paper, we propose a three-layer computer vision framework that offers: a) an
application model able to cover a large class of vision applications; b) an archi-
tecture that maps this model to modular, flexible and extensible components by
means of object-oriented and dataflow mechanisms; and c) a concrete software
implementation of the above that allows construction of interactive vision appli-
cations. We illustrate how a variety of vision techniques and approaches can be
modeled by the proposed framework and we present several complex, application
oriented, experimental results.

1 Introduction

Experimenting and building systems in computational vision poses several major chal-
lenges. First, such systems involve methodologies from various areas, such as object
modeling, optimization, control theory, statistics and computer graphics. Secondly, a
control and communication structure is necessary to build complete classes of vision
application in terms of the above methodologies. Finally, in order to satisfy the different
demands of particular vision applications, one needs a software architecture where they
can be built in a complete, extensible, flexible and interactive manner.

These are some reasons for which relatively few generic-purpose vision software
systems exist. Most such systems are monolithic software architectures built around
specialized linear algebra or numerical optimization modules such as Netlib [13] and
LAPACK [1], image processing tools such as SUSAN [18] and Intel’s Image Processing
Library [8], or basic visualization tools such as OpenGL [24] and Geomview [12]. Few
such systems, if any, have a high-level architecture able to integrate the many aspects
of a computer vision problem (computations, control, visualization, user interaction).
Moreover, their design often lacks the simplicity, extensibility and completeness required
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22 C. Sminchisescu and A. Telea

to build various vision applications out of generic, reusable components. For instance,
Intel’s Open Source Computer Vision Library [8] offers various functionalities, such
as camera calibration, image thresholding, image-based gesture recognition, but does
not structure them in a modular, extensible, and customizable way. Target Jr [19], in-
tended object-oriented, employs a one-way communication to its Netlib-based Fortran
optimization routines. Since this control is hard-wired in its classes, Target Jr is not us-
able for applications that require user input or data monitoring during the optimization
process. Finally, almost no computer vision software we know allows adding interac-
tive manipulation and visualization of its data structures to the computational code in
a simple, yet generic manner. Visual interactivity is important in several respects, such
as the setting of correspondences between 3D vision models and 2D images, and for
monitoring and control of the time evolution of vision applications.

Summarizing, many vision systems lack a generic control model. Secondly, they
provide heterogenous functionalities that cannot be easily adapted to new application
contexts.

In order to address these problems, we propose a generic high-level application model
that covers a large class of vision approaches, a software architecture of this generic
model that combines the flexibility, extensibility, and interactivity requirements, and
an efficient and effective implementation of this architecture. The proposed application
model is based on the idea that a large range of vision applications share the concept of
generic optimal state estimation. Such applications involve:

– amodelcharacterized by its state
– a generativetransformationwhich predicts discretized model features in the obser-

vation space, based on a current state configuration
– anassociationof predicted and extracted features in the observation space to evaluate

a configuration cost
– a control strategythat updates the model state such that the evaluation cost meets

an optimality criterium

This application model is powerful enough to cover many techniques such as deformable
models/dynamical systems, optimization based methods and sampling based methods,
as well as combinations of them (mixed methods). The application model is flexible and
extensible as it does not make any assumptions about the ways the model is represented
or discretized, the type and number of extracted features (cues), how the association is
done, and the underlying strategy used to estimate and evolve the model state. From the
proposed model, we derive an architecture that provides desired extensibility, flexibility
and modularity requirements in terms of object-oriented and dataflow mechanisms, and
finally, we propose an implementation of the above architecture which allows building
complex vision applications with visual parameter monitoring and interactive control.

The rest of the paper describes the proposed vision framework, as follows. Section 2
describes the generic vision application model we propose. Section 3 describes an ar-
chitecture that combines the model’s genericity with the flexibility, extensibility, and
modularity requirements, and presents a concrete implementation of the architecture.
Section 4 presents several vision applications constructed in the proposed framework.
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Fig. 1.Vision application model

2 Application Model

The proposed application model exploits the observation that many vision applications
are based on the generic state estimation concept.This concept involves optimal estimates
of a model’s parameters based on a (possibly temporal) sequence of observations. In
detail, our application model involves the following elements (see also Fig. 1 which
depicts these elements and the data streams between them):

1. a “representational”discretizationin a spatial domain.
2. a composite (generally non-linear)generalized transformation(T), parameterized in

terms of the current configuration (typically an instance of the state) which generates
predictions in the observation space for points in the discretized domain. This item
and the previous one form themodel representation.

3. a sequence of (possibly temporal) observations or extractedfeatures.
4. a way to associate predictions to features to evaluate aconfiguration costor higher

order operators associated with it (their computation typically needs equivalent
quantities of T).

5. astrategyto evolve the model state based on the evaluation of configuration costs
or higher-order operators associated to it, such as its gradient or Hessian, in order
to match an optimality criterium (see Fig. 1).

6. severaluser interactionandvisualizationcomponents responsible for the application
building and scene exploration, including interactive model-data couplings, 2D and
3D renderings, as well as classical graphics user interfaces (GUI).

The application model elements outlined above are detailed in the following sections.

2.1 Configuration Evaluator

The basic task of the configuration evaluator is to compute the cost of a configura-
tion or higher order operators (gradient or Hessian) associated with it. Their evaluation
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a b c

Fig. 2.Various hierarchical models used during tracking

is typically performed in terms of equivalent quantities computed for the model/data
generalized transform (T).

Model Representation. The model is spatially discretized in a domainΩ. For any
point u ∈ Ω, we can compute a prediction in the observation spacex = T (q, u).
The Jacobian matrix of the generalized transformation makes the connection between
differential quantities in parameter and observation spaces:

ẋ =
∂T

∂q
q̇ = Lq̇ (1)

The process of model estimation involves a data association problem between indi-
vidual model feature predictionsri and one or more observations that we shall generically
denotēri (with additional subscripts if these are several).We refer to∆ri(x) = r̄i−ri(x)
as the feature prediction error.

Feature Extraction, Data Association and Error Evaluation. These components ex-
tract the various types of information used in vision applications. Typical datasets include
2D image data, namely edge/contour/silhouette information, optical flow information,
or 3D range data obtained, for instance, from a multi-camera system.

A subsequent data associator or matching stage establishes correspondences between
model predictions and data features. The matching is either explicit such as in the case
of an optical flow module or a 3D model to range features, or implicit, when every
predicted model feature has already a computed cost on a potential surface (see below
and Fig. 3). In the case of explicit matched features a separate error evaluation stage
computes the feature prediction error, based on a certain error distribution. Common
error distributions include both well-known non-robust Gaussian ones and robustified
ones that model the total (inlier plus outlier) distribution for the observation, e.g.:

ρi(s, σ) = ν(1 − e− s
σ2 ) (2)
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a b c d e

Fig. 3. Image processing operators: original image (a), edge detection (b), motion boundaries (c),
robust flow in horizontal (d) and vertical (e) directions

whereν, σ control the outlier threshold and robust influence, respectively,s is the squared
feature prediction error,s = ∆riWi∆ri

>, andWi is a symmetric positive definite
weighting matrix associated with featurei.

For implicit feature matching, let us consider the case of edges, where a potential
surface can be build such that it has gaps in the places in the images corresponding to
edge features or steep changes in intensity. The image potential is computed for every
image frame from the image intensityI(x, y) as follows:∏

(x, y) = −β ‖∇(Gσ ∗ I)(x, y)‖ (3)

whereσ determines the width of the Gaussian functionGσ, ∗ denotes the convolution
operator, andβ determines the potential surface steepness. The potential is generating a
2D force field, given by:

fimage(x, y) = −∇
∏

(x, y) (4)

2.2 State Representation and Control

The state representation and control components constitute the core of the application
model. Various state representations correspond to various control strategies. Typical
ones include unimodal, Gaussian state representation and multiple-hypothesis (sample-
based) representations. Generic control strategies include:

– continuousones (deformable models, continuous optimization) which generally
assume unimodal state representation and evaluation of the cost function and its
higher order operators (gradient, Hessian, etc.);

– discreteones which only involve cost function evaluations and sampling methods
for focusing the search effort;

– mixedstrategies that involve a combination of the first two.

Regardless of the state representation and control employed, there is a unique interface
between these components and the configuration evaluator (Fig. 1).
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Dynamical Systems and Deformable Models.A deformable model estimates the state
of the system by numerical integrating a synthetic dynamical system that encodes the
fitting error. The Lagrangian equations governing its evolution can be written as:

Mq̈ + Dq̇ + Kq = fq, fq =
∫

L>e (5)

whereM =
∫

δL>L, D =
∫

γL>L, andK = diag(ksi), with δ andγ being tuning
parameters,ksi being the stiffness associated with the parameteri, andfq are generalized
“forces”, acting on the state parameters ande is a distance error in the observation space
(typically anL2 norm).

Continuous Optimization Based Methods. Optimization based methods perform a
non-linear estimation in terms of the generalized transformation gradient and Hessian.
Popular optimizers include second order damped Newton trust region methods that
choose a descent direction by solving the regularized system [6]:

(H + λW )δq = −g (6)

whereW is a symmetric positive-definite matrix andλ is a dynamically chosen weighting
factor. For robust error distribution specific gradient and Hessian approximations have
to be derived in terms of the robustifiers [16]. For least squares problems,g =

∫
L>e

andH ≈ ∫
L>L.

Sampling Methods. Sampling methods, usually known in vision under the generic
name of CONDENSATION [3], are discrete methods that propagate the entire parameter
distribution in time as a set of hypotheses, or samples, with their associated probability. In
each frame, the entire distribution is resampled (i.e. recomputed and reweighted) based
on new image observations. As these methods do not traditionally have a continuous
component, evaluating the distribution in our scheme requires only the evaluation of a
configuration, but no other associated higher-order operators. The computational burden
lies in the strategies for sampling the parameter distribution in order to locate typical
sets, i.e. areas where most of the probability mass is concentrated. Known strategies
include importance, partitioned (Gibbs) or annealing based sampling methods (see [9]).
We developed an uniform interface such that various discrete sampling methods can be
parameterized by the search strategy.

Mixed Continuous/Discrete Methods.Mixed continuous/discrete methods have been
proposed recently [16] in an effort to combine generic robustness properties of sample-
based techniques with the local informed, accuracy and speed properties of continuous
ones. The state is represented effectively as a set of hypotheses. In each frame, each
hypothesis is subject to a continuous optimization followed by a hypothesis generation
based on the uncertain directions of the continuous estimate. Finally, the current set of
hypotheses is pruned and propagated to the next time step.
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2.3 Interaction/Visualization

The interaction and visualization modules are responsible for scene exploration and ma-
nipulation, parameter monitoring and control, and interactive application building.While
further details are provided in Section 3, we point out that the dual, simultaneous type
of control, user driven vs. application driven, imposes particular demands on the sys-
tem design, namelyconsistencyandcontrolproblems: user input has to be consistently
integrated and propagated into the application data structures (even during application
driven execution), while the structuring of individual application components has to al-
low external interaction during the execution of their different operations. We address
these problems by means of automatically enforcing dataflow consistency and by using
object-orientation in order to design components with open, non-encapsulated, control.

3 Architecture

The above sections present a generic model that can accommodate a large class of vision
applications. These applications share the conceptual structure described in Fig. 1 in
terms of component functionalities and intercommunication. To make this application
model viable, one must produce a software implementation of it that complies with the
requirements of modularity, simple application construction and extension, and flexible
control specification, discussed in the previous sections.

We have achieved the above combination by choosing a specific software architecture
for implementing the discussed conceptual model. This architecture is based on the
combination of two design principles: object-orientation and dataflow, as follows.

3.1 Object Orientation

Object orientation (OO) provides a sound, complete framework for modeling a system
as a set of related software modules, by what is called aclass hierarchy[7]. Specific
mechanisms such as subclassing allow the incremental construction of application func-
tionality by specializing a few basic concepts, as well as an effective reuse of the written
code. In our case, we have implemented our vision application model as a C++ class
library that specializes a few base classes that correspond to the generic concepts shown
in Fig. 1. The fixed characteristics of the model, such as the data interfaces between
the generic components in Fig. 1, reside the library’s base classes. Subclasses add spe-
cific functionality to the basic components, in an orthogonal way. For example, different
control strategies or model parameterizations, error evaluations, or feature detection
techniques can be added easily, independently on each other, and without modifying the
basic software architecture.

3.2 Dataflow

Object orientation effectively models the static, structural relations between the frame-
work’s components. To model the dynamic, control relations, we added thedataflow
concept to the C++ classes. We structure a vision application as a network of classes that
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have data inputs, outputs, and an update operation. Application execution is driven by
the network structure: once a class’s input change, the class reads the new input, updates
its output, and triggers the execution of the other classes connected to its output, thus
enforcing thedataflow consistency. A dataflow architecture allows constructing com-
plex control strategies in a simple, yet flexible way, by connecting together the desired
components in the desired network. Keeping the vision computational code inside the
components and the control strategy outside them, in the network structure, has two
advantages: the vision components are simple to write, extend, and understand, and they
are directly reusable in applications having different control scenarios.

3.3 Implementation

Writing a vision application in the above setup implies constructing and updating the
desired dataflow network. We have made this process flexible, by integrating our vi-
sion C++ library in thevission dataflow application environment [20]. Invission, the
dataflow networks are constructed interactively by assembling iconic representations of
C++ classes in a GUI network editor (see Fig. 5 b). Figure 4 a,b show two such networks
for the vision applications discussed in the next section. The graphical icons are actual
subclasses of the vision components shown in Fig. 1.

Besides providing a simple, intuitive way to construct the application, this solution
offers several other advantages as an implementation for our architecture. First,vission
provides graphics user interfaces (GUIs) automatically for all the classes of a network,
thus allowing for parameter changes and monitoring. Figure 5 a shows such an interface
for the 3D range data tracking application discussed in the next section. Secondly, once
a parameter is changed, the traversal and update of the dataflow network is performed
automatically, thus enforcing thedataflow consistency. Thirdly,vission can dynamically
load different C++ class libraries. Consequently, we integrated our vision library with
the Open Inventor library which provides several direct manipulation tools and 2D and
3D viewers by which monitoring the time evolution of a vision experiment and setting
up model-data correspondences can be done in a simple, interactive way, as described
in the next section.

There exist several dataflow application environments similar tovission, such as
AVS [22] or Khoros [25]. From an end user point of view, these environments offer the
same visual programming, dataflow, and user interface facilities asvission. However, in-
tegrating our vission C++ library in such environments would pose several architectural
problems. First, these environments are primarily designed to integrate C or FORTRAN
code. Integrating C++ libraries, such as our vision library or the Open Inventor library,
is a complex task. Secondly, these environments assume that the code to be integrated
is developed based on an application programmer interface (API) provided by the envi-
ronment. Such an API usually contains data types and functions via which the user code
and the environment communicate. In our case, however, we wish to keep our vision
library independent on a specific environment API. In this way, our vision library can
be deployed in different environments, such as custom turnkey applications, with little
or no modification.
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a) b)

Fig. 4.Tracking networks for human motion (a) and 3D range data (b)

4 Applications

In this section we discuss applications involving shape estimation and tracking both on
2D monocular image data and 3D range data. These applications that we have imple-
mented in our framework are typical examples for the state estimation approach based
on temporal observations.

In order to model a large class of objects or structures, we have implemented a
hierarchical multi-object parametric representation (see Fig. 2), by subclassing the model
representational components (Fig. 1). More precisely, any nodeui ∈ Ω corresponding to
one of the objects discretization domain can be transformed into a 3D pointpi = pi(x),
and subsequently into an image predictionri = ri(x), by means of a composite non-
linear transformation:

ri = Ti(x) = P (pi = A(xa, xi, D(xd, ui))) (7)

whereD represents a sequence of parametric deformations which construct the corre-
sponding part in a self-centered reference frame,A represents a chain of transformations
that position the corresponding part in the hierarchy, andP represents the perspective
projection of the camera, in case we work with 2D data. The entire transformationT
(see Subsection 2.1) is assembled in terms of the individual transformsTi.

4.1 2D Image-Based Temporal Estimation

In this subsection, we illustrate the flexibility of the presented framework by a temporal
estimation application based on 2D image sequences. The examples we show involve
various types of model representations, various types of feature extractors and data
associators as well as different control strategies and interaction modules.

Human Body Tracking. We use human body motion sequences that consist of an arm
and an entire human body motion (see Figs. 9 and 8). They both involve complex motions
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with significant self-occlusion, in cluttered backgrounds, including subjects wearing
loose clothing. In order to accommodate the complexity of such an application, we
have derived a novel mixed-type control method, combining robust (Eqn.2) continuous
optimization and sampling along the uncertain directions of the continuous estimate (see
Section 2.2).

For model representation, we use the hierarchical scheme mentioned above and
superquadric ellipsoids with tapering and bending deformations as basic representational
primitives. The estimation involves the articulations degrees of freedom, namely 6 for
the arm and 30 for the human model.

We employ both edge and intensity features as cues during estimation. The optical
flow has been extracted based on a robust multi-scale computation and the edges have
been weighted based on the motion boundary map extracted from that computation (see
Fig. 3). Furthermore, we used a multiple association scheme for the assignment of model
contour predictions to image observations. Consequently, the Feature Extractor and Data
Associator modules have been implemented by chaining together the corresponding
Extractors/Associators for contours and optical flow, weighted accordingly (see Fig. 4 a).

A 3D model to 2D image Manipulator interaction module has been employed for
specifying correspondences between the model joints and the subject joints in the image,
in order to initialize the model in the first frame of the sequence. Subsequent estimation,
both for the model initial pose and proportions as well as articulation parameters during
the next frames, is fully automated based on image cues. Finally, the model geometry
and deforming forces are visualized by the GeomMapper and the HedgehogMapper
modules respectively, within an interactive Viewer module.

Incremental ModelAcquisition andTracking. The bicycle sequence in Figure 10 uses
a mixed model representational structure and a control strategy based on deformable
models for the state estimates (Section 2.2). Only contours are used as image cues
initially, based on a single association scheme using implicit matching in a computed
image potential (Section 2.1). User interaction was needed during model initialization
as for the human sequence.

The tracking started with a minimal hierarchical model, a frame consisting of 3
parametric shapes. New model components, with different discretization and param-
eterizations, are discovered and recovered during tracking based on geometric con-
sistency checks (see [17] for details). Particularly, lines moving consistently with the
bicycle frame, but not part of the initial parameterization, are identified, reconstructed,
and integrated in the model representation, and further used to improve the tracking
robustness as additional cues. Reconstructed model (predicted) lines are displayed in
red while image extracted lines (features) are displayed in green. New corresponding
cues for line alignment are added to the existing ones (based on model contours). The
extended model representation finally consists of heterogenous components: different
discretizations (points and lines) and parameterizations (deformable shapes and rigid
lines).

This application needs flexibility at all levels of the vision system: we need various
representations and discretizations for model components, various feature extractors
and data associators corresponding to each component prediction/observation couple,
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a) b)

Fig. 5.Data viewer and model manipulator interface (a).A vision application in the visual dataflow
network editor (b)

and a way to integrate each component contribution as a cue in the model control. For
instance, in a deformbale model control, Jacobians corresponding to each component
representational mapping need to be evaluated.

4.2 3D Flow Feature Tracking

In this section, we present a 3D feature tracking and reduced modeling application based
on information extracted from fluid dynamics simulations. We employ a model represen-
tation based on a superquadric ellipsoid with tapering, bending, shearing and twisting
parametric transformations. Next, we employ a control strategy based on deformable
models (see Section 2.2). The application’s network is shown in Fig. 4 a.

In this application, isosurfaces of vorticity magnitude are extracted from a 3D1283

time-dependent CFD dataset1 by a specialized IsosurfaceExtractor module. In the first
frame, a desired feature is selected for tracking. The model shape and position are ad-
justed to approximate the selected feature’s geometry by using the GUIs and Manipulator
tools mentioned in Sec. 3.3 (Fig. 5 a). Figures 6 e-h show the model convergence (ren-
dered in wireframe) towards a given isosurface geometry, during the initialization phase.
The model is first rigidly attracted towards the feature, then starts bending to approxi-
mate feature’s snake-like form. We used a Data Associator based on nearest neighbor
correspondences to match model discretized points to points on the isosurface of in-
terest. Figures 6 a-d show several time instants after initialization when the tracking is

1 Dataset courtesy of N. Zabusky, D.Silver and X. Wang [15]
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Fig. 6.3D range data tracking examples

a) b)

Fig. 7.3D flow features, model, and deforming forces

automatic. The deforming forces for the initial, respectively converged model state, are
shown in Fig. 6.

5 Conclusions

We have presented a layered framework for the modeling, design and implementation
of integrated computer vision applications. Our proposal includes: (1) an application
model in the form of generic state estimation, involving a control and communication
structure able to cover a large class of vision paradigms; (2) an architecture able to
support flexibility, extensibility and interactivity demands based on object-oriented and
dataflow principles; and (3) an effective and efficient implementation of this architecture.

We have subsequently presented how various vision technique classes, like the ones
based on dynamical systems/deformable models, continuous optimization, random sam-
pling, as well as combination of them, can be naturally integrated in the proposed frame-
work. Finally, we have presented several complex integrated vision applications which
have been easily built within our framework.
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