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The composition of semi finished inventories at a
solid board plant

Henrico L.T. Wanders � Gerard J.C. Gaalman y Gerard Sierksma z

SOM-theme A Primary processes within firms

Abstract

A solid board factory produces rectangular sheets of cardboard in two different formats, namely
large formats and small formats.

The production process consists of two stages separated by an inventory point. In the first stage a
cardboard machine produces the large formats. In the second stage a part of the large formats is
cut into small formats by a separate rotary cut machine. Due to very large setup times, technical
restrictions, and trim losses, the cardboard machine is not able to produce these small formats.

The company follows two policies to satisfy customer demands for rotary cut format orders.
When the company applies the first policy, then for each customer order an ‘optimal’ large
format (with respect to trim loss) is determined and produced on the cardboard machine. In
case of the second policy, a stock of a restricted number of large formats is determined in
such a way that the expected trim loss is minimal. The rotary cut format order then uses the
most suitable standard large format from the stock. Currently, the dimensions of the standard
large formats in the semi finished inventory are based on intuitive motives, with an accent on
minimizing trim losses.

From the trim loss perspective it is most efficient to produce each rotary cut format from a
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specific large format. On the other hand, if there is only one large format in each caliper, the
variety is minimal, but the trim loss might be inacceptably high.

On average, the first policy results in a lower trim loss. In order to make efficiently use of the
two machines and to meet customer’s due times the company applies both policies.

In this paper we concentrate on the second policy, taking into account the various objectives
and restrictions of the company. The purpose of the company is to have not too many differ-
ent types of large formats and an acceptable amount of trim loss. The problem is formulated
as a minimum clique covering problem with alternatives (MCCA), which is presumed to be
NP-hard. We solve the problem by using an appropriate heuristic, which is built into a decision
support system. Based on a set of real data, the actual composition of semi finished inventories
is determined. The paper concludes with computational experiments.

(also downloadable) in electronic version: http://som.rug.nl/
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1. Introduction

A solid board factory produces sheets of cardboard in two formats, namely large and
small. A large format is a large sheet of cardboard, whereas a small format has smaller
dimensions. To produce both formats, the factory uses a cardboard machine, a die cut
machine, and a rotary cut machine. A large format is ready after production on the
cardboard machine, whereas a small format needs an additional processing step. Be-
cause of technical restrictions (e.g. dimension tolerances), very large setup times, and
trim losses, small formats cannot be produced directly on the cardboard machine. Small
formats are cut from large formats. There exist two types of small formats; rotary cut
formats and die cut formats. We focus our attention in this article to the rotary cut for-
mats. The rotary cut machine cuts batches of one rotary cut format order from one type
of large formats.

The cardboard production process as a whole is rather complex. Figure 1.1 shows a
schematic reproduction of the main processing steps on the machines. The inputs of
the process are: waste paper (mostly old newspapers), water, additives or substances,
and, if necessary, lining paper, and other adhesives.

The production process consists successively of the following integrated steps. The first
step is the transformation of input material (waste paper) into pulp by mixing the waste
paper with hot water. After filtering, sieving, and pressing the liquid percentage drops
to 50%. After the remaining water is evaporated, the layer on the cardboard machine
is ready. If the caliper of the cardboard needs to be above a certain value (1:5mm)
the layer is laminated with lining paper. The lining paper production process is similar
to that on the cardboard machine. Most of the lining paper comes from stock, and is
manufactured by the company itself. The product is then cut into large formats, which
are stored on pallets, and after a quality control in the wrapping street, the product is
either ready or directed to the converting department.

The company produces the cardboard in several calipers. In case of laminated card-
board, the cardboard consists of three layers. The so-called inner layer is produced on
the cardboard machine and the other layers, which are called lining papers, are pro-
duced on the paper machine. During the production process the lining paper is lami-
nated on the inner layer. The production department can vary the caliper of the layers
as long as the total caliper of a cardboard sheet stays equal. If the capacity on the
paper machine (cardboard machine) is too low, the company may decide to use thin-
ner (thicker) lining paper and a thicker (thinner) inner layer. In Sierksma and Wanders
(2000) the laminating process and related aspects are studied in more detail.
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In the converting department the large formats are cut into small formats. The depart-
ment has two different types of machines, namely four rotary cut machines and one
die cut machine. Figure 1.2 shows the relationship between a large and small format
sheet. Figure 1.2a shows the large format, 1.2b the rotary cut formats in a large format,
and 1.2c the die cut formats in a large format. A rotary cut machine only manufactures
rectangular small format sheets, whereas a die cut machine is able to make sheets with
rounded corners. Another difference is that at the die cut machine a set of sheets can
be cut from one large format (the dashed rectangles in Figure 1.2c). A set normally
consists of three sheets with different format dimensions, for instance the front, back
and spin side of a book.

In this paper we only consider customer orders that are processed on the rotary cut ma-
chine; the rotary cut formats. The restrictions on the rotary cut machine are determined
by its physical dimensions, and the number of knives that can be used. In the rest of this
text we use both the term ‘small format’ and ‘rotary cut format’ to refer to a rotary cut
format.There are two types of cuts, namely horizontal and vertical cuts. The meaning
of ‘horizontal’ and ‘vertical’ is related to the direction in which the paper feeds at the
cardboard machine. Both large and rotary cut formats have a rectangular shape. The
shaded region of Figure 1.2b and 1.2c is the trim loss on the cutting machine, whereas
the cutting losses in a particular cutting direction are defined as the rim cuts (in mm).
We only consider the trim loss from the rotary cut machines.

From the trim loss perspective it is most efficient to produce each rotary cut format
from a specific large format. On the other hand, if there is only one large format in
each caliper, the variety is minimal, but the trim loss might be inacceptably high. The
determination of an acceptable variety of stock large formats is the purpose of this
paper: not too many different types of large formats and an acceptable amount of trim
loss.

The converting department uses two categories of inventory. The first category is cus-
tomer order specific: each customer order has its own ‘optimal’ large format with a
minimal amount of trim loss on the cutting machine. The second category consists of a
restricted number of large formats in every relevant caliper that is held to stock. A ro-
tary cut format order uses then the most suitable standard large format. This inventory
is defined as the large format stock.

The company only cuts a rotary cut format order from the large format stock, either
if the order demand is less than 3000kg, or if the delivery times are too short to pass
through all processing steps, including production on the cardboard machine.

4



Currently, about 25% of the production volume consists of small format orders (both
rotary cut and die cut) and this percentage is still increasing. Besides the shift from
large to small format orders the due dates and the order sizes are decreasing. These
trends in customer demand cause a deteriorating performance and exceeding due dates,
if all large formats have to be manufactured customer specific. The large format stock
will become more important, because an appropriate composition of the large format
stock might cushion the disturbances in the production process.

Given the above mentioned trends, the control of the decoupling inventory between
the cardboard and rotary cut machine will become more and more important. At the
moment the dimensions of the stock formats are based on intuitive motives, with an
accent on minimizing trim losses on the cutting machines. The company does not use
any means that considers both the overall trim loss and the number of large formats
within a caliper; only the trim loss is used as an objective to be minimized. In this paper
we concentrate on the problem of determining a restricted number of large formats in
the most important calipers, such that the expected trim loss is minimized, taking into
account the various objectives and restrictions of the company.

The organization of the paper is as follows. We start the analysis in Section 2 and use a
simple example to explain the problem and its structure. The example gives an impres-
sion in which direction the problem can be formalized. In Section 3 we formalize the
problem as a minimum clique covering problem with alternatives (MCCA). Because
of the specific structure of the problem, the general heuristics known from literature do
not perform well. Therefore in Section 4 we formulate a 5-stage heuristic, which will
be labeled as large sheet-set covering heuristic. The heuristic is tested for a variety of
calipers based on a set of real data. Section 6 gives some conclusions and indications
for future research.

2. The minimal large format stock problem; an example

Recall that the problem is to determine, for each specified caliper, a minimal set of in-
ventory large formats. We define this problem as the minimal large format stock prob-
lem; notation MLFS-problem. Actually the company wants to satisfy two objectives,
namely:

� an average trim loss over all large formats in the stock below a certain value,
and

� a stock level, such that the inventory costs are acceptable.
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In practice, the company reduces the number of different types of large formats in a
specific caliper to say 3 or 4, so that most rotary cut format orders can be cut from
these large formats with an acceptable trim loss. In our solution procedure we also start
with calculating the inventory of large formats and adjust, if desired, the trim loss.

Throughout this paper expressions of the form s1 � s2 always mean the dimension of
a cardboard sheet, with s1 the horizontal dimension and s2 the vertical dimension. Let
J be the set of large format types in stock to be determined. Consider a large format
with label j. Let gj1 � g

j
2 be the dimension of large format j. I is the set of rotary cut

format orders. In each specific order, all rotary cut sheets have the same dimensions.
Let k1;i � k2;i be the dimension of the rotary cut sheets in order i 2 I (shortly, rotary
cut format i). Moreover, by mj

1;i �m

j
2;i is denoted the maximal number of rotary cut

sheets in rotary cut format i that can be cut from large format j. Furthermore, aj1;i and

a

j
2;i are the rim cuts. Clearly, mj

�;i � k�;i + a

j
�;i = g

j
� for i 2 I; j 2 J; � 2 f1; 2g

, i.e. the number of strokes times the rotary cut format dimension plus the rim cut is
equal to the large sheet dimension. Define

m

j
�;i =

$
g

j
� � a

min
�

k�;i

%
for� 2 f1; 2g ; (1)

being the number of strokes in a specific direction.

Due to technical restrictions, the rim cuts are bounded as follows:

a

min
� � a

j
�;i � a

max
� for i 2 I; � 2 f1; 2g ; (2)

and the large sheet dimensions in the following way:

g

min
� � g

j
� � g

max
� for j 2 J; � 2 f1; 2g : (3)

The following example shows that the set of large formats is in general not unique.
Suppose we have four rotary cut format orders, labelled 1, 2, 3, and 4, in a given caliper.
Table 2.1 shows the data.

For simplicity, assume that the large sheet bounds are gmin
1 = g

min
2 = g

min = 1000mm

and gmax
1 = g

max
2 = g

max = 1350mm, whereas the rim cut bounds are amin
1 = a

min
2 =

a
min = 30mm and amax

1 = a
max
2 = a

max = 100mm.

For each order we have calculated all possible large sheet dimensions, the so-called
large format feasible region (LFF-region). Such a region can be represented as a rect-
angle, of which the left-lower vertex and the right-upper vertex are the minimum and
maximum values, respectively, of the large formats allowed.
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Tabel 2.1: Data sample
Rotary cut format Demand

Label Dimensions (sheets)

1 275� 224mm 75750

2 214� 267:5mm 11000

3 280� 211mm 14600

4 234� 255mm 62100

In general, the rectangles can be represented by its four vertices in the following way.
Let � 2 f1; 2g ; where � = 1 denotes the horizontal direction and � = 2 the vertical
direction in Figure 2.2.

Each rectangle is denoted by its left-lower vertex (A, B, : : :, I). Table 2.2 shows the
LFF-regions for all rotary cut format orders. The large format set of a certain small
format order is the collection of all LFF-regions allowed for the small format order.

Tabel 2.2: Vertices of the feasible regions for the rotary cut format sample
Rotary cut format

Vertex
Large format rectangle # of

Label Size Label Min. value Max. value sheets

1 275� 224 A 1:1 1130� 1150 1200� 1220 4� 5

2 214� 267:5 B 2:1 1100� 1100 1170� 1170 5� 4

C 2:2 1314� 1100 1350� 1170 6� 4

3 280� 211 D 3:1 1150� 1085 1220� 1155 4� 5

E 3:2 1150� 1296 1220� 1350 4� 6

4 234� 255 F 4:1 1000� 1050 1046� 1120 4� 4

G 4:2 1200� 1050 1270� 1120 5� 4

H 4:3 1000� 1305 1046� 1350 4� 5

I 4:4 1200� 1305 1270� 1350 5� 5

Consider for example the order with label 2. The large format set of rotary cut format
2 consists of the two rectangles 2:1 and 2:2. They can be calculated as follows. We
may cut either 6 � 4 (6 horizontal and 4 vertical), or 5 � 4 small sheets from a large
sheet within the large sheet dimension restrictions. Taking the smallest rim cut (amin

� =

30mm; � 2 f1; 2g) we obtain the large formats corresponding to the vertices B and
C, respectively. Namely, B = (5� 214 + 30; 4� 267:5 + 30) = (1100; 1100), and
C = (6� 214 + 30; 4� 267:5 + 30) = (1314; 1100).
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The largest rim cut (amax
� = 100mm; � 2 f1; 2g) gives the right-upper vertex of the

rectangle. For rotary cut format 2 this results in
B
1 = (5� 214 + 100; 4� 267:5 + 100) = (1170; 1170) and

C
1 = (6� 214 + 100; 4� 267:5 + 100) = (1384; 1170), respectively.

In Figure 2.2 we have depicted all possible large formats for this example. The large
dotted square is determined by g

min and g
max, which are the technical restrictions

on the large sheet dimensions. Hence each point in this square refers to an allowed
large sheet size. For instance, the point G with coordinates (1200; 1050) refers to a
large format with horizontal dimension g1 = 1200mm and vertical dimension g2 =

1050mm.

We prune values outside the dotted large square determined by gmin and g
max. In our

example, C1 = (1384; 1170) is not allowed. Therefore, the rectangle prunes at C2 =

(1350; 1170).

In order to serve rotary cut format 2, a point in either rectangle 2:1 or 2:2 must be
selected. For rotary cut format 3 a point has to be selected in either 3:1, or 3:2; for
rotary cut format 4 a point in either 4:1, 4:2, 4:3, or 4:4 has to be selected.

If we restrict the selection to large formats with a minimal trim loss, we can simply
take the large format represented by the lower left corner of the intersection of the
corresponding rectangles. For instance, to serve the rotary cut formats 2 and 3, we may
take the intersection of the rectangles 2:1 and 3:1, which is the rectangle determined by
the points (1150; 1100) and (1170; 1150) respectively. Vertex K is the lower left corner
of this intersection rectangle, and corresponds to the large format that cuts both orders
with a minimal (average) trim loss.

Figure 2.2 shows that it is not possible to use only one large format type for covering all
rotary cut formats. The vertex L covers all rotary cut format orders, except for order 4,
so that at least two large formats are needed in order to cut all rotary cut formats. From
Figure 2.2 it is not immediately clear which large formats result in a minimum total
trim loss. We have to calculate and compare different sets of large format types. Table
2.3 lists all collections of large format types covering all rotary cut formats together
with the corresponding trim losses.
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Tabel 2.3: Possible sets of large formats

1st large format 2nd large format Rotary cut format

Label Dimensions Label Dimensions Label
Cut Trim Net
from loss need

I 1200� 1305mm L 1150� 1150mm 1 L 6:8% 3788

2 L 13:4% 550

3 I 9:5% 609

4 I 4:7% 2484

Average trim loss 6:8%

I 1200� 1305mm A 1130� 1150mm 1 A 5:1% 3788

2 A 11:9% 550

3 I 9:5% 609

4 I 4:7% 2484

Average trim loss 5:9%

G 1200� 1050mm L 1150� 1150mm 1 L 6:8% 3788

2 L 13:4% 550

3 L 10:7% 730

4 G 5:3% 3105

Average trim loss 7:0%

J 1200� 1085mm A 1130� 1150mm 1 A 5:1% 3788

2 A 11:9% 550

3 J 9:1% 730

4 J 8:3% 3105

Average trim loss 7:1%

The first four columns of Table 2.3 show the set of large formats that is considered,
together with their dimensions. The other five columns show the results on the rotary
cut format level. The column with the label ‘Cut from’ shows which large format is
used to cut the rotary cut format order such with minimal trim loss. The ‘trim loss’
column, shows the trim loss if the rotary cut format order is cut from the corresponding
large format. The last column shows how many large sheets are necessary in order to
cut the demanded number of rotary cut sheets. Besides the individual trim losses we
also show the average trim loss. The average trim loss shows the trim loss, if each rotary
cut format order is cut from the corresponding large format with minimal trim loss.
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In order to calculate the trim loss and net need of large sheets, we use the following
formulas. The trim loss T ji denotes the percentage of waste if order i is cut from large
format j (i 2 I; j 2 J). One can easily verify that:

T

j
i =

0
@1�

�
m

j
1;i � k1;i

�
�

�
m

j
2;i � k2;i

�
g

j
1 � g

j
2

1
A�100% for i 2 I; j 2 J:(4)

For any i 2 I let qi be the number of demanded rotary cut format sheets in order i. Then
the net need Qj

i is the number of sheets in large format j needed for the production of
order i. Clearly,

Q

j
i =

&
qi

m

j
1;i �m

j
2;i

'
for i 2 I; j 2 J: (5)

Thus, if a customer demands 14600 rotary cut format sheets with dimensions 280�211

(Label 3 in Table 2.1), and if it is cut from large format I, with 4 strokes in horizontal
and 6 in vertical direction, then the trim loss Tji is equal to�
1�

(4�280)�(6�211)
1200�1305

�
� 100% = 9:5%; the net need is equal to 14600

4�6
= 609 large

sheets (See Table 2.3). If we cut this order from large format L, with 4� 5 strokes, the
trim loss is equal to 10:65%, and the net need is equal to 730 large sheets. From these
two alternatives, large format I shows a lower trim loss; it is the best choice. In Table
2.3 only the best results for each small format with respect to the trim loss order are
presented.

From Table 2.3, it follows that the combination fI;Ag is the best possible when the trim
loss is minimized. On the other hand, the gap with the other combinations is around 1%;
namely 5:9% for fI;Ag and 6:8%, 7:0%, and 7:1% for fI;Lg, fG;Lg, and fJ;Ag re-
spectively. So one might consider one of these three combinations when objectives
different from the trim loss are dominant. For instance, if we consider maximal flex-
ibility of the use of input, fI;Lg might be better than fI;Ag because large format L
can be used for three rotary cut formats orders, whereas large format A only cuts two
rotary cut format orders.

3. A generalized minimal clique covering problem

In this section we will show how the minimal large format stock problem, can be for-
mulated as a minimal clique covering problem with alternatives. To that end we first
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give the general formulation of the problem. Let G = (V;E) be a graph with vertex set
V and edge set E. For any S � V , let E (S) be the set of edges from E that have both
end points in S: A clique of G is a subset S of V for which (S;E (S)) is a complete
graph.

Let r � 1. An r-partition of V , say V = fV1; : : : ; Vrg, is a collection of subsets of V
such that V1 [ V2 [ � � � [ Vr = V and Vi \ Vj = ; for each i; j 2 f1; 2; : : : ; rg ; i 6= j,
and E (Vi) = ; for each i 2 f1; 2; : : : ; rg. Note that if G = Kn (the complete graph
on n vertices), then the only r-partition is the singleton partition (i.e. r = n). For any
r-partition V = fV1; : : : ; Vrg of V , a V-cover C is a collection of subsets of V such that

Vi \ ([C) 6= ; for each i 2 f1; 2; : : : ; rg ;

where [C denotes the set of all vertices in C. Hence, for each i at least one vertex
of Vi is in at least one element of C. A minimal V-cover C0 with respect to C is a
V-cover C0 � C, such that the number of elements in C0 is minimal. The problem of
determining a minimal V-cover with respect to some given collection C is called a
minimum covering problem with alternatives. If C consists of all cliques in G, then
the problem is called a minimal clique covering problem with alternatives; notation
MCCA-problem. Note that elements of C that are completely contained in one of the
Vi’s need not be considered in a MCCA-problem.

The MLFS-problem can now be formulated as an MCCA-problem in the following
way. In the underlying graph, the LFF-regions from Figure 2.2 are the vertices, while
there is an edge if two LFF-regions intersect. In order to calculate these edges we con-
sider the horizontal and vertical projections of the LFF-regions: two LFF regions inter-
sect if and only if both the horizontal and vertical projections intersect. The projections
are denoted by I

n�;i
�;i , and are defined as follows.

Take � = 1; 2 and i 2 I . Define

n

min
�;i = min

�
n

��
n� k�;i + a

max
� � g

min
�

	
n

max
�;i = max

�
n

��max
�
g

min
� ; n� k�;i + a

min
�

	
� min fn� k�;i + a

max
� ; g

max
� g

	
Then the projection interval corresponding to the ‘projection’ � and the order i is

I

n�;i
�;i =

�
max

�
g

min
� ;

�
n

min
�;i + n�;i

�
� k�;i + a

min
�

	
;

min
��
n

min
�;i + n�;i

�
� k�;i + a

max
� ; g

max
�

	�
where n�;i = 1; : : : ; nmax

�;i �n
min
�;i = N�;i. So for each order i 2 I , there are N1;i�N2;i

LFF-regions V
n1;i;n2;i
i =

n
(g1; g2) jg1 2 I

n1;i
1;i ; g2 2 I

n2;i
2;i

o
, with � = 1; 2 and n�;i =
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1; : : : ; N�;i. These are the
PI

i=1N1;i � N2;i vertices of the graph G. There exists an
edge



V

n1;i;n2;i
i ; V

q1;h;q2;h
h

�
if two rectangles intersect, i.e., define



V

n1;i;n2;i
i ; V

q1;h;q2;h
h

�
=

�
1; if V

n1;i;n2;i
i \ V

q1;h;q2;h
h 6= ;

0; otherwise
:

for n�;i; q�;h = 1; : : : ; N�;i; � = 1; 2; i; h 2 I; i 6= h. Since there is an edge between
two ‘LFF-regions’ if for both projections the corresponding projection intervals inter-
sect, this means that the so-constructed graph is an interval graph; see e.g. Golumbic
(1980).

The graph G = (V;E) corresponding to Figure 2.2 is depicted in Figure 3.1. Since for
each i 2 I; � = 1; 2; andn�;i = 1; : : : N�;i at least one vertex V

n1;i;n2;i
i needs to be

covered by a clique, we have the problem with alternatives.

No two LFF-regions from one order intersect, meaning that no rotary cut formats can
be cut from the rim, because k1;i > 1

2
a

j
1;i and k2;i >

1
2
a

j
2;i for each order i and each

large format j.

The V-cover in case of Figure 2.2 reads

V =
nn

V

1;1
1

o
;

n
V

1;1
2 ; V

1;2
2

o
;

n
V

1;1
3 ; V

2;1
3

o
;

n
V

1;1
4 ; V

1;2
4 ; V

2;1
4 ; V

2;2
4

oo
:

The cliques in Figure 3.1 form the collection

C =
nn

V

1;1
1

o
;

n
V

1;1
2

o
;

n
V

1;2
2

o
;

n
V

1;1
3

o
;

n
V

2;1
3

o
;

n
V

1;1
4

o
;n

V

1;2
4

o
;

n
V

2;1
4

o
;

n
V

2;2
4

o
;

n
V

2;1
3 ; V

2;2
4

o
;

n
V

1;1
1 ; V

1;1
2 ; V

1;1
3

o
;n

V

1;1
3 ; V

1;2
4

o
;

n
V

1;1
1 ; V

1;1
2

o
;

n
V

1;1
1 ; V

1;1
3

o
;

n
V

1;1
2 ; V

1;1
3

oo

The MCCA-problem corresponding to Figure 3.1 has eight solutions, namely

C
0 =

nnn
V

1;1
1 ; V

1;1
2 ; V

1;1
3

o
;

n
V

1;1
4

oo
;

nn
V

1;1
1 ; V

1;1
2 ; V

1;1
3

o
;

n
V

1;2
4

oo
;nn

V

1;1
1 ; V

1;1
2 ; V

1;1
3

o
;

n
V

2;1
4

oo
;

nn
V

1;1
1 ; V

1;1
2 ; V
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1;1
2 ; V
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:
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Obviously, the singleton cliques
n
V

2;1
2

o
,
n
V

1;1
4

o
, and

n
V

2;1
4

o
are redundant with

respect to the MCCA-problem. Clearly, the in this example unique optimal solution,

when minimal trim loss is demanded, reads
nn

V

1;1
1 ; V

1;1
2

o
,
n
V

2;1
3 ; V

2;2
4

oo
. This so-

lution has a trim loss of 5:9%.

When considering the complexity of the MLFS-problem, we first note that the general
MCCA-problem is NP-hard, since the MCC-problem is NP-hard; see Garey and John-
son (1979). For the specific case that the MCCA-problem is based on the intersection
graph of an MLFS-problem, we do not know the answer, although we expect it to be
NP-hard as well. This conjecture is also motivated by the fact that similar problems
on general box graphs are NP-hard; see e.g. McKee and McMorris (1999) and Roberts
(1989).

In the following section we present a heuristic that solves MLFS-problems. The heuris-
tic is based on the LFF-regions representation of the problem as formulated in this
section and includes solving a set covering problem.

4. The Large Sheet-Set Covering Heuristic

In the, what we term, Large Sheet Set Covering (LSSC) heuristic we use as input the
order data which shows the quantity (in the number of sheets) and the dimensions of the
small sheets (in mm). The heuristic outputs a number of large sheet types that covers
the small format order set. The restrictions with respect to the rotary cut machine are
taken into account when executing the heuristic.

The LSSC-heuristic uses six stages that can be described as follows. In the first stage, it
determines all so-called maxcliques, where a maxclique is any complete subgraph that
is not properly contained in another subgraph (see e.g. McKee and McMorris (1999)).
This operation is performed in order to reduce the solution space. It may happen that
the optimal solution does not correspond to a maxclique. For example, in Section 2 the
maxclique set (MCS) is equal tonnn

V

1;1
1

o
;

n
V

1;1
2

o
;

n
V

1;1
3

oo
;

nn
V

1;1
3

o
;

n
V

1;2
4

oo
;

nn
V

2;1
3

o
;

n
V

2;2
4

oo
;n

V

1;2
2

o
;

n
V

1;1
4

o
;

n
V

2;1
4

oo
;

while the optimal solution uses a subclique of the maxclique that covers V1;11 .

In stage 2 we construct three types of incidence matrices to be used as input for the set
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covering problem from stage 4. Because the management of the company is interested
in a balanced solution between a minimal stock of large formats and a minimal trim
loss level, the trim loss is used as so-called cost operator in the set covering problem. In
stage 5 the solution of the set covering set is reduced. In stage 6 the actual large format
inventory is determined. The heuristic reads as follows.

Large Sheet-Set Covering heuristic

Input : Graph G = (V;E); vertex set V =
�
V

n1;i;n2;i
i

	
with M vertices;

edges


V

n1;i;n2;i
i ; V

q1;h;q2;h
h

�
, with h; i = 1; : : : ; I;

n�;i; q�;h = 1; : : : N�;i; � = 1; 2;
order partition of V =

�
P1; : : : ; PjVj

	
.

Output : Large format stock dimensions (g1 (j) ; g2 (j)) for j = 1; : : : ; J , with J

the number of large formats, and the number of sheets Qj necessary to
cover the demand in large sheet type (g1 (j) ; g2 (j)) of a particular period,
for j = 1; : : : ; J .

Stage 1: Maxcliques. Calculate all maxcliques of G. The method from Carraghan
and Pardalos (1990) can be used. The vertices are labeled in the order of
nondecreasing degrees, say v1; : : : ; vM : First all maxcliques containing v1
are determined. Then all maxcliques containing v2, but not v1 are deter-
mined, and so on, until we have found all maxcliques.

Stage 2: Incidence matrices. Calculate the maxclique-vertex incidence matrix C =

(cpm), defined as cpm = 1 if vm 2 V
p, and cpm = 0 otherwise, for p 2

P; m = 1; : : : ;M ; see Golumbic (1980) and Booth and Lueker (1975).
Calculate the vertex-order incidence matrix D = (dmi), with dmi = 1 if
vm is a vertex of small format order i, and dmi = 0 otherwise for i 2
I; m = 1; : : : ;M . Calculate the order-maxclique incidence matrix O =

(oip), with oip = 1 if maxclique Vp covers order i, and oip = 0 otherwise
for i 2 I; p 2 P . Note that O = D

T
� C

T .
Stage 3: Trim loss. Calculate the trim loss for each maxclique Vp (p 2 P). These

values are used as cost operators in next stages. Before the trim loss can be
calculated we need the optimal large sheet dimensions for each maxclique
V
p. A large sheet dimension g�� (V

p) ; p = 1; : : : ; P is called optimal if
g
�
� (V

p) = max fmin g�� (vm1
) ; : : : ;min g�� (vmn

) ; : : : ;min g�� (vmN
)g

� 2 f1; 2g ; g�� (vmn
) 2 vmn

; vmn
2 V

p; 8mn 2M ; n = 1; : : : ; N ; N �M:

(6)
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The trim loss is now equal to

T (Vp) =

PI
i=1 oijQi (g

�
� (V

p))� Ti (g
�
� (V

p))PI
i=1 oijQi (g�� (V

p))
; (7)

with Qi (g
�
� (V

p)) and Ti (g�� (V
p)) using the definitions of (4) and (5).

Stage 4: Set covering. Solve a set covering problem for the matrix O, i.e. determine
a minimum number of rows of O such that each column has at least one 1
in one of the selected rows. In linear programming optimization then the
problem reads as follows.
Let xp = 1 if clique Vp (cost T (Vp) ) is in the solution, and x

p = 0

otherwise. Then

min

� PP
p=1 T (Vp) xp

��� PP
p=1 oipx

p
� 1 i 2 I

x
p
2 (0; 1) p 2 P

�
: (8)

Let Wr =
�
vt1 ; : : : ; vtRr

	
2
�
V
1
; : : : ;V

P
	
for r = 1; : : : ; R � P be the

solution of this set covering problem. Note that the entries of the matrix O
are input parameters of the set covering problem. Define O0 = (o0ir) with
o
0
ir = 1 if maxclique Wr covers order i, and 0 otherwise.

Stage 5: Redundancy in solution. Solve the bipartite matching problem (see e.g.
Ahuja et al (1993))

min
n PI

i=1

PR
r=1 kiro

00
ir

��� PI
i=1 o

00
ir = 1; o00ir 2 (0; 1) i 2 I; r 2 R

o
where kir = �Ti (g

�
� (W

r)) if o0ir = 1, and kir = �1 if o0ir = 0. Note
that the entries of the matrix O00 = (o00ir) are the decision variables in this
problem. These entries show which orders are covered by W

r
. The cliques

W
1
; : : : ;W

R
are derived from W

1
; : : : ;W

R by deleting vertices vm that
are not covered anymore. The vertices vm that are removed from W

r are
determined by using the matrices C and D. Let O000 be the matrix obtained

by deleting the zero columns from O
00. Let W

1
; : : : ;W

J
be the set of the

remaining cliques, corresponding to the demanded J large format types.
Stage 6: Large format inventory. From the cliques that are selected in stage 5 the

large sheet dimensions are determined by using (6). For each j = 1; : : : ; J

the net need Qj , being the number of sheets in a particular large sheet type
(g1 (j) ; g2 (j)), is calculated by means of (5).

The size of the incidence matrices C , D, and O in stage 2 can be reduced if for a row
(column) with only one entry 1 there is another row (column) that also contains this
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entry. This will not change the procedure (see the example below). The specification of
the large sheet dimensions is nothing else than determining the lower left corner point
(g�1 (V

p) ; g�2 (V
p)) of the intersection of the LFF-regions corresponding to the clique

V
p. In stage 4 a set covering formulation is used; see e.g. Beasley (1987). The first

set of restrictions in (8) ensures that each row is covered by at least one column. The
second set of restrictions are integrality constraints. For p = 1; : : : ; P , T (Vp) denotes
the cost of the trim loss of the clique Vp. The heuristic determines a feasible solution
of the MCCA-problem by solving a set covering problem that minimizes the total trim
loss of the maxcliques. The set

�
W

1
; : : : ;W

R
	

shows the solution of the set covering
formulation. In stage 5, the heuristic reduces the number of vertices in the maxcliques
from

�
W

1
; : : : ;W

R
	

. After removing the empty cliques we end up with the cliques

W
1
; : : : ;W

J
. The clique W

j
(j = 1; : : : ; J) corresponds to a large sheet type and

may cover several small format orders. Note that a clique W
j

need not be a maxclique.
Finally, in stage 6 the corresponding large sheet dimensions and the net need of sheets,
necessary to cover the demand of a certain period, are calculated. The working of the
LSSC-heuristic is now illustrated by means of the example corresponding to Figure
3.1.

Stage 1: Start using the algorithm of Carraghan and Pardalos (1990). A boldfaced
node below is one that will be expanded.

1: Initialization orders the nodes: v1 = V

1;2

2
; v2 = V

1;1

4
; v3 = V

2;1

4
; v4 = V

2;1

3
; v5 =

V

2;2

4
; v6 = V

1;2

4
; v7 = V

1;1

1
; v8 = V

1;1

2
; v9 = V

1;1

3

2: Depth 1: v1; v2; v3; v4; v5; v6; v7; v8; v9 (cannot expand, so CBC is V1 = fv1g,
size 1)

3: Depth 1: v1;v2; v3; v4; v5; v6; v7; v8; v9 (cannot expand, so CBC is V2 = fv2g,
size 1)

4: Depth 1: v1; v2;v3; v4; v5; v6; v7; v8; v9 (cannot expand, so CBC is V3 = fv3g,
size 1)

5: Depth 1: v1; v2; v3;v4; v5; v6; v7; v8; v9

Depth 2: v5;v6;v7;v8;v9 (cannot expand, so CBC is V4 =

fv4; v5g, size 2)
6: Depth 1: v1; v2; v3; v4;v5; v6; v7; v8; v9 (cannot expand, is already in a clique,

namely V4)
7: Depth 1: v1; v2; v3; v4; v5;v6; v7; v8; v9

Depth 2: v7; v8;v9 (cannot expand, so CBC is V5 =
fv6; v9g, size 2)

8: Depth 1: v1; v2; v3; v4; v5; v6;v7; v8; v9

Depth 2: v8; v9

Depth 3: v9 (cannot expand, so CBC is V6 =

fv7; v8; v9g, size 3)

16



Stage 2: For each vertex in the graph of Figure 3.1, the maxcliques are used to
calculate the maxclique-vertices matrix C , namely:

v1 v2 v3 v4 v5 v6 v7 v8 v9

V
1 1 0 0 0 0 0 0 0 0

V
2 0 1 0 0 0 0 0 0 0

V
3 0 0 1 0 0 0 0 0 0

V
4 0 0 0 1 1 0 0 0 0

V
5 0 0 0 0 0 1 0 0 1

V
6 0 0 0 0 0 0 1 1 1

where the pth row corresponds to clique Vp and the mth column to the
vertex vm. The vertex-order incidence matrix D reads as follows:

1 2 3 4

v1 0 1 0 0

v2 0 0 0 1

v3 0 0 0 1

v4 0 0 1 0

v5 0 0 0 1

v6 0 0 0 1

v7 1 0 0 0

v8 0 1 0 0

v9 0 0 1 0

where the mth row corresponds to vertex vm and the ith column to order
i. The maxcliques-order incidence matrix O reads as follows:

V
1

V
2

V
3

V
4

V
5

V
6

1 0 0 0 0 0 1

2 1 0 0 0 0 1

3 0 0 0 1 1 1

4 0 1 1 1 1 0
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where the ith row corresponds to order i and the pth column to the clique
V
p.

Stage 3: In Table 4.1 the trim loss is given for each maxclique Vp.

Tabel 4.1: Trim loss for each maxclique in the example
(The labels of the vertices refer to Figure 2.2)

Maxclique
Large format Trim loss

Vertex (g�
1
(Vp) ; g�

2
(Vp)) T (Vp)

V
1 C 1314� 1100mm 5:0%

V
2 F 1000� 1050mm 9:1%

V
3 H 1000� 1305mm 26:8%

V
4 I 1200� 1305mm 5:7%

V
5 J 1200� 1085mm 6:9%

V
6 L 1150� 1150mm 8:1%

Stage 4: Using O as input, the solution of the set covering problem is W1 =

V
4
;W

2 = V
6. Matrix O0 is equal to

W
1

W
2

1 0 1

2 0 1

3 1 1

4 1 0

Stage 5: This solution contains redundancy. In order to remove it, a bipartite match-
ing problem is solved. Figure 4.1 shows the corresponding bipartite graph.

Note that order 3 is covered by W1(lowest trim loss). So we remove order
3 from W

2. The matrix O000 = O
00 reads now as follows:

W
1

W
2

1 0 1

2 0 1

3 1 0

4 1 0
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Using the matrices C , D, and O
000, we find that W

1
= W

1
;W

2
= W

2
n

fv9g.
Stage 6: The large format stock is determined from (6). Namely,�

g1

�
W

1
�
; g2

�
W

1
��

= (1200; 1305) and
�
g1

�
W

2
�
; g2

�
W

2
��

=

(1130; 1150). Using the data from Table 2.3, the net need satisfiesn
Q

�
W

1
�
; Q

�
W

2
�o

= f4338; 3093g.

Note that the cliques V1, V2, and V3 are the redundant singleton cliques, because other
cliques already cover the small format orders corresponding to V1, V2, or V3. Delete
the corresponding rows and/or columns from the matrices C , D, and O. It follows
from matrix O that V4 and V5 both cover all small format orders. With respect to the
trim loss, V4 is better than V5. So, the rows and columns corresponding to V5 can be
removed.

In this simple case the heuristic has found the optimal solution, namely the one corre-
sponding to fI;Ag of Table 2.3.

5. Computational results

The company for which the research of this paper has been carried out produces about
40; 000 tons of rotary cut format sheets per year. The data set used in this section
includes all rotary cut format orders within a specific year. We consider calipers of
which the weights are at least 5%. In Table 5.1 these calipers are listed together with
the number of orders and the weights of the orders (in tons). The ’share’ column in this
table contains the percentages of the caliper in the total number of orders. There are two
order variables: ‘real’ and ‘unique’. ‘Real’ is the number of orders in a specific caliper,
while ‘unique’ is the number of order specifications with respect to the dimensions in
a specific caliper.

We only use the calipers 1:7mm, 2:0mm, 2:4mm, and assume that gmin
1 = g

min
2 =

g
min = 1000mm, gmax

1 = g
max
2 = g

max = 1350mm, amin
1 = a

min
2 = a

min = 30mm,
a
max
1 = a

max
2 = a

max = 100mm. The rotary cut machine has 10 horizontal and 10

vertical knives. The simulations are carried out by a simplified version of the LSSC-
heuristic. Table 5.2 shows the results of the calculations.

The column ‘share’ shows the importance of the large format for the specific caliper. If
a large format specification has a weight of 40%; then from the total number of tons in
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Tabel 5.1: Weights of calipers above the 5%

Caliper
# of orders # of

Sharereal unique tons
1:7mm 219 58 2992 7:2%

1:8mm 319 90 2580 5:7%

1:9mm 403 133 3156 7:6%

2:0mm 726 269 5982 14:4%

2:25mm 449 106 5247 12:7%

2:4mm 680 332 6900 16:7%

Total number of orders 4719

Total number of tons 41275

a specific caliper, 40% has that large format specification. Note that the total number
of tons in Table 5.2 is higher than in Table 5.1. This is caused by the fact that the total
number in tons denotes the released to satisfy the demand. Table 5.2 also shows the
trim loss. The number of large formats denotes the number of large format dimensions
necessary for cutting all rotary cut format orders under the given restrictions. Because
of these restrictions, not all orders are covered in a specific caliper. Take for example
the caliper of 2:0mm. Here 254 out of 269 unique orders are covered by the set of
large formats. In order to cover 254 orders, 24 different small sheet dimensions are
necessary. Other orders cannot be cut, because of additional restrictions such as the
number of knives.

From Table 5.2 we conclude that the proposed heuristic should perform rather well. The
trim loss is in general below the 11%, where the company has as target an average of at
most 13% trim loss. If the company restricts the number of large sheets in a particular
caliper to three, then at least 66% of the volume is covered by these large sheets. This
can be seen as a rather good result.

6. Discussion and conclusions

In this paper we analyze the problem of determining the size of the stock of large
format dimensions, such that the number of rotary cut format orders that are covered
is maximized and the trim loss is minimized. Until now the composition of the large
format stock is determined by using the experience of the planners who prioritize the
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Tabel 5.2: Simulation results for a selection of calipers

Caliper
Large sheet Trim

Share
Unique
orders# Dimensions Loss

1:7mm 13 1120� 1005 9:45% 61% 11

1334� 1255 9:17% 25% 6

1080� 1110 9:06% 6% 10

Total in tons 3294

Covered orders / Total number of orders 57 / 58

2:0mm 24 1310� 1290 7:41% 40% 31

1160� 1010 10:95% 14% 27

1220� 1332 10:94% 12% 35

Total in tons 6310

Covered orders / Total number of orders 254 / 269

2:4mm 27 1322� 1002 9:05% 38% 35

1344� 1226 8:68% 20% 36

1250� 1002 9:43% 8% 26

Total in tons 7441

Covered orders / Total number of orders 313 / 332

maximization of the trim loss at the cost of minimizing stock costs. We provide a more
balanced treatment of the problem. It is shown that the problem can be formulated as a
generalized clique covering problem. Since the complexity of this specific problem is
unknown, we are forced to use heuristics.

The heuristic proposed here uses six stages, applying general mathematical techniques
for finding maxcliques, solving a set covering problem, and improving the performance
by reducing the maxcliques.

The computational results show that the heuristic performs pretty well on the data set.
This set covers one production year. The calculation of the large format stock is also
based on this data set, although it is expected that the demand in the future may change.
The results show that the heuristic may provide a significant reduction in the trim losses.
Important to note is the fact that the simulations are performed on a deterministic data
set. In practice, the demand fluctuates dynamically, and so do the demanded sheet di-
mensions. This may lead to lower reductions in the trim losses than can be expected
from the simulations.
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The company distinguishes a total of five market segments, each with its specific char-
acteristics including the sizes of the demanded rotary cut format sheets in the various
calipers. Some market segments are better predictable than others. This may also have
an impact on the performance of the heuristic and the way it will be used in practice.

There are a number of interesting management implications of the current research.
First of all, the cutting losses decreases. The advantage of a new type of inventory, the
large format stock is a reduction of the additional setups leading to an increase of the
available capacity on the production machines.
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Figuur 1.1: The cardboard production process schematically
The triangles denote inventories, the rectangles processing steps, and the circles denote either-or structures. For
example, after the wrapping, a large format is ready. It is put in the ‘ready product’ stock, or in an inventory to be
processed in the final processing department (large format stock, and unique large format respectively).
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Figuur 1.2: Relation between a large and small format
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Figuur 2.1: Relation between a large sheet and rotary cut formats
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Figuur 3.1: Graph corresponding to Figure 2.2
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